
On separation pairs and split components of

biconnected graphs

Sven Mallach∗

Institut für Informatik

Universität zu Köln, 50969 Köln, Germany

21th June 2011.

Abstract

The decomposition of a biconnected graph G into its triconnected com-

ponents is fundamental in graph theory and has a wide range of applica-
tions. Based on a palm tree of G, the algorithm by Hopcroft and Tarjan [7]
is able to compute them in linear time if the corrections of [6] are applied.
Today, the algorithm is still considered very hard to understand and proofs
of its correctness are technical and challenging.

The article at hand provides a more comprehensive description of the
algorithm, making it easier to understand and implement. Its correctness
is validated by explicitly mapping the algorithmic detection criteria to
the graph-theoretic characterization of type-1 and type-2 separation pairs.
Further, it reveals further errors and inaccuracies in the common defini-
tions. This includes the description and proofs of further properties and
relationships of separation pairs. The presented results also answer the
question whether and under which preconditions type-1 and type-2 pairs
can be computed separately from each other.

1 Introduction

Determining vertex connectivity is a fundamental graph theoretical problem
with applications in many domains. Besides immediate applications for deter-
mining the structure and degree of connectivity in networks, triconnectivity is
of special interest in graph drawing, since planar triconnected graphs have a
unique embedding in the sphere. Many drawing algorithms (e.g., [2, 8]) make
use of the decomposition of a biconnected graph into its triconnected compo-
nents (usually represented as SPQR-tree [5, 1, 6]), which allows to represent all
planar embeddings of the graph.

The major task to compute the triconnected components of a graph G =
(V,E) is to determine its separation pairs. Two vertices a, b ∈ V are called
a separation pair if and only if G − {a, b} is not connected and there are nei-
ther exactly two components resulting one of which consists of a single edge

∗Please address correspondence to mallach@informatik.uni-koeln.de

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by computer science publication server

https://core.ac.uk/display/141726392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

nor exactly three components resulting each of which consists of a single edge
[7]. Though based on depth-first search (DFS), the first linear-time algorithm
given by Hopcroft and Tarjan [7] in 1972, is considered to be sophisticated to
retrace and implement, but is still state-of-the-art. Several errors have not been
discovered and corrected until the work by Gutwenger and Mutzel in 2000 [6];
see also [5] for a more in-depth description.

Hopcroft and Tarjan distinguish type-1 and type-2 separation pairs and char-
acterize them in terms of graph theory (using cycles and segments) and by al-
gorithmic tests. In [7], a proof is provided that pairs of vertices which pass
the algorithmic tests also conform to the graph-theoretic definition of separa-
tion pairs. However, especially for the type-2 case, this is challenging to see.
Recently and independently from this work, a first effort towards a more com-
prehensive explanation has been achieved in a master’s thesis [9].

The aim of this article is to offer an accessible description by explicitly
mapping the algorithmic to the graph-theoretic criteria and to unveal further
inaccuracies in the common definitions used in relation to the identification of
triconnected components. Therefore, we describe special cases of type-1 pairs
that are correctly determined by the algorithm, but not covered by their struc-
tural definition. Then we prove properties of type-2 pairs that have not been
part of any previous algorithmic characterization, but which are necessary in
order to be correct. From the algorithmic point of view, we also answer the
question whether type-1 and type-2 pairs can be computed separately from
each other and under which preconditions this is possible.

As a further contribution, we describe a relationship which is, to the best
of our knowledge, previously unknown: For every separation pair {a, b} that
is detected as being of type-2, we can perform a different DFS traversal in
which {a, b} will be detected as being of type-1. Theoretically, this allows for
an algorithm performing exclusively type-1 splits. This would be promising, as
finding type-2 pairs requires additional data structures, sorting, comparisons
and even full passes over the vertex and edge sets. Hence, if there was a way
to construct a type-2-free DFS tree for every graph a new simple and efficient
algorithm would be conceivable. However, we give a counter-example showing
that there exist graphs for which no such tree exists.

Related work Besides the already mentioned literature, some alternative ap-
proaches to compute the triconnected components were considered in research.
In the 1980s, Vo [14, 13] and Williamson [15] presented two slightly differ-
ent classifications of separation pairs, one using segment graphs and one using
bridge graphs, respectively. Triconnectivity also received some attention within
the PRAM community, e.g. in [10, 4], but the proposed algorithms turned out
to be even more complicated and barely applicable in practice. Similarly, com-
puting separation pairs via transformations from 3-edge-connectivity, like in,
e.g., [11], neither yields more simplicity nor ease of implementation.

The sequel of this paper is organized as follows: In Sect. 2, we reproduce the
basic concepts and notations to handle the detection of separation pairs using
DFS. Sections 3 and 4 present the main results. Finally, we conclude in Sect. 5.

3

2 Preliminaries

2.1 Separation pairs and split operations in biconnected

graphs

E1 E2 E3

a

b

Let G = (V,E) be a biconnected multigraph, and a, b ∈ V .
We may partition E into separation classes E1, E2, . . . , Ek, so
that two edges are in the same class if they lie on a common
path which does not comprise a or b except as an end vertex.
Suppose there are at least two separation classes. Then {a, b}
is a separation pair, if there are neither exactly two classes one
of which consists of a single edge nor exactly three classes each of which consists
of a single edge [7].

