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1 Abstract—Solving very-large-scale optimization problems 

frequently require to decompose them in smaller subproblems, 

that are iteratively solved to produce useful information. One 

such approach is the Lagrangian Relaxation (LR), a general 

technique that leads to many different decomposition schemes. 

The LR produces a lower bound of the objective function and 

useful information for heuristics aimed at constructing feasible 

primal solutions. In this paper, we compare the main LR strat-

egies used so far for Stochastic Hydrothermal Unit Commit-

ment problems, where uncertainty mainly concerns water 

availability in reservoirs and demand (weather conditions). The 

problem is customarily modeled as a two-stage mixed-integer 

optimization problem. We compare different decomposition 

strategies (unit and scenario schemes) in terms of quality of 

produced lower bound and running time. The schemes are 

assessed with various hydrothermal systems, considering dif-

ferent configuration of power plants, in terms of capacity and 

number of units. 
Index Terms— Lagrangian Relaxation, Mixed-Integer Line-

ar Programming, Hydrothermal Stochastic Unit Commitment. 

I. NOMENCLATURE 

pt Vector of thermal power generation (MW). 

u Vector of commitment status of thermal plants. 

up Vector of startup status of thermal plants. 

ud Vector of shutdown status of thermal plants 

F Vector of the thermal production cost (R$). 

ph Vector of hydro power generation (MW). 

v Vector of volume in the reservoirs (hm3). 

d Vector of hydro outflow, i.e., sum of turbined 

outflow and the spillage (m3/s). 

s Vector of spillage (m3/s). 

phg Vector of generation of a group of identical units 

in the same hydro plant (MW). 

q Vector of turbined outflow by a group of identical 

units in the same hydro plant (m3/s). 

z Vector of commitment status of the group of 

units. 

n Index of nodes in the scenario tree (n = 1, N). 

N Number of nodes in the scenario tree. 

pn Probability of node n. 

fn Operational cost function of node n, given by the 

thermal generation and startup costs (R$). 

I Number of thermal plants, such that i=1, I. 

R Number of hydro plants, such that r=1, R. 

Jr Number of groups in the hydro r, with j=1, Jr. 
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Ω Number of scenarios, such that ω = 1, Ω. 

N(ω) Set of all the nodes of scenario ω. 

CA Number of cascades. 

pta Vector of auxiliary variables for thermal power 

generation (MW). 

pha Vector of auxiliary variables for hydropower 

generation (MW). 

va Vector of auxiliary variables for volumes in 

reservoirs (hm3). 

da Vector of auxiliary variables for hydro outflow 

(m3/s). 

Resn Spinning reserve requirement for node n (MW). 

λpt, γpt Dual variables vectors (Lagrange multipliers) pt 

(R$/MW). 

λph, 

γph 

Dual variables vectors related to ph (R$/MW). 

λres Dual variables vectors related to spinning reserve 

constraint (R$/MW). 

λv, γv Dual variables vectors related to v (R$/hm3).  

λd Dual variables vectors related d (R$∙s/m3). 

ΦD Set of subproblems a), one for each node. 

ΦT Set of subproblems b), one for each thermal plant. 

ΦH A single subproblem c) concerning all hydro 

plants. 

ΦHC Set of subproblems d). 

ΦHA Set of subproblems e). 

ΦHE Set of subproblems f). 
C

  UC subproblem associated with scenario . 

ΦX Probability for method X. 

fm Multiplying factor. 

ηX (pc) Performance metric for method X to solve case pc. 

η*
 (pc) Best performance metric found with whatever 

method. 

pc A case of the problem, where p belongs to a 

representative set of cases. 

fi
3 Startup cost for thermal plant i (R$). 

yrn Incremental inflow of hydro r and node n (m3/s). 

vr
target Volume target for hydro r at the end of horizon 

(hm3). 

fpgh Hydro production function  

CH Number of hydro chains, such that ch=1, CH. 

α Thermal operational cost coefficients. 

Dbn Demand requirement at bus b and node n (MW). 

Γ Power transfer distribution factor. 

Other nomenclatures with superscript max or min repre-

sents the limits values for a specific variable vector. 

