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Abstract: Thermoelectric transport is traditionally analyzed using relations imposed by time-reversal symmetry,
ranging from Onsager’s results to fluctuation relations in counting statistics. In this paper, we show that a
recently discovered duality relation for fermionic systems – deriving from the fundamental fermion-parity
superselection principle of quantum many-particle systems – provides new insights into thermoelectric transport.
Using a master equation, we analyze the stationary charge and heat currents through a weakly coupled, but
strongly interacting single-level quantum dot subject to electrical and thermal bias. In linear transport, the
fermion-parity duality shows that features of thermoelectric response coefficients are actually dominated by the
average and fluctuations of the charge in a dual quantum dot system, governed by attractive instead of repulsive
electron-electron interaction. In the nonlinear regime, the duality furthermore relates most transport coefficients
to much better understood equilibrium quantities. Finally, we naturally identify the fermion-parity as the part of
the Coulomb interaction relevant for both the linear and nonlinear Fourier heat. Altogether, our findings hence
reveal that next to time-reversal, the duality imposes equally important symmetry restrictions on thermoelectric
transport. As such, it is also expected to simplify computations and clarify the physical understanding for more
complex systems than the simplest relevant interacting nanostructure model studied here.

Keywords: thermoelectrics; transport through quantum dots; strong Coulomb interaction; fermion parity

1. Introduction

1.1. Motivation and general outline

A thorough understanding of the thermoelectric operation of basic circuit elements such as quantum dots
is important for future energy- and information-technologies, see, for example, the review articles [1,2] and
references therein. Their nonlinear operation, due to large temperature and voltage gradients, is nontrivial and
has only recently received more attention [1–13], the results indicating new possibilities for thermoelectric
applications. To get a better grip on this nonequilibrium regime, the implications of time-reversal symmetry
– often exploited in thermoelectrics – have been expressed in fluctuation-relations using the powerful tools of
counting statistics [14–18]. This is helpful since in strongly confined devices the coupled nonlinear transport
of charge and heat is particularly rich and correspondingly difficult to compute. The reason for this is the
energy-dependent transmission caused by the system itself, having discrete quantum states and strong Coulomb
interaction, rather than by its coupling. In particular, the effect of Coulomb interaction is multifaceted, since local
interactions can both store energy and modify the transfer of energy by individual particles. For applications
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this can be both damaging and helpful: interaction can limit the efficiency since it provides a way to transfer
heat without inducing a charge current, thereby leading to leakage; yet, it can also modify the effective level
structure in an advantageous way [6,19] or be used for energy harvesting in multi-terminal devices [20–22] as
shown experimentally [23–25].

One reason why the discussion of efficiencies and performance of thermoelectric devices has been mostly
confined to the linear regime of operation is the powerful Onsager reciprocity [26–28]. The latter is implied by
time-reversal symmetry and it allows to make straightforward statements about efficiencies. However, recently a
new general symmetry relation has been discovered for electronic systems [29] that is independent of time-reversal
symmetry. Its formulation starts from the very general observation that the dynamics of any system obeying linear
superposition of its states is characterized by its time-evolution modes, the right eigenvectors of the evolution
generator. The amplitude of excitation of these modes is governed by the corresponding left eigenvectors. For
closed systems, these mode and amplitude vectors of the Schrödinger dynamics ∂t |φ〉= −iH|ψ〉 are the energy
eigenkets and bras, respectively, which are trivially related to each other by taking the Hermitian-adjoint (since
H = H†). However, for open systems no such simple general relation exists due to the more complicated nature
of nonunitary time evolution. Nevertheless, some of us have shown [29] that for any fermionic open system
in the wide-band limit, a quite general duality exists between the modes and amplitudes of the time-evolution
kernel. This holds even when the reduced density operator of the open system obeys a kinetic equation with the
time-nonlocal form ∂tρ(t) = −i[H,ρ(t)]+

∫ t
0 dt ′W (t, t ′)ρ(t ′). Importantly, the duality relies on a fundamental

principle other than time-reversal, namely the superselection rule based on fermion parity [30–33]. This
principle is obeyed by all fermionic systems, and therefore the duality is expected to have far-reaching physical
consequences.

For thermoelectric transport, the implications of this additional general principle are to date largely
unexplored. Fully exploiting the new duality relation, the present paper revisits the thermoelectric response
of a weakly coupled, but strongly interacting single-level quantum dot subject to both electrical and thermal
biases, both in the linear and nonlinear regime. We derive new results, significantly clarify known results, and
thereby – most notably – outline a completely new approach for the analytical computation of thermoelectrics
of interacting nanoscale systems. In Refs. [29,34], it was already realized that the duality relation between
decay modes and their excitation amplitudes would naturally express itself in the transient charge and heat
currents as the system decays to a new stationary state after a sudden switch (quench). This paper shows that the
duality is a similarly powerful tool for the experimentally more accessible stationary thermoelectric transport.
Indeed, we demonstrate that both in the linear and nonlinear stationary regime – after some judicious choices
– an expansion in open-system evolution eigenmodes is advantageous. The compact analytical formulas we
obtain in this way offer several new interesting insights into important measurable thermoelectric transport
quantities, and provide a truly nonstandard physical view point. Most importantly and as further outlined below,
they expose the remarkable fact that a strongly repulsive system may prominently feature behavior reminiscent
of strong attractive interaction in the thermoelectric response coefficients.1 Since this was not recognized as
such due to lack of a proper framework, our paper does not merely present trivial or subjective rewritings,
even though we re-derive and re-express some known results. Instead, our approach is uniquely dictated by
the physically-motivated evolution-mode decomposition, and the outcomes are virtually impossible to “guess”
without the systematics and new intuition provided by the duality.

We finally note that the very general origin and formulation [29,36,37] of the duality allows us to extend
our method beyond the weakly coupled quantum dot setup treated here. As our study illustrates, the technical
simplifications can be such that one can avoid numerical calculations altogether. We therefore expect that the
ideas presented here can also simplify the analysis of more complex systems studied most recently [11,38–40].
This includes situations with broken time-reversal symmetry [34], non-diagonal density operators due to, e.g.,
noncollinear magnetic fields, and also strongly coupled systems exhibiting time non-local effects.

1 This should be clearly distinguished from the effects studied in [35] for systems which from the start have attractive interaction.
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The paper is structured as follows: after outlining the main ideas and results in general terms [Sec. 1.2]
and introducing the microscopic model and the weak-coupling master equation [Sec. 2], we review the minimal
details of the duality relation that we will exploit for a gated quantum dot coupled to two electronic reservoirs.
The mode-decomposition of the charge and energy current formulas [Eq. (22a)-(22b)] are then analyzed in the
linear [Sec. 3] and nonlinear transport regimes [Sec. 4]. The manuscript also contains an appendix which is
substantial, not because the new derivations are complicated, but because the steps are nonstandard and deserve
to be outlined.

1.2. Overview of main ideas and results

By discussing a simple, yet relevant model of a nanoscale system, this paper aims to illustrate how the
understanding of the role of Coulomb interaction in thermoelectric transport is advanced by the fermion-parity
duality. Before going into further details in Sec. 2.3 it is important to appreciate three of its main ideas in general
terms:

(1) The duality relation maps the eigenmodes of the system of interest to the amplitudes for a different
physical system – the dual system. We will refer to the latter as the inverted system because the duality
transformation inverts the interaction (as well as other energies), going from repulsive to attractive and vice versa.
For quantum dots, this can be easily visualized by inverting the energy landscape in Fig. 1(a) to that of Fig. 1(c),
whose details will be discussed later on. This mapping already explains the seemingly strange occurrence of
features of attractive interaction in quantities computed for repulsive systems, as first noted in [29,34]. The
straightforward interpretation of such puzzling properties is done resorting to the inverted stationary state, which
allows to understand the nontrivial dependence on the original system’s parameters from the – often simple and
well-understood [41] – physics of the attractive dual model as in Fig. 1(c).

(2) Another reason why the duality clarifies interaction effects is that the “essential” correlating parts of the
Coulomb interactions, say, between two orbitals i and j with occupation operators n̂i and n̂ j, respectively, is simply
given by parity operators, (1−2n̂i)(1−2n̂ j) = (−1)n̂i+n̂ j . In fact, correlated electron model Hamiltonians are
often directly formulated in terms of the operators on the left hand side. The duality reveals that the total parity
operator always corresponds to a special eigenmode of open fermion-system dynamics [36,37], and is hence
protected. In simple yet relevant situations, one thereby cleanly separates, throughout the entire calculation,
the contributions of the Coulomb interaction into an “essential” correlating part and a nontrivial “average”
contribution carried by a charge mode. Since Coulomb interaction is an important source of energy dependence
and energy storage in quantum dots, thermoelectrics is thus seen to be intimately tied up with fermion parity and
the corresponding duality.

(3) Finally, in the context of thermoelectricity, it is important to emphasize that the duality – in the simple
form used here – requires energy-independent coupling between system and reservoir (wide-band limit). This
does not mean that it is irrelevant to thermoelectric transport, where properly engineered energy-dependence of the
coupling can be of interest for the device operation, see e.g. Refs. [20,21,23–25]. Here, the nanoscale system itself
provides the strong energy dependence required for thermoelectric effects, both through strong size-quantization
and Coulomb interaction. Models of this kind are relevant in many thermoelectric studies [38,42–45] and the
duality applies to their description, even when the energy-independent coupling is strong and the temperature is
low [29], cf. [36,37]. Also, effective energy-dependent couplings as realized in multi-dot systems [43,44] can be
treated in terms of the duality relation presented here. Finally, the duality considerations can be extended [46]
systematically to account for the energy-dependence of the coupling.

As a guide to the present paper, we now outline how the above general points turn up in the specific insights
of our study, most of which remain hidden when approaching the thermoelectric problem in the standard way:

In linear response [Sec. 3], we combine the duality with Onsager’s reciprocity derived from time-reversal
symmetry. The discussion of the linear response coefficients benefits from the combined insights of both
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Figure 1. (a) Energy landscape of a single-level quantum dot with repulsive interaction U > 0 in contact with a
hot and a cold electronic reservoir with an applied bias voltage. (b) Equilibrium occupation number and parity of
the single-level quantum dot as a function of the level position [taken with respect to the right reservoir only, or
equivalently obtained for the full system at equilibrium, ∆T = V = 0, as indicated by the “eq” subscript]. The
occupation nz,eq shows T -broadened steps at the two Coulomb resonances µ = ε and ε +U , respectively, and the
parity pz,eq alternates correspondingly. (c) Energy landscape of the inverted system that is dual to the system
of interest in (a). (d) Equilibrium occupation number and parity of the single-level quantum dot in its inverted
stationary state. In the dual, attractive system, the charge shows a single double-sized step at µ = ε + 1

2U , with
half the temperature broadening T /2 where two electrons enter or leave the dot by two first-order processes
sequential in time, and the parity is essentially always even. Parameters for (b) and (d): U = 10T , V = ∆T = 0,
and ΓL = ΓR� T .

relations.2 Even more so, in our particular example, we can show how the duality enforces the Onsager relations
in linear response, and restricts how these relations break down beyond the linear regime. To achieve this, we
first formulate the linear response in a way that is compatible with the duality. Thereby, we find a simple, explicit
expression for the average energy carried by electrons, the tight-coupling part of the heat current. Remarkably, it
depends on the mean occupation of the dot in the inverted stationary state: this formula exposes the unexpectedly
sharp crossover behavior of the thermopower between well-separated resonances [Fig. 3] as a two-particle
resonance in the dual attractive model. Also, the obvious formal similarity between the linear Ohm and Fourier
laws,

I = GV , J = K∆T (1)

gets an unexpected twist: Whereas it is well-known that the stationary-state fluctuations of the dot occupation
govern the electrical conductance G, the duality reveals that the linear Fourier heat coefficient3 κ = K−ΠSG, for
the heat current in the absence of a charge current, J|I=0 = κ∆T , is dominated instead by occupation fluctuations
in the inverted stationary state. As such, the ε-dependence of κ is also governed by attraction, exhibiting the
same two-particle resonance as the thermopower.

2 Previously, our duality was similarly combined with the independent well-known Iche-duality [47–49] based on an electron-hole
transformation, yielding new relations for quantum dots in a magnetic field [34].

3 The Seebeck coefficient S and the Peltier coefficient Π are introduced in Sec. 3.
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The generally more complicated regime of nonlinear response [Sec. 4] can also be addressed with the duality.
For the calculation of the nonlinear Seebeck and Fourier coefficient, we show that an evaluation of equilibrium
dot observables – both in the original and dual, inverted system – is often sufficient to obtain the nonequilibrium
heat currents. This leads to compact analytical expressions and major simplifications in their explicit calculation,
while clarifying the underlying physical picture. For example, the nonlinear Fourier heat is essentially the
difference between the parity when the quantum dot is in equilibrium with a single lead on the left or on the right.
Although it is well-known that the Fourier heat is carried by electron-electron interaction – even for macroscopic
devices [50] – the duality pinpoints precisely which part of the interaction is crucial: it is the parity operator
that is entirely responsible for the transferred Fourier heat. Finally, the strong difference between Peltier and
Seebeck effects in the nonlinear regime, indicating the breakdown of Onsager reciprocity, can be rationalized
completely. The nonlinear Peltier coefficient can be decomposed into an equilibrium Seebeck contribution that
stems from the heat transport tightly coupled to the charge transport and a parity-mode contribution. Both of
these contributions are sensitive to the attractive-interaction physics of the dual system.

2. Model, master equation, and duality

2.1. Model, assumptions, and notation

We are interested in thermoelectric transport through a single-level quantum dot between two4 reservoirs
labeled α = L,R, as sketched in Fig. 1(a). The full Hamiltonian

Ĥtot = Ĥ + Ĥleads + Ĥtun (2)

decomposes into three parts. The dot Hamiltonian

Ĥ = ∑
σ=↑,↓

ε n̂σ +Un̂↑n̂↓ (3)

describes the correlated dynamics of a single spin-degenerate level ε with Coulomb charging energy U for doubly
occupying the level. Here n̂σ = d̂†

σ d̂σ are number operators for dot electrons of spin σ =↑,↓ with creation
(annihilation) operators d̂†

σ (d̂σ ). The quantum dot is coupled to noninteracting electronic reservoirs α described
by

Ĥleads = ∑
α

Ĥα = ∑
α ,k,σ

εαkĉ†
αkσ

ĉαkσ , N̂α := ∑
k,σ

ĉ†
αkσ

ĉαkσ (4)

with operators ĉ
αkσ

and ĉ†
αkσ

for electrons with spin σ and orbital quantum number k. The reservoir energies
εαk and tunneling amplitudes tαk in the tunnel coupling

Ĥtun = ∑
α ,k,σ

tαkd̂†
σ ĉαkσ + h.c. (5)

are assumed to be spin-independent. We moreover assume that the relevant coupling strengths Γα (E) =
2π ∑kσ δ (εαk−E)|tαk|2 determining the typical scale of the tunneling rates are energy independent: Γα (E)≈ Γα .
This wide-band limit assumption is crucial for the derivation of the fermion-parity duality in the simple form given
below in Eq. (13), see also our earlier remarks in Sec. 1.2 under point (3). Finally, the individual grand-canonical
leads α are characterized by the electrochemical potential µα , and the inverse temperature βα = 1/(kBTα )

entering through the particle / hole Fermi distribution functions f±α (x) = [e±βα (x−µα )+ 1]−1. We let T = TR

and µ = µR denote the global-equilibrium values of the reservoirs and ∆T and V the applied biases through
TL = T +∆T and µL = µ− eV .

