SOLUÇÃO DAS EQUAÇÕES MULTIGRUPO-DIFUSÃO

PELO MÉTODO DE MATRIZES RESPOSTA

Cassiano Ricardo Endres de Oliveira

TESE SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO DE ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS (M.Sc.)

Aprovada por:

miga Wah

Fernando da Veiga Watson

(Presidente)

dos Santos Bastos Wilma

Juan Bautista Soco Hesles

RIO DE JANEIRO, RJ - BRASIL OUTUBRO DE 1980

123 H C C

OLIVEIRA, CASSIANO RICARDO ENDRES DE

Solução das Equações Multigrupo-Difusão p<u>e</u> lo Método de Matrizes Resposta (Rio de Janeiro) 1980.

VI, 81 p. 29,7cm (COPPE-UFRJ, M.Sc., Engenharia Nuclear,1980)

Tese - Univ. Fed. Rio de Janeiro.

1.Fisica de Reatores. 2.Equação de Difusão 3.Solução Numérica. I.COPPE/UFRJ II. Título(série).

AGRADECIMENTOS

- Ao Dr. Fernando da Veiga Watson pela orientação recebida.
- Ao Instituto de Engenharia Nuclear, na pessoa do Dr. Luiz Osório de Brito Aghina, pelo apoio e incentivo recebidos, permitindo a conclusão deste trabalho.
- Aos colegas da COPPE e do IEN pela amizade e incentivo.

RESUMO

Uma análise preliminar do método de matrizes respostaé feita, com relação à sua aplicação na solução das equações multigrupo-difusão. A formulação a uma dimensão é apresentada e utilizada para testar alguns tipos de expansões para o fluxo, com vistas à solução do problema a duas dimensões por este méto do. Esta formulação resolve ainda, as equações que surgem do al gorítmo da síntese integro-diferencial.

A convergência lenta do método da potência, utilizado na solução do problema de autovalor, e sua aceleração através do mé todo dos polinômios de Chebyshev, também são estudadas. Um algo rítmo para a estimativa da razão de dominância é apresentado , baseando-se no resíduo dos vetores de duas iterações sucessivas. Esta razão, que não é conhecida a priori, c fundamental para a eficiência do método.

Alguns problemas foram resolvidos numéricamente, de modo a testar a formulação 1D do método de matrizes resposta , sua aplicação à síntese e,ao mesmo tempo, o algorítmo para a aceleração do problema de fonte.

ABSTRACT

A preliminary analysis of the response matrix method is made, considering its application to the solution of the multigroup diffusion equations. The one-dimensional formulation is presented and used to test some flux expansions, seeking the ap plication of the method to the two-dimensional problem. This formulation also solves the equations that arise from the int<u>e</u> gro-differential synthesis algorithm.

The slow convergence of the power method, used to solve the eigenvalue problem, and its acceleration by means of the Chebyshev polynomial method, are also studied. An algorithm for the estimation of the dominance ratio is presented, based on the residues of two successive iteration vectors. This ratio, which is not known a priori, is fundamental for the efficiency of the method.

Some numerical problems are solved, testing the lD for mulation of the response matrix method, its application to the synthesis algorithm and also, at the same time, the algorithm to accelerate the source problem.

iv

<u>ÍNDICE</u>

I. INTRODUÇÃO	1
II. ANÁLISE PRELIMINAR DO METODO DE MATRIZES RESPOSTA	8
III. SOLUÇÃO NUMÉRICA DAS EQUAÇÕES MULTIGRUPO-DIFUSÃO	
POR ITERAÇÃO DE FORTE	15
III.l O Método da Potência	15
III.2 Convergência do Método da Potência	18
III.3 Aceleração da Convergência	19
IV. O METODO DE MATRIZES RESPOSTA A UMA DIMENSÃO	25
IV.l Formulação do Problema nas 3 Geometrias	25
TV.2 Solução do Problema para N Regiões	30
IV.2 Expansão do Termo de Fonte	20
	20
V. APLICAÇÃO DO METODO DE MATRIZES RESPOSTA	
À SINTESE INTEGRAL	44
V.l Formulação Integro-Diferencial do)
Problema de Fonte	44
V.2 O Operador Inverso G	47
V.3 Regiões com Parâmetros Materiais	•
Constantes em z	49
V.4 Algoritmo de Sintese Descontinua	51
V.5 Solução das Equações Resultantes	
pelo M.M.R.	56
VI. RESULTADOS NUMÉRICOS	58
VT 1 0 Mátodo do Matrizoa Posposta	
VI.I O MECODO DE MACIIZES RESPOSEA	
a Uma Dimensão	58

VI.2 O Método da Potência e a Aceleração	
da Fonte	59
VI.3 A Sintese Integral	60
VII. CONCLUSÕES E COMENTÁRIOS	71
BIBLIOGRAFIA	75
APENDICE A - DETERMINAÇÃO DOS COEFICIENTES DE EXTRAPOLAÇÃO .	79

CAPÍTULO I

INTRODUÇÃO

distribuição estática dos neutrons no interior A de reator pode ser descrita através da equação de transporte um de Boltzmann¹, que diz como varia espacial, energética e angularmente esta distribuição. A solução da equação de transporte é, na maioria dos casos, impraticável, tanto analítica quanto numéricamente, devido ao número de variáveis envolvidas . Esta dificuldade pode ser contornada ao fazermos algumas aproximações de modo a torná-la mais simples. A dependência angular pode ser eliminada através da aproximação Pl , que supõe a distri buição angular dos neutrons linear em relação aos cossenos dire tores. A dependência energética pode, por sua vez, ser simplifi cada distribuindo-se os neutrons em faixas ou grupos de energia. Esta é a chamada aproximação multigrupo. Resulta então para cada grupo de energia uma equação que só depende da variável espa cial. As equações Pl resultantes, como são chamadas, podem ser simplificadas mais ainda, fazendo-se a aproximação de difusão, na qual a corrente é relacionada com o fluxo pela lei de Fick².

A este ultimo conjunto de equações damos o nome de equações mul tigrupo-difusão. Este conjunto de equações só tem solução analí tica para casos triviais como por exemplo, dois meios materiais diferentes e dois grupos de energia. São necessários então métodos numéricos de solução. Os métodos apresentados a seguir são os mais utilizados na solução das equações tanto na forma Pl , quanto na aproximação de difusão.

-DIFERENÇAS FINITAS

É o método mais popular para a solução das equações multigrupo-difusão.As equações de diferenças surgem ao se fazerem aproximações de baixa ordem para os termos que envolvem derivadas i.e. os termos de fuga. Nestas equações o fluxo em um ponto é relacionado aos fluxos nos pontos vizinhos mais próximos. Sua formulação a uma, duas ou três dimensões, resulta em equações a 3, 5 ou 7 pontos, respectivamente. Estas equações são resolvidas, com exceção do caso a uma dimensão, por métodos iterativos, já que as matrizes resultantes em geral são muito grandes para serem invertidas diretamente. Uma boa base teórica garante a es tabilidade do método. Outra vantagem é o detalhamento da distribuição do fluxo, que é feito ponto a ponto. Este método porém tem a desvantagem de que, sendo a orden das aproximações bai xa, o número de pontos por grupo de energia deve ser aumentado para que se tenha uma descrição detalhada, por exemplo, de um um reator PWR, em geral bastante heterogêneo. Isto implica em maiores gastos de tempo de processamento e de memória, sendo ne cessário o uso de computadores de grande porte. Mesmo assim estes computadores podem ser insuficientes para resolver determi-

nados tipos de problemas.

A maneira de superar esta desvantagem do método de di ferenças finitas, foi o desenvolvimento de métodos mais rápidos e que gastassem menos memória, porém com a mesma precisão . São os chamados "coarse-mesh methods" ou métodos de malha grossa⁴, cuja característica comum é a necessidade de um número menor de pontos por grupo de energia, para a descrição do comportamento neutrônico global do reator. Os métodos apresentados a seguir são deste tipo.

- DIFERENÇAS FINITAS DE ORDEM MAIS ALTA⁵

Este método difere do anterior, como o nome já diz, no fato de que são utilizadas aproximações de ordem mais alta para o termo de fuga. Sua teoria ainda é pouco desenvolvida e a convergência e a estabilidade não podem ser garantidas, já que outros pontos além dos vizinhos podem ser envolvidos nas equações de diferenças.

- NODAL⁶

A idéia básica consiste em dividir o reator em regiões grandes, e relacionar a corrente através da interface de duas regiões com os fluxos médios nestas regiões, relação esta que é expressa por meio de coeficientes de acoplamento. As equações nodais surgem então integrando-se as equações Pl e utilizandose a relação corrente-fluxo. O método é formalmente exato, com exceção dos coeficientes, e não depende da aproximação de difusão. As dificuldades com os pontos singulares são evitadas, jã

3 :

que se consideram somente quantidades integrais. As quadraturas são desnecessárias, pois as equações são obtidas através do balanço integral dos neutrons em cada região. Os coeficientes de acoplamento podem ser calculados de várias maneiras, como por exemplo, utilizando-se de probabilidade de colisão, ou até emp<u>í</u> ricamente. As desvantagens são a falta de detalhamento do fluxo, já que se tem somente o fluxo médio em cada região, e a determinação dos coeficientes de acoplamento. Estes dependem fortemente do tipo de problema a ser resolvido, sendo necessária alguma experiência por parte de quem trabalha com o método.

- sintese⁷

Este método supõe a separabilidade do fluxo bidimensional ou tridimensional, em uma função que só dependa da variá vel axial e outra função que leva em conta a variação nas outras dimensões. Utilizando-se funções teste na direção transversal e um princípio variacional, os parâmetros materiais são "pesados" no plano transversal, surgindo equações para a função axial resolvida para estes novos parâmetros. Este método foi idealiza do a partir da observação do fato de que os reatores são razoavelmente homogeneos na direção axial. As heterogeneidades que porventura surgem, são devidas somente à inserção de barras decontrole e ao próprio refletor. O método é rápido, pode fornecer detalhadamente o fluxo, mas é visto ainda com certa desconfiança devido à falta de uma boa base teórica, que não permite seu erro. Outra desvantagem reside nas funções teste, estimar fundamentais para uma boa solução, que têm o mesmo problema dos coeficientes de acoplamento do método nodal, isto é : dependem

de quem trabalha com o método.

- ELEMENTOS FINITOS

Método utilizado com sucesso no cálculo estrutural, só recentemente vem sendo aplicado à fisica de reatores.A idéia básica consiste na expansão do fluxo no interior das regiões, em funções polinômiais sujos coeficientes são expressos em função dos fluxos e correntes nodeis . As equações para estes fluxos surgem a partir da sinimização de um funcional adequado ao problema. O método mais utilizado para a sintetização deste fun cional é o de Ritz-Galerkin⁷. As principais vantagens são a fl<u>e</u> xibilidade em configurações complicadas, boa base teórica e dis tribuição de fluxo e potência detalhadas. Por outro lado, nem sempre o uso de um polinômio linear apresenta bons resultados no caso de malhas muito grossas, e se forem utilizados polinômios de grau mais alto, a matriz do sistema torna-se menos esparsa, devido ao acoplamento de outros pontos além dos vizinhos, aumen tando assim o esforço computacional.

- MATRIZES RESPOSTA

O método é simples e envolve o conceito de função re<u>s</u> posta. O sistema é visto como uma "caixa preta", não interessa<u>n</u> do o que acontece dentro mas sim as quantidades observáveis fora. As características de resposta do sistema são dadas pelas matrizes de transmissão e reflexão¹⁰, que são as quantidades básicas. No caso do reator, ele é visto como um conjunto de ca<u>i</u> xas pretas, que são as diversas regiões com parâmetros materiais

diferentes. A relação entre as correntes que entram e saem em cada uma destas regiões é dada pelas matrizes de transmissão e reflexão. Ao acoplarmos as soluções de todas as regiões obtêmse equações para as correntes, já que a corrente que entra em uma região é a que sai de outra, expressando assim a criticalidade do sistema.O interesse pelas funções de transmissão -e re-flexão (ou coletivamente funções resposta), surgiu do estudo da transmissão e reflexão da luz através de placas de vidro, fei to por Stokes¹¹ em 1862. Ele obteve as relações de adição e delas uma equação diferencial para a função reflexão. Em 1907 - , Schmidt¹² obteve as mesmas equações , mais a equação diferenci. al para a função transmissão, ao estudar o movimento dos elétrons através de placas de metal. Em 1956, Bellmann e Kalaba su geriram¹³, a aplicação do "invariant imbedding" nas equações de transporte. Nesta teoria, o problema de contorno para uma equação de segunda ordem é convertido em um problema de valor inicial, introduzindo-se duas variáveis que expressam as correntes à esquerda e à direita. Shimizu¹⁴ desenvolveu um método de matrizes resposta onde sómente eram consideradas as correntes nas in terfaces. Este método era baseado na mesma idéia do "invariant imbedding". Shimizu et al.¹⁵ aplicaram este método na análise do problema de várias regiões a 2 grupos de energia, mostrando que o tempo de computação era bem menor que o necessário para. diferenças finitas. O método de matrizes resposta pode ser visto como uma extensão multidimensional do "invariant imbedding", em bora este último só possa ser aplicado em problemas a uma dimen são, enquanto que o primeiro pode tratar de problemas a mais de uma dimensão. Baseados nestes resultados satisfatórios, o método de matrizes resposta vem sendo aplicado com sucesso tanto

na solução da equação de transporte¹⁶, quanto na solução das <u>e</u> quações multigrupo-difusão¹⁷.

A solução das equações que resultam dos vários métodos é feita iterativamente pelo método da potência¹⁸,que resolve numéricamente o problema de autovalor formado pelo conjundas equações multigrupo. Este método é muito eficiente,mas para casos muito complicados a convergência torna-se muito lenta , sendo necessários métodos para acelerá-la. Este problema de con vergência lenta é relevante, já que não adianta sómente diminuirmos o número de variáveis envolvidas, mas também o número de iterações para se resolver o problema.

O objetivo do trabalho consiste em apresentar o método de matrizes resposta, aplicando-o em casos a uma dimensão, e paralelamente estudar o problema da convergência lenta e sua aceleração. No capítulo II, é feita uma análise preliminar do método de matrizes resposta a uma, duas e três dimensões, mostrando alguma de suas vantagens e desvantagens quando comparado ao método de diferenças finitas. No capítulo III, método da po tência é estudado, quanto ao problema da convergência lenta, e um algorítimo utilizando polinômios de Chebyshev é apresentado, de modo a acelerá-la. Nos capítulos IV e V , o método de matrizes resposta é apresentado na sua formulação a uma dimensão e é aplicado na solução das equações obtidas da síntese integral . Finalmente, no capítulo VI são apresentados resultados numéricos e no capítulo VII conclusões e comentários sôbre métodos e resultados.

CAPÍTULO II.