II. INTRODUCTION 

OST real-world problems can be mathematically for-

mulated using nonlinear functions and integer varia-
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bles, which leads to hard Mixed-Integer Nonlinear Problems 

(MINLP). In general, the constraints of these MINLPs have 

a high degree of structure, encouraging the use of techniques 

that decomposes them. One of the most applied such meth-

ods is the Lagrangian Decomposition or Lagrangian Relaxa-

tion (LR) [1], [2] in which the original problem is decom-

posed into several independent subproblems, possibly with 

different sizes and mathematical nature. For further basic 

information of LR, as well as its applications, see references 

[3], [4]. The LR is very flexible: several decomposition 

schemes can be developed for the same problem, with com-

plex trade-offs between the computational cost and the quali-

ty of the results [1]. In this paper, we assess this flexibility 

applying the LR in electrical power systems based on real 

data. The main information produced by LR approaches are 

bounds on the optimal value of the problem and the corre-

sponding Lagrangian multipliers, that have possible uses 

(e.g., to estimate prices of resources). However, they also 

provide valuable primal information, such as “convexified” 

primal solutions that can be used as the basis of heuristic 

approaches for producing feasible solutions [1], [5], and 

“convexifed” future value functions [6] that can also be used 

for the bidding problem [7]. The LR requires the solution of 

a convex nondifferentiable optimization problem, for which 

one of the most effective approaches is the Bundle Method 

(BM) [8], [9]. One of the advantages of the BM is allowing 

independent models (disaggregate bundles) for an objective 

function given by a sum of separate terms [10], [11], as is 

the case in Unit Commitment problems. When some of these 

models (components) are simple to solve (continuous and 

linear optimization problems) they can be treated in a special 

way by basically copying the corresponding constraints in 

the formulation of the master problem, instead of iteratively 

approximating them by inner linearization. This has so far 

been applied to different problems [12], but we will show 

that the approach is very useful for Stochastic Unit Com-

mitment (SUC) problems. In SUC, the goal is finding a 

production schedule that satisfies the unit’s and system con-

straints considering the uncertainties, which in our case are 

related to inflows and demand. This optimization model is a 

step of the planning studies, where the system operator needs 

to determine the power plants operation for a day-ahead in a 

hydrothermal power system. The resulting problem is a 

large-scale, non-convex MINLP, which is extremely chal-

lenging to solve. 

In the literature, there are basically two kinds of decompo-

sition strategies based on LR for the SUC: Scenario Decom-

position (SD), and Unit (or Space) Decomposition (UD). The 

SD references [13], [14] separate the stochastic problem in 

many sets of deterministic subproblems, using methods such 

as Progressive Hedging [15] and Branch and Bound [16] 

combined with LR. The UD references [17], [18] rather 

decompose the problem by power plant, using stochastic 

Lagrange multipliers related to the expected value of each 

scenario. Different techniques exist to represent the uncer-

tainties, such as chance constraints [19]. The work [20] 

compares different approaches to represent the uncertainties 

in large scale problems. The extensive review [19] presents 

and describes the main strategies to model and to solve the 

SUC. 

The aim of this paper is to compare the two main decom-

position strategies, SD and UD, using the same algorithm to 

solve the SUC. Therefore, we avoid biased results, since we 

are applying and setting the same solver for both. Besides, 

we use several different cases, considering different configu-

ration of power plants, in terms of capacity and number of 

units. In addition, we assess the impact of the “easy compo-

nent” technique [12] to improve the convergence for some 

kinds of decomposition that have continuous and linear 

problems. The results are assessed by the lower bound, qual-

ity of the solutions provided by Lagrangian heuristics, and 

running time. 

This paper is organized as follows: in sections II and III 

we describe the mathematical representation of the SUC and 

briefly reference and comment the data for all the test cases. 

In section IV, we present several variants of the decomposi-

tion strategies for the SUC, i.e., UD and SD. The computa-

tional comparison between the decomposition is presented in 

section V. Finally, in section VI, we state the conclusion and 

some recommendations regarding the decomposition ap-

proaches. 

III. UNIT COMMITMENT DESCRIPTION DATA 

A very common problem in power systems operation is to 

determine in advance which generating units will operate 

and their level of generation for the day ahead. This depends 

on the electrical energy market regulation, i.e., if the genera-

tion of the plants is defined by an Independent System Oper-

ator (ISO) centrally or by offer bids. This paper deals with 

the first case, such as the Brazilian one, in which the ISO 

executes a series of planning studies. The Unit Commitment 

(UC) problem is the last part of these studies, closer to the 

real-time operation, so a detailed mathematical model is 

required. In this section, we present the mathematical repre-

sentation of each component of the power system, while in 

the following section we discuss the complete formulation 

for a general hydrothermal SUC problem. 

For our study we use six hydrothermal test systems de-

fined in Table I, considering different power capacity and 

number of units. The systems A to E have the same trans-

mission system, with 46 buses and 95 lines, used for Sec-

tions VI-A to VI-C. System DD is larger, it has an 82-bus 

and 143-lines transmission system and is discussed in Sec-

tion VI-D. The hydro plants are based on real information of 

the Brazilian system, where the data have been extracted 

from a data base of the HydroByte software [21]. The ther-

mal plants data is instead taken from the UC instances of 

[22]. Finally, the transmission system and demand data for 

each bus were adapted from an equivalent system from the 

south of the Brazilian electric power system. All the data is 

available at http://www.di.unipi.it/optimize/Data/UC.html. 