4 Many statements can be generalized in a straightforward manner to multiple reservoirs.
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In the next two sections, we set up the calculation of the stationary charge and heat currents, Iα and Jα ,
through the quantum dot which can be written in terms of particle and energy currents, Iα

N and Iα
E :

Iα = −eIα
N and Jα = Iα

E −µα Iα
N . (6)

We will outline how to compute the currents Iα
N := − ∂

∂ t 〈N̂α〉 and Iα
E := − ∂

∂ t 〈Ĥα〉 [cf. Eq. (4)] from lead α into
the dot in a way that exploits the duality. From here on, we set e = kB = h̄ = 1.

2.2. Master equation and non-equilibrium currents

Following previous work [29,34,51,52], we outline how to compute the particle and energy currents via the
reduced density operator ρ̂ of the quantum dot obtained by tracing out the reservoir degrees of freedom. For
weak coupling and high temperatures, Γα � Tα , the mixed state obeys a Born-Markov master equation:

d
dt
|ρ) =W |ρ) . (7)

In Eq. (7), operators are written as supervectors, indicated by round kets: ρ̂ = |ρ). In the following we also need
to consider the “superhermitian” conjugate of such a supervector |x) which is conveniently written as bra (x|.
This denotes a linear function acting on any |y), i.e., another operator ŷ, as follows: (x|y) := Tr [x̂†ŷ]. In this
notation, the kernel W is a superoperator whose specific matrix elements are given in App. B for completeness,
but which are not required in the following [cf. Eq. (15)]. Such a matrix element ( f |W |i) physically relates to
the rate for a tunnel-induced transition, |i)→ | f ), between two of the dot states

|0) = |0〉〈0| , |1) = 1
2
[| ↑〉〈↑ |+ | ↓〉〈↓ |] , |2) = |2〉〈2|. (8)

The empty state |0〉 has energy E = 0, the mixture of the spin states | ↑〉 and | ↓〉 has energy E = ε , and the
doubly occupied state |2〉= | ↑↓〉 has energy E = 2ε +U . Since the system is fully rotationally invariant5 and
because we focus on the particle- and energy currents, we only need the kernel W in a linear subspace spanned
by the three trace-normalized operators given in Eq. (8), see the supplement to [29] for details. Importantly, due
to the weak coupling, the kernel is the sum of kernels Wα that would be obtained if the system was coupled only6

to reservoir α:
W = ∑

α

Wα . (9)

In the same approximation, the currents Iα
N and Iα

E can be expressed [34,51] in terms of the reservoir-resolved
kernel Wα , the number operator N̂ = ∑σ n̂σ , as well as the Hamiltonian Ĥ of the dot, and the solution of Eq. (7):

Iα
N = − ∂

∂ t
〈N̂α〉= (N|Wα |ρ) (10)

Iα
E = − ∂

∂ t
〈Ĥα〉= (H|Wα |ρ). (11)

In writing the second equality in Eqs. (10) and (11), particle and energy conservation have been used.7

From this point onward, the standard way to obtain the currents in the stationary limit [namely, where
the left hand side of Eq. (7) equals zero] seems straightforward, knowing the Fermi Golden-Rule expressions
for the rates ( f |Wα |i)/( f | f ): (i) Find the non-equilibrium state |z) by solving the stationary limit of Eq. (7),
W |z)= ∑α Wα |z)= 0 (“zero mode”), and normalize it to (1|z)= Tr [ẑ] = 1. (ii) Plug |ρ)= |z) into the current

5 The rotational symmetry of the full Hamiltonian (2) causes the master equation for the probabilities in the states (8) to completely
decouple from the local spin-dynamics, including the coherences.

6 Regarding the use of the reservoir index α , we note that the particle and energy current in reservoir α depend on the properties of
all reservoirs. This is in contrast to, e.g., the kernel Wα , whose contributions are due to a single reservoir α only. We emphasize this
difference by choosing superscripts for the former case and subscripts for the latter.

7 The second step in the energy current Eq. (11) is only valid in the weak-coupling limit, see remarks in Refs. [29,51] and Ref. [53].
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equations (10) and (11). While this procedure yields explicit expressions for the non-equilibrium currents, it
often provides only limited analytical and physical insights, in particular for thermoelectric quantities. Moreover,
it unnecessarily complicates the evaluation of bias-derivatives required for the linear-response coefficients, even
when using Beenakker’s linearization [54,55]. However, inspection of equations (7), (10), and (11) suggests an
alternative route based on our recent results [29,34] which we outline next.

2.3. Fermion-parity duality and its use in thermoelectrics.

The calculation of the stationary state and the stationary currents

Iα
N = (N|Wα |z), Iα

E = (H|Wα |z) (12)

are expected to be drastically simplified when expressed in a basis of time-evolution modes, a standard practice
when solving linear systems of equations. Looking at Eq. (12), three different eigenvector bases suggest
themselves: those of the two separate kernels Wα (α = L,R) and of the total kernel W = WL +WR. A key
technical point of the present paper is that even though the evaluation of the currents (12) depends on the total
kernel W through its zero mode |z), it often turns out that a mode decomposition of the separate kernels Wα

suffices to compute |z). This provides an important advantage: the kernels Wα of the separate leads are by
definition always equilibrium kernels. We can thus express and understand nonequilibrium currents in terms of
equilibrium quantities which have much simpler dependencies on parameters.

There are three reasons why this decomposition is possible. First, the weak-coupling approximation allows
the decomposition given in Eq. (9). Second, our study focuses in most parts either on the linear response regime
[Eq. (24)], or on the nonlinear regime but with a vanishing average charge current. We will return to this point at
the end of this section. The third, most crucial ingredient is the fermion-parity duality, which strongly restricts
the form of the kernels W and Wα and thereby identifies the optimal variables in which to express the currents.

We first discuss the duality for a quantum dot coupled to only one lead α , allowing us to take over the
expression for Wα given in Ref. [29] for this case. There, it was shown that there is a duality relation between the
kernel Wα and its Hermitian conjugate at inverted energies:[

Wα (Ĥ, µα )
]†

= −Γα −P̂ Wα (−Ĥ,−µα ) P̂ , P̂|•) = |(−1)N•) . (13)

Here, Wα (−Ĥ,−µα ) denotes the kernel of the dual system, in which the signs of all energies in the Hamiltonian
Ĥ, as well as the electrochemical potential µα in lead α , have been inverted. This is sketched in Fig. 1(a) and
(c). The operator (−1)N̂ is the fermion parity of the dot, giving +1 for even and −1 for an odd occupation
number, and its appearance reflects the fundamental origin of the duality, Eq. (13). We refer to Refs. [29,51] for
an introduction to fermion-parity superselection, the general duality relation and its special form used here, as
given in Eq. (13).

The duality relation imposes strong restrictions on the fermionic master equation (7). In fact, these
restrictions are so strong that they completely determine the rate matrix Wα . For illustration, this construction is
carried out explicitly in App. A and directly produces the three eigenvalues −γmα of Wα and the corresponding
left and right eigenvectors(m′α | respectively |mα) labeled using m = z,c, p:

Wα = − ∑
m=c,p

γmα |mα)(m′α |, (14)
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where the zero mode ẑα does not show up because γzα = 0. Alternatively, one may directly compute these
quantities by diagonalizing the matrix Wα employing the duality (13) as done in Ref. [29] and obtain:

Label Amplitude − Eigenvalue = decay rate Mode

Zero (z′α | = (1| γzα = 0 |zα)

(z) [trace] [stationary state]

Charge (cα
′| = (N|−nzα(1| γcα = Γα

2

[
f+α (ε)+ f−α (ε +U)

]
|cα) =

1
2 (−1)

N̂
[
|N)−niα |1)

]
(c) [∼ charge operator] [∼ charge operator]

Parity (p′α | = (ziα (−1)N | γpα = Γα |pα) = |(−1)N)

(p) [∼ inverted stationary state] [parity operator]
(15)

Inspecting this table, one explicitly sees that the mode vectors and amplitude covectors are cross-related through
the parity operator (−1)N̂ and the energy inversion (indicated by subscript “i” on ẑiα and niα ) that appear
in the duality (13). The stationary state – given by the equilibrium grandcanonical ensemble |zα) = ẑα =

e−βα (Ĥ−µα N̂)/Tr
[
e−βα (Ĥ−µα N̂)

]
[Eq. (A4)] in the here considered weak tunnel-coupling regime – has the

eigenvalue 0. Hence, duality relates |zα) to (p′α | with eigenvalue −γpα = −Γα , where (p′α | is the trace with
the inverted stationary state × parity. Similarly, the trace operation (z′α | is cross-related to the parity operator
|pα). Finally, since the Fermi function with respect to any chemical potential µα obeys f+µα

(x) = f−−µα
(−x), the

charge eigenvalue −γcα is self-dual and (c′α | is mapped to |cα).
The crucial point made by the table in (15) is that it reveals the natural variables in which the currents (12)

are expressed when inserting the mode expansion (14). These include the expectation values of the charge and
parity in the stationary state,

nz = (N|z) = Tr
[
N̂ẑ
]

, pz = ((−1)N |z) = Tr
[
(−1)N̂ ẑ

]
, (16)

entering through the factors (m′α |z). However, due to the factors (N|mα) and (H|mα), additional expectation
values with respect to the reservoir-α resolved equilibrium state [Eq. (A4)] appear:

nzα = (N|zα) , pzα = ((−1)N |zα), (17)

explicitly given as a functions of ε ,U , µα ,Tα in Eqs. (A10) and (A40), and most importantly, expectation values

niα = (N|ziα) = nzα [ε ,U , µα →−ε ,−U ,−µα ] , piα = ((−1)N |ziα) = pzα [ε ,U , µα →−ε ,−U ,−µα ] ,
(18)

where ẑiα is the corresponding inverted stationary state of the dual system [Eq. (A7)],

ẑiα = ẑα

[
Ĥ, µα →−Ĥ,−µα

]
= e+βα (Ĥ−µα N̂)/Tr

[
e+βα (Ĥ−µα N̂)

]
. (19)

In Fig. 1 (b) and (d), we plot the averages (17) and (18) for nzα and pzα in the right lead, i.e., µα = µ and Tα = T :
They are simple, stepped functions of the physical parameters whose shapes are straightforwardly rationalized
based on the physics of a repulsive and attractive quantum dot in equilibrium with a single lead α , respectively,
as explained in the caption to Fig. 1. Inverting the interaction U – going from Eq. (17) to Eq. (18) – qualitatively
changes the parameter dependence of these quantities, as shown in the following. We point out that the standard
treatment of the problem completely overlooks that expressions (18) are part of the natural variables in which to
express the currents (12), and in which to understand the parameter dependence of the transport.

The importance of this insight has been demonstrated for the transient time-dependent response of a
quantum dot coupled to a single reservoir in [29]. The final issue that we face in extending this to the stationary
nonequilibrium thermoelectric currents (12) is that these currents depend on the stationary state |z) of the system
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coupled to both leads. This state is the zero mode of the total kernel W , for which the duality holds independently,
as shown in Ref. [29]: [

W (Ĥ, µL, µR)
]†

= −Γ−P̂ W (−Ĥ,−µL,−µR)P̂ , (20)

introducing the lump sum of couplings Γ = ∑α Γα .
Importantly, while equation (20) itself follows from the lead-resolved duality (13) with W = ∑α Wα , its

implications for the eigenvectors of W = −∑m=c,p γm|m′)(m| and their eigenvalues are nevertheless non-trivial,
since WL and WR do not commute. The nonequilibrium stationary state that we need is, in particular, not generally
a sum of lead-resolved stationary states with some lead-resolved8 weights λα ,

|z) 6= ∑
α

λα |zα). (21)

Section 3 will, however, show that such a simple decomposition does hold when taking the first temperature-bias
or voltage-bias derivative [Eq. (24)] at equilibrium. More remarkably, as exploited in Sec. 4, this decomposition
continuous to hold even in the nonlinear regime [Eq. (51)] whenever the system is balanced to maintain zero
particle current, Iα = 0 [Eq. (41)]. Both cases thus allow us to by-pass the computation of |z) and fully exploit
the duality (13) for Wα for each lead separately in the way outlined above. This procedure directly ties the
non-equilibrium thermoelectric transport to equilibrium physics by introducing the optimal variables (17) and
(18) from the start.

2.4. Charge and energy currents

Combining all above outlined ideas, we insert the eigenmode decomposition Wα =

−∑m=z,c,p γmα |m′α)(mα | into the current equations (12) and use the table in (15) to obtain the central
current formulas of the paper:

Iα
N = −γcα(c′α |z) = γcα [nzα −nz] (22a)

Iα
E =

[
ε +

U
2
(2−niα )

]
Iα
N − γpα U (ziα (−1)N |z) . (22b)

The particle current (22a) is simply the charge relaxation rate × the excess dot charge relative to its equilibrium
value with respect to lead α , where the current is measured. The energy current (22b) shows a more interesting
nonstandard decomposition: it has a tight-coupling contribution directly proportional to the charge current, and
a contribution which is independent of the charge current (22a), and hence associated to the parity mode. The
prefactor of the tight-coupling term involves the energy scale

Eα = ε +
U
2
(2−niα ) . (22c)

Remarkably, the interaction contribution to this energy is not naturally expressed in the stationary state charge
nzα , but instead in the inverted stationary charge niα with respect to lead α . As expected, Eα is approximately ε

in the vicinity of transitions between zero- and singly occupied state, and approximately ε +U in the vicinity
of transitions between singly and doubly occupied state. However, in the crossover regime between these two
resonances it is the physics of attractive interaction in niα that dominates its behavior, cf. Fig. 1.

The overlap (ziα (−1)N |z) ≈ (ziα |z), contributing to the non-tightly coupled term of Eq. (22b),
approximately equals a state overlap since the parity in the inverted stationary state is almost always even
due to the attractive interaction of the dual model, see Fig. 1(d). This relation will turn out to be useful for the

8 If one considered more than two leads and obtained 3 linearly-independent vectors already from all |zα), one could formally expand |z)
in these vectors. However, this would not be beneficial, since it would still require knowledge of the explicit form of |z), and the weights
λα would be functions of all system parameters, including the temperature and chemical potential of all other reservoirs.
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understanding of the characteristic features of the nonlinear Peltier coefficient discussed in Sec. 4.2. For explicit
numerical results and plots, it is helpful to write

(ziα (−1)N |z) = 1
4
(pz + piα )+

1
2
(nz−1) (niα −1) , (22d)

fully expressing it in terms of the measurable quantities introduced in Eqs. (16) to (18). See, e.g., Ref. [52] for
the derivation of this relation, and appendices A-C for the explicit calculation of all appearing quantities.