Let E′ be the union of a subset of the Ei and E′′ = E \ E′, such that
|E′| ≥ 2 and also |E′′| ≥ 2. A split operation replaces G by two split graphs

G1 = (V (E′), E′ ∪ {a, b}) and G2 = (V (E′′), E′′ ∪ {a, b}) where (a, b) is a new
virtual edge. If, in addition, E′ or E′′ consists of a single split class (i.e, is
minimal w.r.t. split operations) then the split is called a Tutte split [12].

The algorithm of Hopcroft and Tarjan exclusively performs Tutte splits. The
recursive application of split operations yields the split components of G which
are either a pair of vertices with three edges (bonds), triangles or triconnected
subgraphs. Bonds and triangles are valid split components due to the above
definition of separation pairs which mainly serve to decompose a bi- but not
triconnected graph in a well-defined manner. It prohibits split graphs consisting
of one or two edges (a, b) only, but explicitly permits split graphs with two or
three vertices and at least three edges. The split components of G are not
unique. Merging bonds and triangles with a common virtual edge into maximal
bonds and polygons, one yields the unique triconnected components of G [7].
These do not necessarily apply to common definitions of 3-vertex-connectedness,
such as Menger’s theorem [3]. A bond is a valid triconnected component though
it has less than three vertices. Even more, a quadrangle is a valid triconnected
component even though removing two non-adjacent vertices ‘disconnects’ it.

2.2 Cycles and segments of biconnected graphs

The linear-time triconnectivity algorithms discussed
here mainly rely on the analysis of cycles in a simple
biconnected graph G = (V,E) while split components
arising from multi edges are processed seperately in
advance. If we find a cycle C in G and conceptually
remove it, G decomposes into connected components
which are called segments relative to C. More precisely, segments are defined
by the set of vertices incident to the edges of the component, i.e., the vertices
of attachment on C are also considered to be part of the segments.

To consider cycles is efficient due to the following property (proved in [7])
which allows for an algorithm that successively builds new cycles from a previous
one and one of its segments using DFS.

Theorem 1. Let {a, b} be a separation pair and C a cycle in G, then either a
and b lie both on C or both in the same segment relative to C.

4

2.3 Depth-first search and palm trees

Traversing a graph with DFS means decomposing it into simple paths, consisting
of a sequence of tree arcs followed by one back arc. We use the following nota-
tion: If (u, v) is a tree arc denote it with u → v, if it is a back arc (subsequently
called a frond) with u →֒ v. Similarly, denote a path from u to v consisting of
zero, one or multiple tree arcs with u →∗ v.

The tree constructed by DFS is a so-called palm tree P = (V,A) [7] which is
a directed multigraph where each arc (u, v) ∈ A is either a tree arc or a frond
such that the tree arcs form a spanning tree and if u →֒ v, then also v →∗ u. In
P , every vertex v has a set of descendants D(v), a degree deg(v), a unique DFS
number num(v) and a unique predecessor parent(v). The lowpoint of a v corre-
sponds to the lowest and second lowest numbered vertices that are reachable in
P from v by simple paths, i.e., lowpt1 (v) = min{num(v)}∪{num(w)|v →∗ →֒ w}
and lowpt2 (v) = min{num(v)} ∪ {num(w)|v →∗ →֒ w}\{lowpt1 (v)} for v ∈ V .

The ordinary DFS arbitrarily chooses one unseen descendant to process next.
Instead, due to Theorem 1, we would like to have an initial cycle and each
following simple path to end at the vertex with the lowest possible DFS number
and to share at most its start and end vertex with previous paths. Then each
such path x →∗ y →֒ z defines a segment S relative to its parent cycle C and can
itself be extended to a cycle by adding the tree-arc path z →∗ x. In the notation
of [14, 13, 15], we call z →∗ x the span of S, span(S) and span(S) \ {z, x} the
open span of S, ospan(S). The vertices z and x belonging to C and S are also
referred to as low (S) and tail(S), respectively.

In order to gain the desired order of cycles we need to traverse T twice,
orienting the second traversal at the lowpt information calculated in the first
pass. Therefore, between the passes, the adjacency lists A(v) of all vertices v
are sorted by lowpt1 (w), if v → w, or num(w) if v →֒ w. If vertices wi, . . . , wk

have the same lowpt1 -value num(u) then there is some index j ≤ k such that
lowpt2 (wi) < v for all i ≤ j and lowpt2 (wi) ≥ v for all i > j. Fronds v →֒ u
will be placed in between all arcs to vertices wi, i ≤ j and wi, i > j. Later,
this will ensure a correct determination of split components stemming from
type-1 pairs {u,wi} with i < j since all edges (v, wi) with lowpt2 (wi) ≥ v
appear consecutively in Adj(v). Sorting the adjacency lists like this can be
done in linear time using bucket sort as described in [6]. Afterwards, all vertices
except the root are renumbered according to the new adjacency structure. The
children w1, . . . , wn of a vertex v in the order of A(v) are assigned the numbers
num(wi) = num(v) + |D(wi+1) ∪ · · · ∪D(wn)|+ 1.

