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Quantitative analysis reveals how EGFR activation
and downregulation are coupled in normal but not
in cancer cells
Fabrizio Capuani1,w,*, Alexia Conte1,*, Elisabetta Argenzio1,w, Luca Marchetti2, Corrado Priami2,3, Simona Polo1,4,

Pier Paolo Di Fiore1,4,5,**, Sara Sigismund1,** & Andrea Ciliberto1,**

Ubiquitination of the epidermal growth factor receptor (EGFR) that occurs when Cbl and

Grb2 bind to three phosphotyrosine residues (pY1045, pY1068 and pY1086) on the receptor

displays a sharp threshold effect as a function of EGF concentration. Here we use a simple

modelling approach together with experiments to show that the establishment of the

threshold requires both the multiplicity of binding sites and cooperative binding of Cbl and

Grb2 to the EGFR. While the threshold is remarkably robust, a more sophisticated model

predicted that it could be modulated as a function of EGFR levels on the cell surface. We

confirmed experimentally that the system has evolved to perform optimally at physiological

levels of EGFR. As a consequence, this system displays an intrinsic weakness that causes—at

the supraphysiological levels of receptor and/or ligand associated with cancer—uncoupling of

the mechanisms leading to signalling through phosphorylation and attenuation through

ubiquitination.

DOI: 10.1038/ncomms8999 OPEN

1 IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, Milan 20139, Italy. 2 The Microsoft Research—University of Trento Centre for
Computational and Systems Biology (COSBI), Piazza Manifattura 1, Rovereto (TN) 38068, Italy. 3 Dipartimento di Matematica, Università di Trento, Via
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F
ollowing engagement by its cognate ligand(s), the epidermal
growth factor (EGF) receptor (EGFR) forms dimers capable
of autophosphorylation and of phosphorylating other

proteins1,2. After EGFR dimerization the tyrosine kinase
domain of one EGFR moiety phosphorylates several Tyr
residues in the partner moiety3. The extracellular domain of
EGFR can adopt two conformations, closed and extended4, the
latter one being dimerization-competent5,6. EGF binding
stabilizes the extended form, thus favouring dimer formation,
and allows the EGFR kinase domain to reach its Tyr
substrates7–11. The kinase activity is contrasted by phosphatase
acting at the membrane already at the very early stages of EGFR
signalling12–15.

Molecules harbouring modules binding phosphotyrosines of
EGFR (pY) are recruited to the plasma membrane (PM) and
activate signalling pathways leading to context-dependent
biological outputs1,2. One such molecule is the ubiquitin ligase
Cbl, which binds to the EGFR via a pY-mediated mechanism and
ubiquitinates the receptor16. EGFR ubiquitination is critical for
receptor trafficking through endosomal/lysosomal compart-
ments17–19, and for the internalization step at the PM20–22.

We have recently shown that the dose–response curves for
EGFR Tyr phosphorylation and ubiquitination display different
degrees of sigmoidicity, best approximated by Hill functions with
Hill coefficients (nH) of 1 and 3, respectively (see Fig. 1a for a
schematic of the interplay between phosphorylation and
ubiquitination)21. In the case of ubiquitination, the dose–
response curve has a threshold between 1 and 10 ng ml� 1 of
EGF in HeLa cells. This ubiquitination threshold is an important
biological feature, as it controls the modality of EGFR
internalization at the PM, and thereby enables cells to translate
quantitative inputs (EGF concentrations) into qualitatively
different internalization mechanisms21,23. At low EGF con-
centrations (r1 ng ml� 1), the EGFR is scarcely ubiquitinated
and internalized primarily through clathrin-mediated endocytosis
(CME). At high EGF concentrations (410 ng ml� 1), a significant
fraction of the EGFR is endocytosed through a clathrin-
independent pathway (non-clathrin endocytosis, NCE), as the
receptor becomes ubiquitinated. CME and NCE are associated
predominantly, although not exclusively with (i) EGFR recycling
to the PM and maintenance of signalling, in the case of CME, and
(ii) EGFR degradation and signal attenuation, in the case of
NCE21. Thus, the ubiquitination threshold controls receptor fate
and the balance between maintenance versus attenuation of
EGFR signalling.

A clue towards understanding the ubiquitination threshold is
the fact that phosphorylation and ubiquitination are causally
related. To ubiquitinate the EGFR, Cbl needs to bind to the
receptor. Binding occurs either directly, via a pY-binding module
contained in Cbl that binds to pY1045 of the EGFR, or indirectly,
through binding of a Grb2:Cbl complex to either pY1068 or
pY1086, via the SH2 domain of Grb2 (refs 16,24–26). Crucially,
Y1045, Y1068 and Y1086 are not only necessary but also
sufficient for EGFR ubiquitination, as an EGFR mutant that
carries only these three Tyr residues (EGFR-3Yþ ), and none of
the other phosphorylatable Tyr residues (see Fig. 1b for a
schematic of the EGFR phosphorylation sites), shows a
ubiquitination dose–response curve that is indistinguishable from
EGFR wild-type (EGFR-WT)21. Conversely, ubiquitination of an
EGFR mutant (EGFR-Y1045þ ) that contains only the
phosphorylatable Tyr residue responsible for direct Cbl binding
(Y1045) does not display a threshold and is significantly reduced
compared with EGFR-WT (B80% reduction)21.

Here we account for all these data providing a system-level
description of the mechanisms that contribute to the creation of
the threshold and that, consequently, determine the cellular

response (maintenance versus attenuation of signalling) to
varying EGF concentrations. We took advantage of the many
existing models of EGFR activation and signalling12,27–34, while
also taking into account the ubiquitination component of the
system that has so far received scarce attention35.

Results
Multisite Phoshorylation Model (MPM). We initially developed
a simple model to account for EGFR phosphorylation at 2 min of
EGF stimulation, when both phosphorylation and ubiquitination
take place predominantly at the PM21.