The current formulas (22) are valid both in the linear and in the nonlinear response regime and form the
starting point of the remainder of the paper. The following sections discuss their implications for the stationary
thermoelectric response of the quantum dot from the new perspective offered by the duality (13).

3. Linear response regime

We start with the investigation of the linear thermoelectric response of the quantum dot to voltage and
temperature gradients, |V |, |∆T | � T . In this case, we can consider the symmetrized charge and heat currents,
I = (IL− IR)/2 and J = (JL− JR)/2 which are standardly written in terms of the Onsager matrix,(

I
J

)
≈

(
L11 L12

L21 L22

)(
V /T

∆T /T 2

)
. (23)

Here, the diagonal elements L11 = T G and L22 = T 2K present the electric and thermal conductances, G =

dI/dV |eq and K = dJ/d∆T |eq respectively, whereas the off-diagonal elements L12 = T 2∂ I/∂ ∆T |eq and L21 =

T ∂J/∂ ∆T |eq characterize the thermoelectric and the electrothermal responses. Here and below, we denote the
evaluation of any quantity q in the equilibrium limit by either of the expressions q|eq = qeq := q|V=∆T=0. The
linearization of our general result (22) for the currents around equilibrium is conveniently found from

d
dx |z)

∣∣
eq = ∑

α

Γα

Γ
d
dx |zα)

∣∣
eq = −∑

α

Γα

Γ

[
dÂα

dx − ( dAα

dx |zα) ·1
]
· |zα)|eq (24)

for derivatives with respect to x = µα ,βα , where we have introduced the affinities Âα := βα

(
Ĥ−µα N̂

)
. The

derivation of this result [App. C.1] only involves the linearization around equilibrium and nothing else, i.e.,
no detailed balance or other balancing relations used in previous derivations [54,55] and their extensions [11].
Formulating the linear response on the level of the stationary state has the crucial advantage that it can be
combined with the duality. Thereby we can circumvent the cumbersome process of taking derivatives of
expectation values and subsequently simplifying them. We instead exploit Eq. (24), the mode expansion given in
(15) and two simple orthogonality relations involving the equilibrium state of the original and the inverted model,

(zi,eq(−1)N |zeq) = 0 , (zi,eq(−1)N ·N|zeq) = 0 . (25)

The first is simply the orthogonality of left eigenvector (p′| and right stationary vector |z), here applied
at equilibrium, which by duality even holds beyond linear response. The second relation follows from
ẑeq = e−(Ĥ−µ)/T /Tr[e−(Ĥ−µ)/T ] which for the inverted equilibrium state implies ẑi,eq(Ĥ, µ) = ẑeq(−Ĥ,−µ) ∝

e(Ĥ−µ)/T ∝ (ẑeq)−1. Therefore the second relation is found from

(zi,eq(−1)N ·N|zeq) ∝ Tr[N̂(−1)N̂ ] = 0 . (26)

Using the above equations, we finally obtain the linear response coefficients of the charge and heat currents (22)
[see App. C for the details of this non-standard derivation],

L11 =
ΓLΓR

Γ2 γc,eq δn2
z,eq (27a)

L12 = L21 = −L11

[
(ε−µ)+

U
2
(2−ni,eq)

]
(27b)
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Figure 2. Fluctuations of the dot occupation number in the equilibrium state of the original, repulsive model
(blue, full line) and of the inverted dual model (green, dashed line), showing features of attractive interaction. The
inset shows the section between ε−µ = −U/2 and ε−µ = 0 on a log scale to show the different decay of the
two types of fluctuations due to thermal smearing. The parameters are U = 10T , V = ∆T = 0, and ΓL = ΓR� T .

L22 = L11

[
(ε−µ)+

U
2
(2−ni,eq)

]2

+
ΓLΓR

Γ2 γp,eq

(
U
2

)2

δn2
z,eq δn2

i,eq , (27c)

with equilibrium decay rates γc,eq =
Γ
2 [ f+(ε)+ f−(ε +U)] and γp,eq = Γ = γp. These results warrant a detailed

discussion given in the following sections. However, what is immediately clear is that even in the linear response
regime, the natural quantities in which the response coefficients are expressed are not only the coupling asymmetry
ΓLΓR/Γ2, the expected energies (ε , µ , U) and the occupation number nz,eq and its fluctuations in the original dot
model,

δn2
z,eq = 〈N̂2〉eq−〈N̂〉2eq = (N2|zeq)− (N|zeq)

2 . (28)

In addition, the occupation number ni,eq [cf. Eq. (22c)] and its fluctuations

δn2
i,eq =

[
〈N̂2〉zi −〈N̂〉

2
zi

]∣∣
eq = (N2|zi,eq)− (N|zi,eq)

2 = δn2
z,eq [ε ,U , µ →−ε ,−U ,−µ ] (29)

in the equilibrium state of the dual, attractive system ẑi,eq appear as well. They enter via the overlap of the
equilibrium state and dual equilibrium state, (zi,eq|zeq) = δn2

i,eq ·δn2
z,eq, as proven in App. C.4. In Fig. 2, we plot

the ε-dependence of both fluctuations by evaluating the explicit expression of δn2
z,eq as a function of ε ,U , µ ,T ,

stated in Eq. (A41). These fluctuations show peaks at ε = µ and ε +U = µ for the original model and at
ε +U/2 = µ for the dual attractive model. Using that the fluctuations also follow from an ε-derivative of the
equilibrium occupation numbers [Eq. (A42)], δn2

z,eq = −T ∂nz,eq/∂ε and δn2
i,eq = T ∂ni,eq/∂ε due to Eq. (29),

the observed resonances in δn2
z,eq and δn2

i,eq are readily understood from nz,eq and ni,eq as shown earlier in
Fig. 1(b) and (d).

3.1. Electric response

For reference, we note that the linear electric conductance

G =
L11

T
=

1
T

ΓLΓR

Γ2 γc,eq δn2
z,eq (30)

is essentially the charge-relaxation rate γc,eq × the equilibrium charge fluctuations δn2
z,eq plotted in Fig. 2. It

shows the well-known Coulomb peaks [54] whenever fluctuations of the charge by one electron are energetically
allowed, see Fig. 1(b). Starting from the charge current formula (22a), we note that the conductance (30) derives
from the charge-mode of the evolution, as physically expected.
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3.2. Thermo-electric response and Seebeck thermopower

The charge mode also solely determines the response (27b) of the charge current to a small temperature
difference ∆T . To tie this to an energy scale, we consider the thermopower or Seebeck coefficient S =− 1

T
L12
L11

corresponding to the induced thermo-voltage V |I=0 across the two leads in the absence of a charge current,
V |I=0 = S∆T (Seebeck effect). The expression Eeq := T S has the unit of an energy, related to the voltage
required to counterbalance the thermally induced charge current [56,57]. Our linearized result (27b) gives for
this energy

Eeq = T S = (ε−µ)+
U
2
[2−ni,eq(ε−µ ,U ,T )] = Eα |eq . (31)

Before discussing this result, we immediately note that Eeq equals the tight-coupling energy (22c) [for niα |eq =

ni,eq with µα = µ ,Tα = T ] which by duality naturally appears in the decomposition of the heat current (22b). As
we will detail when introducing the Peltier coefficient in Sec. 3.3, this fact indicates that the Onsager relation
L12 = L21 is obeyed. However, since we purposely refrain from using time-reversal symmetry, it is first of interest
to see how, by using only linear response of the state (24) and the mode-amplitude duality (15), the charge
current formula (22a) – apparently of very different form from the heat current – produces nonetheless the same
energy scale. This follows by noting that for the linear response coefficient L12, only equilibrium correlators
are relevant9, in particular 〈ĤN̂〉eq. The latter10 introduces the characteristic energy Eeq: as a consequence of
the orthogonality relations (25), the only contribution to 〈ĤN̂〉eq comes from the part of the energy Ĥ that does
not couple to the parity (−1)N̂ [see App. C.3]. The additional appearing correlator 〈N̂2〉eq is responsible for the
µ-shift occurring in Eeq.

The energy (31) thus naturally appears by mode decomposition of these correlators, showing that the duality
is essential for the understanding of the thermopower. As we noted above [Eq. (22)], the interaction-induced part
in Eeq, respectively S is governed by the behavior of the average occupation ni,eq in the inverted stationary state.
Importantly, this energy is not simply the noninteracting part [ni,eq depends nontrivially on U , cf. Eq. (A10)] or a
mean-field-like energy which would involve the average nz,eq/2 rather than (2−ni,eq)/2.

In Fig. 3(a), we plot the Seebeck coefficient, Eq. (31), as a function of the energy level position ε − µ .
The sawtooth behavior has been known for a long time [55] and it is traditionally understood as follows: Each
linear branch of the curve is explained by considering just one of the two Coulomb resonances and ignoring
the other. For each branch, the magnitude of the voltage that can be sustained increases linearly 11 with ε−µ .
The shape of the whole curve is then understood as a crossover from the particle-dominated transport of one
resonance to the hole-dominated transport of the next one when changing ε−µ: by a continuity argument the
curve must cross zero between the two resonances to connect the two branches. However, it remains unclear
from this line of arguing whether this is a sharp jump – as here in the linear regime – or a smooth crossover – as
in the nonlinear regime discussed later. Moreover, close inspection shows that this sharp jump has an anomalous
thermal broadening by half the temperature, T /2.

Both issues are readily understood from our result (31) deriving from duality: the mean energy Eeq probed
by the thermopower depends on the average charge ni,eq of the quantum dot with inverted energies at equilibrium.
As Fig. 1(c) and (d) illustrate, the occupation in the inverted stationary state ni,eq abruptly drops from 2 to 0 once
ε−µ exceeds −U/2, as is well-known for impurities with attractive Coulomb interaction [41]. The duality thus

9 The linearization of the particle current (22a) in either x = µα ,Tα is proportional to terms of the form (N| d
dx |z)

∣∣
eq. By Eq. (24) the

∆T -derivative of |z) translates to a temperature derivative of the Boltzmann factor e−(Ĥ−µN̂)/T which pulls down both N̂ and Ĥ, giving
correlators 〈N̂2〉eq and 〈ĤN̂〉eq.

10 Ref. [58] also links the thermoelectric conversion efficiency to mixed charge-heat noise, which in essence relates to the time-nonlocal
version of the mixed particle-energy correlator appearing here.

11 In the vicinity of a single resonance, the linear behavior of the Seebeck coefficient can simply be understood from the exact solution of
a single noninteracting level with transmission probability T (ω) peaked around ω = ε . Then, I =

∫
dωT (ω) ( fL(ω)− fR(ω)) ≈∫

dωT (ω) (∂ f /∂x)|(x=ε−µ)/T
[
−(ω−µ)∆T /T 2 +V /T

]
, when linearizing with respect to ∆T and V . Approximating the

transmission probability to be proportional to a δ function, this yields I ≈ (G/T ) [(ε−µ)∆T /T −V ]. Getting a vanishing current
requires V = S∆T = (ε−µ)∆T /T , such that S is linear in ε .
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Figure 3. (a) Linear Seebeck thermopower S, Eq. (31), (solid-blue line), and 2−ni,eq (dashed-green line) as a
function of the level position of the dot ε−µ , for U = 10T . Here, ni,eq is the occupation number of the inverted
stationary state at equilibrium. In the units chosen here (e = kB = 1), the Seebeck coefficient is dimensionless.
(b) Comparison with the approximate position and height of the local maxima of S, given by Eq. (34), (left panel),
and of the slopes at the particle-hole symmetry point, given by Eq. (35), (right panel). For all panels, the couplings
are chosen ΓL = ΓR� T .

explains the unexpectedly sharp jump in the thermopower in Fig. 3. Moreover, since for U � T the occupation
for the strongly attractive dual model is well-approximated by

ni,eq ≈ 2 f−(2ε +U) = 2 f−
(

ε +
U
2

)∣∣∣∣
T→T /2

, (32)

we see that the anomalous thermal scale of half the reservoir temperature T /2 appears. This has an intuitive
interpretation in the dual model: since the attractive interaction favors a single transition involving an electron
pair, each electron feels half of the thermal noise12. Note that in our calculation for the attractive dual model, two
electrons enter sequentially (in time) by two separate processes with rates described by Fermi functions13. Their
net effect is that the transition becomes allowed at a single value of ε−µ = −U/2.

Since our result (31) expresses the thermopower compactly in the natural and well-understood variable ni,eq,
we can easily find a simple yet accurate formula for the level positions at which the thermopower achieves a local
minimum (ε−) and maximum (ε+). This requires finding ε from the extremal condition

∂ni,eq

∂ (ε/T )
=

2T
U

. (33)

12 Note that here electron pairs are not coherently transported: such coherent pair tunneling appears only in processes of order Γ2. In the
analysis [59] of the rates for such effects a Bose function appears with 2ε +U in its argument, indicating coherent transport of fermion
pairs. Interestingly, we note that this rate as function of ε shows the same halving of the thermal noise as discussed in the present paper.

13 The rate matrix (A22) contains no nonzero rate connecting the empty and doubly occupied state.
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The strong attractive interaction in the dual system relative to the anomalous lower temperature scale T /2 makes
Eq. (32) an excellent approximation to the left hand side of Eq. (33), already for U & 5T . This gives

ε±−µ

U
≈−1

2
∓ T /2

U
ln
(

U
T /2

)
, S(ε±) ≈±

[
U
2T
− 1

2

(
1+ ln

(
U

T /2

))]
. (34)

Furthermore, the sensitivity of the thermopower to a gate change in the vicinity of these extrema is relevant for
applications14. We see that in the crossover regime, the negative slope is dominated by the interactions U & T ,

dS
dε

∣∣∣∣
ε−µ=−U/2

≈− 1
T

(
U
2T
−1
)

, (35)

in contrast to the positive slopes 1/T of the two branches associated with isolated resonances. Fig. 3(b) shows that
Eqs. (34) and (35) indeed approximate very well the features of the Seebeck coefficient for different temperatures.
Measurements of the Seebeck coefficient of a quantum dot have confirmed this behavior, see for example
Refs. [9,61–63].

3.3. Peltier coefficient

The Peltier coefficient Π := ∂J/∂V |eq
/

∂ I/∂V |eq determines the heat current generated per transferred
particle by a small voltage bias |V | � T alone (∆T = 0). It thus also defines an energy scale and our heat-current
formula (22b) gives

Π = Eeq . (36)

This provides a physically different picture of the energy scale (22c) as compared to the thermopower: it is the
characteristic energy carried by electrons across a biased junction. This is reflected by how it is obtained: it is the
prefactor of the first, tight-coupling part in the heat current (22b) [cf. Eq. (31)].