We now discuss the mathematical representation and a de-
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scription of the data for each test system. 

 
A. Thermal Power Plants 

Thermal production cost depends on the fuel cost and var-

ies accordingly to the power generation, following a convex 

quadratic relationship. This nonlinear relation is approximat-

ed using the perspective cuts approach [23], resulting in 

linear constraints and a variable to represent the operational 

cost of each thermal plant. The thermal operation has some 

technical conditions that must be satisfied, such as genera-

tion limits, minimum up and down times and ramp genera-

tion limits. All these constraints are represented by means of 

what are currently considered the best mixed-integer linear 

formulation for thermal units [24], [25], as shown in the 

Appendix. We succinctly denote the corresponding set of 

constraints as 
T ( , , , , ).C pt u up ud F  (1) 

B. Hydro Power Plants 

Hydro plants produce energy using the potential energy of 

the water in the reservoir. The energy transformation process 

depends on the net head, the turbine and generation efficien-

cies and the units’ turbined outflow. This complex relation-

ship results in a non-convex function [26] that in this paper 

is simplified to mixed-integer linear constraints. This simpli-

fication includes the representation of a group of identical 

units by a single equivalent unit and a piecewise lineariza-

tion of the production function for each equivalent unit. The 

following figures illustrate the simplified representation; 

better ones could be used, as in [27]–[29]. Figure 1 repre-

sents the power generation for a hydro plant with four iden-

tical units, while Figure 2 presents the final piecewise-linear 

nonconvex model that we have used.  

 

 
The hydraulic connection between reservoirs (water flow 

balance equation) and the operational limits are taken into 

account as standard mixed-integer linear equations [26], 

[30]. The set of hydro constraints is denoted by 
H ( , , , , , , ).C ph v d s phg q z  (2) 

The operation of the reservoirs is coordinated with medi-

um-term scheduling problem by means of target volumes at 

the end of the scheduling horizon, represented by linear 

constraints that are also included in (2). 

C. Transmission network 

The electrical network constraints are represented by DC 

power flow equations, where are included load and spinning 

reserve requirements. In Brazil, only hydro plants provide 

spinning reserve. The transmission network constraints are 

denoted by 
D ( , ).C pt ph  (3) 

IV. TWO-STAGE UNIT COMMITMENT MODEL 

The hydrothermal SUC aims at finding the optimal gener-

ation schedule while meeting operational and system wide 

constraints at a minimum expected cost. The latter takes into 

account a level of uncertainty due to the high dependence of 

the hydro production and the demand on the weather condi-

tions. Indeed, although Brazil have large reservoirs, approx-

imately 55% [31] of the hydro plants are run-of-river ones, 

which strongly depend on the inflow to generate, so uncer-

tainties on its values directly affect the operation of the pow-

er system. The uncertain data are the system load require-

ments (set CD) and the water inflows (set CH) represented by 

scenario trees. Figure 3 illustrates the uncertainty: two reali-

zations of inflow and load profile result in four scenarios in 

the second stage. Each stage refers to 24 hours, representing 

the operation of one day. As a consequence, the correspond-

ing scenario tree has a total of 120 nodes. 

 
The model for the hydrothermal SUC problem is given 

by: 

 

TABLE I 

TEST SYSTEMS FOR HYDROTHERMAL SUC PROBLEMS 

 
Number of 

plants 

Generation 

capacity (%) 

Generation 

capacity (MW) 

Storage 

capacity (hm3) 

 H T H T   

A 7 14 25.0 75.0 21,297.5 5,635.1 

B 7 14 75.0 25.0 9,224.0 9,309.0 

C 10 10 50.0 50.0 16,132.2 10,737.5 

D 14 7 76.3 23.7 16,046.5 14,944.1 

E 14 7 25.2 74.8 9,671.0 5,507.2 

DD 28 15 74.8 25.2 29,922.6 44,043.99 

H stand for hydro and T for thermoelectric power plants. 

 
Fig. 1. Equivalent nonconvex production function. 

 
Fig. 2. Linear piecewise model of the equivalent unit. 

 
Fig. 3. Illustration of the uncertain data. 

Initial volume

Total water inflow

Load profile
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N

1

min ( , )n n in in

n

p f up F


   (4) 

H

T

D

s.t.: ( , , , , , , ),  

( , , , , ),                   ,

( , ).                          

n rn rn rn rn jrn jrn jrn

in in in in in in

n in rn

C ph v d s phg q z n

C pt u up ud F n i

C pt ph n







 (5) 

In the compact formulation (4)-(5), each vector variable is 

related to a specific node of the scenario tree. For instance, 

variable phrn represents the power of hydro plant r and node 

n. The complete formulation of the optimization model and 

the composition of each set of constraints are presented in 

the Appendix. 