<u>ANÁLISE PRELIMINAR DO</u> MÉTODO DE MATRIZES RESPOSTA

A abordagem a ser feita aqui do método de matrizes resposta (m.m.r), difere um pouco da apresentada anteriormente no capítulo I, pois em vez de trabalharmos com as correntes que entram e saem das regiões, teremos o fluxo no contorno dessas regiões como incógnita e o método será aplicado à equação de di fusão. Dada um conjunto de regiões Ω_i com contorno $\partial\Omega_i$ (figura II.1), o m.m.r. pode ser formalmente apresentado da seguinte ma

90 $\Omega_{\mathbf{i}}$

FIGURA II.1 - CONJUNTO DE REGIÕES Ω_i

neira : supondo que o comportamento do fluxo no contorno pode ser representado por um número discreto de pontos, o fluxo no interior de cada região Ω_i pode então ser escrito na forma

$$\phi_{i}(\mathbf{r}) = \underline{\mathbf{R}}_{i}(\mathbf{r}) \cdot \overline{\phi}_{i} + \mathbf{S}_{i}(\mathbf{r}) \qquad (\mathbf{r}_{\varepsilon}\Omega_{i}) \qquad (II.1)$$

onde :

A partir da equação (II.1), equações para os fluxos no contorno de todas as regiões podem ser obtidas ao acoplarmos as soluções das mesmas através da continuidade de corrente (para o caso a uma dimensão) ou de princípios variacionais que eli minem o problema de descontinuidade nos nós (casos a duas e três dimensões). Uma das vantagens em relação à parte computacional, é que as matrizes R(r) só precisam ser calculadas uma vêz,antes da resolução das equações. Isto pode economizar tempo, principal mente se houver varias regiões com cs mesmos parâmetros materiais. Por outro lado, na formulação anterior, a conservação do número de neutrons era forçada em cada região, já que se tra balhava com as correntes que entravam e saíam de cada região Isto significa que algumas condições ou vinculos devem ser introduzidos nesta nova formulação, de modo que a física do problema seja levada em conta. Os métodos que forçam esta conserva ção dos neutrons têm preferência hoje em dia, aos que discretizam diretamente as equações diferenciais.

A eficiência do m.m.r. quando tem como incógnitas os

fluxos nodais ou um número discreto de pontos na superfície de contorno, pode ser estimada ao compararmos este método com o de diferenças finitas convencional.Este estudo pode ser feito atra vés da comparação do número de pontos necessários para se alcan çar a mesma precisão em ambos os casos. Suponhamos um conjunto infinito de regiões, todas do mesmo tamanho. A geometria em questão é a plana i.e. xyz. Seja

N = número de malhas / dimensão linear de uma região.

N_{AF} = número de malhas dif. finitas / região.

 N_{mr} = número de pontos na fronteira de cada região. Ao se calcular N_{mr} , deve-se levar em conta os pontos no contorno, que são comuns a duas ou mais regiões. Isto é dado pela tabela (II.1), abaixo, e pode ser visto na figura (II.2) para o caso de N = 2.

TABELA II.1 - PONTOS COMUNS A DUAS OU MAIS REGIÕES

DIMENSÃO	N? REG./PTO.COMUM	Nº PTOS.COMUNS A 1 OU MAIS REG.	
l	2	2	
2	2	4(N-1)	
	4	4	
3	2	6(N-1) ²	
	4	12 (N-1)	
	8	8	

(a) uma dimensão 👘 👘 (b) duas dimensões.

(c) três dimensões

FIGURA II.2 - REGIÃO COM N =
$$2$$
.

Baseado na tabela (II.1) tem-se então :

TABELA II.2 - VALORES DE N_{df} e N_{mr}.

	lD	2D	3D
N _{df}	N .	N ²	N ³
N _{mr}	1	2N-1	3N ² -3N+1

Nos cálculos de difusão, um número típico é N = 5. Os valores para N = 5,10 e 100 estão na tabela (II.3). Os casos mais relevantes são os de duas e três dimensões. Computando-se N_{df}/N_{rm} e considerando-se que as matrizes associadas ao m.m.r. são menos esparsas, conclui-se que a vantagem deste método sobre o de di ferenças finitas não é tão grande a não ser que se use 100 ma lhas por região, o que é pouco provável. Isto serve para alertar para o fato, de que se o m.m.r. não apresentar uma precisão razoável utilizando-se apenas os pontos comuns a um número máxi mo do regiões (4 e 8 para os casos 2D e 3D respectivamente) , ou volta-se para o diferenças finitas ou então tenta-se melhorar os resultados com o m.m.r. sem aumentar o número de pontos no contorno.

> TABELA II.3 - VALORES DE N_{df} , N_{mr} e N_{df} / N_{mr} PARA N = 5,10,100.

•	1D	2D	3D
N _{df}	5	25	125
	10	100	1.000
	100	10.000	1.000.000
	1	9	61
N _{mr}	1	19	271
	1	99	29.701
N _{df} N _{mr}	5	2,78	2,05
	10	5,26	3,69
	100	50,25	33,67

Respeitadas todas estas considerações, pode-se chegar a algumas conclusões sobre o m.m.r. e sua aplicação na solução das equações multigrupo-difusão a uma, duas ou três dimensões . Com relação ao problema 2D, como já foi visto, é necessário que se use apenas os pontos comuns às 4 regiões, para que o esforço computacional não seja maior que o de diferenças finitas. A solução analítica não é possivel, mas a expressão (II.1) para 0 fluxo no interior das regiões pode ser obtida, através da expan são do fluxo no contorno em funções ortogonais, cujos coeficien tes seriam então expressos em função dos fluxos nodais. Alguns métodos já se utilizam destas expansões, apresentando resultados satisfatórios¹⁷. Ao calcular-se os coeficientes, deve ser incluida, como condição extra, a preservação do número de neutrons. As equações para os fluxos nodais podem ser obtidas, como já foi dito antes, através de principios variacionais. O caso tri dimensional também não apresenta solução analítica e expansões bidimensionais para os fluxos superficiais tornam problema muito complicado para se obter uma expressão do tipo (II.1)Uma maneira de se contornar este problema, é fazer uma solução hibrida, através da síntese, onde o probema 2D seria resolvido pelo m.m.r. e a solução 1D poderia ser feita por diferenças finitas ou matrizes resposta a uma dimensão. O problema a uma dimensão tem solução analítica, da forma (II.1), e os fluxos nodais são as incógnitas . A formulação 1D serve, como será visto no capítulo IV, para testar a validade ou não de algumas aproximações utilizadas na solução do caso 2D . Este é o caso da ex pansão do termo de fonte de cada grupo de energia, em série de Fourier, utilizando-se apenas alguns poucos termos (n=2) , com a condição adicional de que o número de neutrons seja preserva-

do . Esta formulação será utilizada ainda para resolver as equa ções que surgem da síntese integral (capítulo V).

CAPÍTULO III

<u>SOLUÇÃO NUMÉRICA DAS EQUAÇÕES</u> <u>MULTIGRUPO-DIFUSÃO POR ITERA-</u> <u>ÇÃO DE FONTE</u>

III.1 - O MÉTODO DA POTÊNCIA

Seja a equação de difusão para o grupo i ($1 \le i \le NG$) :

$$-\nabla \cdot D_{\mathbf{i}}(\mathbf{x}) \nabla \phi_{\mathbf{i}}(\mathbf{x}) + \Sigma_{\mathbf{i}}(\mathbf{x}) \phi_{\mathbf{i}}(\mathbf{x}) = \frac{\chi_{\mathbf{i}}}{k} \cdot F_{\mathbf{i}}(\mathbf{x}) + G_{\mathbf{i}}(\mathbf{x}) \quad (\text{III.1})$$

onde :

 $D_{i}(x) \equiv \text{coeficiente de difusão do grupo i;}$ $\sum_{t_{i}} (x) \equiv \text{seção de choque total do grupo i ;}$ $\chi_{i} \equiv \text{espectro de fissão do grupo i ;}$ $F_{i}(x) \equiv \sum_{t=1}^{NG} v\Sigma_{f_{i}}(x)\phi_{i}(x) ; ;$ $i'=1 \qquad ;$ $G_{i}(x) \equiv \begin{cases} 0 & \text{para i=1} \\ \vdots \\ \sum_{i'=1}^{L} (x)\phi_{i'}(x) & \text{para i=1} \\ \vdots \\ i'=1 \end{cases}$

O conjunto destas equações multigrupo-difusão pode então ser co locado na forma matricial

(III.2)

, '

$$\underline{\mathbf{M}} \ \mathbf{\bar{\mathbf{\pi}}} = \frac{1}{\mathbf{k}} \ \underline{\mathbf{P}} \ \mathbf{\bar{\mathbf{\pi}}} \qquad (\text{III.2})$$
onde :
$$\underline{\mathbf{M}} = \begin{bmatrix} -\nabla \cdot \mathbf{D}_{1} \nabla + \Sigma_{\mathbf{t}_{1}} & \mathbf{0} & \cdots & \cdots & \mathbf{0} \\ -\Sigma_{1+2} & & & \vdots \\ -\Sigma_{1+3} & & & \vdots \\ -\Sigma_{1+NG} & \cdots & -\nabla \cdot \mathbf{D}_{NG} \nabla + \Sigma_{\mathbf{t}_{NG}} \end{bmatrix} ,$$

$$\underline{\mathbf{P}} = \begin{bmatrix} \mathbf{X}_{1} \\ \vdots \\ \mathbf{X}_{NG} \end{bmatrix} \begin{bmatrix} \nabla \Sigma_{\mathbf{f}_{1}} & \cdots & \nabla \Sigma_{\mathbf{f}_{NG}} \end{bmatrix} ,$$

$$\mathbf{\bar{\mathbf{F}}} = \begin{bmatrix} \Phi_{1} \\ \vdots \\ \Phi_{NG} \end{bmatrix} ,$$

Definindo-se a matriz de iteração

$$\underline{A} \equiv \underline{M}^{-1}, \underline{P}$$
 (III.3)

resulta, de (III.2), o problema de autovalor

$$\underline{\mathbf{A}} \ \vec{\mathbf{\phi}} = \mathbf{k} \ \vec{\mathbf{\phi}} \qquad . \qquad (\mathbf{III.4})$$

Este problema pode ser resolvido iterativamente, usando-se o mé todo da potencia. Dado un vetor inicial $\dot{\phi}^{(0)}$, e um autovalor inicial k⁽⁰⁾, este método gera estimativas sucessivas para o au tovetor e autovalor fundamentais, através do processo iterativo

$$\underline{A} \ \overline{\phi}^{(n)} = k^{(n)} \ \overline{\phi}^{(n+1)} . \quad (III.5)$$

O nome deste método vem do fato de que ele envolve multiplicações repetidas da matriz <u>A</u>:

$$\vec{\phi}^{(1)} = \frac{1}{k}_{(0)} \stackrel{A}{=} \vec{\phi}^{(0)}$$

$$\vdots$$

$$\vec{\phi}^{(n+1)} = \frac{1}{k}_{(n)} \stackrel{A}{=} \vec{\phi}^{(n)} = \frac{1}{k^{(n)}_{k}^{(n-1)}} \stackrel{A^{2}}{=} \vec{\phi}^{(n-1)} = \frac{1}{k^{(n)}_{k}^{(n)} \dots k^{(0)}} \stackrel{A}{=} \frac{A^{n} \vec{\phi}^{(0)}}{k^{(n)}_{k}^{(n)} \dots k^{(0)}}$$

O esquema iterativo para a solução de (III.2) pelo método da po tência resume-se então em :

- (1) inicializar $\phi^{(0)}$ e fazer n=1.
- (2) calcular $\vec{S}^{(n-1)} = \underline{P} \vec{\phi}^{(n-1)}$

- (3) calcular $k^{(n-1)} = (1, s^{(n-1)})$.
- (4) testar a convergência de k⁽ⁿ⁻¹⁾ e $\phi^{(n-1)}$
- (5) normalizar a fonte $S^{(n-1)} = S^{(n-1)} / k^{(n-1)}$
- (6) resolver $\underline{M} \stackrel{\rightarrow}{\phi} {}^{(n)} = S^{(n-1)}$
- (7) fazer n=n+l e voltar para (2)

III.2 - CONVERGÊNCIA DO METODO DA POTENCIA¹⁹

A convergência da solução do problema de autovalor pe lo método da potência, pode ser demonstrada ao expandirmos a aproximação inicial $\vec{\phi}^{(0)}$, na base dos autovetores associados ao problema (III.4) :

$$\vec{\phi}^{(0)} = c_1 \vec{\psi}_1 + \sum_{i=2}^{m} c_i \vec{\psi}_i \qquad (\text{III.6})$$

onde : $c_1 \neq 0$; $e_{\vec{\psi}_1} \notin 0$ autovetor associado ao autovalor k_1 . Então

$$\vec{\phi}^{(n)} = \underline{A}^{n} \vec{\phi}^{(0)} = c_{1} k_{1}^{n} \vec{\psi}_{1} + \sum_{i=2}^{m} c_{i} k_{i}^{n} \vec{\psi}_{i} \qquad (\text{III.7})$$

ou

$$\vec{\phi}^{(n)} = k_1^n \left\{ \begin{array}{c} m & n \\ c_1 \vec{\psi}_1 + \sum_{i=2}^n c_i \left(\frac{k_i}{k_1}\right)^n \vec{\psi}_i \\ i=2 \end{array} \right\} \quad . \quad (III.7a)$$

Como $k_1 > k_2 > \dots > k_m$, a razão k_i / k_1 é sempre menor que a unidade, resultando que

$$\lim_{n \to \infty} \vec{\phi}^{(n)} = C \vec{\psi}_1$$

ou seja : a sequência $\vec{\phi}^{(n)}$ converge para um multiplo do autovetor associado ao maior autovalor. Como $\vec{\phi}^{(n)}$ converge para a solução fundamental, o k⁽ⁿ⁾ da equação (III.5) converge para o maior autovalor, jã que pelo esquema iterativo témos :

$$k^{(n)} = \frac{(\vec{1}, \underline{P}, \vec{\Phi}^{(n)})}{(\vec{1}, \underline{M}, \vec{\Phi}^{(n+1)})}$$

mas

$$\lim_{n \to \infty} \frac{(\vec{1}, \underline{p}, \vec{\varphi}^{(n)})}{(\vec{1}, \underline{M}, \vec{\varphi}^{(n+1)})} = \frac{(\vec{1}, \underline{p}, \vec{\psi}_{1})}{(\vec{1}, \underline{M}, \vec{\psi}_{1})} = k_{1}$$

III.3 - ACELERAÇÃO DA CONVERGÊNCIA

A convergência do método da potência depende da razão k_2 / k_1 , onde $k_1 e k_2$ são respectivamente o maior e o segundo maior autovalor. Esta razão é denominada razão de dominância, e quanto mais perto da unidade fôr, mais lenta é a convergência . Isto pode ser visto através da expressão (III.7a), que mostra que ao fim de <u>n</u> iterações a contribuição do segundo harmônico de caiu de $\overline{\sigma}^n$ com

$$\overline{\sigma} = \frac{\frac{k_2}{k_1}}{k_1}$$

(III.8)