Of course, Onsager reciprocity dictates L12 = L21, i. e., that the values of the energy scales obtained from
the electro-thermal and thermoelectric response are the same, where L21 = T ∂J/∂V |eq and Π = −L21/L11.
However, since we explicitly avoid arguing from time-reversal symmetry, it is of interest to see how the reciprocity
relation L21 = L12 emerges when only using our duality (13). The crucial point in our approach is that the
fermion-parity part of the energy current (22b), carrying part of the interaction energy, is to linear order insensitive
to the bias V for any value of the remaining parameters:

d
dµα

(ziα (−1)N |z)
∣∣∣∣
eq
= 0 . (37)

This follows from the linear-response of the stationary state ẑ [Eq. (24)] together with the orthogonalities (25)
[see App. C.4]. The result (37) thus implies that in linear response to the voltage bias, the heat current coefficient
L21 stems from the charge mode only, see also Ref. [64]. Since this is equally true for the thermopower in L12,
we indeed reobtain Onsager’s reciprocity relation. We stress in particular that the tight-coupling of the heat- and
charge current is not an approximation in our treatment, but follows from duality.

In Sec. 4 we will see that the parity contribution to heat current (22b) does play a role for finite bias,
pinpointing how the interesting deviations between Π and S emerge beyond linear response.

3.4. Thermal response and Fourier heat conductance

Finally, the thermal coefficient L22 = T 2∂J/∂ ∆T |eq, given by Eq. (27c), acquires contributions from both
terms in Eq. (22b). This suggests that there are two types of energy fluctuations that correspond to linear thermal

14 Note that, when increasing Γ/T , the slope at the crossover is expected to be modified by renormalization due to higher-order effects [60].
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Figure 4. Linear Fourier coefficient κ , Eq. (39) as a function of ε − µ . The occurrence of a single peak in
κ at ε−µ = −U/2 directly reflects the fluctuations δn2

i,eq of the inverted stationary state at the electron-pair
resonance of the attractive dual quantum dot system, see Fig. 2 and Fig. 1(d). The smallness of the Fourier
coefficient on the scale determined by U/T and Γ stems from the product of occupation number fluctuations
δn2

i,eq δn2
z,eq. Parameters: U = 10T , ΓL = ΓR� T .

transport when a thermal gradient is applied. Indeed, the fluctuation of the grand-canonical energy Ĥ := Ĥ−µN̂
determining the equilibrium state ẑeq ∝ e−Ĥ /T decomposes into two corresponding parts:

δĤ 2
eq = 〈Ĥ 2〉eq−〈Ĥ 〉2eq = (H 2|zeq)− [(H |zeq)]

2 = E2
eqδn2

z,eq +

(
U
2

)2

δn2
i,eq δn2

z,eq, (38)

see App. C.4. Thus, the charge (parity) contribution to the linear heat transport coefficient L22 [Eq. (27c)] are the
charge- (parity-) related energy fluctuations × the charge (parity) rate γc,eq (γp,eq).

In thermoelectric applications, one often wants to know the heat transferred from the hot to the cold reservoir
when no electrical power is generated. This purely thermal current J|I=0 ≈ κ∆T for a small thermal bias ∆T
at zero charge current is characterized by the Fourier heat conductance, κ = ∂J|I=0/∂ ∆T |eq. It is given by
T 2κ = L22−L12L21/L11, for which we obtain

κ =
1

T 2
ΓLΓR

Γ2 γp,eq

(
U
2

)2

δn2
z,eq δn2

i,eq (39)

using Eq. (27). This coefficient stems entirely from the parity-mode contribution to the heat current. As in
the Drude theory for metals [50], the pure thermal conductance κ is due to the electron-electron interaction.15

However, we note that the interaction also nontrivially enters into the other term of the heat current that does not
contribute to κ . The heat-current decomposition dictated beforehand by duality thus naturally pinpoints which
part of the interaction enters the purely thermal Fourier heat conductance – namely the fermion-parity part. We
again stress that both a naive perturbative decomposition of the heat current (noninteracting part + interaction
corrections) as well as a mean-field decomposition fail to achieve this.

The duality furthermore clarifies the parameter-dependence of κ . Being the product of the charge fluctuations
in the stationary and in the inverted stationary state, the Fourier coefficient might be expected to reflect the
fluctuations δn2

z,eq of the actual system, for example in its ε-dependence. However, these fluctuations that we
plotted in Fig. 2 are unable to account for the single resonance that κ shows at ε−µ = −U/2 in Fig. 4. Instead,
this peak entirely comes from the fluctuations δn2

i,eq in the dual model, where due to the attractive interaction only
a transition from zero and double dot occupation occurs precisely for this level position, cf. Fig. 5. Interestingly,
the anomalous thermal broadening T /2 in the attractive model [Eq. (32) ff.] is crucial to make these fluctuations

15 For U = 0 there are no further contribution mechanisms to thermal transport in the absence of charge transport to the leading order
in tunnel coupling Γ. Higher orders in the tunnel coupling would, however, allow for processes in which energy is transferred in a
multi-particle tunneling process, while no net charge transport occurs.
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Figure 5. Sketch of the processes leading to Fourier heat transfer in the thermally broadened region around the
particle-hole symmetry point, ε−µ = −U/2, for (a) the normal and (b) the inverted quantum dot models. In
both cases shown, the energy U flows from the hot lead to the cold one without net charge transfer from the left
to the right lead.

dominate: it leads to a difference in the exponential thermal suppressions of the two fluctuations when ε is varied,
as shown in the inset of Fig. 2. As a result, when multiplying the two curves in Fig. 2, the peak (tails) of δn2

i,eq
can overcome (suppress) the tails (peaks) of δn2

z,eq and thereby determine the shape of the result for κ in Fig. 4.
The very good approximation to the peak height for U � T ,

κ ≈−ΓLΓR

Γ
∂

∂x
tanh

(
1
x

)∣∣∣∣
x= 4T

U

=
ΓLΓR

Γ

(
U
4T

1
cosh

( U
4T

))2

, (40)

will be derived later on [Eq. (55)] by exploiting the duality directly in the nonlinear regime and linearizing
afterwards.

Thus, whereas δn2
z determines the electric dissipation of the electric conductance, the fluctuation of the

inverted dot population, δn2
i dominates the thermal dissipation described by Fourier heat. This is the unexpected

twist to the formal analogy between Ohm’s law and Fourier law that we announced earlier [Eq. (1)]. It appears
only when one examines the origin of their coefficients, Eq. (30) and (39), taking into account the fundamental
restrictions imposed by duality.

Finally, we show how the duality simplifies the Fourier heat transfer even on a pictorial level. Fig. 5(a)
shows how this energy flow can be pictured in the original, repulsive model as a cycle of single-electron tunneling
processes, the cycle being restricted to have zero net charge current, I = 0. Two cycles contribute to the Fourier
heat, in which the energy ε (ε +U) is transferred from the cold (hot) lead to the hot (cold) one through the lower
(higher) resonance16 of the dot. In either cycle, an amount of energy U is removed from the hot reservoir and
released into the cold one. What remains unclear in this picture is how a single sharp peak at ε−µ = −U/2
with a thermal broadening given by T /2 can emerge due to a delicate cancellation between particle and hole
processes which are all off resonant. In Fig. 5(b) we show how (in linear response) the same energy transfer can
be understood in the inverted dual model in terms of the single resonance available in an attractive quantum
dot which can be either empty or doubly occupied. This process clearly shuts off for |ε +U/2− µ| � T /2,
implying the fluctuations δn2

i,eq vanish and κ with it.

16 corresponding to the addition energy for the transition between zero and single occupation (between single and double occupation)
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4. Nonlinear regime

In the regime where either of the biases V and ∆T is large enough to invoke a nonlinear current response,
Onsager’s relations are of no help anymore. Although nonlinear fluctuation relations may provide interesting
insights [4,65], this would require additional machinery of counting statistics. The fermion-parity duality Eq. (13),
instead, can be exploited in the nonlinear regime without further ado: it allows us to simplify the derivation and
improve our understanding of the nonlinear Seebeck, Peltier, and Fourier coefficients obtained from the full
non-equilibrium currents (22). We note that since now heat currents are not anymore conserved due to the finite
Joule heating, it is only meaningful to consider lead-resolved heat currents Jα for α = L or R.

4.1. Thermo-electric response and Seebeck thermopower

We start by analyzing the nonlinear thermopower / Seebeck coefficient Snl = V |I=0/∆T . The required
thermo-voltage V |I=0 is obtained by solving I = 0 for V using the currents (6). The form of the charge current
(22a) shows that this is equivalent to maintaining equal lead-resolved and, therefore, equilibrium occupations on
the dot:

nzL = nzR . (41)

This simplification is ultimately a consequence of the fact that for the spin-degenerate quantum dot model
considered here, duality (13) dictates the charge mode to be an exact eigenmode both in and out of equilibrium,
see (15). Since we consider µR = µ to be fixed, we can readily solve17 the balance equation (41) for µL ≡ µ−V
and obtain [App. D] the nonlinear thermopower, using the explicit expressions for nzL and nzR given in Eq. (A10).
While the result could be written in terms of Fermi functions directly, a particularly insightful form is

Snl =
1
T
(ε−µ +U)−

T +∆T
∆T

ln

1−niR +

√
(1−niR)

2 + exp
(

U ·∆T
T ·(T+∆T )

)
·niR(2−niR)

2−niR

 , (42)

where niR is the ε-dependent inverted stationary charge number with respect to the reference chemical potential
µ and temperature T in the right lead. The representation in terms of the dual occupation number is motivated by
its connection to the linear limit, in which ni,eq = niR governs the interaction-related contribution to the Seebeck
coefficient for a fundamental reason. This allows us, in the following, to exploit the simple single-step behavior
and anomalous thermal scale T /2 of the dual charge [Eq. (32)] in order to further analyze Snl.

Let us first consider small to moderate temperature gradients 0 < ∆T . T . Plotting Snl as a function
of ε − µ in Fig. 6, we see in the here studied regime U � T that the nonlinear thermopower maintains the
characteristic ε-dependent shape from the linear regime, exhibiting in particular the qualitative signature of
niR. The only important impact of the increasing thermal bias ∆T is that the slope of Snl at ε +U/2 = µ

becomes increasingly less negative, and correspondingly, local extrema are less pronounced in Fig. 6(b). To
analytically understand this behavior, we realize that due to ∆T . T and due to the sharp step of niR(ε) around

17 For symmetric bias this is a transcendental equation for µL−µR which cannot be solved analytically any longer.
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Figure 6. (a) Nonlinear Seebeck coefficient Snl as a function of the level position of the dot for different values
of the temperature difference ∆T . The solid-blue line reproduces the linear response result shown in Fig. 3,
to contrast with ∆T = 0.5T (dashed-orange line), and ∆T = T (dotted-green line). (b) Curve for ∆T = 0.5T
(dashed-orange line), together with the approximate slopes, 1/T and −1/Teff as discussed in the text. (c) Snl for
large temperature gradients ∆T � T . (d) Level position ε0−µ >−U/2 at which Snl(ε0) = 0 as a function of
the temperature gradient ∆T /U and for different T /U . Here, the blue curve represents the situation in (c). Note
that we always assume ΓL = ΓR� T and, except for (d), U = 10T .

ε − µ = −U/2, we can efficiently carry out a linear expansion of Eq. (42) in ε − µ by first expanding Snl in
1−niR around 1−niR = −1,0,1 for ε−µ close to 0,−U/2,−U respectively:

T Snl ≈



ε−µ +
U
2

[
T (T +∆T )

U ·∆T

(
e

U ·∆T
T (T+∆T ) −1

)
(2−niR)

]
≈ ε−µ , ε ≈ µ

ε−µ +
U
2

[
1+

T (T +∆T )
U ·∆T /2

(
1− e−

U ·∆T /2
T (T+∆T )

)
(1−niR)

]
≈− T

Teff
(ε−µ +

U
2
) , ε + U

2 ≈ µ

ε−µ +
U
2

[
2− T (T +∆T )

U ·∆T

(
e

U ·∆T
T (T+∆T ) −1

)
niR

]
≈ ε−µ +U , ε +U ≈ µ .

(43)

For ε−µ close to 0,−U , the flat ε/U-dependence and the anomalously small thermal broadening of niR by T /2
[Eq. (32)] lead to a complete suppression of the ∆T -dependent non-equilibrium terms. By contrast, the sizable
linear ε/U-dependence of 1−niR with slope −U/T around ε−µ =−U/2 [Eq. (35)] does introduce a relevant
∆T -dependence of the slope of Snl linearized in ε , given by the inverse effective temperature

1
Teff

U�T≈ 1
T
·
[

T
∆T
− T +∆T

∆T
· exp

(
− U

2T
· ∆T

T +∆T

)] U∆T
T+∆T�T
≈ 1

∆T
. (44)

As expected, taking the limit ∆T → 0 in Eq. (43) immediately gives back the linear Seebeck coefficient (31). We
also note that a useful demarcation of the regime where the second line in Eq. (43) is a good approximation is
obtained by finding the crossing points of the linear ε-expansions in all three regimes:

|ε +U/2−µ|. ∆T
T +∆T

·
[

1+ coth
(

U
4T
· ∆T

T +∆T

)]
·U

4

U∆T
T+∆T�T
≈ ∆T

T +∆T
·U

2
. (45)
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The approximations in Eqs. (43) and (45) will be helpful for the understanding of the nonlinear Fourier coefficient
in Sec. 4.3.

Let us now address larger temperature gradients ∆T � T , approaching and exceeding the interaction
strength U . An interesting feature of this regime is that the roots of Snl(ε) close to the Coulomb resonances are
shifted towards the root at ε−µ = −U/2, and that all roots can even merge entirely at this single level-position
for large enough ∆T . This both experimentally [9] and theoretically [66] studied effect is captured by the
analytic expression (42) of the thermovoltage, as clearly visible in Fig. 6(c). Our duality makes explicit that
there is no reason that the thermopower roots at ε − µ = 0,−U should remain fixed; only the position of
resonance at ε−µ =−U/2 is dictated by the dual model. Indeed, the linear thermopower (31) is not exactly 0 at
ε−µ = 0,−U , although this effect is exponentially suppressed with large interaction [0 < (2−ni,eq)/2∼ e−U/T

at ε = µ ].
For large temperature gradients ∆T /T � 1, the effect can, however, clearly be seen: figure 6(d) displays

a sizable root shift on the scale U/2 as a function of ∆T /U , obtained numerically from Eq. (42) for different
T /U . We also observe that all roots merge at ε−µ = −U/2 at a relatively large temperature gradient, which
we define as ∆T0/U . To get an approximate analytical description of this quantity, we start from the condition
dSnl/dε = 0 at ε−µ = −U/2, which sets the point beyond which only one root can exist. Since this typically
happens at large ∆T /T , we can Taylor expand the derivative in T /∆T at fixed T /U to analytically solve for

∆T0

U
≈ 1

2

[
T
U

exp
(

U
2T

)
− T

U
− 1

2

]
. (46)

Equation (46) is in good agreement with the numerics shown in Fig. 6(d). Altogether, this confirms that the root
shift is observable for achievable temperature gradients as long as the the interaction strength U does not exceed
the base temperature T by more than an order of magnitude.