V. DECOMPOSITION STRATEGIES 

Applying LR to problem (4)-(5) can be done in different 

ways. The most common approaches are the unit decomposi-

tion (UD) and the scenario decomposition (SD). In the for-

mer, the whole problem is splitted by its physical character-

istics, typically a subproblem for each power plant. On the 

other hand, the SD separates the stochastic problem in many 

deterministic UC subproblems, each one related with a spe-

cific scenario. The different strategies are illustrated in the 

Figure 4, which are described in the next sections. 

 

A. Unit Decomposition 

Considering the coupling constraints of problem (4)-(5), 

the most logical is to separate the problem by it characteris-

tics: a set of subproblems for thermal plants, another set for 

all the hydro plants, and yet another set for the transmission 

network. Further, each set of subproblems can be divided 

even more. Given the predominance of hydro generation in 

Brazil, we propose three schemes for the UD. These 

schemes are illustrated in Figure 5 for a problem with three-

time periods in each stage, two scenarios, five hydro plants 

(located in two cascades), three thermal plants and an elec-

trical network with seven buses and ten lines. The continu-

ous line represents the time coupling between each node (in 

this paper, one-hour period), and dotted line indicates that 

there is not time coupling. 

The first scheme (UD1) splits problem (4)-(5) in: 

a) many Linear Programing (LP) subproblems, repre-

senting the electrical network constraints; 

b) many Mixed-Integer Linear Programming (MILP) 

subproblems, each one representing a thermal plant; 

c) a MILP subproblem, coupled in time and space, rep-

resenting the operation of all the hydro plants. 

 
Figure 6 shows coupling structure of UD1. 

 
To decompose the problem, we apply the variable splitting 

technique [32], resulting in the following dual problem: 

 UD1

N I
min

1 1

R

1

, min ( , )

( )

( )

n in in

in in in in i

n i

rn rn rn

r

pt ph f up F

pt pta pt u pt

ph pha ph

 



    


     




   



 



 (6) 

 

 

 

H

T

D

,

, ,

s.t. : ,

, ,

,

, ,

,

,

,

,

,

,

in

n in rn

in in in in in

n rn rn rn rn jrn jrn jrn

C pt u up

C pt

C ph v d s phg q z

a pha

n id F

n

n

u







 (7) 

The dual function (6) can be evaluated by means of 

(1+I+N) independent subproblems. 
I N

UD1 H T D

1 1

i n

i n 

        (8) 

The second scheme (UD2), which derives from UD1, is 

obtained applying the same decomposition and relaxing the 

spinning reserve constraints. The set of subproblem a) and b) 

are the same, but the subproblem c) changes as follows: 

d) a set of MILP subproblems, representing the opera-

tion of the hydro plants for each cascade. 

In this case, besides the strategy used in UD1, the spinning 

reserve constraint is relaxed applying the classical LR tech-

nique. Despite this constraint formally belongs to the set CD, 

it just couples the operation of hydro plants. 

 
The new set for hydro constraints CHC in Figure 7 is de-

 
Fig. 4. Illustration of unit and scenario decomposition schemes. 

UD

SD

n = 1      2      3 

4      5      6

7      8      9

 
Fig. 5. Illustration of different kinds of unit decomposition. 

UD1 UD2 UD3

 
Fig. 6. Illustration of the relationship between variables for UD1. 
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Fig. 7. Illustration of the relationship between variables for UD2. 
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fined for each cascade, as shown in (9)-(10). 
UD2

N I
min

1 1

R

1

JR
m

1

H

1

C

ax

              s.t. :  ( , ,

( , , ) min ( , )

( )

( )

,

r

rn

n in in

in in in in i

n i

rn rn rn

r

rn rn r

n jr jrn r

n

n n

r j
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pt pta pt u pt

ph pha ph

res p

C ph

hg z ph Res

v d
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     


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

   

  
        

  

 



 

T

D
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,  ,

, ,

       

, , ,

( ,

,

, ,

( , )

, )

)rn jr

n in r

in in in in i

n jrn j

n

n

rn

in

s n r

C pta

C pt u up u

p

R

h

d F

a

phg q

n i

n

z  





 (9) 

The dual function in (9) can be evaluated by (CA+I+N) 

independent subproblems, as follows: 
CA I N N

UD2 HC T D

1 1 1 1

ca i n n n

ca i n n

res Res
   

              (10) 

The third scheme (UD3 – Figure 8), which derives from 

UD2, separates even more the hydro set of subproblems. In 

UD3, the set of subproblems a) and b) are the same, but the 

set of subproblems d) in UD2 changes to: 

e) a set of LP subproblems, representing the constraints 

between the reservoirs for each cascade; 

f) a set of MILP subproblems, each one representing the 

operation of a hydro plant. 