Como em alguns casos σ se aproxima da unidade, torna-se necessá ria a aceleração da convergência. Esta aceleração consiste basi mente, em fazer que as contribuições do harmônicos que não o fundamental decaiam mais rapidamente . Ao analisarmos o esquema iterativo (III.5) nota-se que $\overrightarrow{\phi}^{(n)}$ pode ser expresso como

$$\vec{\phi}^{(n)} = \frac{1}{k^{(1)}k^{(2)}\dots k^{(n)}} M^n \vec{\phi}^{(0)}$$
, (III.9)

onde $k^{(1)}$, $k^{(2)}$ $k^{(n)}$ são as aproximações sucessivas para o autovalor k_1 . Utilizando-se a expressão (III.7a) temos :

$$\frac{1}{\psi}(\mathbf{n}) = \frac{\mathbf{k}_{1}^{\mathbf{n}}}{\mathbf{k}^{(1)} \dots \mathbf{k}^{(\mathbf{n})}} \left\{ \begin{array}{c} \mathbf{a}_{1} \psi_{1} + \sum_{i=2}^{\mathbf{n}} \left(\frac{\mathbf{k}_{1}}{\mathbf{k}_{1}}\right)^{\mathbf{n}} \mathbf{a}_{i} \psi_{i} \\ \mathbf{i} = 2 \left(\frac{\mathbf{k}_{1}}{\mathbf{k}_{1}}\right)^{\mathbf{n}} \mathbf{a}_{i} \psi_{i} \end{array} \right\}$$
(III.10)

Agora, se ao invés de escrevermos $\vec{\phi}^{(n)}$ na forma (III.9) escrevermos

$$\vec{\phi}^{(n)} = P_n(\underline{A}) \vec{\phi}^{(0)}$$
, (III.11)

onde $P_n(\underline{A}) \in um$ polinômio matricial^{*} de grau <u>n</u>, teremos para $P_n(k_1) \neq 0$:

$$\vec{\alpha}^{(n)} = P_n(k_1) \left\{ a_1 \vec{\psi}_1 + \sum_{i=2}^{m} \frac{P_n(k_i)}{P_n(k_1)} a_i \vec{\psi}_i \right\}$$
(III.12)

Se $|P_n(k_1)| / |P_n(k_1)| < \overline{\sigma}$, para i=2,m, o vetor $\overrightarrow{\alpha}^{(n)}$ convergiră para $\overrightarrow{\psi}_1$ mais răpido que $\overrightarrow{\phi}^{(n)}$ dado por (III.10). O problema consiste então em descobrir o polinômio $P_n(y)$, que de

(*) Se $P_r(x) = \sum_{k=0}^{r} b_k x^k$ é um polinômio de grau <u>n</u> em x, então k=0 o polinômio $P_r(\underline{B})$ em <u>B</u> é definido como $P_r(\underline{B}) = \sum_{k=0}^{r} b_k \underline{B}^k$. todos os polinômios de grau <u>n</u>, é o polinômio que apresenta o menor valor máximo (em módulo) para $0 \le y \le k_2$, e é tal que $P_n(k_1) = 1.0$. Flanders e Shortley²⁰ descobriram que o polinômio que satisfazia estas condições, podia ser obtido expressa<u>n</u> do-se $P_n(y)$ em termos de polinômios de Chebyshev, na forma

$$P_{n}(y) = \frac{C_{n}(\frac{2y}{k_{1}\overline{\sigma}} - 1)}{C_{n}(\frac{2}{\overline{\sigma}} - 1)}, \quad (III.13)$$

onde $C_n(z) = \cosh(n \cosh^{-1} z)$ para $z \le 1$.

Os polinômios de Chebyshev podem ser obtidos, através da formula de recorrência

$$C_{n+1}(z) = 2z C_n(z) - C_{n-1}(z)$$

 $\operatorname{com} C_0(z) = 1 \in C_1(z) = z$.

A convergência de (III.12) é dada, por max $|P_n(k_1)| / |P_n(k_1)|$, para $2 \le i \le m$, que é igual a 1.0 / $|C_n(\frac{2}{\sigma} - 1)|$. Para $\overline{\sigma}$ muito perto da unidade, o método dos polinômios de Chebyshev é uma ordem de grandeza mais rápido que o método da potência. Por exemplo, se $\overline{\sigma} = 0.9$ e n = 4, através da expressão (III.7a) vemos que a contribuição do segundo harmônico no método da potencia, é multiplicado por um fator de $(0.9)^4$ ou 0.656, enquanto que para o método dos polinômios de Chebyshev, esta contribuição é multiplicada pelo fator $P_4(0.9k_1)$ ou 0.145. A figura (III.1) apresenta os gráficos de $(\frac{k}{k_1})^4$ e de $P_4(\frac{k}{k_1})$, com $\overline{\sigma} = 0.9$.

O esquema iterativo modificado passa então a ser o se guinte (ver Apêndice A) :

(6')
$$\vec{S}^{*(n)} = \vec{S}^{*(n-1)} + \alpha_n (\vec{S}^{(n-1)} - \vec{S}^{*(n-1)})$$

 $\beta_n (\vec{S}^{*(n-1)} - \vec{S}^{*(n-2)})$

(7')
$$\underline{M} \stackrel{\rightarrow}{\phi} \stackrel{(n)}{=} \stackrel{\rightarrow}{S} \stackrel{(n)}{=}$$

onde :

$$\alpha_{n} = \frac{4}{\overline{\sigma}} \frac{C_{n-1}(\frac{2}{\overline{\sigma}} - 1)}{C_{n}(\frac{2}{\overline{\sigma}} - 1)} \qquad n \ge 2 \qquad ; \qquad \alpha_{1} = \frac{2}{2-\overline{\sigma}}$$

$$\beta_{n} = \alpha_{n}(1 - \frac{\overline{\sigma}}{2}) - 1 \qquad n \ge 1 \qquad .$$

O esquema modificado reduz-se ao esquema do método da potência, quando $\alpha_n = 1 \ e^{\beta_n} = 0$, para n = 1,2,3.....

A eficiência do método modificado depende, da estimativa da razão $\overline{\sigma}$, já que esta não é conhecida a priori. Esta estimativa deve ser boa, já que se utilizássemos 0.8 ao invés de 0.9 para $\overline{\sigma}$ no exemplo anterior, a redução em k/k₁ = 0.9, seria de 0.34 . Uma maneira prática para a estimativa da razão $\overline{\sigma}$ pode ser obtida, ao utilizar-se o resíduo dos vetores de duas iterações sucessivas. Se $\phi^{(n-1)}$ e $\phi^{(n)}$ são os vetores obt<u>i</u> dos nas iterações n-1 e n respectivamente, o resíduo $\dot{r}^{(n)}$ é definido como

$$\vec{r}^{(n)} = \vec{\phi}^{(n)} - \vec{\phi}^{(n-1)} \qquad (\text{III.14})$$

Utilizando-se a expressão (III.10) e substituindo-se em (III.14) resulta :

$$\vec{r}^{(n)} = \frac{k_1^{n-1}}{k^{(1)} \cdots k^{(n-1)}} \left\{ \left(\frac{k_1}{k^{(n)}} - 1 \right) a_1 \vec{\psi}_1 + \sum_{i=2}^{m} \left(\frac{k_i}{k^{(n)}} - 1 \right) \left(\frac{k_i}{k_1} \right)^{n-1} a_i \vec{\psi}_i \right\}.$$

(III.15)

Definindo $|| \cdot \vec{u} || = (\vec{1}, \vec{u})$ temos :

$$||r^{(n)}|| = \frac{k_1^{n-1}}{k^{(1)} \cdots k^{(n-1)}} \left\{ \left(\frac{k_1}{k^{(n)}} - 1 \right) a_1 + \sum_{i=2}^{m} \left(\frac{k_i}{k^{(n)}} - 1 \right) \left(\frac{k_i}{k_1} \right)^{n-1} a_i \right\}.$$

(III.16)

Observando-se que $\lim_{n \to \infty} k^{(n)} = k_1 e que k_1/k_1 \le \overline{\sigma} < 1$, temos

que

$$|r^{(n)}|| \simeq \left(\frac{k_2}{k^{(n)}} - 1\right) \left(\frac{k_2}{k_1}\right)^{n-1}$$

para n grande. Logo, a razão

$$Q^{(n)} = \frac{|| \dot{r}^{(n)}||}{|| \dot{r}^{(n-1)}||}$$

(III.17)

tende para a razão de dominância $\overline{\sigma}$, quando $n \rightarrow \infty^*$. A estimativa pode ser feita então, fazendo-se algumas iterações pelo método da potência, antes de se iniciar a aceleração.

(*) É claro que devemos ter $a_2 \neq 0$, pois caso contrário a razão Q⁽ⁿ⁾ tenderá para k_3/k_1 .

CAPÍTULO IV

<u>O MÉTODO DE MATRIZES RESPOSTA</u> <u>A UMA DIMENSÃO</u>

IV.1 - FORMULAÇÃO DO PROBLEMA NAS 3 GEOMETRIAS

A equação (III.1) para o grupo i, no caso de uma dimensão, para uma região com parâmetros materiais constantes, po de ser escrita na forma

$$M_{i} \phi^{i}(r) = -\frac{S^{i}(r)}{D_{i}}$$
, (IV.1)

()

n lana

onde :

$$M_{i} \equiv \frac{1}{r^{\alpha}} \frac{d}{dr} r^{\alpha} \frac{d}{dr} - k_{i}^{2} \quad \text{com } \alpha = \begin{cases} 0 & \text{prime} \\ 1 & \text{cilindrica} \\ 1 & \text{cilindrica} \\ 2 & \text{esférica} \end{cases}$$
$$k_{i}^{2} = \frac{\Sigma_{t_{i}}}{D_{i}} \qquad ;$$
$$S^{i}(r) = \frac{\chi_{i}}{k} F_{i}(r) + G_{i}(r) \qquad .$$

Definindo

$$W(\phi_1(r),\phi_2(r)) \equiv Wronskiano = \phi_1(r)\phi_2(r)-\phi_1(r)\phi_2(r)$$

е

$$u(\mathbf{r}-\mathbf{r'}) = \begin{cases} 0 & \mathbf{r} < \mathbf{r'} \\ 1 & \mathbf{r} > \mathbf{r'} \end{cases}$$

a equação (IV.1) tem como solução²¹ para re(a,b),

$$\phi^{i}(\mathbf{r}) = A\phi_{1}^{i}(\mathbf{r}) + B\phi_{2}^{i}(\mathbf{r}) - \int_{a}^{b} G(\mathbf{r},\mathbf{r}')f^{i}(\mathbf{r}')W(\phi_{1}^{i}(\mathbf{r}'),\phi_{2}^{i}(\mathbf{r}'))^{-1}d\mathbf{r}'$$
(IV.2)

onde :

$$\phi_{1}^{i}(\mathbf{r}) = \phi_{2}^{i}(\mathbf{r}) \text{ são as soluções de } M_{i}\phi^{i}(\mathbf{r}) = 0 ;$$

$$f^{i}(\mathbf{r}) = -\frac{S^{i}(\mathbf{r})}{D_{i}} ;$$

$$G(\mathbf{r},\mathbf{r}') = \phi_{2}^{i}(\mathbf{r})\phi_{1}^{i}(\mathbf{r}')u(\mathbf{r}-\mathbf{r}')+\phi_{1}^{i}(\mathbf{r})\phi_{2}^{i}(\mathbf{r}')u(\mathbf{r}'-\mathbf{r}) ;$$

$$A \in B \text{ constantes a serem determinadas através das$$

con

dições de contorno em r=a e r=b .

As soluções $\phi_1^i(r) = \phi_2^i(r)$, e o wronskiano para as 3 geometrias, com $r_{\epsilon}(a,b)$, são apresentados nas tabelas (IV.1) e (IV.2) respectivamente.

α	$\phi_1(r)$	\$2(r)
0	senh k(r-a)	senh k(b-r)
1	$I_0(ka)K_0(kr)-I_0(kr)K_0(ka)$	$I_0(kr)K_0(kb)-I_0(kb)K_0(kr)$
2	senh $k(r-a).r^{-1}$	senh $k(b-r).r^{-1}$

TABELA IV.1 - SOLUÇÕES DE $M\phi(r) = 0$, PARA $r\varepsilon(a,b)$

α	$W\left(\phi_{1}(r),\phi_{2}(r)\right)$
0	-ksenh k(b-a)
1	$-I_0(ka)K_0(kb)-I_0(kb)K_0(ka).r^{-1}$
2	-ksenh k(b-a). r^{-2}

TABELA IV. 2 - $W(\phi_1(\mathbf{r}), \phi_2(\mathbf{r}))$ PARA AS 3 GEOMETRIAS.

As condições de contorno em r=a e r=b são ;

$$\phi(a) = \phi^{-}$$
 e $\phi(b) = \phi^{+}$

Pela tabela (IV.1) e da definição de u(r-r') ,

 $\phi_1(a) = \phi_2(b) = 0$ $\phi_1(b) = \phi_2(a)$ G(a,r') = G(b,r') = 0

Logo ,

$$\phi^{-} = B\phi_{2}(a) \qquad B = \frac{\phi^{-}}{\phi_{2}(a)}$$

$$\phi^{+} = A\phi_{1}(b) \qquad A = \frac{\phi^{+}}{\phi_{1}(b)}$$

A expressão do fluxo para as 3 geometrias fica então :

(a) GEOMETRIA PLANA (
$$\alpha = 0$$
)

$$\phi(\mathbf{r}) = \frac{1}{\operatorname{senh} \mathbf{k}\Delta} \left(\phi \operatorname{senh} \mathbf{k}(\Delta - \mathbf{r}) + \phi^{\dagger} \operatorname{senh} \mathbf{k}\mathbf{r} \right)$$

+
$$\frac{\operatorname{senh} k(\Delta - \mathbf{r})}{kD} \int_{-\infty}^{1} \operatorname{senh} k\mathbf{r}' S(\mathbf{r}') d\mathbf{r}'$$

+ $\frac{\operatorname{senh} k\mathbf{r}}{kD} \int_{-\infty}^{\Delta} \operatorname{senh} k(\Delta - \mathbf{r}') S(\mathbf{r}') d\mathbf{r}'$ (IV.3)

com $\Delta = b-a$. Notar que foi feita a transformação r = r'-ar ϵ (0, Δ).