4.2. Electro-thermal response and Peltier coefficient

The nonlinear Peltier coefficient Πα
nl = (Jα /Iα )|∆T=0 determines the heat transferred per charge in response

to a finite voltage bias V (∆T = 0). It therefore quantifies one of the desired thermoelectric effects: the ability of
the quantum dot system to electrically cool one of the contacts (via a heat current out of this contact). Due to the
absence of heat current conservation under nonequilibrium conditions, the nonlinear Peltier coefficient depends
on the lead α that it refers to, ΠL

nl 6= ΠR
nl, and furthermore differs substantially from the Seebeck coefficient, as

we now discuss.
Since the Peltier coefficient is not restricted by charge-current balancing 18, we can not express it entirely

in lead-resolved equilibrium variables. Nevertheless, we can exploit our duality to a large extent. First, we
decompose the Peltier coefficient into a part that stems from the heat current contribution that is tightly coupled
to the charge current, Πα

nl,tc [first term in Eq. (22b)], and the non-tightly coupled contribution, Πα
nl,ntc, stemming

from the fermion-parity mode [second term in Eq. (22b)],

Πα
nl = Πα

nl,tc +Πα
nl,ntc . (47)

The first term of Eq. (22b) couples the charge current to Eα , the average energy (22c). This is the same energy
that determines the linear thermopower (Seebeck coefficient), but with respect to µα . Therefore,

Πα
nl,tc = T S|µ→µα

, (48)

and ΠL
nl,tc is just the linear thermopower curve shifted by the applied bias V , in contrast to ΠR

nl,tc, which is not
shifted. This can be seen in Fig. 7(a) and (b), where we plot the Peltier coefficient and its decomposition, the

18 This represents a contrast to the Seebeck and the Fourier coefficient.
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Figure 7. (a) Nonlinear Peltier coefficient ΠL
nl as a function of ε−µ for different values of the voltage difference

V . (b) Decomposition of the nonlinear Peltier coefficient for the parameters chosen for (a) into the tight-coupled
ΠL

nl,tc (dashed lines) and non-tight-coupled ΠL
nl,ntc (dotted lines) contributions. The parameters U = 10 T and

ΓL = ΓR� T are fixed for all panels.

dashed curves showing the tight-coupling part. It means that, interestingly, the nonlinear Peltier coefficient,
although not related to the nonlinear Seebeck coefficient, is actually related to the linear Seebeck coefficient.

The remaining non-tight-coupling contribution Πα
nl,ntc is completely due to the parity mode,

Πα
nl,ntc = −

γpαU
Iα

(ziα (−1)N |z)|∆T=0. (49)

Using Eq. (22d), this can be expressed in the average occupation and parity in the stationary state |z) and
α-resolved inverted stationary state |ziα). In order to make further quantitative progress, the evaluation of the
expectation values nz and pz with respect to the stationary state |z) cannot be avoided (see App. B). However, we
stress that Eq. (49) together with Eq. (22d) already present a significant simplification relative to the standard
way of writing the same result.

Moreover, we can still further exploit the duality in a qualitative discussion. For example, the results in
Fig. 7 show that ΠL

nl,ntc contributes only in a limited interval of ε values. This can be explained using only the
observation that this contribution depends on the overlap of the stationary state ẑ and the α-resolved inverted
equilibrium state ẑiα , as given in Eq. (49). Intuitively, this overlap is a measure of how much the two mixed
states ẑ and ẑiα resemble each other, modulo parity signs. Taking µL = µ−V , the inverted equilibrium state
ẑiL switches from an empty state for ε−µ ≤−U/2−V to a doubly occupied state for ε−µ ≥−U/2−V . In
contrast, the nonequilibrium stationary state ẑ has a less simple bias dependence and determines the evolution of
the panels of Fig. 7(b), where V was chosen to be negative, |V |= −V : (Left): For |V | �U/2 the overlap (49)
is nonzero only at ε +U/2 = µ up to thermal broadening. (Center): For U/2 < |V |<U , there exists a region
ε−µ ∈ [0, |V |−U/2], where the state ẑ is a mixture of an empty and singly-occupied state while the inverted
state ẑiL is empty, leading to a nonzero overlap (49). (Right) For |V |>U there is a double step. Here, the inverted
state ẑiL is empty for all ε−µ ≤ |V |−U/2. The double step in the overlap (49) arises due to the state ẑ being
empty with probability p0 ≈ 1/4 and 1/3 for ε−µ ∈ [0, |V |−U ] and [|V |−U , |V |−U/2], respectively.

The duality thus allows to understand the stepwise contributions of ΠL
nl,ntc and thereby the details of

Fig. 7(b): its effect is to shift the tight-coupling part (determined by the Seebeck coefficient, i.e., the “Onsager
part”) to lower values for moderate bias |V |<U , and to double the saw-tooth behavior for high bias |V |>U .
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Overall, a large bias gives more negative values for ΠL
nl, restricting the regime of effective cooling of the left

reservoir to ε−µ > |V |, for which heat is carried out of the left reservoir (equivalently, the right reservoir for
this setting can only be cooled if ε−µ <−U).

4.3. Thermal response and Fourier coefficient

Finally, we examine the nonlinear Fourier heat coefficient, κα
nl := Jα |I=0/∆T , for lead α = L,R, the ratio

of the heat current and the finite temperature bias in the absence of a charge current. By energy conservation19,
we have κL

nl ≡ −κR
nl. Our heat current formula, Eq. (22b), immediately shows that the nonlinear Fourier heat

current is produced solely by the parity mode contribution:

κ
L
nl = −γpL

U
∆T

(ziL(−1)N |z)
∣∣∣
I=0

. (50)

In contrast to the expression for the non-tight-coupling contribution to the Peltier coefficient, Eq. (49), the above
expression (50) can be fully analyzed in terms of equilibrium quantities, dictated by the duality. We therefore
make use of the remarkable fact that under current balanced conditions (41), the full non-equilibrium stationary
state |z) simplifies to a sum of the lead-resolved equilibrium states |zα):

|z)|I=0 = ∑
α

Γα

Γ
|zα)

∣∣∣∣
I=0

. (51)

This is shown App. D, in fact for any number of leads α . With this, we find

κ
L
nl =

1
4

ΓLΓR

Γ
U
∆T

(pzL− pzR)|I=0 . (52)

Remarkably, it shows that the nonlinear Fourier heat coefficient can be rationalized in terms of two relatively
simple equilibrium observables of the quantum dot, the lead-resolved parities pzL and pzR. As previously pointed
out, the parity pzR with respect to the right lead, plotted Fig. 8(c), simply equals the equilibrium parity pz,eq,
since µR = µ and TR = T are kept fixed in the right lead. This equilibrium parity simply changes sign at
both resonances, ε−µ = 0,−U . In contrast, the required value pzL|I=0 is obtained by evaluating the explicit
expression (A40) of pz,eq = pzR at temperature T +∆T , and at a chemical potential shifted compared to µR = µ

by the nonlinear thermovoltage V |I=0 = Snl∆T , which depends nontrivially on the parameters [Eq. (42)]:

pzL = pz,eq [µ → µ−Snl(ε−µ ,U ,T )∆T , T → T +∆T ] . (53)

In the following, more detailed analysis of Eq. (52), we can exploit (53) in the regime of moderate temperature
gradients 0 < ∆T < T . Namely, an inspection of Figs. 8(c) and (d) shows that the parity with respect to the
left lead, Eq. (53), is expected to take a constant value, equal to the value of pzR = pz,eq at the electron-hole
symmetric point but at a different temperature T + ∆T , in a ∆T -dependent range around ε − µ = −U/2.
And indeed, explicitly evaluating the thermovoltage (42) in the piecewise-linear approximation (43) and for
U∆T /(T (T +∆T ))� 1, we find

pzL ≈


pzR , ε ≈ µ

pz,eq (ε−µ = −U/2,U ,T +∆T ) , ε +U/2≈ µ

pzR , ε +U ≈ µ .

(54)

With the help of equations (52) to (54), we can now fully understand the plots of κL
nl as a function of the dot

level ε as shown in Fig. 8(a) and (b) for different values of the Coulomb interaction. For increasing thermal bias

19 Since the Fourier heat is independent of the Joule heating, we have κL
nl ≡−κR

nl even though in the nonlinear regime heat currents are in
general not conserved.
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Figure 8. (a) Nonlinear Fourier coefficient κL
nl ≡−κR

nl as a function of the level position of the dot with respect
to the electrochemical potential of the right lead, for different values of the temperature difference and U = 10T .
The blue lines reproduce the linear response result shown in Fig. 4. Dashed vertical lines indicate the plateau
values, approximated in Eq. (55), while fine vertical lines indicate the width [Eq. (45)] of the broadened peak.
(b) Same as in (a), but for U = 30T , where the Fourier coefficient develops a plateau for large values of ∆T .
(c) Parity pzR, which is independent of V ,∆T . (d) Energy level shifted by the thermovoltage, ε−µ−Snl∆T as
function of ε−µ for the temperature differences of (a). The parameters U = 10T , ΓL = ΓR� T are fixed in all
panels unless indicated otherwise.

∆T , the linear response peak at ε−µ = −U/2 [Fig. 4] increases in both height and width, depending on the
ratio U/T . Namely, the broadened peak around ε−µ = −U/2 for U/T = 10 clearly assumes a plateau shape
at large20 values of U/T , such as U/T = 30 in Fig. 8(b). Now, the approximate expressions for the Fourier
coefficient in Eq. (54) tell us that there is a difference between the parities pzL and pzR only between the two
resonances in the regime delimited by condition (45). The width of this regime, U ∆T

T+∆T , first increases linearly
with ∆T � T and starts to become of order U once ∆T & T , as indicated by thin, dashed vertical lines in panels
(a) and (b). The difference in parities assumes a constant value in the regime given by U∆T /(T (T +∆T ))� 1,
for which the second line in Eq. (54) is valid. As visible in panel (b) of Fig. 8, this results in the plateau at the
maximum value

κ
L
nl = −

ΓLΓR

Γ
U

4∆T

[
tanh

U
4(T +∆T )

− tanh
U
4T

]
for |ε + 1

2U−µ|. U
2

∆T
T +∆T

, (55)

increasing with ∆T as indicated by the different dashed horizontal lines in panel (a) and (b) of Fig. 8. Taking the
limit ∆T → 0, we obtain the linear response formula Eq. (40) reported in Sec. 3.4.

5. Conclusion and outlook

We have shown that besides time-reversal symmetry, our duality involving fermion-parity superselection
is a crucial general principle for understanding both the linear and nonlinear thermoelectric transport through
strongly interacting electronic nanoscale systems. If one is unaware of this, many computed results seem to

20 With decreasing temperature relative to U , it is interesting how cotunneling corrections modify the plateau.



Version December 6, 2017 submitted to Entropy 23 of 38

reflect model-specific features whereas in reality they are fixed from the beginning by the physical restrictions
imposed by duality.

Our study illustrates that thermoelectrics is not only interesting for future applications, but also provides
new ways in which fundamental effects can be studied: thermal transport properties are particularly susceptible to
effects tied to the new duality, since the Coulomb interaction is an additional channel for storing and transporting
energy. This naturally brings the fermion-parity operator into the problem, which is an open-system evolution
mode that is fundamentally “protected” by the duality.

Concretely, the duality explains why the thermoelectric response of a strongly repulsive system shows
features characteristic for attractive interaction. This is particularly visible in the characteristic energy scale of
stationary linear transport of heat and charge, which is governed by a resonance occurring at an anomalous energy
with unexpected thermal broadening. Both were shown to derive from the occupation number of a quantum dot
with inverted Coulomb interaction. In addition, the fluctuations of this dual occupation number were shown to
play a similarly important role for the linear heat conductance as the usual occupation fluctuations have for the
charge conductance.

The technical advantage offered by the new duality relation is most obvious in the more complicated
nonlinear regime. We provided very compact analytical formulas for all transport coefficients, namely the
nonlinear thermopower, Peltier coefficient and Fourier heat, allowing for intuitive predictions and analyses
of their characteristic features. Strikingly, in most cases, the duality allowed us to express the nonlinear
thermoelectric properties in terms of equilibrium variables.

The definite advantages for the analysis and understanding of the thermoelectric response of an interacting
single-level quantum dot are expected to extend also to more complex systems with, e.g., multiple levels and
contacts. Indeed, the duality applies quite generally beyond the limitations [29] of the present paper, also to
low-temperature, strongly-coupled quantum dot systems, which are of current interest [67–69] as there are still
many interesting thermoelectric properties yet to be explored.
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Appendix A. Non-equilibrium master equation kernel from physical principles and symmetries

In this appendix, we derive the non-equilibrium master equation kernel by appealing only to its physicality
(dissipativity), the validity of the fermion-parity duality, and the fact that each lead individually is in a local
equilibrium state. Moreover, we use that we only consider the first order in the tunnel coupling. This means that
only sequential tunneling processes are possible and, due to the full spin symmetry, that the coherent dynamics
decouple from the time evolution of the energy eigenstate probabilities. In the following, we can thus restrict the
treatment to these probabilities only.

Appendix A.1. Kernel for a single lead

Before we turn to the full, non-equilibrium kernel W , we start by arguing only for any individual kernel Wα

in the reservoir sum
W = ∑

α

Wα . (A1)

Note that this decomposition can be obtained in the sequential tunneling approximation, in which simultaneous
transitions from two reservoirs are neglected. In particular, any Wα contains only the dot variables and quantities
with respect to the lead α , meaning µα ,βα and Γα .
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Now, by construction, each kernel Wα must be linear in Γα . This means that if we turn off the couplings
Γα ′ to all other reservoirs α ′ 6= α , the complete dynamics of the dot are governed exclusively by Wα . Each Wα is
a physically valid, probability conserving and dissipative kernel in its own right. This implies

(1|Wα = 0 , (x|Wα +(Wα )†

2
|x) ≤ 0 for any |x), (A2)

and furthermore dictates real non-negative transition rates21, Wα ( f ← i)/( f | f ) = ( f |Wα |i)/( f | f ) ≥ 0, for
transitions from an initial dot energy eigenstate |i) to a different final dot state | f ). Additionally, for reasons
that become clear in the next paragraph, we make the – not explicitly required yet plausible22 – assumption that
a sequence of single electron tunneling events to and from lead α eventually connects any possible initial dot
energy eigenstate |i) to any other final dot state | f ) 6= |i):

∃n ∈N : ( f |(Wα )
n|i) 6= 0 for any |i), | f ) . (A3)

Note now that the first statement in Eq. (A2) means that (1| is a nontrivial left eigenvector of Wα to the eigenvalue
0, (1|Wα = 0 · (1|. Importantly, the property (A3) then ensures [29] that this eigenvalue 0 is non-degenerate,
and that the only trace-normalized right zero-eigenvector |zα) 6= 0 is the unique, stationary mixed state of the dot,
with truly positive probabilities 0 < Pχ < 1 for all dot energy eigenstates |χ). Since the lead itself is assumed to
be in equilibrium, and since the grand-canonical ensemble ∼ e−βα (Ĥ−µα N̂) is a possible stationary state of the
dot if the latter is in equilibrium with the lead in terms of particle and energy exchange, the unique stationary
state |zα) must be the grand-canonical ensemble:

|zα) =
exp
(
−βα

(
Ĥ−µα N̂

))
Tr
[
exp
(
−βα

(
Ĥ−µα N̂

))]
=

1
Z(ε ,U , µα ,βα )

|0)+ 2e−βα (ε−µα )

Z(ε ,U , µα ,βα )
|1)+ 2e−βα (2ε+U−2µα )

Z(ε ,U , µα ,βα )
|2) (A4)

with the partition function Z(ε ,U , µα ,βα ) = 1+ 2e−βα (ε−µα )+ e−βα (2ε+U−2µα ). We have used that, due to the
spin-degeneracy, the occupation number states and energy eigenstates (8) of Ĥ, as well as their dual counterparts,
form an orthogonal23 set of Liouville space vectors spanning the relevant Liouville space:

I = |0)(0|+ 2|1)(1|+ |2)(2|. (A5)

In the wide-band limit, Wα belongs to the class for which the fermion-parity duality (13) holds:[
Wα (Ĥ, µα )

]†
= −Γα −P̂Wα (−Ĥ,−µα )P̂ , P̂|•) = |(−1)N•) (A6)

As in Ref. [29], we assume that neither the physicality (A2) nor the connectiveness of all states (A3) are
spoiled by the energy inversion in the dual kernel Wα (−Ĥ,−µα ). In the wide-band limit24, this is reasonable
because both local energies and electrochemical potential are inverted, and because only energy differences to
the electrochemical potential matter for the tunneling rates! The important consequence of this assumption is
that the parity rate −Γα is a non-degenerate eigenvalue of the kernel Wα with the left and right eigenvectors
(ziα (−1)N | and |(−1)N), as reported in Eq. (15). Here, we have introduced the inverted or dual stationary

21 Otherwise, it is always possible to find an initial state |ρ0) for which the master equation predicts energy eigenstate projections
(i|ρ(t)) < 0 or even Im [(i|ρ(t))] 6= 0 at some time t, which obviously forbids a probability interpretation.