 
To achieve UD3 we use the same relaxation strategy used 

in UD2, but splitting two additional variables: v and d. The 

new sets CHA and CHE, shown in Figure 8, derive from CH 

without the spinning reserve constraint. The first represents 

hydraulic constraints of the reservoirs, defined for each cas-

cade, and CHE represent the constraints of the operation for 

each hydro plant. Mathematically, UD3 is given by: 



UD3

N I
min

1 1

1

JR
max

1 1

( , , , , ) min ( , )

( )

( ) ( )

      ( )

r

n in in

in in in in i

n i

R

rn rn rn rn rn rn

r

rn rn rn

n jr jrn rn n

r j
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pt pta pt u pt

ph pha ph v va v

d da d
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
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
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

       

   

  
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j

n r

r
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r

C pt u up u

C v

C ph v d s ph

n

d F

C pta pha

r R

n r

a d

n i

s

n

g q
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z


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

 







 (11) 

The dual function (11) can be evaluated by 

(CA+N∙R+I+N) independent subproblems. 

UD3

CA N R I N N
HA HE T D

1 1 1 1 1 1

ca rn i n n n

ca n r i n n

res Res
     

 

            
 (12) 

B. Scenario Decomposition 

This strategy separates SUC in single-scenario determinis-

tic subproblems, applying the variable splitting technique in 

the linking variables of the first stage; in other words, the 

non-anticipativity constraints are relaxed. In this case, the 

constraints are rearranged and the sets are separated by sce-

nario. For instance, all the constraints belonging to nodes of 

the scenario one, N(1), make up C1
C, which is derived from 

CT, CH and CD regarding the nodes of scenario one. Figure 9 

illustrates the sets of constraints for the problem of Figure 4, 

representing the variables that couples the subproblems. The 

set Nx represents all the nodes of period x. 

 
Relaxing the non-anticipatively constraints results in the 

following dual problem: 

 

 
 

 
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The dual function (13) can be evaluated by several one-

scenario subproblems (Ω), as follows: 

SD C

1







    (14) 

C. Algorithm 

The Lagrangian duals corresponding to all of the strate-

gies described in the previous section are solved by means of 

a Bundle-type method [33]. In particular, it is a “general-

ized” Bundle method [34], in that the Master Problem (MP) 

does not necessarily need to be a Quadratic Program. For 

this work, we used the linear (box) stabilizing term, which is 

known to significantly reduce master problem time w.r.t. the 

usual quadratic term [12]. Solving the MP provides an esti-

mate of the optimal Lagrangian multipliers that are fed to the 

 
Fig. 8. Illustration of the relationship between variables for UD3. 
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Fig. 9. Illustration of the relationship between variables for SD. 
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subproblems, which in turn provide dual function values and 

subgradients that are used to update the MP, iterating the 

process until convergence is attained. The problem solved in 

this work has a dual function with a disaggregated structure, 

i.e., the dual function is a sum of many components, as can 

be seen in (8), (10), (12) and (14), and in similar works [10]. 

The Bundle algorithm is implemented in a C++ code devel-

oped by the third author, which is available upon request. 

Both the MP and the subproblems are solved by means of a 

general optimization solver. Table II presents, for the differ-

ent strategies, the size of the dual problem and associated 

subproblems. 

 
The disaggregated model allows to use the “easy compo-

nent” technique [12], whereby some of the components 

(subproblems), the “easy” ones, are included into the MP. 

Without this technique, the subproblems are modeled in the 

MP as piecewise-linear approximations, which are improved 

throughout the iterations. On the other hand, using the tech-

nique continuous and linear subproblems are actually mod-

eled in the MP, and consequently solved exactly. This in-

creases its size, but provides an exact description of the easy 

components, instead of an approximated iteratively refined 

by means of cuts. All the LP subproblems are candidate to 

be treated as easy components. 

VI. RESULTS 

All the results have been obtained on an Intel Xeon CPU 

X5690 (3.47 GHz) computer with 32.0 GigaBytes of RAM. 

The LP and MILP subproblems are solved using the 6.0.52 

Gurobi optimization solver. In the tests, we have various 

hydrothermal systems, different initial conditions and dis-

tinct scenarios trees to produce a wide range of results. The 

results are compared mainly using the performance profile 

technique [35]. It allows defining a distribution function for 

some metric (number of iteration, processing time, quality of 

the objective function, etc.) comparing algorithms by means 

of this metric. The performance profiles are cumulative 

distribution functions for a metric, which depend on the 

multiplying factor, i.e., is the relation between the current 

method and the best one. 

   *number of cases which 
( ) ,

total of evaluated cases

X

X

pc fm pc
fm

  
  (15) 

The results of the tests are presented in the next sections 

using these performance profiles and the usual statistical 

metrics (average values and standard deviation). 