(b) GEOMETRIA CILÍNDRICA ($\alpha = 1$)

Para o caso cilíndrico, é conveniente definirmos as funções

$$h(r,r') = I_0(kr)K_0(kr')-I_0(kr')K_0(kr)$$

$$g(r,r') = I_1(kr)K_0(kr')-I_0(kr')K_1(kr)$$

onde $I_n(kr)$ e $K_n(kr)$ são as funções de Bessel modificadas de ordem n , de primeiro e segundo tipo, respectivamente. Estas funções têm as seguintes propriedades :

$$I_{0}(x) = I_{1}(x) ; K_{0}(x) = -K_{1}(x)$$

$$I_{0}(x)K_{1}(x) + I_{1}(x)K_{0}(x) = \frac{1}{x} ;$$

A função K₀(kr) é singular na origem. Isto nos obriga a separar a solução da região mais interna, das outras soluções. b.l - Região mais interna (0 < r < a)

$$\phi_1(\mathbf{r}) = \mathbf{I}_0(\mathbf{kr})$$

$$\phi_2(\mathbf{r}) = \mathbf{I}_0(\mathbf{k}a)\mathbf{K}_0(\mathbf{k}r) - \mathbf{I}_0(\mathbf{k}r)\mathbf{K}_0(\mathbf{k}a)$$

Utilizando-se as propriedades das funções de Bessel, a expressão para o Wronskiano fica :

$$W \{\phi_{1}(r), \phi_{2}(r)\} = kI_{0}(kr) (-I_{0}(ka)K_{1}(kr) - I_{1}(kr)K_{0}(ka))$$

+ kI_{1}(kr) (I_{0}(ka)K_{0}(kr) - I_{0}(kr)K_{0}(ka))
=-kI_{0}(ka) (I_{0}(kr)K_{1}(kr) + I_{1}(kr)K_{0}(kr))

$$= -I_0 (ka) .r^{-1}$$

As condições de contorno são :

 $\phi(b) = \phi^+$

 $\phi(\mathbf{r})$ finito na origem

е

Resulta que a expressão para o fluxo tem a seguinte forma :

$$\phi(\mathbf{r}) = \frac{1}{I_0(ka)} \left(\phi^+ I_0(kr) + h(a,r) \int_0^r I_0(kr') \frac{S(r')}{D} r' dr' + I_0(kr) \int_0^a h(a,r') \frac{S(r')}{D} r' dr' \right) \quad (IV.6)$$
$$\phi(\mathbf{r}) = \frac{1}{h(\mathbf{a},\mathbf{b})} \left(\phi^{-}h(\mathbf{r},\mathbf{b}) + \phi^{+}h(\mathbf{a},\mathbf{r}) + h(\mathbf{a},\mathbf{r}) \int_{\mathbf{a}}^{\mathbf{r}} h(\mathbf{r}',\mathbf{b})S(\mathbf{r}')\mathbf{r}'d\mathbf{r}' + h(\mathbf{r},\mathbf{b}) \int_{\mathbf{r}}^{\mathbf{b}} h(\mathbf{a},\mathbf{r}')S(\mathbf{r}')\mathbf{r}'d\mathbf{r}' \right)$$
(IV.7)
(c) GEOMETRIA ESFÉRICA ($\alpha=2$)
Para $\mathbf{a} \leq \mathbf{r} \leq \mathbf{b}$ $\mathbf{a} \Delta = \mathbf{b} - \mathbf{a}$, temos :
 $\phi(\mathbf{r}) = \frac{1}{\operatorname{senh } \mathbf{k}\Delta} \left(\mathbf{a} \frac{\operatorname{senh } \mathbf{k}(\mathbf{b}-\mathbf{r})\phi^{-}}{\mathbf{r}} + \mathbf{b} \frac{\operatorname{senh } \mathbf{k}(\mathbf{r}-\mathbf{a})\phi^{+}}{\mathbf{r}} + \frac{\operatorname{senh } \mathbf{k}(\mathbf{b}-\mathbf{r})}{\mathbf{r}} \int_{\mathbf{a}}^{\mathbf{r}} \operatorname{senh } \mathbf{k}(\mathbf{r}'-\mathbf{a}) \frac{\mathbf{s}(\mathbf{r}')}{\mathbf{p}}\mathbf{r}'d\mathbf{r}' + \frac{\operatorname{senh } \mathbf{k}(\mathbf{r}-\mathbf{a})}{\mathbf{r}} \int_{\mathbf{r}}^{\mathbf{b}} \operatorname{senh } \mathbf{k}(\mathbf{b}-\mathbf{r}') \frac{\mathbf{s}(\mathbf{r}')}{\mathbf{p}}\mathbf{r}'d\mathbf{r}' \right)$

(IV.8)

IV.2 - SOLUÇÃO DO PROBLEMA PARA N REGIÕES

O fluxo em cada região i pode ser escrito na notação de matrizes resposta como

$$\phi_{i}(r) = R_{i}(r)\psi_{i} + R_{i}^{+}(r)\psi_{i+1} + F_{i}(r)$$
, (IV.9)

onde :

 $F_{i}(r) \in o$ termo que envolve as integrais de fonte ; $\psi_{i} \in o$ fluxo nos nodos (figura IV.l) ; $R_{i}(r) \in R_{i}^{+}(r)$ são as matrizes resposta .

FIGURA IV.1 - PROBLEMA COM N REGIÕES .

Aplicando-se a condição de continuidade de corrente nas interfaces

$$D_{i-1}\psi_{i-1}(r_{i-1}^{+}) = D_{i}\psi_{i}(r_{i})$$
 (IV.10)

obtemos a equação

$$D_{i-1}(R_{i-1}^{-'}(r_{i-1}^{+})\psi_{i-1} + R_{i-1}^{+'}(r_{i-1}^{+})\psi_{i} + F_{i-1}^{'}(r_{i-1}^{+}) = D_{i} R_{i}^{-'}(r_{i}^{-})\psi_{i} + R_{i}^{+'}(r_{i}^{-})\psi_{i+1} + F_{i}^{'}(r_{i}^{-}))$$

(IV.11)

Agrupando-se os termos, e definindo

$$a_{i} = D_{i-1}R_{i-1}^{+}(r_{i-1}^{+})$$

$$b_{i} = D_{i-1}R_{i-1}^{+}(r_{i-1}^{+}) - D_{i}R_{i}^{-}(r_{i}^{-})$$

$$c_{i} = -D_{i}R_{i}^{+}(r_{i}^{-})$$

$$d_{i} = F_{i}(r_{i}) - F_{i-1}(r_{i-1})$$

resulta a equação

е

$$a_{i}\psi_{i-1} + b_{i}\psi_{i} + c_{i}\psi_{i+1} = d_{i}$$
 (IV.12)

Os coeficientes $a_i, b_i, c_i \in d_i$, para as 3 geometrias estão na tabela (IV.3).

A condição de continuidade de corrente nas interfaces, para o problema de N regiões, resulta em N-1 equações. As duas equações que faltam, para determinarmos os N+1 fluxos nodais, são obtidas através das condições de contorno nos extremos. Estas po dem ser expressas na forma

$$\alpha_1 \phi_0 + \beta_1 j_0 = 0 \quad \text{para } \mathbf{r} = \mathbf{r}_1^-$$

 $\alpha_2 \phi_N + \beta_2 j_N = 0$ para $r = r_N^+$

onde $j_0 e j_N$ são as correntes nos extremos. Como

$$j_0 = -D_1 \phi_1'(r_1)$$
 e $j_N = -D_N \phi_N'(r_N^+)$

as duas equações que faltavam são :

$$b_0 \psi_0 + c_0 \psi_1 = d_0$$
 , (IV.13)

$$a_N \psi_{N-1} + b_N \psi_N = d_N$$
, (IV.14)

TABELA IV.3 - COEFICIENTES DA EQUAÇÃO A 3 PONTOS. (a) GEOMETRIA PLANA

TABELA IV.3 - COEFICIENTES DA EQUAÇÃO A 3 PONTOS (cont.) (b) GEOMETRIA CILÍNDRICA

a _i	$D_{i}/(h_{i}(r_{i}^{+},r_{i}^{-}).r_{i}^{+})$
b _i	$(D_{i}k_{i}/h_{i}(r_{i}^{+},r_{i}^{-})).g_{i}(r_{i}^{+},r_{i}^{-})$
	$-(D_{i+1}k_{i+1}/h_{i+1}(r_{i+1}^{+}, \bar{r_{i+1}})).g_{i+1}(\bar{r_{i+1}}, r_{i+1}^{+})$
°i	$D_{i+1} / (h_{i+1} (r_{i+1}^{+}, r_{i+1}^{-}) \cdot r_{i+1}^{-})$
đi	$ (h_{i}(r_{i}^{+},r_{i}^{-}).r_{i}^{+})^{-1} \int_{r_{i}}^{r_{i}^{-}} h_{i}(r',r_{i}^{-}) S_{i}(r')r'dr' + (h_{i+1}(r_{i+1}^{+},r_{i+1}^{-}).r_{i+1}^{-})^{-1} \int_{r_{i+1}}^{r_{i+1}^{+}} h_{i+1}(r_{i+1}^{+},r') S_{i+1}(r')r'dr' r_{i+1} $
b0	1
°0	(I ₀ (k ₁ r ⁺)) ⁻¹
d ₀	$ \{ D_{1} I_{0} (k_{1} r_{1}^{+}) \}^{-1} \int_{r_{1}}^{r_{1}^{+}} h_{1} (r_{1}^{+}, r') S_{1} (r') r' dr' $
a _N	$\beta_2 D_N / (h_N (r_N^+, r_N^-) \cdot r_N^+)$
b _N	$-\alpha_{2} + \beta_{2} (D_{N}k_{N}/h_{N}(r_{N}^{+},r_{N}^{-})).g_{N}(r_{N}^{+},r_{N}^{-})$
d _N	$\beta_{2} (h_{N}(r_{N}^{+},r_{N}^{-}).r_{N}^{+})^{-1} \int_{r_{N}}^{r_{N}^{+}} h_{N}(r',r_{N}^{-}) S_{N}(r')r'dr'$

TABELA IV.3 - COEFICIENTES DA EQUAÇÃO A 3 PONTOS (cont.) (c) GEOMETRIA ESFÉRICA

$$\begin{array}{|c|c|c|c|c|c|}\hline a_{i} & r_{i}^{-}D_{i}k_{i}/(r_{i}^{+}\mathrm{senh}\ k_{i} \Lambda_{i}) \\ \hline & D_{i}k_{i}(\mathrm{coth}\ k_{i} \Lambda_{i} - (k_{i}r_{i}^{+})^{-1}) \\ \hline & b_{i} & + D_{i+1}k_{i+1}(\mathrm{coth}\ k_{i+1} \Lambda_{i+1} + (k_{i+1}r_{i+1})^{-1}) \\ \hline & c_{i} & r_{i+1}^{+}D_{i+1}k_{i+1}/(r_{i+1}^{-}\mathrm{senh}\ k_{i}(r'-r_{i}^{-})S_{i}(r')r'dr' + \\ \hline & (r_{i}^{+}\mathrm{senh}\ k_{i} \Lambda_{i})^{-1} \int_{r_{i}}^{r_{i}^{+}}\mathrm{senh}\ k_{i}(r'-r_{i}^{-})S_{i}(r')r'dr' + \\ \hline & (r_{i+1}^{-}\mathrm{senh}\ k_{i+1} \Lambda_{i+1})^{-1} \int_{r_{i}}^{r_{i+1}^{+}}\mathrm{senh}\ k_{i+1}(r_{i+1}^{+}-r')S_{i+1}(r')r'dr' \\ \hline & b_{0} & 1 \\ \hline & b_{0} & 1 \\ \hline & c_{0} & k_{1}D_{1}/\mathrm{senh}\ k_{1} \Lambda_{1} \\ \hline & d_{0} & (D_{1}\mathrm{senh}\ k_{1} \Lambda_{1})^{-1} \int_{r_{i}}^{r_{1}^{+}}\mathrm{senh}\ k_{1}(r_{1}-r')S(r')r'dr' \\ \hline & a_{N} & \beta_{2}r_{N}^{-}D_{N}k_{N}/r_{N}^{+}\mathrm{senh}\ k_{N} \Lambda_{N} \\ \hline & b_{N} & -\alpha_{2} + \beta_{2}D_{N}k_{N}(\mathrm{coth}\ k_{N} \Lambda_{N} - (k_{N}r_{N}^{+})^{-1}) \\ \hline & d_{N} & \beta_{2}(r_{N}^{+}\mathrm{senh}\ k_{N} \Lambda_{N})^{-1} \int_{r_{N}^{-}}^{r_{N}^{+}}\mathrm{senh}\ k_{N}(r'-r_{N})S_{N}(r')r'dr' \\ \hline \end{array}$$

$$b_0 = \alpha_1 - \beta_1 D_1 R_1(r_1)$$

$$c_{0} = -\beta_{1}D_{1}R_{1}^{+}(r_{1})$$
$$d_{0} = \beta_{1}D_{1}F_{1}(r_{1})$$

е

$$a_{N} = -\beta_{2}D_{N}R_{N}^{-}(r_{N}^{+})$$
$$b_{N} = \alpha_{2} - \beta_{2}D_{N}R_{N}^{+}(r_{N}^{+})$$
$$d_{N} = \beta_{2}D_{N}F_{N}^{+}(r_{N}^{+})$$

No caso das geometrias cilíndrica e esférica, a condição de con torno na origem é de corrente nula :

$$\alpha_1 = 0$$
 e $\beta_1 = 1$.

O problema se resume agora, na solução do sistema

 $\underline{A} \vec{\Phi} = \vec{S}$

(IV.15)

onde :

$$\vec{\Phi} \equiv \begin{bmatrix} \psi_0 \\ \vdots \\ \vdots \\ \vdots \\ \psi_N \end{bmatrix}$$
 é o vetor dos fluxos nodais

A solução do sistema (IV.15) pode ser feita diretamen te pelo método de eliminação gaussiana²². Este método aproveita a estrutura tridiagonal da matriz A, eliminando a diagonal infe rior. O último elemento do vetor Φ é determinado então, diretamente, calculando-se os outros elementos a partir dele.

Ao expandirmos as soluções de $M\phi = 0$, em série de Taylor, truncando-as a partir do segundo termo, e considerando o fluxo constante em cada região, o sistema de equações (IV.15) r<u>e</u> cai no sistema de equações obtido a partir do método de difere<u>n</u> ças finitas. Isto significa a solução do sistema (IV.15) poderá ser mais precisa que a do sistema de diferenças finitas usual , que utiliza uma distribuição plana para o termo de fonte.

A solução do problema de N regiões, através do sistema (IV.15), é formalmente exata. O problema ou melhor, sua solu ção, perde a exatidão, no momento em que torna-se necessário fa zer uma aproximação para S(r), de modo a se calcular as integrais que envolvem o termo de fonte, já que não existe uma expressão analítica para o mesmo.

IV.3 - EXPANSÃO DO TERMO DE FONTE

Dois tipos de aproximações para S(r) foram testadas ; polinômio do segundo grau, e expansão em série de Fourier, com um número finito de termos. A função $\tilde{S}(r)$, aproximação de S(r), pode então ser integrada analiticamente. Uma quadratura pura e simples do integrando todo, poderia ser menos precisa, já que as funções integradas com S(r) variam muito rapidamente.