22 A hypothetical way to violate this condition in the wide-band description of the single-level dot would be to take the zero temperature
limit in the Coulomb blockade regime, leading to completely blocked transitions out of the singly occupied state. This is, however,
neither physical nor practical, since the zero temperature limit cannot be appropriately described by the Markovian sequential tunneling
approximation, and since it is of course impossible to realize Tα = 0 exactly in practice.

23 but not orthonormal, since (1|1) = 1/2!
24 For energy-dependent bare couplings Γ(E), this situation would change if Γ(E) had roots on the real axis!
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state |ziα) = |z(−H,−µα )) as defined in Eq. (19) as the stationary state of the dual kernel; it derives from the
stationary state |zα) for lead α by inverting the sign of all local energy scales and of the electrochemical potential.
Since the stationary state (A4) is the grand-canonical ensemble, this inverted stationary state can also explicitly
be written as

|ziα)
(A4)
=

1
Z(−ε ,−U ,−µα ,βα )

|0)+ 2eβα (ε−µα )

Z(−ε ,−U ,−µα ,βα )
|1)+ 2eβα (2ε+U−2µα )

Z(−ε ,−U ,−µα ,βα )
|2). (A7)

By now we have already found two left and right eigenvectors of Wα that must be biorthogonal to each other.
Since the relevant Liouville subspace and its dual are spanned only by the 3 spin-symmetric physical states
written in (8), we span the entire relevant Liouville [dual] space by only one other spin-symmetric [left] right
vector [(c′α |] |cα) that is orthogonal to the previously found two [right] left eigenvectors. Up to normalization
factors, both |cα) and (c′α | are hence uniquely determined by the Gram-Schmidt algorithm. To efficiently carry
out this orthogonalization procedure, we use the fact that also |1), |N−1), and |(−1)N) form an orthogonal
basis of the Liouville space of interest:

I =
1
4
|1)(1|+ 1

2
|N−1)(N−1|+ 1

4
|(−1)N)((−1)N |. (A8)

This shows that in order to be orthogonal to the parity mode |(−1)N), (c′α | must be a linear combination of (N|
and (1|. Enforcing also orthogonality to the stationary state |zα), applying an analogous procedure for the right
vector |cα), and finally choosing an appropriate normalization factor, such that (c′α |cα) = 1, we obtain

(c′α | = (N|−nzα(1| , |cα) =
1
2
(−1)N̂ [|N)−niα |1)] . (A9)

Here, nzα = (N|zα) is the average charge number in the stationary state, and niα = (N|ziα) the corresponding
average in the dual stationary state:

nzα = (N|zα)
(8)
= 2 [(1|zα)+ (2|zα)]

(A4)
=

2 fα (ε)

1+ fα (ε)− fα (ε +U)

niα = (N|ziα)
(8)
= 2 [(1|ziα)+ (2|ziα)]

(A7)
=

2(1− fα (ε))

1− fα (ε)+ fα (ε +U)
, (A10)

where fα (x) = [exp (βα [x−µα ])+ 1]−1 is the Fermi function. The left vector is thus interpreted as the charge
deviation from the stationary average, and the right vector is called charge mode. Since the zero eigenvalue and
the parity rate are by construction non-degenerate25, both vectors are eigenvectors of Wα that can be associated
with the decay of the average charge number to its stationary value nzα . The timescale of this decay – the charge
rate – is set by the eigenvalue −γcα to be determined. Collecting all previous results, we arrive at the set of left
and right eigenvectors that diagonalizes the kernel, and that is stated in Eq. (15):

Amplitude − Eigenvalue = decay rate Mode

(z′α | = (1| γzα |zα)

(cα
′| = (N|−nzα(1| γcα |cα) =

1
2 (−1)

N̂
[
|N)−niα |1)

]
(p′α | = (ziα (−1)N | γpα |pα) = |(−1)N)

(A11)

25 As noted before, 0 is a non-degenerate eigenvalue of Wα . Hence, the vectors (A9) can only be eigenvectors or generalized eigenvectors
in a Jordan block of Wα to the eigenvalue Γα , or true eigenvectors to an eigenvalue that differs from 0,−Γα . Remembering moreover
that we have assumed full state connectiveness [Eq. (A3)] and a non-degenerate eigenvalue 0 for the dual kernel Wα (−Ĥ,−µα ), the
duality (A6) dictates −Γα to also be a non-degenerate eigenvalue of Wα . Thus, using finally that Wα is real, we can conclude that (c′α |
and |cα) must be amplitudes and modes of Wα to an eigenvalue −γcα obeying 0 >−γcα >−Γα .
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with eigenvalues −γzα = 0,−γcα ,−γpα = −Γα . The eigenmode expansion of the kernel reads

Wα = −γcα

[
1
2
(−1)N̂ [|N)−niα |1)]

][
(N|−nzα(1|

]
−Γα |(−1)N)(ziα (−1)N |. (A12)

The explicit expression of γcα finally follows from the fact that in sequential tunneling, direct transitions between
the empty and doubly occupied state are not possible. Using (−1)N̂ |0/2) = |0/2) and N̂|0) = 0, N̂|2) = 2|2),
this leads to

(0|Wα |2)
!
= 0

(A12)⇒ γcα = 2Γα

(2|ziα)

niα (2−nzα )

(A7)
=

(A10)

Γα

2
[1+ fα (ε)− fα (ε +U)] . (A13)

In summary, the equations (A10) to (A13) show that instead of calculating explicit transition rates using, e.g.,
Fermi’s golden rule, an equivalent result for the master equation kernel Wα of the single-level dot with one lead
can be obtained by appealing to general principles, reasonable assumptions and symmetries. The latter includes
in particular the fermion-parity duality.

Appendix A.2. Full multi-lead kernel

The remaining question is what happens in case of a non-equilibrium situation with several leads, at different
electrochemical potentials and temperatures. Since the fermion-parity duality holds for the full non-equilibrium
kernel W , we can formally obtain its eigenmode expansion by repeating the same procedure as for Wα in Sec. A.1,
making the same assumptions about the connectiveness and physicality of the (dual) kernel26. Similarly to
Eq. (A11), this yields the three biorthonormal left and right eigenvectors

Amplitude − Eigenvalue = decay rate Mode

(z′| = (1| γz |z)
(c′| = (N|−nz(1| γc |c) = 1

2 (−1)
N̂
[
|N)−ni|1)

]
(p′| = (zi(−1)N | γp |p) = |(−1)N)

(A14)

to the eigenvalues −γz = 0,−γc,−γp = −Γ = −∑α Γα , and

W = −γc

[
1
2
(−1)N̂ [|N)−ni|1)]

]
[(N|−nz(1|]−Γ|(−1)N)(zi(−1)N |, (A15)

where 0 < γc < Γ restricts the total charge rate γc.
The problem of Eq. (A15) is that it is not yet obvious what exactly the non-equilibrium stationary state |z)

and all derived quantities including |zi) are, since we cannot simply assume the grand-canonical ensemble as for
the equilibrium case (A4). Starting from (A1), a straightforward but cumbersome approach to this problem would
be to calculate the full kernel explicitly from all single-lead kernels Wα , and then explicitly solve W |z) = 0 with
(1|z) = 1 to obtain the non-equilibrium stationary state |z). However, our goal here – and in general in this
article – is to instead show that for everything we are interested in, we never once need the full expression of |z).

As a first step, we derive nz and γc. Since (1|W = (1|Wα = 0, we can always write

(N|W = (c′|W (A14)
= −γc [(N|−nz(1|] = −γc(N−1|+ γc(nz−1)(1|

(A1)
= ∑

α

(N|Wα = ∑
α

(c′α |Wα = −∑
α

γcα [(N|−nzα(1|]

=

[
−∑

α

γcα

]
(N−1|+

[
∑
α

γcα (nzα −1)
]
(1| . (A16)

26 If each kernel W α is dissipative [Eq. (A2)] and eventually connects all states [Eq. (A3)], this is also true for the sum of all kernels, since
their off-diagonal elements in the probability sector are non-negative!
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Acting from the right with |N−1) yields the total charge rate

γc = ∑
α

γcα

(A13)
= ∑

α

Γα

2
[1+ fα (ε)− fα (ε +U)] . (A17)

Likewise, acting from the right with the unit operator |1) gives

nz = ∑
α

γcα

γc
nzα

(A17)
=

(A10)

1
γc

∑
α

Γα · fα (ε) . (A18)

Second, when evaluated at equilibrium, µα ′ = µα = µ , βα ′ = βα = β for all reservoirs α ′,α , denoted by . . . |eq,
the expressions (A17) and (A18) for the charge rate and average particle number simplify to

γc,eq = γc|eq =
Γ

Γα

γcα |eq , nz|eq = nzα |eq ∀α . (A19)

Moreover, |z) must also become the grand-canonical ensemble with respect to the common electrochemical
potential µ and inverse temperature β under these conditions, and equivalently for the dual stationary state:27

|zeq) := |z)|eq = |zα)|eq , |zi,eq) := |zi)|eq = |ziα)|eq , (A20)

with (1|zeq) = 1 and (1|zi,eq) = 1. This then finally also implies

|ceq) = |c)|eq
(A20)
= |cα)|eq , (c′eq| = (c′|

∣∣
eq

(A20)
= (c′α |

∣∣
eq . (A21)

As it turns out, the relations (A20) are almost everything we need to know about the full non-equilibrium
stationary state and its dual, apart from the stationarity W |z)= 0 and the orthogonality relation (zi(−1)N |z)= 0
that also hold far away from equilibrium.

Appendix B. Explicit expressions for the kernel

In this appendix, we provide explicit expressions for the full non-equilibrium Kernel W and its stationary
state for completeness. We emphasize that these expressions are not needed except for producing plots of the
nonlinear Peltier coefficient as shown in Fig. 7, requiring the non-equilibrium parity p.

As mentioned before, the transition rates Wf ,i = ( f |W |i)/( f | f ) of the full kernel W can be derived from
the sequential tunneling decomposition Eq. (9) of W combined with explicitly known form of the lead resolved
kernel Wα obtained using duality, see Eq. (A12) combined with Eq. (A7), Eq. (A10) and Eq. (A13). More
traditionally, one finds (Wf ,i)α by explicitly using Fermi’s Golden rule or first order diagrammatic perturbation
theory. In any case, the full matrix of transition rates in the occupation number basis |0), |1), |2) reads −W1,0 W0,1 0

W1,0 −W0,1−W2,1 W1,2

0 W2,1 −W1,2

= ∑
α

 −(W1,0)α (W0,1)α 0
(W1,0)α −(W0,1)α − (W2,1)α (W1,2)α

0 (W2,1)α −(W1,2)α

 (A22)

with the transition rates (Wf ,i)α = ( f |Wα |i)/( f | f ) given by

(W1,0)α = Γα f+α (ε) (W2,1)α = (Γα /2) f+α (ε +U)

(W0,1)α = (Γα /2) f−α (ε) (W1,2)α = Γα f−α (ε +U). (A23)

27 While this is intuitively clear, it now follows explicitly from our construction. Namely, we realize from the equations (A10), (A12),
and (A13) that at equilibrium, the kernels Wα differ only by the coupling prefactor Γα , such that Wα = ΓαW 0 with some common

superoperator W 0. More explicitly, Wα |eq = ΓαW 0 (A1)⇒ W |eq = ∑α ′ Γα ′W 0 = Γ
Γα

Wα |eq. Since W |z) = 0 is a homogeneous equation,
and since the stationary state is unique by construction, this implies Eq. (A20).
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The stationary state |z) – being the right eigenvector of W to the eigenvalue γz = 0 is found to be represented by

|z) ·= 1
W0,1
W1,0

+
W2,1
W1,2

+ 1


W0,1
W1,0

1
W2,1
W1,2

 (A24)

in the basis |0), |1), |2). The inverted stationary state, |zi), is then simply found by replacing all f+α ↔ f−α . From
this expression for the stationary state of the original and the inverted model, the following quantities required
for the plot of the nonlinear Peltier coefficient can be obtained from a standard trace operation: nz = Tr{N̂ẑ},
ni = Tr{N̂ẑi}, pz = Tr{(−1)N̂ ẑ}, and pi = Tr{(−1)N̂ ẑi}.

Appendix C. Derivation of the linear response coefficients

Here, we show how to derive the well-known linear response coefficients in their new shape (27a)-(27c) by
combining the linear state response Eq. (24) with the eigenmode expansion (15) induced by the duality (13).

Appendix C.1. First derivatives at equilibrium

The most important prerequisite to calculate the linear response coefficients is the state linearization relation
(24), which we here derive using the decay eigenmode expansion (15). In principle, the final result stated in
Eq. (24) is well-known from earlier works on Coulomb blockade oscillations [54,55] in more general quantum
dot systems. However, we stress that due to the simplicity, the symmetries and due to the resulting conservation
laws of the model considered here, we can obtain the result without ever assuming that detailed balance [54,55]
or more general linear balance relations [11] continue to hold for small deviations away from equilibrium.