Let u0, . . . , uk be a path. If for every i, 1 ≤ i ≤ k, ui is the first vertex in
the adjacency list of ui−1, then uk is called a first descendant of u0. Due to the
adjacency structure, a path of first descendants corresponds to the path that
reaches back at furthest and will be traversed first.

3 Structure and algorithmic detection of sepa-

ration pairs

In this section, the segment-based and algorithmic detection criteria for type-
1 and type-2 separation pairs {a, b} as given in [7] are revisited. First, the
algorithmic tests are mapped to the segment-based criteria. For type-1 pairs,

5

we find special cases that are not covered by the segment-based characterization
whereas, for type-2 pairs, we prove new necessary conditions that have to be
satisfied algorithmically.

For all the stated conditions it is assumed that num(a) < num(b) and that
there is a palm tree with an adjacency structure and numbering as described in
Sect. 2.3. Within the illustrating figures in this section solid arcs (u, v) refer to a
direct adjacency, dotted arcs to paths u →∗ v and unnamed segments represent
parts of a palm tree that may or may not exist without influencing validity of the
respective scenario. Further, a subdivided palm tree with replicated separation-
pair vertices a and b shall represent a split operation while the virtual edges to
be added are not visualized.

a

b

r

1

C

S

i

a

r

b

qα

qβ

p

1

S2 S1

S3

S3

Figure 1: A typical type-1 pair (left) and a typical type-2 pair (right).

3.1 Type-1

3.1.1 Mapping the algorithmic to the segment-based criteria

For the segment-based characterization, we consider a cycle C and find a type-1
pair if a segment S relative to C consists of at least 2 edges, has only a and b
in common with C and there exists another vertex outside S which is not equal
to a or b [7]. An example is shown in the left of Fig. 1.

Definition 1 (Type-1 separation pair, algorithmic conditions).

There exist vertices r 6= a, b and s 6= a, b so that b → r and s /∈ D(r)

lowpt1(r) = num(a), lowpt2(r) ≥ num(b)

Theorem 2. If the algorithmic criteria for type-1 pairs are satisfied, the segment-

based criteria are also satisfied.

Proof. For type-1 pairs this is straightforward: Assuming a and b to lie on C, we
enter a segment relative to C by traversing the arc b → r. If lowpt1 (r) = num(a)
and lowpt2 (r) ≥ num(b) then a and b are the only vertices on C that the segment
connects to, i.e. removing these vertices will split it. It is clear that r 6= a, b
and that there must exist another vertex s 6= a, b because otherwise the second
split graph would be empty.

However, the segment-based requirements are even more restrictive than the
algorithmic test, as they refer to a cycle C and a segment S relative to it, so that

6

V (S) ∩ V (C) = {a, b}. We will now give small examples for two valid special
cases of type-1 pairs where this is not the case.

3.1.2 Special cases not covered by the segment-based criteria

a

b

r

C

1

b

r

a C

SA

SB

a

b

r

C

Figure 2: A type-1 pair with r lying on the cycle (left), with multiple segments
having more than two vertices in common with the cycle (middle) and a special
case satisfying the conditions but not admitting a type-1 pair (right).

At first, the vertex r satisfying the algorithmic criteria may itself lie on C.
Consider the simple palm tree with root a in the left of Fig. 2. There is no

segment that has two vertices in common with C. But r which is lying on

C satisfies the conditions lowpt1 (r) = num(a) and lowpt2 (r) ≥ num(b). The
triangle b− r − a created by the virtual edge b →֒ a is a valid split component.

Secondly, the image in the middle of Fig. 2 shows two segments SA and
SB that share more than two vertices with their cycle C. Following [14], they
are said to be directly linked, i.e., span(SA) is not a subset of a path between
two attachments of SB on C and vice versa. Such segments must be drawn on
different sides of C in any planar embedding [14]. Hence, for readability, the
graph is not shown as a palm tree. In [13], Vo calls the illustrated case a type-2a

separation pair. SA and SB belong to the same split component of {a, b} which
will be correctly detected to satisfy the type-1 conditions when backtracking
from b → r.

A third issue is a vertex pair {a, b} satisfying the type-1 conditions while
parent(b) = a is the root of the palm tree and there is no unvisited tree arc left
in A(b). A minimal example is shown in the right of Fig. 2. Here, one split graph
would consist of a and b connected by a tree arc and a virtual frond which is an
invalid split operation according to the definition from Sect. 2.1. Although, we
could not find this case differentiation in any previous segment-based definition,
the corrected version of the algorithm of Hopcroft and Tarjan already checks
for this special case [6].

3.2 Type-2

3.2.1 Mapping the algorithmic to the segment-based criteria

For the segment-based characterization, we again consider a cycle C with two
vertices a and b. As a convention, we partition C into two halves: The tree-arc
path a →∗ b which is referred to as p, and the remaining part b →∗ →֒→∗ a,
called q. We can further divide q into the path from b to the frond and call it
qβ , and the tree-arc path to a, qα (cf. the right of Fig. 1). We call the segments
connected to C by tree arcs just the segments of C.