 
2 We tested with the latest version of Gurobi, 7.5, and the results are 

completely analogous. 

A. Easy components 

The goal of this section is to explore the effect of applying 

the easy component technique. We consider 30 cases: 15 

deterministic cases and 15 stochastic ones. The 15 are differ-

ent regarding the kind of system (five hydrothermal systems, 

A to E) and the initial conditions (three initial volume condi-

tions). For this test, we compare the two kinds of decomposi-

tion where the use of easy components is possible and result 

in more impact: UD2 and UD3. The subproblems ΦD and 

ΦHA are modeled as easy components in the current work, 

they are composed by constraints (38) to (40) and (18) to 

(20), respectively. Figure 10 report the performance profile 

for the number of iterations, where “ccs” is the variant with 

easy component, while “scs” (dashed) is the one without it. 

Figure 10 shows that the use of easy component does not 

have a major impact in UD2, although on average it results 

18% less iterations. The impact for UD3 is much more sig-

nificant: in about 85% of the cases there are less iterations, 

and more importantly, the average reduction of iterations in 

UD3 is around 600%. In terms of computational times, using 

easy components on average reduces them by 22% and 

2,544%, for UD2 and UD3, respectively. Since this tech-

nique is clearly beneficial, in all the tests presented in the 

following sections it is applied. 

 

B. Deterministic instances 

In this section we present a comparison between the de-

composition strategies using deterministic data for five test 

systems (A to E in Table I) with three initial conditions, 

resulting in 15 cases. We present the average values (and 

standard deviation, in brackets) in Table III. Since LR is a 

relaxation, which does not solve MILP problems to primal 

optimality, all the unit decomposition schemes are compared 

by means of the quality of the obtained bound, measured by 

the duality gap (gap1) and gap associated with the continu-

ous relaxation solution (gap2), given by 

1 2,   ,
 

 
UB LB LB CR

gap gap
LB CR

 (16) 

where the upper bound UB is best known solution for the 

problem found by running a MILP solver for 10 hours, the 

lower bound LB is the optimum of the corresponding La-

grangian Dual, and CR is the lower bound provided by the 

continuous relaxation. We also present the total processing 

time, the oracle time and the number of iterations for all the 

schemes. 

TABLE II 

CHARACTERISTIC OF THE DECOMPOSITION STRATEGIES 

Decomposition Number of dual variables Number of subproblems 

  LP MILP 

UD1 N∙(I+R) N 1+I 

UD2 N∙(I+R+1) N CA+I 

UD3 N∙(I+1+3∙R) N+CA N∙R+I 

SD T1∙Ω∙(2∙I+R) 0 Ω 

T1 is the number of nodes in stage 1. 

 
Fig. 10. Performance profile for UD2 and UD3 (iterations count). 
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The table shows a clear trade-off between running time 

and quality of the obtained bound. Strategy UD3 is an order 

of magnitude faster than the others; while it also provide 

bounds of lesser quality, the difference in the gaps is com-

paratively smaller than that in running rimes. The main rea-

son for this large advantage is the difficulty of the subprob-

lem that represents the hydro constraints. In UD1 and UD2 

this subproblem is rather complex and can consume almost 

all the time. 

• For UD1, the Hydro and Thermal subproblems take on 

average 77% and 11% of the total time, respectively. 

• For UD2, the averages are 77% and 9% regarding the 

Hydro subproblem and Thermal subproblem, respectively. 

• For UD3, 12% is regarding the Hydro subproblem 

(ΦHE) and 27% regarding the Thermal subproblem. 

The other subproblems have no relative time in the Oracle 

since they are solved as easy components, in the MP. 

Indeed, Table III shows that for these strategies the frac-

tion of time spent in solving the subproblems is much larger 

than for the UD3. Which strategy would be preferable de-

pends on the way in which the LR is used to solve the origi-

nal problem. If the bound were to be used within an implicit 

enumeration algorithm, then the better quality of UD1 and 

UD2 might be worth the extra running time. However, exact 

algorithms are typically too costly for this application, and 

the standard use of LR is rather to drive heuristic ones. For 

these, arguably the quality of the bound is less important 

than the overall running time, and therefore UD3 is likely to 

be preferable. 

C. Stochastic instances 

In this section, we compare all the strategies for stochastic 

data. We consider two sizes of scenario tree, with four and 

nine scenarios, for five test systems (A to E) with three ini-

tial conditions, resulting in 30 cases. Figures 11 and 12 show 

the performance profiles for the number of iterations and the 

processing times, respectively. 

 

Figure 11 shows that the SD converges in less iteration 

than the other methods in about 90% of the cases. However, 

its running time is one of the worst, as shown in Figure 12. 