Due to current conservation under stationary conditions we find for all leads α ,

∑
α

Iα
N

(22a)
= −∑

α

γcα(c′α |z)
(10)
= ∑

α

(N|Wα |z)
(A1)
= (N|W |z) (A14)

= 0

∑
α

Iα
E

(22b)
= ∑

α

{[
ε +(2−niα )

U
2

]
Iα
N −UΓα(ziα (−1)N |z)

}
(11)
= ∑

α

(H|Wα |z)
(A1)
= (H|W |z) (A14)

= 0. (A25)

As intuitively clear, at equilibrium, charge and energy current to every lead α vanish separately:

Iα
N |eq

(22a)
= − γcα(c′α |z)

∣∣
eq

(A21)
= − γcα(c′|z)

∣∣
eq

(A14)
= 0 (A26)

Iα
E |eq

(22b)
=

[
ε +(2−niα )

U
2

]
Iα
N

∣∣∣∣
eq
−UΓα (ziα (−1)N |z)

∣∣
eq

(A26)
=

(A20)
−UΓα (zi(−1)N |z)

∣∣
eq

(A14)
= 0. (A27)

Now the main trick to derive the desired result is to cleverly represent the non-equilibrium stationary state |z) in
terms of all local equilibrium states |zα). Using the complete basis (A11), one can write

|z) = (1|z)︸ ︷︷ ︸
=1

·|zα)+ (c′α |z) · |cα)+ (ziα (−1)N |z) · |(−1)N) (A28)

for any lead α . Multiplying by γcα , summing over α , and dividing28 the result by ∑α γcα = γc [Eq. (A17)] yields

|z) = ∑
α

γcα

γc
|zα)+∑

α

γcα(c′α |z) ·
1
γc
|cα)+

[
∑
α

γcα

γc
· (ziα (−1)N |z)

]
|(−1)N)

(22a)
= ∑

α

γcα

γc
|zα)−∑

α

Iα
N ·

1
γc
|cα)+

[
∑
α

γcα

γc ·UΓα

·UΓα(ziα (−1)N |z)
]
|(−1)N)

28 This is allowed since we know that all γcα > 0.
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(22b)
= ∑

α

γcα

γc
|zα)−∑

α

Iα
N ·

1
γc
|cα)−

{
∑
α

γcα

γc ·UΓα

·
[

Iα
E −

(
ε +(2−niα )

U
2

)
Iα
N

]}
|(−1)N). (A29)

In the second and third step, we have identified the charge current Iα
N and energy current Iα

E from lead α as part of
the expansion coefficients in order to use the conservation laws (A25) and the equilibrium conditions Eq. (A26)
and Eq. (A27) in the following steps.

When taking equilibrium derivatives of |z) with respect to x = µα or x = βα , we are always free to
take the equilibrium limit separately for all terms outside of derivatives (when using the product rule), and
to interchange sums with derivatives or the equilibrium limit, since every term in Eq. (A29) is separately
continuously differentiable. This finally justifies the following computation:

d
dx

|z)
∣∣∣∣
eq

(A29)
= ∑

α

d
dx

(
γcα

γc

)∣∣∣∣
eq
· [|zα)]|eq︸ ︷︷ ︸

(A20)
= |zeq)

+∑
α

γcα

γc

∣∣∣∣
eq︸ ︷︷ ︸

(A19)
= Γα /Γ

· d
dx

|zα)

∣∣∣∣
eq
−∑

α

d
dx

Iα
N

∣∣∣∣
eq
· 1

γc
|cα)

∣∣∣∣
eq︸ ︷︷ ︸

(A21)
= |c)/γc|eq

−∑
α

Iα
N |eq︸ ︷︷ ︸

(A26)
= 0

· d
dx

(
1
γc
|cα)

)∣∣∣∣
eq
−

{
∑
α

d
dx

(
γcα

γcUΓα

)∣∣∣∣
eq
·
[

Iα
E −

(
ε +

2−niα

2
U
)

Iα
N

]∣∣∣∣
eq︸ ︷︷ ︸

(A26)
=

(A27)
0

+∑
α

γcα

γcUΓα

∣∣∣∣
eq︸ ︷︷ ︸

(A19)
= 1/(UΓ)

·

[
d
dx

Iα
E

∣∣∣∣
eq
− d

dx

(
ε +

2−niα

2
U
)∣∣∣∣

eq
· Iα

N |eq︸ ︷︷ ︸
(A26)
= 0

]

−∑
α

γcα

γcUΓα

∣∣∣∣
eq︸ ︷︷ ︸

(A19)
= 1/(UΓ)

·

[(
ε +

2−niα

2
U
)∣∣∣∣

eq︸ ︷︷ ︸
(A20)
= ε+

2−ni,eq
2 U

· d
dx

Iα
N

∣∣∣∣
eq

] }
|(−1)N)

= ∑
α

Γα

Γ
d
dx

|zα)

∣∣∣∣
eq
+

[
d
dx

∑α γcα

γc︸ ︷︷ ︸
(A17)
= 1

∣∣∣∣
eq

]
· |zeq)−

[
d
dx ∑

α

Iα
N︸ ︷︷ ︸

(A25)
= 0

∣∣∣∣
eq

]
· 1

γc
|c)
∣∣∣∣
eq

− 1
UΓ
·

[
d
dx ∑

α

Iα
E︸ ︷︷ ︸

(A25)
= 0

∣∣∣∣
eq

−
(

ε +
2−ni,eq

2
U
)∣∣∣∣

eq
· d

dx ∑
α

Iα
N︸ ︷︷ ︸

(A25)
= 0

∣∣∣∣
eq

]
|(−1)N). (A30)

Equation (A30) yields the central relation

d
dx

|z)
∣∣∣∣
eq
= ∑

α

Γα

Γ
d
dx

|zα)

∣∣∣∣
eq

. (A31)

It reduces equilibrium derivatives of the non-equilibrium stationary state |z) to derivatives of the local equilibrium
states |zα). The latter are in turn straightforward to perform for x = µα or x = βα . Namely, defining the affinities
Âα = βα

(
Ĥ−µα N̂

)
, using the exponential form (A4) of |zα) and the fact that the local dot Hamiltonian

conserves the local particle number, [Ĥ, N̂] = 0, the basic rules of taking derivatives yield

d
dx

|zα)

∣∣∣∣
eq
= −

[(
d
dx

Âα

)
− (

(
d
dx

Aα

)
|zα) ·1

]∣∣∣∣
eq
· |zα)|eq . (A32)

The relations (A31) and (A32) together prove the wanted result

d
dx

|z)
∣∣∣∣
eq
= ∑

α

Γα

Γ
d
dx

|zα)

∣∣∣∣
eq
= −∑

α

Γα

Γ

[(
d
dx

Âα

)
− (

(
d
dx

Aα

)
|zα) ·1

]∣∣∣∣
eq
· |zα)|eq . (A33)
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This is the key ingredient which allows us, in the following steps, to express and relate the linear response
coefficients to the additional insights provided by the duality relation. This appeals in particular to the role of the
fermion parity and the significance of the dual stationary state |zi).

Appendix C.2. Linearized charge current and conductance

We start with the linear response of the particle current Iα
N to a variation δx of the variable x = µα ′ ,Tα ′ .

∂ Iα
N

∂x

∣∣∣∣
eq

(22a)
=

∂

∂x
[γcα (nzα −nz)]

∣∣∣∣
eq

(A19)
=

 ∂γcα

∂x

∣∣∣∣
eq
· (nz−nz)︸ ︷︷ ︸

=0

+γcα ·
(

∂nzα

∂x
− ∂nz

∂x

)∣∣∣∣
eq


=

Γα · γc,eq

Γ
·
[
(N| ∂

∂x
|zα)− (N| ∂

∂x
|z)
]∣∣∣∣

eq

(24)
=

Γα · γc,eq

Γ ∑
α ′′

Γα ′′

Γ
(N| ∂

∂x
[|zα)− |zα ′′)]

∣∣∣∣
eq

(24)
=

(A20)
−

Γα · γc,eq

Γ ∑
α ′′

Γα ′′

Γ

{
d
dx

(βα −βα ′′)

∣∣∣∣
eq
(N|

[
Ĥ− (H|zeq) ·1

]
· |zeq),

− d
dx

(µα βα −µα ′′βα ′′)

∣∣∣∣
eq
(N|

[
N̂− (N|zeq) ·1

]
· |zeq)

}

=
Γα · γc,eq

Γ ∑
α ′′

Γα ′′

Γ

{
d
dx

(µα βα −µα ′′βα ′′)

∣∣∣∣
eq

δn2
z,eq−

d
dx

(βα −βα ′′)

∣∣∣∣
eq
·
[〈

N̂Ĥ
〉

eq−
〈
N̂
〉

eq

〈
Ĥ
〉

eq

]}
,

(A34)

where
δn2

z,eq =
〈
N̂2〉

eq−
〈
N̂
〉2

eq , 〈•〉eq = (•|zeq) = Tr [• · ẑeq] (A35)

for any dot observable •= •†.
To compute the linear response of the particle current Iα

N in lead α to a variation of the electrochemical
potential δ µα ′ from the equilibrium, we set x = µα ′ and realize that only the first term proportional to the average
charge fluctuations survives in Eq. (A34). More precisely, we obtain

dIα
N

dµα ′

∣∣∣∣
eq

(A34)
=

γc,eq

T
· Γα

Γ
·

[
∑
α ′′

Γα ′′

Γ
(δαα ′ −δα ′′α ′)

]
·δn2

z,eq =
γc,eq

T
· Γα (Γδαα ′ −Γα ′)

Γ2 ·δn2
z,eq. (A36)

Restricting our considerations to the two-contact case as presented in the main paper the result simplifies to

L11 = −
T
2

[
dIL

N
dV

∣∣∣∣
eq
− dIR

N
dV

∣∣∣∣
eq

]
(A36)
= γc,eq ·

ΓLΓR

Γ2 ·δn2
z,eq. (A37)

To finally plot the conductance, one needs the explicit expressions for the equilibrium charge fluctuation
δn2

z,eq as a function of the system parameters, including the equilibrium expectation value of N̂2. One way to
obtain this expectation value is by using the Liouville space identity (A8) and the scalar products29 (1|N2) =

6, (N−1|N2) = 4, ((−1)N |N2) = 2. This allows us to reduce N̂2 to

N̂2 (A8)
=

1
4
(1|N2) ·1+ 1

2
(N−1|N2) · (N−1)+ 1

4
((−1)N |N2) · (−1)N̂ = −1

2
·1+ 2 · N̂ +

1
2
· (−1)N̂ ,

(A38)

29 This can be shown using the definition of the states |0), |1), |2) and observables N̂, (−1)N̂ in terms of creation and annihilation operators,
their anti-commutation relations, and the fact that an annihilation operator acting on the vacuum gives 0.
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and to write〈
N̂2〉

eq = (N2|zeq)
(A38)
= 2(N|zeq)+

1
2
[
((−1)N |zeq)− (1|zeq)

]
= 2nz,eq +

1
2
(pz,eq−1) . (A39)

The parity pz,eq is, due to Eq. (A20), calculated by taking the equilibrium limit of the lead resolved parity:

pz,eq = pzα |eq , pzα = (0|zα)+ (2|zα)−2(1|zα)
(8)
=

(A4)
1−4

fα (ε)[1− fα (ε +U)]

1+ fα (ε)− fα (ε +U)
. (A40)

With this, we explicitly find

δn2
z,eq =

〈
N̂2〉

eq− (nz,eq)
2 (A39)

= nz,eq(2−nz,eq)+
1
2
(pz,eq−1)

(A10),(A19)
=

(A40)
2

f (ε) [1− f (ε +U)] [1− f (ε)+ f (ε +U)]

[1+ f (ε)− f (ε +U)]2
, (A41)

where f (x) = fR(x) is the Fermi function with respect to the equilibrium potential µ and temperature T . As
stated in the main paper, an alternative way to arrive at the explicit expression Eq. (A41) is to take an ε-derivative
of the equilibrium occupation number. Namely, this follows from the relation

dnz,eq

dε
= (N| d

dε
|zeq) = (N| d

dε
|zα)

∣∣∣∣
eq

(A32)
= −(N|

[(
d

dε
Âα

)
− (

(
d

dε
Aα

)
|zα) ·1

]∣∣∣∣
eq
· |zα)|eq

(A20)
= −β(N|

[
dĤ
dε
− (

(
dH
dε

)
|zeq)

]
· |zeq)

(3)
= −β

[
(N2|zeq)− (N|zeq)

2]= − 1
T

δn2
z,eq. (A42)

In summary, the above analysis shows that we can explicitly calculate every ingredient in Eq. (A37): γc,eq and
nz,eq using Eq. (A13) and Eq. (A10) combined with Eq. (A19), and finally δn2

z,eq according to Eq. (A41).

Appendix C.3. Charge-Energy correlation and Seebeck effect

We continue by calculating the response of the charge current to a temperature gradient. The first crucial
step is to evaluate the equilibrium correlation function

〈
N̂Ĥ
〉

eq by expanding it in terms of the decay eigenmodes
and amplitudes (15) taken at equilibrium. Using that all operators, i.e., N̂, Ĥ and ẑeq, are hermitian and mutually
commute30, we can insert the Liouville space identity

I
(15)
= |z)(1|+ |c)(c′|+ |(−1)N)(zi(−1)N | (A20)

= |zeq)(1|+ |ceq)(c′eq|+ |(−1)N)(zi,eq(−1)N | (A43)

to write 〈
N̂Ĥ
〉

eq−
〈
N̂
〉

eq

〈
Ĥ
〉

eq = (H|Nzeq)− (H|zeq)(N|zeq)

(A43)
= (H|ceq)(c′eq|N · zeq)+ (H|(−1)N)(zi,eq(−1)N |N · zeq)

(15)
=

(A35)
(H|ceq) ·δn2

z,eq + (H|(−1)N)(zi,eq(−1)N |N · zeq). (A44)

To further simplify the remaining traces in Eq. (A44), we realize that the scalar products

(1|(−1)N) = (N|(−1)N) = 0 , (2|N) = (2|(−1)NN) = 2 , (2|(−1)N) = (2|1) = 1, (A45)

30 The particle number is locally conserved, [Ĥ, N̂] = 0 and the equilibrium state is just the Boltzmann factor containing Ĥ and N̂ in the
exponential.
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and the important orthogonality

(ziα (−1)N |N · z)
∣∣
eq = 0 (A46)

pointed out in the main text [Eq. (25)] causes the second term of (A44) to vanish. The charge-energy correlator
of the dot at equilibrium with the bath is thus simply proportional to the average equilibrium charge fluctuation:〈

N̂Ĥ
〉

eq−
〈
N̂
〉

eq

〈
Ĥ
〉

eq
(A44)
=

(A46)
(H|ceq) ·δn2

z,eq. (A47)

The proportionality factor is obtained from the decay mode expansion of the Hamiltonian [29]

(H|ceq)
(3)
=

(15)

ε

2
[
(N|(−1)NN)−ni,eq(N|(−1)N)

]
+

U
2
[
(2|(−1)NN)−ni,eq(2|(−1)N)

]
(A45)
= ε +U

2−ni,eq

2
(31)
= µ +Eeq. (A48)