7

Accordingly, {a, b} is a type-2 pair if there is no segment of C that simul-

taneously contains a vertex on p and q, and both half-cycles consist of at least
one more vertex [7]. Intuitively, a and b divide C such that every segment con-
nected to one half has no connection to the other without using a or b. One can
also say that removing {a, b} isolates a vertex r (which is on p) from parent(a)
(which is on q). Before we establish the relationship between both characteri-
zations, notice that the type-2 pairs have a special case, namely the parent a
and descendant b of a vertex r with deg(r) = 2. For such a pair, the algorithmic
conditions are trivially satisfied. We subsequently always refer to the non-trivial
type-2 case.

Definition 2 (Type-2 separation pair, algorithmic conditions).

num(a) > 1 and there exists a vertex r 6= a with a → r →∗ b

b is a first descendant of r

for all x →֒ y with num(r) ≤ num(x) < num(b)

holds num(y) ≥ num(a) (FC1)

for all x →֒ y with num(a) < num(y) < num(b) and b → w →∗ x

holds lowpt1(w) ≥ num(a) (FC2)

Within the algorithm, the satisfaction of these criteria is mainly determined
via the so-called triple stack (TSTACK). We will come back to TSTACK in
Sect. 3.3.2, but for now, let us assume we have found a pair {a, b} for which all
conditions are satisfied.

Lemma 1. If the algorithmic criteria for type-2 pairs are satisfied and {a, b} is

removed, then p is not connected to q.

Proof. From the property that b is a first descendant of r we can conclude that
on the path r →∗ b there is no vertex x with lowpt1 (x) < lowpt1 (b). Due to
biconnectivity, for every vertex v except the root holds lowpt1 (v) < num(v).
Hence, lowpt1 (b) ≤ num(a), i.e., the first descendant property already forbids
fronds like in condition (FC1) for such vertices x. However, there could be a
vertex x′ with lowpt1 (x

′) = lowpt1 (b) that still connects p to qα. But due to
the numbering, as b is the first descendant, a segment with such a vertex x′

must have lower numbers than b has. Hence, (FC1) is mandatory for x′, i.e.,
there must not be a frond to a vertex y with num(y) < num(a). It further
follows from the structure of a palm tree that connections from p to qβ must
proceed via a or b. As a consequence, all paths to q from p and its segments
must proceed via a or b.

Lemma 2. If the algorithmic criteria for type-2 pairs are satisfied and {a, b} is

removed, then q is not connected to p.

Proof. As num(a) 6= 1 there is at least one vertex v with num(v) < num(a).
Let I be the set of such vertices. Since (FC1) holds and b is a first descendant of
r, there is at least one path from b to a vertex in I due to biconnectivity. Notice
that one of these paths is qβ . For all descendants w of b that are connected
to I by a frond, (FC2) ensures that there is no direct path (that is, without
using a or b) to p at the same time. Hence, qβ is not connected to p. For qα
or segments of it, it follows directly from the structure of a palm tree that they
are not simultaneously connected to p except by using vertex a or b.

8

Theorem 3. If the algorithmic criteria for type-2 pairs are satisfied, the segment-

based criteria are also satisfied.

Proof. The part dealing with absence of a segment that is simultaneously con-
nected to a vertex on p and q follows directly from Lemmata 1 and 2. It remains
to show, that they are also not empty which is immediate, as p at least com-
prises r and q at least comprises parent(a).

As a side product we have described the only two possible kinds of segments
starting in b if {a, b} is assumed to be a type-2 pair (cf. the right of Fig. 1):

(S1) Segments that are connected to p but not to some vertex i with
num(i) < num(a).

(S2) Segments that are connected to some vertex i with num(i) < num(a) but
not to p.

Further, let i be the start and end vertex of the cycle. Suppose num(i) 6= 1
and no descendant of b has a frond to a vertex of the path 1 →∗ i. Then,
in order to maintain biconnectivity, there must be fronds to this path starting
either from qα, segments of it or from a subtree of a not containing r. We call
these segments of type (S3) (cf. the right of Fig. 1). Finally, we know that the
split off component of {a, b} consists of all edges on p, segments connected to p
and all segments of type (S1) (cf. Fig. 1 and [5]).

3.3 Implementation of the detection criteria for separa-

tion pairs

It has been just pointed out that the satisfaction of the algorithmic conditions
for a type-2 pair also leads to the satisfaction of their segment-based definition.
However, we will emphasize in Sect. 3.3.1 that the algorithmic properties as
such define a superset of the vertex-pairs that can be correctly split as type-2
pairs. In other words, an additional condition has to be added to the algorithmic
detection criteria in order to correctly specify the real type-2 pairs. In Sect. 3.3.2
we explain in detail how stacks are used in order to perform the separation pair
detection in linear time.