We have previously shown that the dose–response curves of
phosphorylation of the individual Tyr residues21 follow the
same hyperbolic behaviour as that of the global EGFR Tyr
phosphorylation (nHE1) (ref. 21). Moreover, at 2 min of EGF
stimulation, the individual Tyr residues are phosphorylated
independently of each other, since their phosphorylation dose–
response curves do not change in the presence (EGFR-WT) or
absence (Tyr mutants, Fig. 1b) of other phosphorylation sites
(Fig. 1c,d, experimental points are taken from ref. 21).
Consistently, we observed that the normalized dose–response
curves of EGFR-WT and EGFR-3Yþ phosphorylation were
indistinguishable, both in terms of half-maximal dose (pY0.5) and
steepness nH (Fig. 1e, experimental points are taken from ref. 21).
Moreover, in absolute terms, Tyr phosphorylation of EGFR-WT
(which carries nine phosphorylatable Tyr) was approximately
threefold greater than that of EGFR-3Yþ (with three
phosphorylatable Tyr; Fig. 1f and Supplementary Fig. 1).
Phosphatases also contribute to the net EGFR phosphorylation,
as they are known to be active already at the early stages of EGFR
signalling12–15,36.

These data suggest a simple model for EGFR early phosphor-
ylation (the Multisite Phosphorylation Model or MPM). In terms
of elementary reactions, the individual Tyr residues are
phosphorylated independently of each other when they do not
compete for the kinase domain: this can occur if the kinase:Tyr
complex is unstable (Fig. 2a). Under this scenario, the rate-
limiting step is the kinase:Tyr binding and the kinase is expected
to be mostly free (free-enzyme). The same applies for the
phosphatases, whose activity at 2 min after EGF stimulation has
been recently measured12 and implemented in our models.

Simulations of a receptor composed of nine identical Tyr
residues confirm that if kinases (or phosphatases, replacing Tyr
with phosphorylated Tyr) work under the free-enzyme regime,
each Tyr contributes in the same way to the rate of EGFR
phosphorylation. This is true regardless of the number of
available sites. Accordingly, the rate of EGFR phosphorylation
decreases linearly with the number of Tyr residues available for
phosphorylation (Fig. 2b, black solid line). In an alternative
regime, in which the kinase is mostly bound to the substrate
(saturated regime), the phosphorylation rate of EGFR does not
change with the number of non-phosphorylated Tyr residues
(Fig. 2c, blue dashed line). In this case, nine phosphorylatable Tyr
residues are phosphorylated at the same rate as only one,
implying that the phosphorylation rate per Tyr residue decreases
with the number of available sites. We thus chose for our model
the free-enzyme regime for both kinases and phosphatases.

As a result, in the MPM model the rate constant of EGFR
phosphorylation increases with the number of Tyr residues
(Supplementary Note 1). In terms of enzyme kinetics, we can
attribute only one phosphorylation rate constant to each Tyr
residue independently of the phosphorylation state of the
receptor (Fig. 2c, upper panel). Importantly, these results allow
monitoring of the phosphorylation state of any individual Tyr
residue while disregarding the others.
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To further reduce the number of variables, we introduced a
simplification in the MPM by using the same rate constants for
every Tyr (kKIN and kPTP for the reactions catalysed by kinases
and phosphatases, respectively). This allowed us to group
together receptors with an equal number of pYs (that is,
unphosphorylated EGFR (R0), 1pY-EGFR (R1), 2pY-EGFR (R2)
and so on) regardless of the specific identity of the pY (Fig. 2c,
lower panel). This simplification is justified by the observation
that different pY sites have similar phosphorylation kinetics in the
first 2 min of EGF simulation37. Moreover, we showed that the
MPM behaviour does not differ qualitatively if we differentiate
the phosphorylation rates for Y1068/86 and Y1045
(Supplementary Fig. 2). In this scheme, the phosphorylation
state of EGFR is assigned on a probabilistic basis.

To compare the MPM with experimental data, we needed to
define the relationship between EGFR phosphorylation and EGF
concentration. To keep the model simple, we initially disregarded
the numerous reactions that contribute to EGFR activation that
will be included in a more complex model, the Early Activation

Model (EAM; see below). Instead, we used a phenomenological
law to link EGFR phosphorylation and EGF concentration.
More precisely, we used a Hill function, whereby
kKIN ¼ kMAX

KIN EGF½ �n= EGF½ �nþ Jnð Þ, and fitted the experimental
dose–response curves of EGFR-WT and the EGFR-3Yþ mutant
to identify n and J (Supplementary Note 1).

After fitting, the MPM reproduced the dose–response
curve of EGFR phosphorylation. Since we used the free regime
for EGFR phosphorylation, the result is independent of the
number of Tyr residues when the curves are normalized to their
maximal value (Fig. 2d). Moreover, the model correctly attributed
a threefold increase to the total Tyr phosphorylation of EGFR-
WT compared to the total Tyr phosphorylation of the EGFR-
3Yþ mutant, for every value of EGF (Fig. 2e and Supplementary
Fig. 1).

In conclusion, we have developed a model, the MPM, which
faithfully reproduces the distribution of EGFR-phosphorylated
species, as a function of EGF concentration, at 2 min of
stimulation.
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Figure 1 | EGFR phosphorylation dose–response curves. (a) Schematic representation of EGFR ubiquitination (Ub) and total EGFR Tyr phosphorylation

(pY tot). xT represents the half-maximal EGF concentration for EGFR ubiquitination (that is, the ubiquitination threshold). EGF concentration is expressed in

a.u. (b) Schematic representation of Tyr phosphorylation sites in the cytoplasmic tail of EGFR-WT (left) and of the add-back mutants (1045þ , 1068/86þ ,

3Yþ ), some of which were used in c–f. The intracellular domain including the kinase domain (red) and C-terminal tail (black line) of the EGFR are shown.

The position of the nine phosphorylatable Tyr residues is shown. Tyr residues involved in Cbl/Grb2 binding and subsequent EGFR ubiquitination are

indicated in blue, while the other Tyr residues are depicted in black. Phosphorylation of Y1045 (c) or Y1068 (d) in EGFR-WT or the indicated add-back

mutants. Experimental points are taken from ref. 21. Phosphorylation is plotted, for each condition, as normalized to the maximum pY value obtained in that

condition (pY/pYMAX). (e) Experimentally determined dose–response phosphorylation curves for EGFR-WT and EGFR-3Yþ. Experimental points are taken

from ref. 21. EGFR phosphorylation is expressed, for each condition, as normalized to the maximum value obtained in that condition (pY/pYMAX).