Let us finally calculate the linear response of the particle current to temperature gradients. Evaluating Eq. (A34)
with Eq. (A47) and Eq. (A48) gives for x = µα ′ ,Tα ′

dIα
N

dx

∣∣∣∣
eq

(A47)
=

(A48)

Γα · γc,eq

Γ ∑
α ′′

Γα ′′

Γ
d
dx

((µα −µ−Eeq)βα − (µα ′′ −µ−Eeq)βα ′′)

∣∣∣∣
eq

δn2
z,eq. (A49)

With x = Tα ′ and dβα /dTα ′ = −δαα ′β
2
α , we furthermore find

dIα
N

dTα ′

∣∣∣∣
eq

(A49)
=

Eeq

T
·

dIα
N

dµα ′

∣∣∣∣
eq

. (A50)

For the symmetrized charge current response between two contacts to a temperature bias ∆T = TL−T , we then
find the relation S = −L12/(T L11) = Eeq/T used in the main paper:

L12 = −
T 2

2

[
d(IL

N− IR
N )

dTL

]∣∣∣∣
eq

(A50)
=

(A37)
−Eeq ·L11 . (A51)

Appendix C.4. Peltier effect and Fourier heat

We now compute the linear response of the heat current to a potential or temperature gradient

∂Jα

∂x

∣∣∣∣
eq

(6)
=

∂ Iα
E

∂x

∣∣∣∣
eq
−

∂ (µα Iα
N )

∂x

∣∣∣∣
eq

(A27)
=

(A26)

[
∂ Iα

E
∂x

∣∣∣∣
eq
−µ

∂ Iα
N

∂x

∣∣∣∣
eq

]
(22b)
=

{
d
dx

([
ε−µ +

U
2
(2−niα )

]
Iα
N

)∣∣∣∣
eq
−Γα U

d
dx

(ziα (−1)N |z)
∣∣∣∣
eq

}
(31)
=

[
Eeq ·

dIα
N

dx

∣∣∣∣
eq
−Γα U

d
dx

(ziα (−1)N |z)
∣∣∣∣
eq

]
. (A52)

The first part in Eq. (A52) can be fully understood from the charge current response discussed in the previous
subsections C.2 and C.3. To further simplify Eq. (A52), we rewrite the second term as

d
dx

(ziα (−1)N |z)
∣∣∣∣
eq
= (

d
dx

ziα

∣∣∣∣
eq
(−1)N |zeq)+ (zi,eq(−1)N | d

dx
z
∣∣∣∣
eq
)
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(A20)
=

(A32)
(zi,eq|

(
dÂα

dx

∣∣∣∣
eq

)
(−1)N̂ |zeq)+ (zi,eq(−1)N | d

dx
z
∣∣∣∣
eq
)

=
dβα

dx

∣∣∣∣
eq
(zi,eq|Ĥ(−1)N̂ |zeq)−

d(µα βα )

dx

∣∣∣∣
eq
(zi,eq|N̂(−1)N̂ |zeq)+ (zi,eq(−1)N | d

dx
z
∣∣∣∣
eq
)

(A46)
=

dβα

dx

∣∣∣∣
eq
(zi,eq|Ĥ(−1)N̂ |zeq)+ (zi,eq(−1)N | d

dx
|z)
∣∣∣∣
eq

. (A53)

Expanding the dot Hamiltonian as

Ĥ
(A8)
=

(A45)

(
ε +

U
2

)
· N̂ +

U
4
(−1)N̂−U

4
1, (A54)

and using the orthogonality relations (A46) as well as (zi,eq(−1)N |zeq) = 0 [Eq. (A14)], Eq. (A53) reduces to

d
dx

(ziα (−1)N |z)
∣∣∣∣
eq

(A53)
=

(A54),(A46)

dβα

dx

∣∣∣∣
eq
·U

4
(zi,eq|zeq)+ (zi,eq(−1)N | d

dx
|z)
∣∣∣∣
eq

(24)
=

dβα

dx

∣∣∣∣
eq
·U

4
(zi,eq|zeq)

−∑
α ′

Γα ′

Γ
dβα ′

dx

∣∣∣∣
eq

[
(zi,eq|(−1)N̂Ĥ|zeq)− (zi,eq(−1)N |zeq)︸ ︷︷ ︸

(A14)
= 0

(zi,eq ·H|zeq)
]

+∑
α ′

Γα ′

Γ
d(βα ′µα ′)

dx

∣∣∣∣
eq

[
(zi,eq|(−1)N̂N̂|zeq)− (zi,eq(−1)N |zeq)︸ ︷︷ ︸

(A14)
= 0

(zi,eq ·N|zeq)
]

(A14)
=

(A54),(A46)

U
4
·∑

α ′

Γα ′

Γ
d(βα −βα ′)

dx

∣∣∣∣
eq
· (zi,eq|zeq). (A55)

Consequently, the equilibrium derivative of the heat current (A52) can be expressed as

dJα

dx

∣∣∣∣
eq

(A52)
=

(A55)
Eeq ·

dIα
N

dx

∣∣∣∣
eq
+Γα

(
U
2T

)2

·∑
α ′′

Γα ′′

Γ
d(Tα −Tα ′′)

dx

∣∣∣∣
eq
· (zi,eq|zeq) for x = µα ′ ,Tα ′ . (A56)

Let us summarize what we learn from Eq. (A55) and Eq. (A56). The first important message is that for potential
gradients, x = µα ′ , only the first part of the heat current that is tightly coupled to the particle current contributes,
since

d
dµα ′

(ziα (−1)N |z)
∣∣∣∣
eq

(A55)
= 0. (A57)

As claimed in the main text, this ensures compliance with Onsager’s reciprocity relation. Namely, the linear
response of the heat current with respect to electrochemical potential variations is given by

dJα

dµα ′

∣∣∣∣
eq

(A56)
= Eeq ·

dIα
N

dµα ′

∣∣∣∣
eq

. (A58)

For two contacts, this yields

L21 =
T
2

d(JL− JR

dV

∣∣∣∣
eq

(A58)
= −Eeq ·

T
2
· d(IL

N− IR
N )

dV

∣∣∣∣
eq

(A37)
= −Eeq ·L11

(A51)
= L12. (A59)

The final task is to determine the linear response of the heat current to a temperature gradient, involving in
particular the second term in Eq. (A56). Motivated by the general fluctuation-dissipation theorem at equilibrium,
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we first aim to express the state overlap (zi,eq|zeq) entering the second term in terms of particle number fluctuations.
With respect to the stationary and dual stationary state, these fluctuations can be conveniently written as

δn2
z,eq = (N2|zeq)− [(N|zeq)]

2 (A14)
= (c′eq|N · zeq)

δn2
i,eq = (N2|zi,eq)− [(N|zi,eq)]

2 (A14)
= 2(zi,eq · (−1)N ·N|ceq). (A60)

Forming the product of both fluctuations, we can rewrite the result by solving the Liouville space identity (A43)
for |ceq)(c′eq|, inserting the result and using the nontrivial orthogonality relation (A46):

δn2
i,eq ·δn2

z,eq
(A60)
= 2(zi,eq · (−1)NN|ceq)(c′eq|N · zeq)

(A43)
= 2(zi,eq(−1)NN2|zeq)−2(zi,eq(−1)NN|zeq)︸ ︷︷ ︸

(A46)
= 0

·(1|N · zeq)

−2(zi,eq ·N(−1)N |(−1)N) · (zi,eq(−1)NN|zeq)︸ ︷︷ ︸
(A46)
= 0

(A46)
=

(A38)
−(zi,eq(−1)N |zeq)︸ ︷︷ ︸

(A14)
= 0

+4(zi,eq · (−1)NN|zeq)︸ ︷︷ ︸
(A46)
= 0

+(zi,eq · (−1)N(−1)N |zeq)

= (zi,eq|zeq). (A61)

This leads to an explicit expression for the heat current response to a temperature gradient:

dJα

dTα ′

∣∣∣∣
eq

(A56)
=

(A61)
Eeq ·

dIα
N

dTα ′

∣∣∣∣
eq
+Γα

(
U
2T

)2

·∑
α ′′

Γα ′′

Γ
(δαα ′ −δα ′′α ′) ·δn2

i,eq ·δn2
z,eq

(A50)
=

E2
eq

T
·

dIα
N

dµα ′

∣∣∣∣
eq
+

(
U
2T

)2

· Γα (Γδαα ′ −Γα ′)

Γ
·δn2

i,eq ·δn2
z,eq. (A62)

The corresponding result for the symmetrized heat current and temperature bias ∆T for the two-contact system
of the main paper reads

L22 =
T 2

2

[
dJL

dTL

∣∣∣∣
eq
− dJR

dTL

∣∣∣∣
eq

]
(A62)
=

(A37)
E2

eq ·L11 +

(
U
2

)2

· ΓLΓR

Γ
·δn2

i,eq ·δn2
z,eq. (A63)

Note that in order to explicitly calculate δn2
i,eq, we use analogously to Eq. (A39) and Eq. (A41) that

(N2|zi,eq)
(A38)
= 2(N|zi,eq)+

1
2
[
((−1)N |zi,eq)− (1|zi,eq)

] (A20)
= 2ni,eq +

1
2
(pi,eq−1) . (A64)

The dual parity pi,eq is obtained in the same way as the equilibrium parity pz,eq:

pi,eq = piα |eq , piα = (0|ziα)+ (2|ziα)−2(1|ziα)
(8)
=

(A7)
1−4

fα (ε +U)[1− fα (ε)]

1− fα (ε)+ fα (ε +U)
. (A65)

The last remaining step is to confirm that Eq. (A63) indeed contains all contributions of the energy
fluctuation Eq. (38), i.e., when the single-particle energy is measured with respect to the electrochemical
potential: Ĥ = Ĥ−µ · N̂. The fact that N̂, Ĥ, ẑeq mutually commute leads to

δĤ 2
eq = (H 2|zeq)− [(H |zeq)]

2

= (H2|zeq)− [(H|zeq)]
2−2µ [(NH|zeq)− (N|zeq)(H|zeq)]+ µ

2
{
(N2|zeq)− [(N|zeq)]

2
}

(A47)
=

(A48)
(H2|zeq)− [(H|zeq)]

2−µ (µ + 2Eeq)δn2
z,eq. (A66)
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The energy fluctuation can be efficiently calculated with the decay mode expansion of the Hamiltonian,

(H| (A43)
= (H|zeq)(1|+ (H|ceq) [(N|− (N|zeq)(1|]+ (H|(−1)N)(zi,eq(−1)N |
(A48)
=

(A54),(A45)
(H|zeq)(1|+(µ +Eeq) [(N|− (N|zeq)(1|]+U(zi,eq(−1)N |. (A67)

Using (H2|zeq) = (H|Hzeq) together with (A67) in Eq. (A66) yields

δĤ 2
eq

(A66)
=

(A67)
(µ +Eeq) [(NH|zeq)− (N|zeq)(H|zeq)]−µ (µ + 2Eeq)δn2

z,eq +U(zi,eq(−1)N |Hzeq)

(A47),(A48)
=

(A54)
E2

eqδn2
z,eq−

(
U
2

)2

(zi,eq(−1)N |zeq)︸ ︷︷ ︸
(A14)
= 0

+U
(

ε +
U
2

)
(zi,eq(−1)N |Nzeq)︸ ︷︷ ︸

(A46)
= 0

+

(
U
2

)2

(zi,eq|zeq)︸ ︷︷ ︸
(A61)
= δn2

z,eqδn2
i,eq

= E2
eqδn2

z,eq +

(
U
2

)2

δn2
z,eqδn2

i,eq = Eq. (38). (A68)

Appendix D. Non-equilibrium relations for current-balanced system

In this final appendix, we derive the relations used in section 4 to characterize energy transport in a
current-balanced non-equilibrium situation, that is, for

Iα
N = 0 ∀α . (A69)

Since Eq. (A69) means 0 = Iα
N

(22a)
= γcα [nzα −nz] for all α , and since γcα > 0 (see appendix A), we have

nzα = nz⇒ nzα = nzα ′ ∀α ,α ′. (A70)

Clearly, the converse also holds, i.e., it follows from Eq. (A18) that nz = nzα when assuming nzα = nzα ′ , which
leads to Iα

N = 0 when using Eq. (22a). Let us in the following exploit this equivalence to derive the expansion
(51) of the stationary state |z) used in the main text.

We start by expanding |z) in the eigenbasis (A11) of a given reservoir kernel Wα :

|z)|bal
(A11)
=

(A28)
|zα)|bal + (nz−nzα )|bal · |cα)|bal + (ziα (−1)N |z)

∣∣
bal · |(−1)

N)

(A70)
= |zα)|bal + (ziα (−1)N |z)

∣∣
bal · |(−1)

N), (A71)

where . . . |bal denotes evaluation under the condition (A70). Analogously to Eq. (A29), we multiply by Γα , sum
over α and divide by Γ = ∑α Γα :

|z)|bal
(A71)
= ∑

α

Γα

Γ
|zα)|bal +

1
UΓ

[
∑
α

UΓα(ziα (−1)N |z)
∣∣
bal

]
· |(−1)N)

(22b)
= ∑

α

Γα

Γ
|zα)|bal−

1
UΓ ∑

α

[
Iα
E −

(
ε +

2−niα

2
U
)

Iα
N

]∣∣∣∣
bal

· |(−1)N)

(A69)
= ∑

α

Γα

Γ
|zα)|bal−

1
UΓ ∑

α

Iα
E

∣∣∣∣
bal

· |(−1)N)

(A25)
= ∑

α

Γα

Γ
|zα)|bal = Eq. (51). (A72)
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To find the explicit expression of the non-equilibrium Fourier heat coefficient (50), we apply ((−1)N | to
Eq. (A71) from the left, use ((−1)N |(−1)N) = 4, and combine the result with Eq. (A72). This gives

(ziα (−1)N |z)
∣∣
bal

(A71)
=

1
4
[
((−1)N |z)− ((−1)N |zα)

]∣∣
bal

(A72)
=

1
4 ∑

α ′ 6=α

Γα ′

Γ
(pα ′ − pα )|bal (A73)

with the average parities pzα = ((−1)N |zα). In the case of only two leads, α = L,R, the relation (A73) leads to
Eq. (52).

Finally, since we have proven equivalence between Eq. (A69) and the right side of Eq. (A70), the prescription
. . . |bal reduces the calculation of the thermopower to solving

nzα = nzα ′
(A10)⇔ fα (ε)

1+ fα (ε)− fα (ε +U)
=

fα ′(ε)

1+ fα ′(ε)− fα ′(ε +U)
(A74)

for all α ,α ′. Given one fixed potential µα , a fixed level position ε−µα and fixed inverse temperatures Tα ,Tα ′ ,
this condition leads to an analytic expression for all other µα ′ 6=α :

µα ′ −µα

Tα ′

∣∣∣∣
bal

= (ε−µα +U)

(
1

Tα ′
− 1

Tα

)
+ ln

1−niα +

√
(1−niα )

2 + exp
(

U(T
α ′−Tα )

T
α ′Tα

)
niα (2−niα )

2−niα

 ,

(A75)

For two reservoirs α = L,R, this leads to expression (42) from the main text.
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