3.3.1 The path starting property

Consider the palm tree in the left of Fig. 3. The pair {3, 7} satisfies all conditions
of a type-2 pair. But the algorithm in [7, 6] would not split it and instead
discover {2, 5} as a type-1 pair, like in the right image of Fig. 3. After that, a
split of {3, 7} is not possible anymore and if the new virtual edge 5 →֒ 2 had
existed before, it would have violated (FC1) for {3, 7}. Hence, {3, 7} does not
correspond to a type-2 pair which means that the stated algorithmic criteria
has to be enhanced by a further condition which will be pointed out now.

Lemma 3. Let T be the palm tree of a simple biconnected graph and v with

num(v) 6= 1 be a vertex in T . Then deg(v) = 2 if and only if neither a path

starts at v nor a frond has v as its head.

9

2

1

3

4

5

6 7

8

2

1

3

4

5

8

4

56

4

5

2

5
7

Figure 3: A vertex pair {3, 7} satisfying the type-2 conditions beforehand (left)
and type-1 splits leading to their subsequent violation (right).

Proof. From the definition of T each of its vertices, except the root, has exactly
one parent. Suppose v is not a leaf. If it has exactly one outgoing arc it does
not start a path. If v is also not head of a frond, then deg(v) = 2, otherwise
deg(v) ≥ 3. If v has multiple outgoing arcs, only one of them continues the
path from parent(v). Every other arc starts a path and deg(v) ≥ 3. If v is a
leaf, it cannot be head of a frond and it must have at least one frond due to
biconnectivity. If it has only one frond, deg(v) = 2, otherwise it has multiple
ones and therefore starts a path, so deg(v) ≥ 3.

Lemma 4. Let {a, b} a type-2 pair in T . Then deg(b) > 2 in T .

Proof. Suppose deg(b) = 2. If b is a leaf in T , let v be the vertex with num(v) =
lowpt1 (b). Then {v, parent(b)} is a type-1 pair. Otherwise, b is not a leaf in T .
Then {parent(b), son(b)} is a trivial type-2 pair. In both cases, b will be part of
the corresponding triangle split component only. Therefore, b cannot contribute
to any other separation pair as it will not further be part of the palm tree.

Theorem 4. Let T be a palm tree. If {a, b} is a non-trivial type-2 pair in T ,
then b starts a path in T .

Proof. Firstly, suppose b is a leaf of T . Following Lemmata 3 and 4, b has
multiple outgoing fronds and therefore starts a path. Now suppose b is not a
leaf of T and no path starts in b. If the only arc leaving b is a frond then b is a
leaf . If it is a tree arc then deg(b) = 2 . In any other case, b starts a path.

So let us come back to the problematic case shown in Fig. 3. It can be
generalized to the case where a type-1 pair {c, d} splits a segment S and a
pair {a, b} satisfies the algorithmic type-2 pair criteria while a lies on the first
half-cycle between c and d and b ∈ S at the same time.

Adding the path-starting property to the algorithmic detection criteria for
type-2 pairs solves this scenario. From Sect. 3.2.1 we know that if {a, b} satisfies
the conditions of a type-2 pair, a path starting in b can only define segments of
the types (S1) and (S2). Let r be the successor of d in S with lowpt1 (r) = c
and lowpt2 (r) ≥ d and suppose b ∈ S. If the segment started in b is of type
(S1), then it violates the condition lowpt2 (r) ≥ d. If it is of type (S2), then it
violates the condition lowpt1 (r) = c. This means that both cases where b starts
a path lead to a contradiction to either the assumption that b ∈ S or that {c, d}
is a type-1 pair. Further, due to Theorem 4, adding the path-starting property

10

does not incorrectly restrict the set of type-2 pairs, as such a path must always
exist. Although it has not been stated as an algorithmic criterion before it is
in fact already used by the algorithm of Hopcroft and Tarjan as we will see in
Sect. 3.3.2.

3.3.2 The role of ESTACK and TSTACK

The algorithm by Hopcroft and Tarjan makes use of two stacks in order to
achieve a linear-time detection of separation pairs and their corresponding split
components.

The first one is the edge stack (ESTACK). Each edge (v, w) is pushed on top
of ESTACK after recursion tracks back from vertex w, immediately before the
separation pair checks take place (cf. [7, 6]). Hence, as an invariant, ESTACK
contains all edges that have already been visited in the palm tree but not yet
assigned to a split component. If a separation pair {a, b} is found, not the entire
set of edges on ESTACK is assigned to the corresponding component, but only
the consecutive edges that have their endpoints within a certain range of DFS
numbers. This range can be computed from num(a), num(b) and the number of
descendants of the adjacent vertices of b that belong to the respective segments.

The second and much more involved stack is called triple stack (TSTACK).
TSTACK is used to maintain the first descendant property and to check for the
satisfaction of (FC1) and (FC2) while backtracking in the palm tree. It consists
of triples (h, num(a), num(b)) where {a, b} is a potential type-2 pair and h is
the number of the highest numbered vertex in the component that would be
split off, if {a, b} is found to be a real type-2 pair. Recall the definition of
type-2 pairs: There may be arbitrary segments S (of type (S1)) connected to b
that have low(S) ≥ num(a), i.e., would belong to the split component of {a, b},
so h is necessary to identify the last edge on ESTACK that belongs to these
segments. To ease notation, we will identify vertices with their DFS number,
i.e., write (h, a, b) instead of (h, num(a), num(b)).