(f) Experimental ratio of total Tyr phosphorylation (pY tot) of EGFR-WT and EGFR-3Yþ after 2 min of stimulation with the indicated concentrations of EGF.

Data are derived from densitometry analysis of IBs from three independent experiments±s.d. (see Supplementary Fig. 1 for representative IB).

In (c–f) EGFR-WT and mutants were expressed in NR6 fibroblasts, which are devoid of endogenous EGFR21.
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Modelling EGFR ubiquitination. We then added to the MPM
the processes leading to EGFR ubiquitination. Structure–
function studies with EGFR phosphomutants showed that Cbl
binding is necessary and sufficient for EGFR ubiquitination
and that the EGF dose-dependency of the Cbl:EGFR
association in vivo displays a threshold-like profile, very

similar to EGFR ubiquitination21. To describe the dynamics
of EGFR ubiquitination, we therefore restricted our
analysis to the dynamics of the Cbl:EGFR interaction and
assumed that ubiquitination is simply proportional to the
amount of Cbl-bound EGFR (Equation 15 in Supplementary
Note 1).
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Figure 2 | Modelling EGFR phosphorylation: the free-kinase regime accounts for experimental phosphorylation curves. (a) Schematic representation of

the enzymatic reactions that lead to EGFR phosphorylation in an active dimer. Top, Michaelis–Menten reaction whereby the tyrosine kinase (TK) domain of

an EGFR binds reversibly to the C-terminal tail of a partner EGFR with the binding/unbinding rate constants kon and koff, respectively. After adding one

phosphate group, the TK dissociates from the substrate with rate constant kcat. Bottom, the simplified reaction scheme for Tyr phosphorylation is

characterized by kKIN. (b) Two limiting regimes (free and saturated) can be identified for the reaction catalysed by kinases, depending on the stability of the

complex between the catalytic subunit of EGFR and its Tyr substrate. Curves represent the average of 105 runs of the stochastic Gillespie algorithm62

applied to the standard Michaelis–Menten reaction scheme depicted in a (see Supplementary Note 1 for details). (c) Wiring diagram of the MPM. Top,

phosphorylation of individual Tyr residues (blue circles) occurs independently of the phosphorylation of the other Tyr residues. This results in a branched

wiring diagram, in which each phosphorylation event occurs with the same probability. Bottom, EGFR molecules (red circles) with the same total number of

phosphoryl groups (blue circles) are grouped together to generate a linear chain of increasingly phosphorylated EGFRs. Only the three Tyr residues relevant

for EGFR ubiquitination are shown (that is, Y1045, Y1068, Y1086). ~kKIN að Þ and ~kPTP að Þ are the rates of addition and subtraction of one phosphoryl group

from an EGFR molecule that carries a-phosphorylated Tyr residues. (d) A comparison of EGFR-WT and -3Yþ phosphorylation computed by the MPM in

the free-kinase/free-phosphatase regime as a function of EGF (model, solid lines) or determined experimentally (exp, dashed lines: data taken from Fig. 1e).

EGFR phosphorylation was normalized to the maximum pY value (pY/pYmax). (e) A comparison of the ratio of total pY of EGFR-WT and EGFR-3Yþ, as a

function of EGF concentration (at 2 min), computed by the MPM (dashed line) or determined experimentally (solid line, data taken from Fig. 1f, see also

Supplementary Fig. 1).
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The experimental analysis of Cbl binding to the EGFR
suggested that the interaction between EGFR and Cbl is
cooperative with the binding of Grb2 to the receptor21. Indeed,
if the binding of Cbl (in complex with Grb2) to EGFR were to
take place with the same affinity (kon/koff) regardless of the
binding of Grb2, then EGFR-WT and EGFR-Y1045þ should
bind a similar amount of Cbl. However, we have previously
established that binding of Cbl to the EGFR, as well as EGFR
ubiquitination, are strongly reduced in the EGFR-Y1045þ
mutant, and absent or negligible in EGFR-Y1068/86þ
mutant21. In contrast, Cbl binding and EGFR ubiquitination
are indistinguishable in EGFR-WT and in the EGFR-3Yþ
mutant21.

A plausible explanation for cooperativity is that when Cbl and
Grb2 are simultaneously bound to EGFR (via pY1045 and
pY1068/pY1086, respectively), they are in a state of enforced
proximity, which increases the likelihood of the three species
(EGFR, Cbl and Grb2) of binding to each other38. In our model,
we translated the presence of cooperativity as follows: Cbl and
Grb2 can form a complex that binds to the corresponding pYs on
EGFR; they can also bind EGFR individually. However, the Cbl
and Grb2 binding rates (to each other and to EGFR) are increased
in the multimeric complex (Fig. 3a). Assuming that enforced
proximity drives cooperativity, we postulated that the binding
affinity of EGFR and Cbl increases proportionally with the local
increase in the concentrations of Grb2 and Cbl on the receptor
(Supplementary Note 1).

We then determined experimentally the total amounts of Cbl,
Grb2 and EGFR in HeLa cells. EGFR surface levels, measured by
saturation binding, were calculated to be B300,000 molecules per
cell (Fig. 3b). We also estimated that Grb2 is present at
B1,000,000 molecules per cell (Fig. 3b). Importantly, we have
previously shown that Grb2 fractions as a single monomeric
species in sizing columns21, indicating that the majority of Grb2
molecules are either free or form very unstable complexes.
Therefore, in our model, we assumed that all measured Grb2 is
available for binding to EGFR and/or to Cbl.