(a) CURVA DO TIPO Ar²+Br+C (polinômio de Lagrange)

O termo de fonte S(r) tem um comportamento suave no interior de cada região, de modo que um polinômio do segundo grau, do tipo Ar^2+Br+C , pode representar bem este comportamento.

FIGURA IV.2 - APROXIMAÇÃO DE S(r) POR UM POLINÔMIO DO TIPO Ar^2+Br+C .

Os coeficientes A,B e C podem ser obtidos através das condições (figura IV.2) :

$$S(r_0) = S_0$$

 $S(r_1) = S_1$
 $S(r_2) = S_2$

Isto resulta em

$$\tilde{S}(r) = \frac{(r-r_1)(r-r_2)}{(r_0-r_1)(r_0-r_2)} S_0 + \frac{(r-r_0)(r-r_2)}{(r_1-r_0)(r_1-r_2)} S_1 + \frac{(r-r_1)(r-r_2)}{(r_2-r_0)(r_2-r_1)} S_2$$
(IV.16)

Este tipo de aproximação tem a desvantagem, de ser ne cessário o cálculo do fluxo no ponto r = r_1 , aumentando assim o esforço computacional.

(b) EXPANSÃO EM SÉRIE DE FOURIER

A fonte S(r) é aproximada por

$$\tilde{S}(r) = \frac{(\Delta - r)}{\Delta} S_0 + \frac{r}{\Delta} S_1 + \sum_{j=1}^{2} a_j \operatorname{sen} B_j r \qquad (IV.17)$$

onde $B_j = \frac{\pi}{\Delta} j$. Isto equivale a retirarmos a parte linear de S(r) e expandirmos o resto em série de Fourier (figura IV.3).

FIGURA IV.3 - EXPANSÃO DE S(r) EM SERIE DE FOURIER

Os coeficientes a são determinados através das condi-

ções

1. Que
$$||S(r)-\tilde{S}(r)||^2$$
 seja mínima
2. (1, S(r)) = (1, $\tilde{S}(r)$)

Esta última condição exige a preservação do número de neutrons. Estas condições são satisfeitas, minimizando-se o fun cional

$$F(\tilde{S}) = ||S(r) - \tilde{S}(r)||^2 + 2\lambda((1,S) - (1,\tilde{S}))$$
 (IV.18)

onde $\lambda \in o$ multiplicador de Lagrange.

Antes de se minimizar o funcional $F(\tilde{S})$, define-se G(r)e $\tilde{G}(r)$ em função de S(r) e de $\tilde{S}(r)$:

$$G(r) = S(r) - \text{ parte linear de } \tilde{S}(r)$$

$$\tilde{G}(r) = \sum_{j=1}^{m} a_j \text{ sen } B_j r$$

$$j=1$$

Substituindo-se $G(r) \in \tilde{G}(r) \in (IV.18)$, e fazendo-se

$$\delta F(\tilde{S}) = 0$$

resulta :

$$\delta F(\tilde{G}) = 2(\delta \tilde{G}(r), G(r) - \tilde{G}(r)) + 2\lambda(1, \tilde{G}(r)) = 0 , \qquad (IV.19)$$

Come

$$\delta \tilde{G}(r) = \sum_{i=1}^{m} \delta a_{i} u_{i} , \quad com u_{i} = sen B_{i} r$$

temos :

$$\frac{1}{2}\delta F(a_{i}) = \sum_{i=1}^{m} \delta a_{i} \left(\sum_{j=1}^{n} a_{j}(u_{j}, u_{i}) - (G, u_{i}) - \lambda(1, u_{i}) \right) = 0 \quad \forall a_{i} \quad (IV.20)$$

As funções u e u são ortogonais i.e. $(u_j, u_i) = \delta_{ij}N^2$, de modo que

$$a_{i} = ((u_{i},G) + \lambda(1,u_{i})).N^{2}$$
 (IV.21)

A expressão para λ surge ao substituirmos (IV.21) na condição (1,G) = (1,Ĝ) :

$$\lambda = \frac{\frac{(1,G)}{N^{2}} - \sum_{i=1}^{m} (u_{i},G) (1,u_{i})}{\sum_{i=1}^{m} (1,u_{i})^{2}}$$

(IV.22)

Como

$$(\text{sen B}, r, \text{sen B}, r) = \Delta/2$$

e

 $(1, \text{sen } B_i r) = 2/B_i$ para i impar para i par = 0

caso de m=2no

λ

$$= \frac{\frac{\lambda}{2}(1,G) - \frac{2}{B_1}(\text{sen } B_1r,G(r))}{(2/B_1)^2}$$

(IV.23)

(IV.24)

$$a_1 = \frac{B}{2} l(1,G)$$
 (IV.24)
 $a_2 = \frac{2}{\Delta} (\text{sen } B_2 r, G(r))$ (IV.25)

Os produtos internos $(1,G(r)) \in (\text{sen } B_2r,G(r))$ podem ser calculados a partir da expressão analítica dada por (IV.9), já que o termo de fonte é uma combinação dos fluxos de todos os grupos. No caso plano é facil de se ver isto, bastando escrever a solução para o fluxo, dada pela expressão (IV.3), substituindo -se S(r) por S̃(r) :

$$\phi(\mathbf{r}) = \frac{\operatorname{senh} k(\Delta - \mathbf{r})}{\operatorname{senh} k\Delta} \left(\phi_1 - s_0 / k^2 \mathbf{D} \right) + \frac{\operatorname{senh} k\mathbf{r}}{\operatorname{senh} k\Delta} \left(\phi_2 - s_1 / k^2 \mathbf{D} \right)$$

$$+ \frac{(\Delta - r)}{\Delta k^{2} D} S_{1} + \frac{r}{\Delta k^{2} D} S_{0} + \sum_{j=1}^{2} a_{j} \frac{\operatorname{sen } B_{j}r}{D(k^{2} + B_{j}^{2})}$$
(IV.26)

A fonte S(r) para cada grupo é da forma

$$S(r) = \sum_{j=1}^{NG} c_{j} \phi_{j}^{*}$$
 (IV.31)

onde ϕ_j^* é o fluxo do grupo j na iteração anterior. Utiliza-se então a expressão (IV.30) para calcular as integrais

(sen $B_2r, \phi_j^*(r)$)

 $(1, \phi_{j}^{*}(r))$

compondo-se a fonte através de (IV.31) .

e

CAPITULO V

APLICAÇÃO DO MÉTODO DE MATRIZES RESPOSTA À SÍNTESE INTEGRAL

V.1 - FORMULAÇÃO INTEGRO-DIFERENCIAL DO PROBLEMA DE FONTE²³

Como foi visto no capítulo III, as equações para o fluxo podem ser escritas na forma matricial

 $\underline{M} \ \overline{\phi} = \frac{1}{k} \ \underline{P} \ \overline{\phi} \qquad , \qquad (V.1)$

com M e P dadas por (III.2).

As equações para o fluxo adjunto são análogas :

$$\underline{M}^{+} \ \overline{\phi}^{+} = \frac{1}{k} \ \underline{P}^{+} \ \overline{\phi}^{+} \qquad , \qquad (V.2)$$

onde \underline{M}^+ e \underline{P}^+ são operadores adjuntos de \underline{M} e \underline{P} .

Estas equações podem ser resolvidas através do método da potência, resultando nos problemas de iteração de fonte

$$\underline{M} \stackrel{\uparrow}{\phi} \stackrel{(n)}{=} \stackrel{\Rightarrow}{S} \stackrel{(n-1)}{=} , \qquad (V.3)$$

$$\underline{M}^{+} \dot{\phi}^{+} (n) = \dot{S}^{+} (n-1) , \qquad (V.4)$$

com

e

е

$$\vec{g}^{(n-1)} = \frac{1}{k^{(n-1)}} \underline{P} \vec{\varphi}^{(n-1)}$$

$$\vec{s}^{+(n-1)} = \frac{1}{k^{(n-1)}} \vec{P}^{+} \vec{\phi}^{+(n-1)},$$

Lembrando sempre que estamos resolvendo o sistema de equações multigrupo-difusão, torna-se mais conveniente suprimir mos a notação matricial, de modo a simplificar a notação do pro blema.

O termo de fuga do operador M pode ter sua parte em z separada da parte em r = $\{x,y\}$:

$$\nabla D \nabla = (D()')' + \nabla_r D \nabla_r , \qquad (V.5)$$

de modo que as equações (V.3) e (V.4) podem ser escritas como :

$$(D\phi')' = L\phi - S$$
 , (V.6)

$$(D\phi^{+})' = L^{+}\phi^{+} - S^{+}$$
 (V.7)

com L e L^+ resultando, da retirada da parte em z dos operado res M e M^+ .

Definindo-se G, operador simétrico de Green, como o inverso do operador de fuga em z, e aplicando-o em (V.6) e (V.7) temos :

$$\phi = GL\phi - GS , \qquad (V.8)$$

$$\phi^{+} = G^{+}L^{+}\phi^{+} - G^{+}S^{+} \qquad . \qquad (V.9)$$

A partir destas equações e de principios variacionais, obtemos o funcional

$$\mathbf{F}(\phi^{+},\phi) = (\mathbf{L}^{+}\phi^{+},\phi) - (\mathbf{J}^{+}\phi^{+},G\mathbf{L}\phi) + (\mathbf{L}^{+}\phi^{+},G\mathbf{S}) + (\mathbf{L}\phi,G^{+}\mathbf{S}^{+})$$
(V.10)

que é um funcional variacional, já que

$$\delta_{+}F = (L^{+}\delta\phi^{+}, \phi-GL\phi+S) = 0$$

$$\delta \mathbf{F} = (\mathbf{L} \delta \phi, \phi^+ - G \mathbf{L} \phi^+ + \mathbf{S}^+) = \mathbf{0}$$

V.2 - O OPERADOR INVERSO G

Seja

$$(\underline{D}\psi')' = \xi$$

(V.11)

 $\operatorname{com} \psi = 0 \operatorname{em} z = 0 \operatorname{e} z = H$.

Integrando-se (V.11) de 0 a z e de z a H temos :

$$D\psi' = \int_{0}^{z} dz' \xi + C$$
 (V.12)

$$D\psi' = - \int_{z}^{H} dz' \xi + C^{+}$$
 (V.13)

Multiplicando-se (V.12) e (V.13) por D^{-1} e integrando-se de novo, resulta :

$$\psi = \int_{0}^{z} dz' D^{-1} \int_{0}^{z'} dz'' \xi + \int_{0}^{z} dz' D^{-1} . C^{-1} . C^{-1$$

$$\Psi = \int_{z}^{H} dz' D^{-1} \int_{z'}^{H} dz'' \xi - \int_{z}^{H} dz' D^{-1} C^{+} . \qquad (V.15)$$

As constantes $C^- e C^+$ são obtidas, utilizando-se as condições de contorno $\psi = 0$ em z = 0 e z = H:

$$D = \int_{0}^{H} dz' D^{-1} \int_{0}^{z'} dz'' \xi + \int_{0}^{H} dz' D^{-1} . C^{-1}$$
$$D = \int_{0}^{H} dz' D^{-1} \int_{z'}^{H} dz'' \xi - \int_{0}^{H} dz' D^{-1} . C^{+1}$$

Logo ,

$$C^{-} = - \left(\int_{0}^{H} dz' D^{-1} \right)^{-1} \int_{0}^{H} dz' D^{-1} \int_{0}^{z'} dz'' \xi , \quad (V.16)$$

$$c^{+} = \left(\int_{0}^{H} dz' D^{-1} \right)^{-1} \int_{0}^{H} dz' D^{-1} \int_{z'}^{H} dz'' \xi , \quad (V.17)$$

que substituidos em (V.14) e (V.15) dão :

$$\psi = \int_{0}^{z} dz' D^{-1} \int_{0}^{z'} dz'' \xi - \int_{0}^{z} dz' D^{-1} \left(\int_{0}^{H} dz' D^{-1} \right)^{-1} \int_{0}^{H} dz' D^{-1} \int_{0}^{z'} dz'' \xi$$
(V.18)

$$\psi = \int_{Z}^{H} dz' D^{-1} \int_{Z'}^{H} dz'' \xi - \int_{Z}^{H} dz' D^{-1} \left(\int_{0}^{H} dz' D^{-1} \right)^{-1} \int_{0}^{H} dz' D^{-1} \int_{Z'}^{H} dz'' \xi$$
(V.19)

Invertendo a ordem das integrações

$$\int_{0}^{Z} dz' \int_{0}^{Z'} dz'' = \int_{0}^{Z} dz'' \int_{z''}^{Z} dz''$$
$$\int_{z}^{H} dz' \int_{z'}^{H} dz'' = \int_{z}^{H} dz'' \int_{z}^{Z''} dz''$$

e definindo

$$\alpha(z) = \int_0^z dz' D^{-1}(z')$$

temos :

$$\psi(z) = G_{\pm}\xi = \int_0^H G_{\pm}'z' \rightarrow z)\xi(z')dz'$$

(V.20)

onde

$$G_{(z' \rightarrow z)} = (\alpha(z) - \alpha(z')) u(z-z') - \alpha(z) \alpha(H)^{-1} (\alpha(H) - \alpha(z'))$$

$$G_{+}(z' \rightarrow z) = (\alpha(z') - \alpha(z))u(z' - z) - (\alpha(H) - \alpha(z))\alpha(H)^{-1}\alpha(z')$$

com

$$u(z-z') = \begin{cases} 1 & para \ z > z' \\ 0 & para \ z < z' \end{cases}$$

Define-se então, um novo kernel de Green :

$$G(z' \rightarrow z) = \frac{1}{2} \{G_{(z' \rightarrow z)} + G_{(z' \rightarrow z)}\}, \quad (V.21)$$

tal que $G(z' \rightarrow z) = G(z \rightarrow z')^T$.

Mais explicitamente ,

$$G(z' \rightarrow z) = \frac{1}{2} \left(\alpha(z) - \alpha(z') \right) \Delta u(z - z') - \frac{1}{2} \left(\alpha(z) - \alpha(z') \right) + \alpha(z) \alpha(H)^{-1} \alpha(z')$$

(V.21a)

 $\operatorname{com} \Delta u(z-z') = u(z-z')-u(z'-z) .$

V.3 - REGIÕES COM PARÂMETROS MATERIAIS CONSTANTES EM Z

Consideremos o intervalo (0, H), dividido em N+1 dominios R_i de comprimento a_i, com i = 1,...,N+1 (figura V.1).