Consider a cycle C. The algorithm will recursively traverse all segments
(cycles) relative to C. Due to the path starting property, new potential type-
2 pairs are always found at the beginning of a new simple path in the DFS
traversal. In each backtracking step, it checks whether for the current vertex
v there is a triple (h, a, b) with a = v on top of TSTACK and whether it
corresponds to a type-2 pair. To keep track of the cycle currently examined
artificial end-of-stack (EOS) markers are used. This allows to easily pop triples
that violate the first descendant property which is done when backtracking over
every path-starting edge. So until here we can assume that all conditions except
(FC1) and (FC2) are satisfied. We will now explain the respective operations
on TSTACK that make sure that any triple (h, a, b) for which one of the two
conditions is violated will be removed before the vertex a is reached.

Lemma 5. Suppose there is a triple (h, a, b) on TSTACK such that for the po-

tential pair {a, b} there is a violation of (FC1). Then the triple will be correctly

removed before the vertex a is reached on the backtracking path of DFS.

Proof. As (FC1) is violated, there must be a frond x →֒ y such that num(r) ≤
num(x) < num(b). Two possible cases exist: Either x is on the half-cycle p and
x →֒ y is a single-edge segment, or x lies in a segment S relative to p. In both

11

cases, the respective segment has not yet been traversed by DFS because we are
backtracking on a path of first descendants of r.

In the latter case, let bS → wS , bS ∈ p ∪ S,wS ∈ S be the corresponding
path-starting edge (cf. Fig. 4). Then the lowest numbered vertex of S is aS =
lowpt1 (wS) and the number of the highest numbered vertex is hS = num(wS)+
|D(wS)| − 1. As aS < num(a), a violation of (FC1) is detected. The algorithm
will perform the following update on TSTACK [7]:

• remove all triples (h, a, b) for which aS < num(a) from TSTACK

• Compute hmax = max{h|(h, a, b) removed} and hnew = max{hmax, hS}

• push (hnew , aS , b) on TSTACK

Clearly, (FC1) is not violated for the new triple and the vertex hnew is the one
with the highest number belonging to the split component if {a, b} is to be split.

The update operation for single-edge segments x →֒ y (which always start
a path) is similar: If num(y) < num(a) for a top triple (h, a, b) the violated
triples are removed first. Then hmax is computed as above and (hmax, w, b) is
pushed on TSTACK, as hmax > x is always true.

If {aS , bS} ({y, x}) is the first potential pair found at the currently examined
cycle or if aS ≥ num(a) (y ≥ num(a)), there is no violation of (FC1) and
(hS , aS , bS) ((x, y, x)) is pushed on TSTACK.

i

aS

a

b

h

hS

bS

C

S EOS

(h, a, b)

(h, aS, b)

w

wS

lowpt1 (w)

a

v = r

x

b

w

C

h

. . .

EOS

(h, a, b)

(. . . , . . . , . . .)

Figure 4: TSTACK operations: Update due to a violation of (FC1) (left)
found at edge bS → wS and triple removal due to a violation of (FC2) found at
vertex v.

For maintaining (FC2), the algorithm makes use of the so-called highpoint
highpt(v) = max{0, num(w)|w →֒ v}.

Lemma 6. Let a → r →∗ v →∗ b be a path of first descendants. Suppose DFS

is backtracking on the respective tree arc leaving v and (h, a, b) is the top triple

on TSTACK. Further, suppose that highpt(v) > h. Let x be the start vertex of

the edge x →֒ v such that highpt(v) = num(x). Then there exists a tree arc

b → w such that lowpt1 (w) < num(a) and x is a descendant of w.

Proof. Due to the updates on TSTACK described above, we know that h is the
highest numbered vertex of all segments S with vertices w that satisfy b → w
and lowpt1 (w) ≥ num(a). Further, it is always true that h ≥ num(b), so if
num(x) > h then also num(x) > num(b).

12

Since num(x) > num(b) and b is a first descendant of r, x must be a de-
scendant of b. Hence, x is reachable from b via tree arcs. If b → x, set w = x,
otherwise let w be the first vertex on the path b →∗ x. Due to the choice of h,
if num(x) > num(h) then it must hold that lowpt1 (w) < num(a).

While backtracking, the algorithm checks highpt(v) of the current vertex
v and removes triples (h, a, b) for which highpt(v) > h (cf. Fig. 4). As a
consequence from the above observations, the algorithm removes triples from
TSTACK for which any of the algorithmic criteria is violated. Hence, if (h, a, b)
remains on TSTACK until vertex a is reached, {a, b} is a valid type-2 pair.

3.3.3 Preconditions for computing type-1 and type-2 pairs sepa-

rately

The highpoint values have to be updated dynamically within the splitting pro-
cedure [6] which had not been done in the original algorithm. If fronds are
removed from the adjacency list of a vertex due to split operations then the
respective highpoint value has to be changed. This is essential for the correct-
ness of the algorithm, since there may be type-1 and other type-2 splits which
decrease a certain highpoint value before the highpoint test takes place at the
respective vertex.