As for Cbl, it is expressed in HeLa cells at B150,000 molecules
per cell (Fig. 3b). However, we have previously shown, using size
exclusion chromatography, that the majority of Cbl is engaged in
stable complexes21, compatible with the notion that Cbl binds to
4100 different proteins39. This result strongly suggests that only
a minor fraction of Cbl (in the free form or engaged in Cbl:Grb2
complexes) is available for direct binding with EGFR. In the
model, we used phosphorylated Cbl (Cbl-pY) as a proxy for the
maximal amount of Cbl available for binding to the EGFR,
because (i) Cbl is phosphorylated on binding to the EGFR and
(ii) only phosphorylated Cbl is competent for EGFR
ubiquitination16,40,41. The amount of Cbl-pY was experiment-
ally determined as B5,000 molecules per cell, after stimulation
with EGF (100 ng ml� 1) for 2 min (Fig. 3b).

The above results indicate that Cbl, compared with EGFR and
Grb2, is rate limiting in the EGFR ubiquitination reaction.
Accordingly, its upward or downward modulation—
overexpression and the expression of the dominant-negative
Cbl70Z mutant, respectively—produces congruent changes in the
levels of EGFR ubiquitination (Fig. 3c). We concluded that Cbl is
rate-limiting in the EGFR ubiquitination process.

MPM-B: a model of EGFR ubiquitination. Next, we used the
MPM as an input for Cbl and Grb2 binding to obtain a model of
EGFR ubiquitination, MPM-B (MPM plus Binding, see
Supplementary Note 1). The concentrations of Cbl and Grb2
were set according to the measurements described above. The
binding rates for Cbl and Grb2, for which we do not have

experimental values, were identified by fitting: (i) the ubiquiti-
nation dose–response curves for the 3Yþ and 1045þ mutants
and (ii) the experiments of Cbl modulation described in the
previous section (Fig. 3c).

We computed the model assuming that all species are at steady
state in the absence of EGF; at time zero we introduced EGF to
the system, and we computed the values of each species after
2 min. MPM-B reproduced, in quantitative detail, the increase in
steepness of the ubiquitination curve versus the phosphorylation
curve for EGFR-WT, as shown by the normalized curves, as well
as by their ratio (Fig. 4a left and inset, respectively). The model
also reproduced the decrease in steepness of the ubiquitination
curve of EGFR-Y1045þ (Fig. 4a right and inset), albeit less
precisely than the WT. Finally, MPM-B reproduced the dose–
response curve for ubiquitination under all conditions of Cbl
expression (Fig. 4b, left). In this case, the model suggested that the
sevenfold increase in Cbl expression, obtained experimentally
(Supplementary Fig. 3a), does not lead to a sevenfold increase in
Cbl available for EGFR binding. Rather, the model suggests that
approximately only 1/3 of the overexpressed molecules are
capable of receptor binding.

Interestingly, the model also showed that modulation of Cbl
levels (within a limit), despite affecting the amount of EGFR
ubiquitination (Supplementary Fig. 3b,c), does not affect the
ubiquitination threshold, as experimentally observed (Fig. 4b,
right). This lack of effect on the threshold is not immediately
obvious, given the sizable changes in total EGFR ubiquitination
on Cbl modulation (Fig. 4b, left). Importantly, this condition is
verified by the model only if the number of Cbl molecules
available for EGFR binding does not exceed E5,000 Cbl
molecules per cell in basal conditions (Supplementary Fig. 3b).
Strikingly, this number is in agreement with the maximal number
of active Cbl (Cbl-pY) molecules per cell that we estimated
experimentally (Fig. 3b).

Finally, we performed a robustness analysis and observed that
the model is robust to changes in parameter values with regards
to both the position of the threshold and the shape of the
ubiquitination and phosphorylation dose–response curves
(Supplementary Fig. 4a,b). In conclusion, MPM-B robustly
reproduces the behaviour of the ubiquitination threshold.

Cooperativity helps establishing the ubiquitination threshold.
We used the MPM-B to investigate in silico the potential role of
cooperativity between Cbl, Grb2 and EGFR in the establishment
of the EGFR ubiquitination threshold. Given that a probabilistic
model of phosphorylation underlies the MPM and the MPM-B, it
is not surprising that the presence of both Cbl-binding sites
(pY1045 and pY1068/pY1086) is necessary for the threshold.
Indeed, ubiquitination of EGFR-Y1045þ , which requires only
one pY to be ubiquitinated, does not display a threshold.
Interestingly, if we simulate an alternative, noncooperative model
(Eq. (9) in Supplementary Note 1), the threshold effect is lost also
in EGFR-3Yþ (Fig. 5a). This analysis therefore suggests that
the probabilistic hypothesis is necessary, but not sufficient to
account for the threshold, which requires also the cooperativity
mechanism depicted in Fig. 3a.

The relevance of cooperativity became evident when we
compared simulations of cooperative and noncooperative models,
in terms of how Cbl is bound to the EGFR: through pY1045 only
(singly-bound) or through pY1045 and pY1068/pY1086 via Grb2
(doubly-bound). Only in the cooperative model, the singly bound
species is almost completely converted into doubly bound Cbl
when EGF concentration increases above the threshold (Fig. 5b).
We concluded that the cooperative mechanism is required for the
formation of the ubiquitination threshold.
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Early Activation Model (EAM). We employed the MPM-B to
understand how the EGFR ubiquitination threshold can be
modulated. To identify the parameters that can alter the position
of the threshold, we divided or multiplied by one order of
magnitude all the parameters of the model, and derived, for the
EGFR ubiquitination threshold xT, a normalized ‘sensitivity

parameter’ for large perturbations of each parameter kj,
SxT kj
� �
¼ DxT=xTð Þ= Dkj=kj

� �
. When SxT is greater than 1, the

system responds with a change that is larger than the variation of
the parameter. In such cases, the parameter is thus identified as a
good candidate for experimental verification. The analysis
identified only one parameter, the EGFR phosphorylation rate
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kKIN (Supplementary Fig. 5), which can be hardly modulated
experimentally.