FIGURA V.1 - INTERVALO (0,H) DIVIDIDO EM DOMINIOS R,

Os parâmetros materiais são constantes com relação a Z em cada dominio R_i. As equações itegro-diferenciais para o fluxo direto e para o fluxo adjunto são :

$$\phi(\mathbf{r}, \mathbf{Z}) = \int_{0}^{H} G(\mathbf{r}; \mathbf{Z}' \to \mathbf{Z}) \xi(\mathbf{r}, \mathbf{Z}') d\mathbf{Z}' , \qquad (\mathbf{V}. \mathbf{22})$$

$$\phi^{+}(\mathbf{r},\mathbf{Z}) = \int_{0}^{H} G^{+}(\mathbf{r};\mathbf{Z}' \ \mathbf{Z}) \xi^{+}(\mathbf{r},\mathbf{Z}') d\mathbf{Z}' , \qquad (V.23)$$

com

$$\xi(\mathbf{r},\mathbf{Z}) = \mathbf{L}(\mathbf{r},\mathbf{Z})\phi(\mathbf{r},\mathbf{Z})-\mathbf{S}(\mathbf{r},\mathbf{Z})$$

$$\xi^{+}(r,Z) = L^{+}(r,Z)\phi^{+}(r,Z)-S^{+}(r,Z)$$

Se Z ϵ R e Z' ϵ R , ao fazermos as transformações

$$z = z_{j} + z$$
$$z' = z_{j} + z'$$

e introduzindo a notação

$$\phi(\mathbf{r}, \mathbf{Z}) = \phi_{\mathbf{i}}(\mathbf{r}, \mathbf{z}) ,$$

$$G(\mathbf{r}; \mathbf{Z}' \rightarrow \mathbf{Z}) = G_{\mathbf{i}\mathbf{j}}(\mathbf{r}; \mathbf{z}' \rightarrow \mathbf{z})$$

$$\xi(\mathbf{r}, \mathbf{Z}) = \xi_{\mathbf{i}}(\mathbf{r}, \mathbf{z}) ,$$

obtemos

$$\phi_{i}(r,z) = \sum_{j=1}^{N+1} \int_{0}^{a_{i}} G_{ij}(r;z' \rightarrow z) \xi_{j}(r,z') dz' \quad (V.24)$$

$$\phi_{i}^{+}(r,z) = \sum_{\substack{j=1 \\ j=1}}^{N+1} \int_{0}^{a_{i}} (r;z' \rightarrow z) \xi_{j}(r,z') dz' . \quad (V.25)$$

As funções de Green G_{ij} são definidas como :

$$G_{ij}(r;z' \rightarrow z) = \frac{1}{2} (\beta_{i} - \beta_{j} + \alpha_{i} z - \alpha_{j} z') \Delta u_{ij}(z - z') + (\beta_{i} \beta_{N+2}^{-1} \beta_{j} - \frac{1}{2} (\alpha_{i} + \alpha_{j})) + (\alpha_{i} \beta_{N+2}^{-1} \beta_{j} - \frac{1}{2} \alpha_{i}) z + (\beta_{i} \beta_{N+2}^{-1} \alpha_{j} - \frac{1}{2} \alpha_{j}) z' + \alpha_{i} \beta_{N+2}^{-1} \alpha_{j} zz'$$

$$(V, 26)$$

com

$$\alpha_{i}(r) = D^{-1}(r) ;$$

 $\beta_{i}(r) = \sum_{j=1}^{i-1} \alpha_{j} \alpha_{j}(r) ;$

 $\beta_{1} = 0$

$$\Delta u_{ij}(z-z') = \begin{cases} -1 & (j i) \\ \Delta u(z-z') & (j=i) \\ 1 & (j i) \end{cases}$$

O funcional definido em (V.10) toma a seguinte forma:

$$F(\phi^{+},\phi) = \sum_{j=1}^{N+1} (L_{i}^{+}\phi_{i}^{+},\phi_{i}) v_{i} + \sum_{j=1}^{N+1} (-(L_{i}^{+}\phi_{i}^{+},G_{ij}L_{j}\phi_{j}) v_{i}) v_{i}$$

+
$$(L_{i}^{\dagger}\phi_{i}, G_{ij}S_{j})V_{i}^{\dagger}(L_{i}\phi_{i}, G_{ij}S_{j})V_{i}^{\dagger})$$
 (V.27)

 $(0 \leq z_{i} \leq a_{i})$

Os produtos internos são integrais a 3 dimensões em V_i , com os volumes entre os planos $z = Z_{i-1} e = z = Z_i$.

V.4 - ALGORÍTMO DE SÍNTESE DESCONTÍNUA²³

Consideremos as fatorizações do fluxo direto e do flu xo adjunto :

$$\phi_{i}(r,z) = \psi_{i}(r) Z_{i}(z)$$

$$\phi_{i}^{+}(r,z) = \psi_{i}^{+}(r) Z_{i}^{+}(z)$$

As integrações podem ser fatorizadas também da seguinte forma :

$$(.,.)_{V_{i}} = ((.,.)_{r})_{i}$$

onde a integração em z vai de 0 a a_i . Calculando-se as integrações em r , o funcional dado por (V.27) se reduz a :

$$F(z^{+},z) = \sum_{j=1}^{N+1} (1_{i}(z_{i}^{+},z_{j}) + (z_{i},Q_{i}^{+}) + (z_{i}^{+},Q_{i}) - \sum_{j=1}^{N+1} (z_{i}^{+},g_{ij}z_{j})_{i})$$

$$j=1$$

$$(V.28)$$

com

$$l_{i} = (L_{i}^{\dagger}\psi_{i}^{\dagger}, \psi_{i})_{r}$$

$$Q_{i} = \sum_{j=1}^{N+1} (L_{i}^{\dagger}\psi_{i}^{\dagger}, G_{ij}S_{j})_{r}$$

$$j=1$$

$$Q_{i}^{\dagger} = \sum_{j=1}^{N+1} (L_{i}^{\dagger}\psi_{i}, C_{ij}^{\dagger}S_{j}^{\dagger})_{r}$$

$$g_{ij} = (L_{i}^{\dagger}\psi_{i}^{\dagger}, G_{ij}L_{j}^{\dagger}\psi_{j})_{r}$$

Fazendo-se a variação com relação a Z^+ e Z , e lem-

$$G_{ij}(r;z' \rightarrow z) = G_{ij}(r;z \rightarrow z')$$

obtemos as seguintes equações integrais :

$${}^{1}i^{Z}i = \sum_{j=1}^{N+1} {}^{G}i^{Z}j^{-Q}i , \qquad (V.29)$$

$${}^{+}z^{+}_{i} = \sum_{j=1}^{N+1} {}^{G}i^{+}_{j}z^{+}_{j} - Q^{+}_{i} , \qquad (V.30)$$

)

onde

е

$$l_{i} = l_{i}^{+}$$
$$g_{ij}(z' \rightarrow z) = g_{ji}^{+}(z \rightarrow z')$$

 $g_{ij}(z' \rightarrow z) = \frac{1}{2} (B_{ij} - B_{ij}' + A_{ij}z - A_{ij}'z') \Delta u_{ij}(z-z')$ + U_{ij} + $V_{ij}z$ + $V'_{ij}z'$ + $W_{ij}zz'$ (V.31) $A_{ij} = \langle \alpha_i \rangle_{ij}$ $A'_{ij} = \langle \alpha_j \rangle_{ij}$ $B_{ij} = \langle \beta_i \rangle_{ij} \qquad B'_{ij} = \langle \beta_j \rangle_{ij}$ $U_{ij} = \langle \beta_i \beta_{N+2} \beta_j - \frac{1}{2} (\beta_i + \beta_j) \rangle_{ij}$ (V.32) $V_{ij} = \langle \alpha_i \beta_{N+2} \beta_j - \frac{1}{2} \alpha_i \rangle_{ij}$ $v_{ij} = \langle \beta_i \beta_{N+2} \alpha_j - \frac{1}{2} \alpha_j \rangle_{ij}$

$$W_{ij} = \langle \alpha_i \beta_{N+2} \alpha_j \rangle_{ij}$$

onde

e <(.) > ij significando o produto interno $(L_{i}^{\dagger}\psi_{i}^{\dagger}, (.)L_{j}\psi_{j})_{r}$.

De acordo com o esquema iterativo, as fontes são dadas pelos fluxos anteriores $\phi_* = \phi_*^+$:

$$S = \frac{1}{k} P \phi_{\star}$$
 e $S^+ = \frac{1}{k} P^+$

Logo, as fontes também são separáveis :

$$S_j = \frac{1}{k} P_j \psi_j Z_{*j}$$
 e

 $S_{j} = \frac{1}{k} P_{j}^{\dagger} \psi_{j}^{\dagger} Z_{\star j}^{\dagger}$

e as funções $Q_i \in Q_i^{\dagger}$ podem ser calculadas :

As funções de Green associadas ao operador G_{ij} são :

$$Q_{i} = \frac{1}{k} \sum_{j=1}^{N+1} (L_{i}^{\dagger}\psi_{i}^{\dagger}, G_{ij}P_{j}\psi_{j})r^{Z}*j , \qquad (V.33)$$

$$Q_{i}^{+} = \frac{1}{k} \sum_{j=1}^{N+1} (L_{i}\psi_{i}, G_{ij}^{+}P_{j}^{+}\psi_{j}^{+}) r^{Z}_{*j}^{+} . \qquad (V.34)$$

Definindo os operadores de Green relativos ao termo de fonte di reta (o da fonte adjunta é análogo)

$$g_{ij}^{s}(z' \neq z) = \frac{1}{2} (B_{ij}^{s} - B_{ij}^{'s} + A_{ij}^{s}z - A_{ij}^{'s}z') \Delta u_{ij}(z-z') + U_{ij}^{s} + V_{ij}^{s}z + V_{ij}^{'s}z' + W_{ij}^{s}zz'$$
(V.35)

com os coeficientes dados por (V.32) e <(.) $= \frac{1}{k} (1_i \psi_i, (.) P_j \psi_j) r$ as expressões para $Q_i \in Q_i^+$ podem ser escritas em termos dos ope radores de Green associados a $g_{ij} \in g_{ij}^+$:

$$Q_{i} = \sum_{j=1}^{N+1} G_{ij} Z_{*j} , \qquad (V.36)$$

$$Q_{i}^{+} = \sum_{j=1}^{N+1} G_{ij}^{+} Z_{*j}^{+} . \qquad (V.37)$$

As equações integrais (V.29) e (V.30) podem ser trans formadas em equações diferenciais com condições de contorno e de interfaces. Consideremos apenas o fluxo direto. As equações para o fluxo adjunto são análogas. A equação (V.29) pode ser es crita na forma

$$l_{i}Z_{i}(z) = \frac{A_{ii}}{2} \int_{0}^{z} dz'(z-z')Z_{i}(z') - \frac{A_{ii}}{2} \int_{z}^{a_{i}} dz'(z'-z)Z_{i}(z') + F_{i}(z) - Q_{i}(z) ,$$
(V. 38)

onde :

$$F_{i}(z) = \sum_{j=1}^{N+1} \int_{0}^{a_{j}} dz' \{ U_{ij} + V_{ij}z + V_{ij}z' + W_{ij}zz' \quad (V.39) \\ + \frac{P_{ij}}{2} (B_{ij} - B_{ij}' + A_{ij}z + A_{ij}'z') \} Z_{j}(z')$$

$$com \qquad P_{ij} = \begin{cases} -1 & j > i \\ 0 & j = i \end{cases}$$

Derivando-se em relação a z temos :

$$l_{i}Z_{i}'(z) = \frac{A_{ii}}{2} \int_{0}^{z} dz' Z_{i}(z') - \frac{A_{ii}}{2} \int_{z}^{a_{i}} dz' Z_{i}(z') \qquad (V.40)$$

+
$$\sum_{j=1}^{N+1} \int_{0}^{a_{j}} dz' (V_{ij} + (W_{ij} + \frac{1}{2}P_{ij}A_{ij})z') Z_{j}(z') - Q_{i}'(z) .$$

Derivando-se mais uma vez em relação a z, obtemos uma equação de segunda ordem para $Z_i(z)$:

$$l_{i}Z_{i}''(z) = A_{ii}Z_{i}(z) - Q_{i}''(z)$$
 . (V.41)

Como

$$Q_{i}(z) = \frac{A_{ii}^{s}}{2} \int_{0}^{z} dz'(z-z') Z_{*j}(z') + \frac{A_{ii}^{s}}{2} \int_{z}^{a_{i}} dz'(z'-z) Z_{*j}(z') + F_{i}^{s}(z),$$

então

$$Q''_{i}(z) = A^{s}_{ii}Z_{*i}(z)$$
 , (V.42)

 $j \bar{a} que F_{i}^{s''}(z) = F_{i}''(z) = 0$.

Substituindo (V.42) em (V.41) resulta :

$$-l_{i}Z_{i}''(z) + A_{ii}Z_{i}(z) = A_{ii}S_{*i}(z) . \qquad (V.43)$$

V.5 - SOLUÇÃO DAS EQUAÇÕES RESULTANTES PELO M.M.R.

A solução de (V.43) pode ser feita, pelo método de ma trizes resposta. Para cada região R₁, temos como condição de con torno

$$Z_{i}(0) = Z_{i}^{-}$$
$$Z_{i}(a_{i}) = Z_{i}^{+}$$

Então a solução para $Z_i(z)$ é dada por :

$$Z_{i}(z) = R_{i}(z)Z_{i}^{-} + R_{i}^{+}(z)Z_{i}^{+} + Z_{i}^{S}(z) , \qquad (V.44)$$
$$Z_{i}^{S}(z) = \int_{0}^{a_{i}} R_{i}^{S}(z' \rightarrow z)Z_{*i}(z')dz' .$$

com

e

Introduzindo a expressão (V.44) em (V.43) e fazendo $z_i = 0$ $z_i^+ = a_i$, temos :

$$l_{i}Z_{i}^{\pm} = \sum_{j=1}^{N+1} (r_{ij}(z_{i}^{\pm})Z_{j}^{-} + r_{ij}^{+}(z_{i}^{\pm})Z_{j}^{+}) + q_{i}(z_{i}^{\pm}) , \quad (V.45)$$

$$r_{ij}(z) = \int_{0}^{a_{j}} dz' g_{ij}(z' \rightarrow z) R_{j}(z') , \qquad (V.46)$$

е

$$q_{i}(z) = \sum_{j=1}^{N+1} \int_{0}^{a_{j}} dz' g_{ij}(z' \rightarrow z) Z_{j}^{s}(z') - Q_{i}(z) . \quad (V.47)$$

Invertendo a ordem de integração, a expressão para q_i(z) fica :

$$q_{i}(z) = \sum_{j=1}^{N+1} \int_{0}^{a_{j}} dz' p_{ij}(z' \neq z) Z_{*j}(z') - Q_{i}(z) , \quad (V.48)$$

com

$$p_{ij}(z' \rightarrow z) = \int_0^{a_j} dz''g_{ij}(z'' \rightarrow z) R_j^{s}(z'' \rightarrow z) \qquad . \qquad (V.49)$$

Mas

$$Q_{i}(z) = \sum_{j=1}^{N+1} \int_{0}^{a_{j}} dz' g_{ij}^{s}(z' \rightarrow z) Z_{*j}(z')$$

de modo que o termo q_i(z) pode ser reescrito :

$$q_{i}(z) = \sum_{j=1}^{N+1} \int_{0}^{a_{j}} dz' h_{ij}(z' \neq z) Z_{*j}(z') , \quad (V.50)$$

com

е

$$h_{ij}(z' \rightarrow z) = p_{ij}(z' \rightarrow z) - g_{ij}^{s}(z' \rightarrow z) \qquad . \qquad (V.51)$$

Finalmente, ao substituirmos (V.50) em (V.45), obtemos as $\ N+1$ equações para ${\rm Z}_{i}$:

$$l_{i}Z_{i}^{\pm} = \sum_{j=1}^{N+1} (r_{ij}(z_{i}^{\pm})Z_{j}^{-} + r_{ij}^{+}(z_{i}^{\pm})Z_{j}^{+} + \int_{0}^{a_{j}} dz'h_{ij}(z' \rightarrow z)Z_{*j}(z') ,$$

$$(V.52)$$

com condições de contorno

$$z_{1}^{-} = 0$$
$$z_{N+1}^{+} = 0$$

CAPITULO VI

RESULTADOS NUMERICOS

VI.1 - O METODO DE MATRIZES RESPOSTA A UMA DIMENSÃO

Primeiramente elaborou-se um código que resolvesse as equações multigrupo-difusão a uma dimensão, na geometria plana, utilizando-se o método de matrizes resposta. Os casos cilindrico e esférico, devido à dificuldade de se trabalhar com as funções analíticas respectivas, não chegaram a um estágio operacional. A programação foi feita sem maiores preocupações de otimização, tornando impossível a comparação destes dois casos com o método de diferenças finitas. O caso plano era o que realmente interessava, pois precisava-se testar a expansão do termo de fonte em série de Fourier com apenas 2 termos, e exigindo, na determinação dos coeficientes desta série, a preservação do número de neutrons. Além desta aproximação, utilizou-se também um polinômio do tipo $\operatorname{Ar}^2+\operatorname{Br+C}$, conforme descrito no capítulo IV.