This is due to the fact that it has to solve rather hard sub-

problems, which is where most of the time is spent. UD3 is 

still the best choice in terms of running times, with the trade-

off again being its lower bound, which worse than the others, 

as it can be seen in Figure 13. Conversely, SD results in the 

best lower bound in most cases. However, as we can see in 

Table IV (which presents the results by means of statistical 

metrics, similarly to Table III), the bounds found by the four 

strategies are close. 

 

 

 
As the table IV shows, two strategies stand out. The SD 

presents the smaller values for gap1, with a processing time 

that is close to that of UD1. On the other hand, the UD3 

presents by far the smaller processing times, with a gap1, 

slightly bigger than the others strategies, but still reasonable. 

We finish this section by presenting more detailed results 

regarding the distribution of power plants for each test sys-

tem presented in Table I. Table V shows the values of gap1, 

in %, considering the deterministic and stochastic cases (but 

TABLE III 

RESULTS FOR DETERMINISTIC CASES 

Strategy gap1 [%] gap2 [%] Time* Oracle time [%] Iterations* 

UD1 1 (2) 126 (314) 9 (16) 88 (10) 4 (5) 

UD2 2 (4) 137 (290) 10 (9) 86 (16) 2 (2) 

UD3 5 (5) 122 (259) 1 (0.9) 39 (12) 1 (0.9) 

The value within brackets represents the standard deviation. 

*The time and the number of iterations are presented with regard to the 

smaller values, which are the ones obtained by UD3. Time = 1 corresponds 

to 3 min. and Iteration = 1 corresponds to 84. 

 
Fig. 11. Performance profile for number of iterations – stochastic cases. 

 
Fig. 12. Performance profile for processing time – stochastic cases. 

 
Fig. 13. Performance profile for dual function – stochastic cases. 

TABLE IV 

RESULTS FOR STOCHASTIC CASES 

Strategy Gap1 [%] Gap2 [%] Time* Oracle time [%] Iterations* 

4 SCENARIOS 

UD1 2 (2) 169 (518) 21 (19) 70 (13) 32 (18) 

UD2 10 (21) 142 (287) 11 (9) 80 (21) 12 (8) 

UD3 7 (7) 171 (370) 1 (1.3) 24 (8) 4 (4) 

SD 2 (2) 198 (425) 10 (7) 100 (1) 1 (0.6) 

9 SCENARIOS 

UD1 4 (3) 20 (47) 13 (10) 49 (21) 8 (7) 

UD2 4 (4) 24 (44) 27 (28) 62 (26) 9 (8) 

UD3 7 (7) 123 (378) 1 (1) 16 (6) 1 (0.9) 

SD 2 (2) 143 (436) 16 (10) 99 (1) 1 (0.6) 

The value within brackets represents the standard deviation. 

*The time and the number of iterations are presented with regard to the 

smaller values, i.e., UD3 for the time and SD for the iterations. Time = 1 

corresponds to 19 and 76 min., for 4 and 9 scenarios, respectively. Iteration 

= 1 corresponds to 28 and 80, for 4 and 9 scenarios, respectively. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 8 

for the SD that is not applicable for deterministic instances). 

 
As the Table V shows, systems with predominance of hy-

dro plants (systems B, C and D) present larger values for the 

gap1, and, in general, take more time to converge. Test sys-

tem B results in the largest values of the gap1 for all the 

strategies and large standard deviations due to the Hydro 

subproblem. In this kind of subproblem the quality of the 

solution depends on the availability of water for generation, 

the more water available more are the number of possible 

states to be visit by the solver. On the other hand, the system 

A, which has a larger participation of thermal plants presents 

the smallest values of gap1. 

D. Results for System DD 

In this section, we compare the best performance strate-

gies (UD3 and SD) for the System DD with stochastic data. 

We consider three initial conditions and twelve different 

scenario trees (with four, nine, sixteen and fifty-five scenari-

os and three different realizations for each one), resulting in 

36 cases for the same system. Figures 14 and 15 show the 

performance profiles for the processing times and the dual 

function, respectively. 

 

 
We present the average values (and standard deviation) in 

Table VI. 

The performance profile shows the UD3 presents slightly 

smaller times for stochastic cases. On the other hand, SD 

presents dual function values better, sometimes significantly 

so, than the one in UD3. Clearly, there are trade-offs be-

tween the methods, which shows why choose the right de-

composition is important. In Table VI, the value of gap1 for 

16 and 25 scenarios is large due to the primal solution that 

was determined by a poor precision. On the other hand, the 

Gap2 can be used as metric for the quality of produced lower 

bound. Since the CR is the same for all decompositions, 

small values of Gap2 represent lesser improvements in the 

dual function, meanwhile large values means a better lower 

bound for the problem. 