To identify more possible targets in the model we replaced the
Hill function used to couple EGF levels and EGFR activity with
the molecular details of EGFR activation. The EAM, unlike MPM
and MPM-B, also includes EGFR opening and closing, EGF

binding to EGFR and receptor dimerization (Supplementary
Fig. 6). To address these additional reactions, we started from
models proposed previously34,42. As for the relationship between
EGFR activation and phosphorylation, based on structural studies
of the EGFR5–7,9–11, we assumed that one EGFR moiety can
phosphorylate its partner only when it is in a dimer and bound
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to EGF. Obviously, EAM (Fig. 6a and Supplementary Note 1)
carries more parameters than MPM-B; for many of these, we can
define a reasonable range of values, owing to the vast amount of
experimental and modelling data available in literature
(Supplementary Table 1, Supplementary Table 2 and Supplemen-
tary Note 2).

When we fitted the dose–response curves for EGFR phosphor-
ylation and ubiquitination with the EAM model, we obtained
results very similar to those obtained with the MPM-B (Fig. 6b).
Also in this case, the model is robust to changes in parameter
values (Supplementary Note 3 and Fig. 6c,d).

Shifting the EGFR ubiquitination threshold. We next used the
EAM to predict parameters whose consistent alteration (that is,
10-fold increase or decrease) would shift the ubiquitination
threshold. The analysis identified EGFR kinase rate, kKIN, in
agreement with MPM-B, and the total number of EGFRs, RT,
which was not present in the MPM-B (Fig. 7a). Compared with
kKIN, RT can be easily manipulated, and thus we validated the
prediction by attenuating the expression of EGFR in HeLa cells
via incomplete knockdown (Fig. 7b). Under these conditions, an
approximately fourfold decrease in EGFR levels (from B3� 105

to B7� 104 EGFRs per cell, measured by 125I-EGF saturation
binding assay, see Methods) shifted to the right the ubiquitination
curve, similarly to what obtained in simulations (Fig. 7c and
Supplementary Fig. 7).

In conclusion, guided by the EAM, we identified the total
number of surface EGFRs as a key parameter in the control of the
position of the ubiquitination threshold and confirmed this
prediction experimentally.

Uncoupling/recoupling of EGFR phosphorylation and
ubiquitination. We then interrogated the EAM as to the beha-
viour of EGFR ubiquitination and phosphorylation over a range
of receptor levels spanning from physiological levels (o105

EGFRs per cell) to the pathological levels detected in human
tumours (4106 EGFRs per cell), at different EGF concentrations
(Fig. 8a). At all EGF concentrations, the average EGFR ubiqui-
tination per receptor (normalized to the maximum ubiquitination
obtained at 100 ng ml� 1 EGF) displayed a bell-shaped curve.
Interestingly, the peak is progressively shifted towards lower
EGFR surface levels, as the EGF concentration increases (Fig. 8a).
In contrast, the peak of phosphorylation per receptor (normalized
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to the maximum phosphorylation obtained at 100 ng ml� 1 EGF)
shifts towards higher EGFR surface levels (Fig. 8a).

We tested the predictions of the model by measuring the
ubiquitination and phosphorylation dose–response curves in cell
lines expressing increasing amounts of EGFR. To perform
experiments in a homogeneous genetic background, we used
NIH 3T3 fibroblasts, which display low endogenous levels of
EGFR (B10,000 EGFRs per cell), and transfected them with an
expression vector encoding human EGFR-WT. We then selected
three NIH-EGFR clones representative of: (i) the physiological
condition (B7� 104 EGFRs per cell, EGFRphy cells);
(ii) moderate overexpression (B2� 105 EGFRs per cell,
EGFRm-ov cells); (iii) high overexpression (B6� 105 EGFRs
per cell, EGFRh-ov cells). The three clones displayed homogenous
expression of the receptor at the single cell level (Fig. 8a right),
and they displayed a comparable number of Cbl/Grb2 molecules
as HeLa cells (Supplementary Figs 8 and 9a). Analysis of the
EGF dose response for average EGFR ubiquitination and
phosphorylation per receptor in the clones confirmed the
predicted uncoupling of the phosphorylation and ubiquitination
dose–response curves, as a function of EGFR levels (Fig. 8a).

We extended our analysis to include a number of tumour cell
lines displaying increasing amounts of EGFR (HeLa, CASKI,
BT20), compared with a normal fibroblast cell line (WI38,
Supplementary Fig. 9). Also in this case a dramatic reduction in
EGFR ubiquitination was observed, at high EGF concentrations,
as a function of EGFR levels (Fig. 8b).

Our model also captured the behaviour of an EGFR mutant
(L834R) that occurs in lung cancer (reviewed in ref. 43) and
displays increased phosphorylation together with decreased
binding to Cbl and ubiquitination11,44–47. According to the
model, in this setting, Ub and pY curves are uncoupled already at
physiological levels of EGFR (Supplementary Fig. 11 and
Supplementary Note 4), providing a possible explanation of
why this mutant is tumorigenic in absence of receptor
overexpression and/or ligand overproduction.

The presence of bell-shaped curves can be explained by
the saturation of the reactions leading to both phosphorylation
and ubiquitination when EGFRs increase and EGF
concentration remains constant. When EGFRs increase above
physiological levels, low doses of EGF are diluted among the
receptors and the average phosphorylation per rececptor
decreases. However, at high EGF concentrations, the ligand is
no longer diluted, even at non-physiological levels of EGFR, and
the average phosphorylation per receptor does not decrease with
EGFR. Ubiquitination, however, decreases also in this case
because it requires Cbl, which is limiting. Thus, despite the
increase in ‘ubiquitinatable’ EGFRs, the fraction of ubiquitinated
receptor decreases at high EGF under conditions of EGFR
overexpression.

In support of this interpretation, we could re-establish
ubiquitination under conditions of EGFR overexpression, both
in silico and experimentally, by increasing the levels of Cbl
(Fig. 8c and Supplementary Fig. 10).
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Discussion
The ubiquitination threshold is determined through a mechanism
of ‘coincidence detection’ of two Tyr residues in the EGFR by a
Grb2:Cbl complex. In this mechanism, two components are
pivotal: (i) probability and (ii) cooperativity.