O método de matrizes resposta a uma dimensão foi en-

tão comparado a outros métodos, na solução de um problema padrão²⁴.Este consistia, no cálculo do fluxo, com 2 grupos de energia, e do k_{eff} , de um reator constituido de 10 regiões com parâmetros materiais diferentes. Os parâmetros para cada região estão na tabela (VI.1). A condição de contorno nos extremos foi 1×10^{-6} de fluxo nulo. O critério de convergência utilizado foi para o fator de multiplicação e 1x10⁻⁵ para o fluxo. O número de pontos por região variou de 1 a 8, e os resultados dos métodos de diferenças finitas, elementos finitos linear, matriz res posta com série de Fourier e matriz resposta com polinômio de Lagrange, são apresentados na tabela (VI.2). O resultado do método de diferenças finitas com 100 pontos foi tomado como padrão, e os erros relativos estão na tabela (VI.3).Foi resolvido ainda, um caso homogêneo, com o mesmo tamanho do caso padrão, e com os parâmetros materiais da região 2 . Este cálculo foi feito de modo a testar a precisão do método com relação ao fator de multiplicação e fluxo teóricos. Neste cálculo tivemos que dividir o reator em duas grandes regiões, já que são necessários pe lo menos três pontos, para termos solução.

VI.2 - O MÉTODO DA POTÊNCIA E A ACELERAÇÃO DA FONTE

O problema resolvido, como pode se ver pelos resultados da tabela (VI.3), necessitou de um número muito grande de iterações, para que a solução convergisse. Este fato verificouse sempre, independente do método ou da precisão utilizada. Isto indicava que a razão de dominância estava perto da unidade. Empregou-se então, o método dos polinômios de Chebyshev, utiliza<u>n</u> do-se o algorítmo descrito no capítulo III. O estudo que se se-

guiu, consistiu primeiramente em verificar a sensibilidade do número de iterações em relação a uma escolha arbitrária da razão de dominância $\bar{\sigma}$. O problema padrão foi resolvido para várias razões e os resultados encontram-se na tabela (VI.5). Na sequência de calculos, procurou-se verificar se o método dos resíduos fazia uma boa estimativa da razão de dominância. A razão era calculada a cada nova iteração, a partir da 3ª iteração através da expressão (III.17). Foram feitas estimativas, com -1 e 4 pontos por região. A tabela (VI.6) mostra os resultados intermediários, e a razão final assintótica. Como os resultados mostraram-se satisfatórios, incorporou-se então este método ao programa, de modo que a razão de dominância passasse a ser esti mada pelo próprio programa. O esquema era o seguinte : fazia-se um certo número de iterações não-aceleradas (NIT2), calculandose $\overline{\sigma}$ ao final de cada iteração, através do método dos resíduos; ao fim destas iterações acelerava-se a fonte, usando-se a ultima razão estimada, durante um outro número de iterações (NIT1). Recalculava-se então $\overline{\sigma}$ com NIT2 iterações não-aceleradas e assim por diante até a convergência do fluxo e do k_{eff}. Descobriu-se, que três iterações não-aceleradas eram suficientes para uma nova estimativa da razão $\overline{\sigma}$. Os resultados para alguns valores de NIT1 e com NIT2=3 estão na tabela (VI.7).

VI.3 - A SINTESE INTEGRAL

Foram estudados dois casos exemplos, consistindo de 4 regiões (figura VI.1) com parâmetros materiais constantes , com o cálculo a um grupo de energia. Estes parâmetros e as funções teste na direção x estão nas tabelas (VI.8) e (VI.9). Estas funções foram obtidas a partir da solução 2D, pelo método

de diferenças finitas, através do código CITATION²⁵, cujos resultados foram tomados como padrão. Os coeficientes B₁, B₂, B₃ e B₄ das tabelas (VI.10) e (VI.11) foram ajustados pelo métododos mínimos quadrados, de modo que as funções teste, dado um ponto no eixo dos y, representassem aproximadamente a variação no eixo dos x. Os resultados comparativos entre os métodos da síntese integral e o de diferenças finitas do CITATION, estão resumi dos na tabela (VI.12). Foram escolhidos os coeficientes das malhas centrals de cada região, de modo que os efeitos de interfa ces não afetassem os cálculos. Para se ter uma ideia da influên cia da escolha dos coeficientes B, no fator de multiplicação alguns casos foram rodados variando-se os B_i, e os resultados são apresentados na tabela (VI.13). Na solução destes problemas, procurou-se verificar também se a normalização das funções teste influía nos resultados, o que não aconteceu.

REGIÃO	∆ (cm)	GRUPO	D (cm ⁻¹)	Σ_a^* (cm ⁻¹)	$\Sigma_r^*(cm^{-1})$	$v\Sigma_{f}^{*}(cm^{-1})$
1	4.000	1	1.5580	4.667	479.000	0.0
		2	0.2392	104.100	0′.0	0.0
2	26.126	1	1.8858	71.7746	89.0944	45.0381
		2	0.5205	587.174	0.0	888.843
3	52.251	1	1.8758	75.3696	89.8493	43.7017
		2	0.5053	623.687	0.0	915 . 332
. 4	52.251	1	1.8346	77.1192	96.8049	43.1388
		2	0.4358	628.667	0.0	909.121
5	52.251	1	1.7753	78.4814	107.742	42.7987
5		2	0.4611	625.666	0.0	893.477
6	52.251	1	1.6870	80.1515	125.588	42.3311
6		2	0.4255	619.600	0.0	868.543
7	52.251	1	1.5601	82.0311	154.955	41.8064
		2	0.3769	611.025	0.0	833.837
8	52.251	1	1.4525	83.1166	184.103	41.8016
		2	0.3381	607.131	0.0	812.825
9	26.126	1	1.4152	80.9642	195.887	44.7386
		2	0.3270	616.842	0.0	858.271
10	15.000	1	1.2220	10.500	506.087	0.0
		2	0.1626	355.000	0.0	0.0
B ²	1.95605×10^{-4}					

* $\times 10^{-4}$

TABELA VI.1 - PARÂMETROS MATERIAIS DO PROBLEMA PADRÃO

PIOS/REG.	ELEM.FIN.*	DIF.FINITAS*	M.R.FOURIER	M.R.LAGRANGE
1	1.05020711	1.05345619	1.04950550	1.05111532
2	1.04967946	1.05001678	1.04942961	1.04962145
4	1.04950925	1.04933836	1.04939733	1.04945901
8	1.04942831	1.04931759	1.04939362	1.04941642
100	-	1.04939200	-	-

* referência 26 .

TABELA VI.2 - RESULTADOS DO PROBLEMA PADRÃO.

	DIFERENÇAS	FINITAS	M.R. 1	FOURIER
PTOS/REG.	NUM.ITER.	ERRO REL.	NUM.ITER.	ERRO REL.*
1	408	3.9x10 ⁻¹	410	1.1×10^{-2}
2	408	6.0x10 ⁻²	409	3.6×10^{-3}
4	408	5.1x10 ⁻³	409	5.1x10 ⁻⁴
8	408	7.1x10 ⁻³	409	1.5×10^{-4}

* % em relação ao diferenças finitas com 100 ptos.

TABELA VI.3 - COMPARAÇÃO DOS MÉTODOS DE DIFERENÇAS FINITAS E MATRIZES RESPOSTA.

Nº PTOS	KEFF	^{max} ^{\$} 2	∆k/k _T (%)	∆¢∕¢ _Ţ (%)
3	1.08299082	0.047319815	9.4×10^{-3}	26.9
5	1.08308168	0.039266268	9.7×10^{-4}	5.4
9	1.08309097	0.037736749	1.2×10^{-4}	1.2
17	1.08309147	0.037381458	7.1x10 ⁻⁵	0.3
TEÓRICO	1.08309224	0.037271426		

TABELA VI.4 - RESULTADOS DO CASO HOMOGÊNEO.

σ	ITER
0.940	92
0.960	70
0.970	55
0.975	47
0.977	39
0.980	46
0.985	50
0.990	61

TABELA VI.5 - INFLUÊNCIA DA RAZÃO DE DOMINÂNCIA NO NÚMERO DE ITERAÇÕES.

64.

CASOS I E II DA SÍNTESE INTEGRAL.
	RAZÃO ESTIMADA			
ITER	l PTO/REG.	4 PTS/REG.		
3	0.778732	0.753056		
4	0.828411	0.823364		
5	0.867802	0.870077		
10	0.951198	0.956500		
20	0.980015	0.978997		
30	0.981822	0.981051		
100	0.977639	0.977889		
200	0.976074	0.976494		
300	0.975930	0.976351		
400	0.975918	0.976338		
œ	0.975918	0.976338		

TABELA VI.6 - ESTIMATIVA DA RAZÃO DE DOMINÂNCIA

PELO MÉTODO DOS RESÍDUOS.

NITL	NIT2	ITER
5	3	62
10	3	- 57
15	3	64
20	3	70

TABELA VI.7 - CONVERGÊNCIA COM A RAZÃO DE DOMINÂNCIA AUTO-ESTIMADA.

REGIÃO	D	Σ _a	ν ^Σ f	FUNÇÕES TESTE
1	0.5	0.15	0.144	cosh B ₁ x
2	2.0	0.10	0.150	sen $B_2(b-x)$
3	1.0	0.10	0.108	cos B ₃ x
4	0.5	0.15	0.144	senh B ₄ (b-x)

TABELA VI.8 - PARÂMETROS MATERIAIS E FUNÇÕES TESTE DO CASO I DA SÍNTESE INTEGRAL.

REGIÃO	D	Σa	v^{Σ} f	FUNÇÕES TESTE
1	0.5	0.14	0.1355	cosh B _l x
2	2.0	0.10	0.1176	sen B ₂ (b-x)
3	1.0	0.148	0.1430	cosh B ₃ x
4	0.5	0.10	0.1131	sen $B_4(b-x)$

TABELA VI.9 - PARÂMETROS MATERIAIS E FUNÇÕES TESTE DO CASO II DA SÍNTESE INTEGRAL.

MALHA	^B 1	^B 2
' 1	0.225182	0.102766
2	0.225193	0.102767
3	0.225183	0.102761
4	0.225177	0.102762
5	0.225182	0.102777
6	0.225134	0.102781
7	0.225099	0.102835
8	0.225030	0.102870
. 9	0,224882	0.102904
10	0.224545	0.102996
11	0.224047	0.103125
12	0.222813	0.103363

		· · ·
MALHA	B ₃	B ₄
21	-	-
22	-	- -
23	-	0.060684
24	0.067314	0.085765
25	0.071279	0.104423
26	0.074021	0.118735
27	0.075856	0.129613
28	0.077106	0.137384
29	0.077842	0.142402
30	0.078199	0.144872

TABELA VI.10 - COEFICIENTES DAS FUNÇÕES TESTE

68

DO CASO I.

MALHA	^B 1	^B 2
1	0.112022	0.090895
2	0.111995	0.090987
3	0.112043	0.090915
4	0.111990	0.090975
5	0.111930	0.091056
6	0.111875	0.091150
7	0.111838	0.091302
8	0.111674	0.091514
9	0.111370	0.091795
10	0,110912	0.092224
11	-	-
12	-	-

MALHA	B ₃	B ₄
21	0.107976	0.124539
22	0.109735	0.125217
23	0.111050	0.125708
24	0.112038	0.126054
25	0.112792	0.126297
26	0.113326	0.126479
27	0.113741	0.126609
28	0.114016	0.126699
29	0.114262	0.126752
30	0.114301	0.126778

TABELA VI.11 - COEFICIENTES DAS FUNÇÕES TESTE

DO CASO II.

	a a a	SÍNTESE	CITATION	CITATION	ERRO
CASO		(30) ^a	(15x30) ^b	(30x60)	RELATIVO ^C
KEFF	4	1.013790	1.014091	1.013610	0 0189
ITER	T	119	80	182	0.010%
KEFF		1.1368592	1.1334629	1.13093385	0 529
TTER	<u>+</u> +	77	64	80	0.328

a - número de malhas na direção y.

b - número de malhas nas direções x-y.

c - síntese em relação ao caso (30x60).

TABELA VI.12 - RESULTADOS COMPARATIVOS ENTRE A SÍN-TESE INTEGRAL E DIFERENÇAS FINITAS .

	Bl	^B 2	^B 3	^B 4	KEFF	ITER
	0.111875	0.091150	0.112792	0.126479	1.0141322	119
	0.111995	0.090895	0.107976	0.124539	1.0152669	118
CASU I	0.111370	0.092224	0.107976	0.124539	1.0149706	121
	0.111674	0.091514	0.111050	0.125708	1.0145260	119
CASO II	0.225183	0.102767	0.077842	0.142402	1.1412258	82
	0.225099	0.102835	0.074021	0.118735	1.1393418	80
	0.224047	0.103125	0.067314	0.085765	1.1356350	78
	0.225030	0.102870	0.067314	0.060684	1.1349453	75

TABELA VI.13 - INFLUÊNCIA DOS COEFICIENTES B, NO KEFF.