 

VII. CONCLUSIONS 

Lagrangian Decomposition is a fundamental technique for 

solving very-large-scale, hard optimization problems like 

SUC and others [12]. It exploits the problem structure, split-

ting it in many subproblems. However, applications like 

SHUC have actually more than one forms of exploitable 

structure, such as unit and scenarios, each with possibly 

different variants. Although some theoretical guidelines exist 

[1], [19], choosing the best variant is never obvious, as com-

plex trade-offs between bounds and iterations have to be 

taken into account. Although there are studies comparing 

different kinds of decomposition for the SUC problem [14], 

[18], to the best of our knowledge no one has compared the 

use of scenario and unit decomposition to the same UC prob-

lem, in particular with the three different variants of the Unit 

(Space) Decomposition and the use of “easy components”. 

Our results show that Scenario Decomposition, although 

providing the best duality gap, is not competitive in terms of 

computational burden. On the other hand, UD, and in partic-

ular UD3 (using “easy components”) has worse gaps, but 

only slightly so, while being much more efficient computa-

tionally. Furthermore, we have found that solution difficulty 

of dual problem depends on the amount of hydro in the sys-

tem. This work provides solid foundations for a subsequent 

one, in which we will analyze the performance of the differ-

ent decompositions schemes to obtain the primal solution of 

the problem. Besides LR, this requires other techniques, like 

inexact augmented Lagrangian [36] or Lagrangian Heuristics 

[5], [37], to construct the actual feasible solution required by 

the users. Solving the LR in this context has a specific set of 

TABLE V 

RESULTS FOR DIFFERENT SYSTEMS 

System UD1 UD2  UD3 SD 

A 0.3 (0.2) 0.4 (0.2) 0.4 (0.2) 0.2 (0.1) 

B 10.9 (28.0) 10.4 (20.4) 12.8 (7.6) 4.1 (3.2) 

C 4.6 (3.0) 8.2 (5.4) 7.3 (3.4) 1.6 (1.4) 

D 2.4 (2.0) 9.8 (22.4) 9.7 (5.0) 2.0 (1.0) 

E 2.1 (1.1) 2.4 (0.8) 2.1 (0.8) 0.8 (0.4) 

The value within brackets represents the standard deviation. 

 
Fig. 14. Performance profile for processing time – stochastic cases. 

 
Fig. 15. Performance profile for dual function – stochastic cases. 

TABLE VI 

RESULTS FOR STOCHASTIC CASES – SYSTEM DD 

Strategy Gap1 [%] Gap2 [%] Time* Oracle time [%] Iterations* 

4 SCENARIOS 

UD3 26 (16) 125 (32) 1.0 (0.1) 17.0 (1.0) 8.0 (7.8) 

SD 24 (16) 117 (25) 3.8 (4.6) 99.9 (0.0) 1.0 (1.0) 

9 SCENARIOS 

UD3 56 (31) 124 (34) 1.0 (0.1) 15.3 (0.7) 1.4 (7.4) 

SD 52 (30) 36 (24) 13.0 (9.5) 99.2 (0.9) 1.0 (5.2) 

16 SCENARIOS 

UD3 2000 (1009) 133 (32) 1.4 (0.2) 13.2 (1.3) 24.6 (42) 

SD 1880 (976) 130 (33) 1.0 (0.7) 99.9 (0.1) 1.0 (1.7) 

25 SCENARIOS 

UD3 2685 (2501) 47 (35) 2.3 (0.3) 10.6 (1.2) 21.6 (21.0) 

SD 2499 (2337) 111 (23) 1.0 (1.0) 99.9 (0.1) 1.0 (1.0) 

The value within brackets represents the standard deviation. 

*The time and the number of iterations are presented with regard to the 

smaller values, i.e., UD3 for the time and SD for the iterations. Time = 1 

corresponds to 15, 69, 149 and 326 min., for 4, 9, 16 and 25 scenarios, 

respectively. Iteration = 1 corresponds to 4, 31, 2 and 3, for 4, 9, 16 and 25 

scenarios, respectively. 
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trade-offs between bound quality, solution quality and solu-

tion time that require specific consideration. All this shows 

the importance to evaluate the strengths and weaknesses of 

the several different possible LR approaches. 

APPENDIX 

The complete formulation for the hydrothermal SUC 

problem is given by: 
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max min
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,
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In addition, the sets of constraints are structured as: 

 Constraints (18) to (28) compose set 
H

nC . 

 Constraints (29) to (37) compose set 
T

inC . 

 Constraints (38) to (40) compose set 
D

nC . 

 Constraints (18) to (27) compose set 
HC

rnC . 

 Constraints (18) to (20) compose set 
HA

rnC . 

 Constraints (21) to (27) compose set 
HE

rnC . 

 Constraints (18) to (40) compose set 
CC . 
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