Experimental data demonstrated that the phosphorylation of
Y1045 and either Y1068 or Y1086 is necessary and sufficient for
full EGFR ubiquitination. The concomitant phosphorylation of
two Tyr residues occurs via a purely probabilistic process since
Tyr residues on EGFR are phosphorylated independently of each
other. This implies that, while the probability of individual Tyr
phosphorylations increases gradually with the concentration of
ligand, the probability of having two, three or more phosphory-
lated Tyr residues does not. Indeed, multiple phosphorylations
will be insignificant at low EGF concentrations and will increase
abruptly after a critical value of EGF.

In addition, our modelling efforts demonstrated that
probability alone is necessary, but not sufficient, to generate
the threshold, with cooperativity also being required. Coopera-
tivity is determined by the presence of Grb2. Although Grb2
does not contribute directly to EGFR ubiquitination, Cbl
binding to EGFR and receptor ubiquitination decrease
dramatically when Grb2 cannot bind the receptor. Indeed, one
clear prediction of the model is that if ubiquitination were to
require only one pY, it would not show a threshold behaviour.
Such a situation was verified experimentally by the Y1045þ
mutant. In this context, Cbl binds to EGFR without the
contribution of Grb2. Although greatly diminished, we could
detect ubiquitination in this mutant. However, we did not observe
any threshold. This is also the expected behaviour of a
hypothetical system in which Grb2 and Cbl do not bind
cooperatively to EGFR. In this case, the threshold effects, both
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in a–c are reported as mean±s.d. from at least three independent experiments.
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for Cbl binding and EGFR ubiquitination, are negated, as shown
by our simulations.

Downstream of Cbl binding to EGFR, the model did not
require additional specific constraints to fully account for the
threshold effect. Indeed, it was not necessary to introduce
additional layers of control of Cbl ligase activity into the model.
This is because Cbl binding to the EGFR displays a threshold
profile very similar to the EGFR ubiquitination curve. Thus, we
propose that Cbl binding is the major factor determining the
generation of the threshold.

In summary, cooperativity necessitates that a combination of
multiple Tyr residues is required for ubiquitination, while the
probabilistic mechanism guarantees that such a combination
arises naturally only at high EGF concentrations.

The MPM-B model consists of two modules: phosphorylation
(MPM) and Cbl and Grb2 binding (B). In both modules, we
aimed to use the most standard mathematical representations of
the chemical reactions: phosphorylation is described as a standard
multisite chain of reactions, Grb2 and Cbl binding is simple mass
action, and cooperativity is introduced in the canonical way. The
key observations on which we built the MPM-B are directly
embedded in the wiring of the network: (i) in the model, the
dissociation constant of Cbl for EGFR decreases in the presence
of Grb2, in agreement with the fact that Grb2 stabilizes the
binding between EGFR and Cbl; (ii) in the free-free regime
phosphorylation of Tyr residues is inherently independent of
their number (which also allowed us to restrict the analysis to
the three critical Tyr residues); (iii) the model traces back the
ubiquitination threshold to Cbl binding to the EGFR. For the
choice of parameters, we note that many of them were either well
constrained or were experimentally determined. EGFR activation
was modelled by introducing a phenomenological function,
which spared us from introducing many parameters that describe
the actual dynamics of EGFR activation. Phosphorylation was
characterized by fitting the dose–response curves. The binding of
Cbl and Grb2 to EGFR depended on protein concentrations
and binding affinities: protein concentrations were carefully
measured, while binding affinities were indirectly determined by
fitting ubiquitination dose–response curves under various
experimental conditions, within well-defined experimental con-
strains taken from published studies (Supplementary Table 1).

Not surprisingly, the relative simplicity of the model came with
some cost. Despite the overall agreement, there are areas in which
we noticed some divergences between modelling and experi-
ments. First, the experimental curves of EGFR ubiquitination
always showed a higher degree of sigmoidicity than the in silico
simulations, suggesting that the analogical-to-digital conversion
operating in real life is more efficient than in model predictions.
Second, the overexpression of Cbl in HeLa cells does not
reproduce model predictions in exact quantitative terms. In this
case, model predictions and experiments can be made to agree
quantitatively only if we assume that 1/3 of the overexpressed Cbl
molecules are indeed capable of binding to the receptor. The
possibility exists that in our model we lack some parameters of
the Cbl regulatory network (for example, phosphorylation, homo-
and heterodimerization, counteraction by deubiquitinases40,48–50)
that, although not essential to generate the threshold, might help
to refine the mathematical description of the system. Future
versions of the model will deal with these discrepancies.

The threshold effect predicted by the MPM-B was robust to
changes in parameter values, a property that was verified in real
cells. In particular, deletion of Tyr residues (except for Y1068,
Y1086 and Y1045), Cbl overexpression and the expression of a
Cbl-dominant-negative mutant Cbl70Z (modelled as down-
regulation) did not displace the threshold, in the modelled and
experimental settings. Moreover, although the biological system,

and the model as well, are not at steady state, qualitatively the
properties of the model (that is, the threshold, its dependency on
EGFR level and the lack of effect of perturbations of Cbl on the
threshold) do not strictly depend on time (not shown).
Robustness is the result of different mechanisms operating in
the different modules of the network: Tyr residues do not affect
each other’s phosphorylation and Cbl overexpression does not
affect the threshold because Cbl is limiting in the system; thus, an
increase in Cbl leads to the same proportional increase in EGFR
ubiquitination for all EGF concentrations.

To identify perturbations that might alter the position of the
threshold, we had to expand the MPM-B to create the EAM,
which includes the molecular details of EGFR activation that, in
the MPM-B, were hidden in the phenomenological relationship
between EGF and EGFR activation. Interestingly, the EAM also
displayed a remarkable robustness to parameter changes.
Accordingly, most of the parameters of the model could not be
obtained simply by fitting the experimental data (Supplementary
Note 2), but they had to be constrained experimentally; for this
reason we either measured them directly or obtained their values
from the literature (see Supplementary Table 1). The increased
complexity of the EAM led to the generation of a prediction,
experimentally verified, that the position of the threshold can be
displaced by reducing EGFR levels, since it reduces the capability
of EGFRs to dimerize and to be activated. A key element is that
the dimers are not stable, being continuously formed and
disrupted, in agreement with recent data51.