This also has the consequence that for any algorithm that computes type-2
pairs based on highpoint values all type-1 splits at descendants of a vertex v and
updates of the respective data structures have to be performed before checking
for type-2 pairs with v being the smaller numbered vertex.

4 Transformation of a single type-2 pair into a

type-1 pair

4.1 A general transformation scheme

The fact that type-1 pairs can be computed much easier than type-2 pairs
leads to the question whether it is possible to somehow transform type-2 into
type-1 pairs. In this section we present such a transformation. Since we know
which kinds of segments may exist around a type-2 pair without violating any
conditions (recall (S1) to (S3) from Sect. 3.2), we construct a ‘generic ’palm
tree T with a type-2 pair. The central idea is to build a palm tree T ′ where
the edges belonging to the type-2 split component in T are split as a type-1
component. We only have to make two case distinctions, namely the case where
the root of T is part of the respective cycle and the case where it is not (cf.
Fig. 5 and 6). Further, T has ‘optional’ segments and arcs to cover different
scenarios. If we can transform the pair in the generic scenarios, then any type-2
pair comprising multiple or less of these segments can be transformed in the
same manner.

Theorem 5. Let T be a palm tree of a biconnected graph G = (V,E) and {a, b}
a type-2 pair with num(a) < num(b) in T . Then there exists another palm tree

T ′ of G where {a, b} is a type-1 pair and the same split components are created.

13

i

a

r

b

qα

qβ

p

1

S2 S1

S3

a

i

b

qα

qβ

1
S2r

S1

p
S3

S3

S3

Figure 5: Transforming T with a type-2 pair (left) into T ′ (right).

S2

a

r

b

qα

qβ

p

1

S2 S1

S3

a

1

b

qα

qβ

r
S1

p
S3

S3S3

Figure 6: Transforming T with a type-2 pair and the root being part of the
cycle (left) into T ′ (right).

Proof. For both scenarios, let a be the root of T ′ and q, instead of p, the tree-arc
path to b. First, suppose the root is not part of the cycle and let i be the start
and end vertex of the cycle in T . Then, there must be ancestors of i, i.e., a path
1 →∗ i which we shall call I. Due to biconnectivity, either segments of types
(S2) or (S3) or both connect to I by fronds. In T ′, segments of type (S2) reach
the vertices of I via tree arcs from b and now there must be at least one frond
to i like indicated in Fig. 5. Similarly, segments of type (S3) are entered by the
edges that form fronds to I in T and have fronds back to vertices on qβ .

Otherwise, if the root is part of the cycle, it will be positioned in between a
and b in T ′ (cf. Fig. 6). Segments of types (S2) are again reached via tree arcs
from b and still have a frond to the root of T . Compared to T , segments of type
(S3) are just traversed in the inverse direction.

Finally, consider segments of type (S1) mapped to T ′ for both scenarios. As
p starts in b and ends with r →֒ a, segments of type (S1) have their tail on p
and a frond to b. Let v be the parent of b in T , so that v is now the successor
of b on p in T ′. From the construction of T ′ it follows that, independently
from the exact numbering assigned to its vertices, num(a) = 1, lowpt1 (v) = a
and lowpt2 (v) = b. Therefore, {a, b} is a type-1 pair in T ′. Further, by the
construction of p and the way segments of type (S1) are related to p, they belong
to the corresponding split component, in the same way they did in T .

The transformation scheme can be used to eliminate single, but not multiple
type-2 pairs. Further, we have no knowledge about the existence of other type-2
pairs in the target palm tree. So the question arises, whether it is possible to

14

construct a type-2-free palm tree for every graph. We will now give a counter
example graph for which no such palm tree exists.

4.2 Not every graph has a palm tree without type-2 pairs

Consider the biconnected graph G in the left of Fig. 7. We use G as an example
to prove that not every graph can be represented by a type-2-free palm tree. As
can be seen directly, G has the separation pairs {1, 5}, {1, 6}, {2, 5} and {2, 6}
and is symmetric. Due to the conditions stated in Sect. 3.2 cycles relevant for
the detection of type-2 pairs must consist of at least four vertices.

5

4

2

6

7

1

83

5

6

7

8

1

2 5

6

8

7

1

2 5

6

7

1

8

2 5

6

8

1

7

2

Figure 7: Example graph G with a cycle consisting of four vertices (left) and
the parts of the possible palm trees corresponding to the bigger segment.

5

4

2

6

7

1

83

5

4

2

6

7

1

83

5

4

2

6

7

1

83

Figure 8: Situations for a cycle consisting of six vertices.

5

4

2

6

7

1

83

5

4

2

6

7

1

83

5

4

2

6

7

1

83

Figure 9: Cases for a cycle with seven (two leftmost) and eight (right) vertices.

In order to construct a cycle with four vertices in G, we can only use either
the left or right ones. Suppose we have a palm tree for the left cycle. Indepen-
dently from the order of its vertices in the tree, there will be a tree arc from this
cycle to the unexplored segments on the right side. We choose 5 → 6 to be this
tree arc and plot all possible resulting orders of the tree in the right of Fig. 7.
In any of these, {6, 1} is a type-2 pair. As directing reversely, or choosing 2 → 1
to be the tree arc is symmetric, we are done for the four-vertices case.