CAPÍTULO VII

CONCLUSÕES E COMENTÁRIOS

Como foi dito no início do trabalho, os objetivos com sistiam em : (1) fazer uma análise preliminar do método de ma trizes resposta e apresentar sua formulação a uma dimensão, atra vés da qual também estudar-se-iam algumas aproximações para o termo de fonte, com vista a posterior aproveitamento no caso da extensão do método a duas dimensões; (2) estudar o problema da convergência lenta do método da potência e sua aceleração; (3) aplicação do método de matrizes resposta a uma dimensão na solu ção das equações que surgem na formulação da síntese íntegro-di ferencial.

Pelos resultados apresentados no capítulo VI, algumas conclusões podem ser tiradas :

- Com relação à formulação 1D do m.m.r., os resultados foram satisfatórios para o caso plano (tabelas VI.2 e VI.3). Neste caso, a precisão do resultado equivale mais ou menos à pr<u>e</u> cisão do método de diferenças finitas com 4 pontos (tabela VI.3). Como o esforço computacional é aproximadamente 3 vêzes maior , os métodos se equivalem com ligeira predominância para o matriz resposta. Por outro lado a expressão analítica para o fluxo

$$\phi(x) = R^{-}(x)\phi^{-} + R^{+}(x)\phi^{+} + F(x)$$

permite além do cálculo detalhado do fluxo no interior de cada região, o cálculo analítico da expressão para o fluxo médio

$$\overline{\phi} = \frac{1}{\Delta} \int_{0}^{\Delta} \phi(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

para cada região ou todas as regiões, e do termo de fuga

 $-D(x) \nabla^2 \phi(x)$

permitindo assim calcularmos parâmetros médios. Fica como suges tão a extensão do método às geometrias cilíndrica e esférica.

- A aproximação do termo de fonte S(x) por série de Fourier com apenas dois termos mostrou-se muito boa, embora res saltando que a conservação do número de neutrons contribuiu fun damentalmente para isto. Ao observarmos a tabela (VI.4), nota-se que o erro do K_{eff} do problema com apenas 3 pontos em relação ao teórico é muito pequeno, enquanto que o rluxo tem um erro mai or. Isto mostra como o balanço dos neutrons, ao qual o fator de multiplicação é diretamente proporcional, dá bons resultados, sem que precisemos detalhar muito a solução do problema. Reco menda-se que este tipo de condição seja utilizada sempre que pos sível, em expansões do fluxo, de modo a se levar em conta a fisica do problema. - A aceleração da convergência do método da potência através dos polinômios de Chebyshev, mostrou-se satisfatória , além de ser operacionalmente simples de se empregar. O número médio de iterações necessárias para a solução do problema estudado foi reduzido de mais de uma ordem de grandeza, confirmando a previsão teórica feita no capítulo III. Isto aconteceu, util<u>i</u> zando-se um valor de 0.977 para a razão de dominância $\overline{\sigma}$, indicando situar-se em torno deste valor a razão verdadeira. De fato, se foram necessárias 408 iterações para que a contribuição do segundo autovetor decaísse de 1.0x10⁻⁵, então temos aproxima damente, pela expressão (III.7a),

$$(\bar{\sigma})^{408} \simeq 0.00001$$

resultando

 $\overline{\sigma} \simeq 0.972$

O principal obstáculo à aplicação deste método é a estimativada razão de dominância. Isto foi contornado através do método de estimativa que utiliza o resíduo dos vetores das iterações, apresentado no final do capítulo III. Os resultados da tabela (VI.6) indicam convergência para o valor 0.977 e também mostram que es ta estimativa depende do número de pontos utilizados, o que parece lógico já que quanto maior o número de pontos utilizados, mais precisa é a solução. Apesar dos resultados indicarem uma sensibilidade grande quanto à escolha arbitrária da razão (tabela VI.5), a redução do número de iterações ainda assim foi grande (cerca de 7 vezes menor), quando a razão foi estimada pelo método dos resíduos, dentro do próprio programa.

- A aplicação do método de matrizes resposta na solução das equações resultantes da síntese integro-diferencial, apresentou bons resultados (tabela VI.12). Não cabe aqui discutir o método de síntese, mas a aplicação do m.m.r. a uma dimensão, simplificou as equações resultantes e permitiu uma solução exata, já que a aplicação do método de diferenças finitas não é possível, devido à descontinuidade das funções Z(z) nas interfa ces. Os resultados numéricos obtidos pelo método de síntese pelo CITATION são equivalentes, mas o tempo de computação para a sintese é bem menor, ja que o problema se resumiu a resolver um sistema com menos pontos (sómente na direção y), enquanto que o diferenças finitas resolve um sistema com um número maior de pontos. As funções teste influem nos resultados, como podese ver na tabela (VI.13), mas nada conclusivo pode ser afirmado, pois as funções teste utilizadas eram guase "exatas", restando verificar outras maneiras de gerá-las. A variação da normalização das funções teste não influiu no keff resultante, fato este importante, pois no caso da síntese descontínua convencional, ha uma variação do k_{eff} com o fator de normalização. Esta normalização permite ainda fazer que as soluções das duas regiões se "encaixem" i.e. a descontinuidade do fluxo na interface das duas regiões desaparece.

BIBLIOGRAFIA

1. BELL, G.I. E GLASSTONE, S. - Nuclear Reactor Theory , Van Nostrand-Reinhold, 1970 , Cap. I .

2. BELL, G.I. E GLASSTONE, S. - Referência 1, p. 147-151.

3. CLARK, M.E. E HANSEN, K.F. - <u>Numerical Methods for Reactor</u> Analysis , N.Y. , Academic Press, 1964.

- 4. FROHLICH, R. <u>Summary Dicussion and State of Art Review</u> for Coarse-Mesh Computational Methods, Atomkernenergie, <u>30</u>, 1977, p. 152-158.
- 5. HENRY, A.F. <u>Refinements in Accuracy of Coarse-Mesh Finite-</u> <u>Diference Solution of the Multigroup Diffusion</u> <u>Equation</u>, Seminar on Numerical Reactor Calculations, IAEA-SM-154/21, 1972.

6. FINNEMANN, H. et al.- <u>Interface Techniques for Multidimen-</u> <u>sional Reactor Calculations</u>, Atomkernenergie,<u>30</u>, 1977, p. 123-125.

- 7. KAPLAN, S. et al. <u>Equations and Programs for Solutions of</u> <u>Neutron Group Diffusion Equations by Synthesis</u> <u>Approximations</u>, WAPD-TM-377, Bettis Atomic Power Laboratory, 1963.
- 8. SEMENZA, L.A. et al The Application of the Finite Element Method to the Multigroup Neutron Diffusion Equation, Nuclear Science and Engineering, <u>47</u>, 1972, p. 302-310.
- 9. STRANG, G. E FIX, G.J. <u>An Analysis of the Finite Element</u> Method, N.J., Prentice-Hall Inc., 1973, p.116.
- 10. PFEIFFER, W. E SHAPIRO, J.L. <u>Reflection and Transmission</u> <u>Functions in Reactor Physics</u>, Nucl.Sci.Eng., <u>38</u>, 1969, p. 253-264 .
- 11. STOKES, G.G. <u>On the Intensity of the Light Reflected from</u> <u>or Transmitted through a Pile of Plates</u>, Proc. Roy. Soc., <u>11</u>, 1862, p. 545.
- 12. SCHMIDT , Ann. Physik , 23 , 1907 , p. 671
- 13. BELLMANN, R. E KALABA, R. <u>On the Principles of Invariant</u> <u>Imbedding and Propagation through Inhomogeneous</u> <u>Media</u>, Proc. Nat. Acad. Sci. U.S.A , <u>42</u> ,1956,p. 629 .
 14. SHIMIZU, A. - <u>Response Matrix Method</u>, J. At. En. Soc. Japan , 5 , 1963 , p. 1-10 .

15. SHIMIZU, A. et al. - <u>Application of the Response Matrix</u> <u>Method to Criticality Calculations of One-Dimen-</u> <u>sional Reactors</u>, J. At. En. Soc. Japan , <u>5</u>, 1963, p. 11-18.

- 16. FILIPPONE, W.L. <u>Two-Dimensional Neutron Transport Calcu-</u> <u>lations using the Response Matrix Method</u>, Nuc. Sci. Eng., <u>52</u>, 1973, p. 23-34.
- 17. WEISS, Z. E LINDAHL, S. <u>High Order Response Matrix Equations</u> <u>in Two-Dimensional Geometry</u>, Nuc. Sci. Eng., <u>58</u>, 1975, p. 166-185.
- 18. WACHSPRESS, E.L. <u>Iterative Solution of Elliptic Systems</u> <u>and Applications to the Neutron Diffusion Equations</u> <u>of Reactor Physics</u>, Prentice-Hall Inc. , N.J. ,1966.
- 19. VARGA, R.S. <u>On Estimating Rates of Convergence in Multi-</u> group Diffusion Problems, WAPD-TM-41, Bettis Atomic Power Laboratory , 1957.
- 20. FLANDERS, D.A. E SHORTLEY, G. <u>Numerical Determination of</u> <u>Fundamental Modes</u>, J. Appl. Phys., <u>21</u>, 1950, p. 1326-1332.
- 21. BUTKOV, E. <u>Mathematical Physics</u>, Addison-Wesley Publishing Inc., 1970, p. 126-128.
- 22. BILODEAU, G. E HAGEMAN, L. <u>A Survey of Numerical Methods</u> <u>in the Solution of Diffusion Problems</u>, WAPD-TM-64, Bettis Atomic Power Laboratory , 1957 .

23. WATSON, F. V. - Notas não publicadas.

24. FLADMARK, G.E. - <u>A Method for the Numerical Solution of</u> <u>Eigenvalue Problems in Diffusion Theory</u>, Seminar on Numerical Reactor Calculations, IAEA-SM-154/20, 1972.

25. FOWLER. T.B. et al.- <u>Nuclear-Reactor Core-Analysis Code</u> : <u>CITATION</u>, ORNL-TM-2496 , 1971 .

26. SILVA, CÉLIA F. - Notas não publicadas.

APÊNDICE A

DETERMINAÇÃO DOS COEFICIENTES DE EXTRAPOLAÇÃO

Os parâmetros de extrapolação são escolhidos de tal modo , que se

$$\dot{\mathbf{S}}^{(n-2)} = \mathbf{P}_{n-2}(\underline{A}) \dot{\mathbf{S}}^{(0)}$$
, (A.1)

$$\dot{S}^{(n-1)} = P_{n-1}(\underline{A}) \dot{S}^{(0)}$$
 (A.2)

$$\dot{\mathbf{S}}^{(n)} = \mathbf{P}_{n}(\underline{A})\dot{\mathbf{S}}^{(0)}$$
 (A.3)

então

É claro que isto só é verdade se tivermos k⁽ⁿ⁾ = k₁. Supondo verdadeira esta condição, os coeficientes $\alpha_n = \beta_n$ devem ser tais que satisfaçam à equação

$$\dot{s}^{(n)} = \dot{s}^{(n-1)} + \alpha_n (\dot{s}^{(n)} - \dot{s}^{(n-1)}) + \beta_n (\dot{s}^{(n-1)} - \dot{s}^{(n-2)})$$

$$\dot{s}^{(n)} = (1/k^{(n)}) M\dot{\sigma}^{(n-1)}$$
(A.4)

onde

Substituindo (A.1),(A.2) e (A.3) em (A.4), eliminando-se S⁽⁰⁾ e escrevendo-se $P_n(\underline{M})$ em um polinômio em k, resulta :

$$P_{n}(k) = P_{n-1}(k) + \alpha_{n} \left(\frac{k}{k_{1}} P_{n-1}(k) - P_{n-1}(k) \right) + \beta_{n} \left(P_{n-1}(k) - P_{n-2}(k) \right)$$
(A.5)

Expressando-se P_n(k) em termos dos polinômios de Chebyshev, e lembrando que

$$C_{n}(x) = 2xC_{n-1}(x) - C_{n-2}(x)$$

temos :

$$\frac{2 \left(\frac{2k}{k_{1}\bar{\sigma}} - 1\right) C_{n-1} \left(\frac{2k}{k_{1}\bar{\sigma}} - 1\right) - C_{n-2} \left(\frac{2k}{k_{1}\bar{\sigma}} - 1\right)}{C_{n} \left(\frac{2}{\bar{\sigma}} - 1\right)} = C_{n} \left(\frac{2}{\bar{\sigma}} - 1\right)$$

$$= \frac{C_{n-1}(\frac{2k}{k_{1}\overline{\sigma}} - 1)}{C_{n-1}(\frac{2}{\overline{\sigma}} - 1)} + \alpha_{n} \left\{ \frac{C_{n-1}(\frac{2k}{k_{1}\overline{\sigma}} - 1)}{C_{n-1}(\frac{2}{\overline{\sigma}} - 1)} (\frac{k}{k_{1}} - 1) \right\}$$

$$+ \beta_{n} \left\{ \frac{C_{n-1}(\frac{2k}{k_{1}\overline{\sigma}} - 1)}{C_{n-1}(\frac{2}{\overline{\sigma}} - 1)} - \frac{C_{n-2}(\frac{2k}{k_{1}\overline{\sigma}} - 1)}{C_{n-2}(\frac{2}{\overline{\sigma}} - 1)} \right\}$$
(A.8)

Os coeficientes α_n e β_n devem satisfazer então às condições

$$\alpha_{n} \frac{k}{k_{1}} \frac{C_{n-1}(\frac{2k}{k_{1}}\bar{\sigma} - 1)}{C_{n-1}(\frac{2}{\bar{\sigma}} - 1)} = \frac{4k}{k_{1}\bar{\sigma}} \frac{C_{n-1}(\frac{2k}{k_{1}}\bar{\sigma} - 1)}{C_{n}(\frac{2}{\bar{\sigma}} - 1)}$$
(A.7)

$$\frac{C_{n-2}\left(\frac{2k}{k_{1}\bar{\sigma}}-1\right)}{C_{n}\left(\frac{2}{\bar{\sigma}}-1\right)} = \beta_{n} \frac{C_{n-2}\left(\frac{2k}{k_{1}\bar{\sigma}}-1\right)}{C_{n-2}\left(\frac{2}{\bar{\sigma}}-1\right)}$$

Logo ,

е

е

$$\alpha_{n} = \frac{4}{\overline{\sigma}} \frac{C_{n-1}(\frac{2}{\overline{\sigma}} - 1)}{C_{n}(\frac{2}{\overline{\sigma}} - 1)}, \quad n = 2, 3.... \quad (A.9)$$

(A.8)

(A.10)

$$B_n = \frac{C_{n-2}(\frac{2}{\sigma} - 1)}{C_n(\frac{2}{\sigma} - 1)}, \quad n = 2, 3....$$

$$\alpha_1 = \frac{2}{2-\overline{\sigma}} \qquad ; \qquad \beta_1 = 0$$