An important validated prediction of the EAM concerns the
response of EGFR ubiquitination to variations in EGFR levels.
The system exhibits a complex behaviour that depends both on
receptor levels and ligand concentration, and appears to have
evolved in such a way that the maximal response is in the
physiological range of EGFR levels. At these levels (indicated by a
shaded area in Fig. 8a), the system responds to increasing EGF
concentration with a congruent increase in the relative levels of
EGFR ubiquitination. Since EGFR ubiquitination is coupled to
the internalization of the receptor through the NCE pathway21,23,
this means that over the rather wide physiological range of EGFR
(spanning one order of magnitude), the cell is well equipped to
respond to increasing ligand concentration with increased
receptor degradation, to protect itself from overstimulation. The
situation is rather different if one considers supraphysiological
EGFR levels. Under these conditions, the model predicted,
and experiments confirmed, that the relative ubiquitination of
the receptor decreases much more abruptly than receptor
phosphorylation (Fig. 8a), which would translate in a faster
relative attenuation of NCE-mediated degradation with respect to
signalling.

These findings are highly relevant to human cancers. In
tumours, EGFR is frequently overexpressed. Our data show that,
both in an isogenic model and in tumour cell lines, there is a
progressive uncoupling of EGFR phosphorylation and ubiquiti-
nation at the supraphysiological EGFR level. The effect is evident
for EGF concentrations above 1 ng ml� 1: a condition frequent in
human tumours, in which overexpression of EGFR is frequently
accompanied with overproduction of its ligands52–54 (and
references therein). In other terms, the optimization of the
system for physiological EGFR levels also harbours an intrinsic
weakness, which is exploited by cancer cells to obtain a
proliferative advantage. In turn, this point of weakness, now
identified, might constitute a suitable point of intervention for
therapeutic purposes.

Methods
EGFR models. We simulate three different models, with increasing complexity by
means of ordinary differential equations. MPM (Fig. 2d,e) keeps track of EGFR
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phosphorylation only. EGFR activation is described as a Hill function of [EGF].
MPM-B (Figs 4 and 5 and Supplementary Figs 2,3b,c,4 and 5) is MPM with
the addition of Grb2 and Cbl binding, to EGFR and to each other. In EAM
(Figs 6b–d,7a,c and 8a–c and Supplementary Fig. 11), the complete model, EGFR
activation is described in molecular detail, while the binding reactions for Cbl and
Grb2 are the same as in MPM-B. Further details for the models used in the study
can be found in the Supplementary Note 1.

Simulations were carried out with XPP-AUT (http://www.math.pitt.edu/
Bbard/xpp/xpp.html). Initial conditions were chosen to have all species at the
steady state, in the absence of EGF stimulus. At time zero, we stimulate the cells
with EGF. Parameter estimation was performed using a global optimization
method based on simulated annealing, followed by a local optimization based on
the simplex method. SBML files are available at biomodels.org (EAM:
MODEL1505190000; MPM-B: MODEL1505190001).

Reagents and antibodies. EGF was from PeproTech; 125I-EGF from PerkinElmer.
Antibodies were as follows: an in-house polyclonal anti-EGFR against aa
1172–1186 of human EGFR (working concentration in immunoblot, IB:
0.06 mg ml� 1); a monoclonal anti-EGFR (m108 hybridoma, directed against the
extracellular domain of human EGFR, American Type Culture Collection
(ATCC)55, working concentration: in immunofluorescence, IF, 3 mg ml� 1);
anti-pY (clone 4G10, Millipore #05–231; IB working concentration: 1 mg ml� 1;
working concentration in immunoprecipitation, IP, 10 mg for 1 mg of lysate); anti-
Ub (P4D1, Santa Cruz Biotechnology, #sc-8017, used in all anti-Ub IBs at a
working concentration of 0.2 mg ml� 1); anti-Ub FK2 (Enzo Life Science, #BML-
PW8810, used in all ELISA assays, for working concentration see section below);
anti-EGFR phospho-specific antibodies (Cell Signaling, pY1045 #2237, pY1068
#2234, IB working dilution: 1:1,000); in-house polyclonal anti-alpha-tubulin raised
in rat (MAB1864, clone YL1/2, IB working concentration: 1.87 mg ml� 1); anti-
Grb2 (Clone 81, BD Biosciences, #610112, IB working concentration:
0.125 mg ml� 1); anti-Cbl polyclonal (clone 15, Santa Cruz Biotechnology, #sc-170,
IB working concentration: 0.4 mg ml� 1) and monoclonal (BD Bioscience, #610442,
IF working concentration: 0.5 mg ml� 1) antibodies.

Constructs and cell lines. HeLa, NIH 3T3, WI38, CASKI and BT20 cells were
obtained from ATCC and cultured following the instructions of ATCC. All human
cell lines were authenticated at each batch-freezing by STR profiling (StemElite ID
System, Promega). All cell lines were tested for mycoplasma at each batch-freezing
using PCR56 and biochemical assay (MycoAlert, Lonza). HeLa cells transfected
with Cbl or Cbl70Z were previously described57. The EGFR mutants were stably
expressed (see ref. 21) in NR6 cells, which are mouse fibroblasts devoid of
endogenous EGFR58. EGFR surface expression in the transfectants was assessed by
saturation binding with 125I-EGF (ref. 21).

Human EGFR WT was stably expressed in NIH 3T3 cells. Single clones were
isolated and characterized for EGFR surface expression levels and homogeneity by
immunofluorescence (IF; Fig. 8a, right panel). Briefly, cells were fixed in 4%
paraformaldehyde and stained (before permeabilization) with the monoclonal anti-
EGFR antibody that recognizes the extracellular domain (m108). Cells were then
incubated with Alexa488-conjugated secondary antibody (Molecular Probes) and
stained with 4,6-diamidino-2-phenylindole. Clones expressing different levels of
surface EGFR, assessed by saturation binding with 125I-EGF, were selected for
further analysis (Fig. 8a, right panel). These clones were subsequently infected with
an inducible lentiviral construct carrying cDNA encoding human c-Cbl (pSLIK-
neo vector59). This construct was engineered starting from a c-Cbl cDNA kindly
provided by Y. Yarden (Weizmann Institute, Israel). All clones were sequence-
verified; details are available on request.