For cycles consisting of six vertices we may again exploit symmetry and
restrict ourselves to the cases shown in Fig. 8. In any of these, there are two
unexplored vertices, say x on the left and y on the right side. They build
segments, each with two fronds to vertices {a, b} on C. The paths between

15

a and b on C are half-cycles (marked dash-dotted for y) and the mentioned
segments are the only ones that connect to them. Hence, if we choose the root
to be on the left, then {6, 1} is a type-2 pair, otherwise {2, 5} is a type-2 pair.

If we add another vertex to C, we obtain one segment similar to the six-
vertices case and two single-edge segments (i.e. fronds) forming a chain. Looking
back to Fig. 7 reminds us that these frond-chains correspond to type-2 pairs.
So again the question whether {2, 5} or {6, 1} is to be detected as a type-2 pair
only depends on the choice of the root vertex. The same holds for a cycle with
eight vertices leading to frond-chains on both sides, as shown in the right of
Fig. 9. We can conclude that every palm tree of G has at least one type-2 pair.

5 Conclusion

Based on the Hopcroft-Tarjan algorithm to compute the triconnected compo-
nents of a biconnected multigraph, we presented a detailed analysis of separation
pairs and the relationship between their graph-theoretic definition and their al-
gorithmic detection, with emphasis on the more complex type-2 case. We also
proved the correctness of certain parts of the algorithm in a less technical way
using immediate implications from the structure of palm trees and the respective
algorithmic detection criteria.

We investigated special cases and properties of separation pairs that were
previously not covered by the common characterizations. Especially, we pointed
out that the path starting property is crucial to correctly determine type-2 pairs.
As long as this property is maintained, the algorithm could be modified to split
type-1 and type-2 pairs independently from each other (e.g., in different passes),
as long as type-1 splits precede type-2 splits.

As another contribution, we introduced a transformation scheme to turn a
type-2 pair in a palm tree T into a type-1 pair in a different palm tree T ′.
However, we have also shown that we cannot easily exploit this scheme for
simpler algorithms as there are graphs which do not admit a type-2-free palm
tree. Nevertheless, we believe that the relationship inherent to this transforma-
tion could be a starting point to gain new insights which may lead to further
simplifications.

Acknowledgements

I would like to thank Carsten Gutwenger for pre-reviewing parts of this work
and his implementation of the Hopcroft-Tarjan algorithm in the OGDF library
which was very helpful for experiments. Further, I thank Michael Jünger, Martin
Gronemann, Gregor Pardella and Daniel Schmidt for a lot of fruitful discussions.

16

References

[1] G. Di Battista and R. Tamassia, On-line maintenance of triconnected com-

ponents with spqr-trees, Algorithmica 15 (1996), no. 4, 302–318.

[2] P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia, Optimal

upward planarity testing of single-source digraphs, SIAM J. Comput. 27
(1998), no. 1, 132–169.

[3] R. Diestel, Graph theory, Graduate Texts in Mathematics, vol. 173,
Springer, July 2010.

[4] D. Fussell, V. Ramachandran, and R. Thurimella, Finding triconnected

components by local replacement, SIAM J. Comput. 22 (1993), 587–616.

[5] C. Gutwenger, Application of spqr-trees in the planarization approach for

drawing graphs, Ph.D. thesis, Technical University of Dortmund, Germany,
2010.

[6] C. Gutwenger and P. Mutzel, A linear time implementation of spqr-trees,
Graph Drawing (London, UK) (J. Marks, ed.), LNCS, vol. 1984, Springer,
2000, pp. 77–90.

[7] J. E. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected com-

ponents, SIAM J. Comput. 2 (1973), no. 3, 135–158.

[8] G. Kant, Drawing planar graphs using the canonical ordering, Algorithmica
16 (1996), no. 1, 4–32.

[9] M. Mader, Planar graph drawing, Master’s thesis, Universität Konstanz,
Germany, 2008.

[10] G. L. Miller and V. Ramachandran, A new graph triconnectivity algorithm

and its parallelization, Combinatorica 12 (1992), no. 1, 53–76.

[11] A. M. Saifullah and A. Üngör, A simple algorithm for triconnectivity of a

multigraph, CATS ’09: Proc. of the 15th Australasian Symposium on Com-
puting: The Australasian Theory (Darlinghurst, Australia) (R. Downey
and P. Manyem, eds.), vol. 94, Australian Computer Society, Inc., 2009,
pp. 53–62.

[12] W. T. Tutte, Connectivity in graphs, University of Toronto Press, 1966.

[13] K.-P. Vo, Finding triconnected components of graphs, Linear and Multilin-
ear Algebra 13 (1983), no. 2, 143–165.

[14] K.-P. Vo, Segment graphs, depth-first cycle bases, 3-connectivity, and pla-

narity of graphs, Linear and Multilinear Algebra 13 (1983), no. 2, 119–141.

[15] S. G. Williamson, Combinatorics for computer science, Computer Science
Press, Inc., New York, 1985.