Stable bulk populations were obtained after 10 days of neomycin treatment
(400 mg ml� 1). On doxycycline treatment (0.5 mg ml� 1 for 16 h), Cbl was
expressed at levels B80–100-fold greater than those of the endogenous protein
(assessed by densitometry analysis of the IB at different exposures, Fig. 8c) and
displayed a homogeneous expression level (assessed by IF, Supplementary Fig. 10).
The same clones infected with the empty vector were treated with doxycycline in
the same way and were used as control (Fig. 8c).

EGF treatment was for 2 min at 37 �C. Under these conditions, EGFR
internalization is negligible and the observed phosphorylation and ubiquitination
events occur primarily at the PM21.

Saturation binding assay. Serum-starved cells were incubated on ice for 6 h in the
presence of 125I-EGF (100 ng ml� 1: 10 ng ml� 1 of 125I-EGF plus 90 ng ml� 1 of
cold EGF) in serum-free medium supplemented with 0.5% BSA. Cells were then
washed three times with ice-cold PBS and solubilized in 1 M NaOH. After cor-
rection for the hot/cold dilution, the number of receptors on the surface was
deduced from the specific activity of the labelled ligand. Nonspecific binding was
measured in the presence of a 300-fold excess of cold EGF, and was never 43–10%
of the total counts.

EGFR knockdown in HeLa cells. Silencing of EGFR in HeLa cells was achieved by
double transient transfection, using OligofectAMINE (Invitrogen), of the following
short interfering RNA (siRNA) oligo (Stealth siRNA from Invitrogen): 50-CCG

CAGCAUGUCAAGAUCACAGAUU-30. The sequence of the mismatched control
oligo was: 50-CCGACGUGUAACUAGCACGACAAUU-30. Cells were analysed
48 h after the second transfection.

Biochemical assays. Cell lysis was performed in RIPA buffer (50 mM Tris-HCl,
150 mM NaCl, 1 mM EDTA, 1% Triton-X100, 1% sodium deoxycholate, 0.1%
SDS), plus protease inhibitor cocktail (CALBIOCHEM) and phosphatase inhibitors
(20 mM sodium pyrophosphate pH 7.5, 50 mM NaF, 2 mM PMSF, 10 mM Na3VO4

pH 7.5). To exclude the presence of co-immunoprecipitating proteins, for the
ELISA assays, lysis was performed in RIPA buffer containing 1% SDS, followed by
clarification for 1 h at 120,000 g and dilution to a final SDS concentration of 0.2%.
Immunoprecipitations (IPs) were performed starting from 500 mg of lysates, with
the appropriate antibodies. IPs were incubated for 2 h at 4 �C and then Protein G
(Zymed) was added for 1 h. After extensive washing with RIPA buffer, IPs were
eluted in Laemmli buffer. Immunoblotting (IB) was performed as described
previously57,60. Quantification of blots was performed with Photoshop.

Determination of the number of Cbl and Grb2 molecules. To calculate the
number of Grb2 or Cbl molecules in HeLa (Fig. 3b), NIH-EGFR (Supplementary
Fig. 8) or CASKI/BT20 (Supplementary Fig. 9d) cell lysates, we compared signal
intensities in anti-Grb2 or anti-Cbl IB of increasing amounts of cellular lysate with
known amounts of purified Grb2 or Cbl protein. From the signal comparison and
taking into account Avogadro’s number, we calculated the number of Grb2 and Cbl
molecules per mg of lysate. After an additional correction for the number of HeLa
or NIH-EGFR cells corresponding to 1 mg of lysate (measured in the same
experiment), we obtained the total number of Grb2 and Cbl molecules per cell. To
calculate the number of active Cbl molecules (Cbl pY), we IP Tyr-phosphorylated
Cbl, using the anti-pY antibody, from increasing amounts of lysate (prepared in
RIPA buffer containing 1% SDS) from cells stimulated with EGF (100 ng ml� 1) for
2 min. Immunoprecipitates were then IB with anti-Cbl, and the signal intensities of
the anti-Cbl bands were compared with the signal intensities of anti-Cbl bands in
IB cellular lysates and purified Cbl protein. We corrected the obtained values for
the efficiency of IP (estimated 490%) and obtained the % of Cbl in the lysate that
is phosphorylated (active) on stimulation with EGF (100 ng ml� 1) for 2 min.

ELISA assays for EGFR ubiquitination and phosphorylation. For the ELISA-
based assays shown in Fig. 8 and Supplementary Fig. 7, we used the Dissociation
Enhanced Lanthanide Fluoroimmunoassay technology from Perkin Elmer. This
technology is based on sandwich recognition of a target protein by a capture
antibody and a detection antibody. The capture antibody is immobilized on a solid
surface (microwells) directly through non-covalent bonds. After the addition of the
analyte (appropriate cellular lysate), the detection of signals relies on a lanthanide
(Europium)-conjugated antibody that is able to produce a fluorescent signal on
enhancement with acidic enhancement buffer. Lysates were prepared in RIPA/1%
SDS buffer and diluted to 0.2% SDS before the incubation step. Plate preparation,
analyte incubation and antibody detection were performed according to the
manufacturer’s instructions (additional details are in ref. 21).

As capturing antibodies the following were used: monoclonal antibodies against
Ub (FK2, 5 mg ml� 1), pY (4G10, 5 mg ml� 1), pY1068 (1mg ml� 1), pY1086
(1 mg ml� 1) or EGFR (m108, 1 mg ml� 1); as detecting antibody the following were
used: in-house polyclonal anti-EGFR directed against aa 1172–1186 of human
EGFR (1mg ml� 1).

Densitometry and statistical analysis. Quantification of blots was performed
with Photoshop. In all experiments, densitometry was performed on different
exposures of the blots and results were obtained in the linear phase of the exposure.
Average results, calculated from at least three independent experiments, are shown.
Error bars in the plots represent the s.e.m.
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