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Abstract—Online battery parameter identification algorithms,
such as the Moving Window Least Squares, allow model-based
state estimators with low computational intensity to be very
accurate. This paper presents a procedure for tuning the algo-
rithm parameters by using application-specific current profiles.
A gardening application is taken as a case study. The results
prove the validity of the proposed procedure and allow us to
assess the identification algorithm performance.

I. INTRODUCTION

Lithium-ion batteries are widely used as the energy storage
system (ESS) in many applications, such as portable electronic
devices, power tools and electric vehicles, because of their
high power and energy densities. Each battery cell must work
in its safe operating area in order to avoid a degradation of
its performance or dangerous situations. A Battery Manage-
ment System (BMS) guarantees a safe and effective usage of
the battery by monitoring and controlling the charging and
discharging phases [1].

The BMS control algorithms are based on the knowledge of
the state of each cell in the battery. For this reason, the BMS
executes a state estimation algorithm to track some useful state
variables, such as the state of charge (SOC) and the state of
health (SOH). SOC indicates the residual charge stored in the
battery, while SOH its degradation in terms of capacity fading
and internal resistance increase [2].

Many algorithms for battery state estimation are found in
the literature. In applications where high safety levels and
high accuracy are required, the preferred choice is the use
of model-based algorithms. Examples of widespread model-
based algorithms are the Extended Kalman Filter (EKF) [2],
[3], the Particle Filter [4] and the Mix Algorithm [5]. They
are closed-loop algorithms which use a model to predict the
cell voltage and compare it with the measured one, in order
to correct the estimates of the state variables. The accuracy of
the model-based algorithms depends on the capability of the
model to reproduce the cell behaviour.

Many types of lithium-ion cell model have been presented
in the literature [6]. Very accurate and reliable models, such as
electrochemical ones, have high computational requirements.
For this reason, they cannot be implemented in a real-time
embedded system, like a BMS. On the other hand, Electrical
Circuit Models (ECMs) are suitable for a BMS because
they can provide good accuracy with affordable complexity
[7]. However, the variation of the ECM parameters with
the operating conditions must be considered [8]. A possible
solution is the adoption of Look-Up Tables (LUTs) in which

the parameter values are stored and used depending on the
actual operating point. This implementation requires low com-
putational resources, but a very extensive offline characterisa-
tion, as the model parameters must be extracted using time
consuming tests [9]. Furthermore, parameter variations due to
manufacturing process tolerances and ageing of the battery can
hardly be modelled in this way.

A good approach to face the above issues is to track the
parameter variation online, which is the solution adopted in
the Dual-EKF and in the Adaptive Mix Algorithm (AMA)
techniques [2], [10]. The AMA is an evolution of the Mix
Algorithm able to co-estimate the SOC and the ECM pa-
rameters using the Moving Window Least Squares (MWLS)
method [11]. The MWLS identifies the parameters by applying
the Least Squares (LS) technique to a set of cell current
and voltage samples in an identification window, which is
periodically shifted in time. These samples are previously
filtered and decimated in order to reduce the noise influence
and to isolate the dynamics of interest. The implementation of
the AMA in a BMS and some experimental tests on an e-bike
application have been presented in [12].

This paper focuses on the definition of a procedure for
tuning the algorithm’s parameters, i.e., the length of the
identification window and the cut-off frequency of the low-
pass filter. This procedure uses a typical current profile of the
battery in the considered application. A gardening application
is taken as a case study in this paper to verify the tuning
procedure and to assess the algorithm performance.

The cell model is presented in Section II and the description
of the parameter identification algorithm is reported in Section
III, together with its tuning procedure. Section IV describes
the case study, while the results obtained are shown in Section
V. Finally, conclusions are drawn in Section VI.

II. CELL MODEL

The AMA uses an N -RC equivalent circuit [13], whose
general representation is shown in Fig. 1. The left-hand side
of the circuit models the cell capacity and the SOC. The latter
is calculated as Q/Qr, where Q is the residual charge and Qr

is the maximum charge that can be stored in the cell. On the
other side, the cell terminal voltage vM is generated as the
sum of the voltages vn, the open-circuit voltage VOC and the
voltage across the ohmic resistance R0, due to the flow of the
cell current iL. The voltages vn on the RC branches model the
relaxation effects [13]. In applications where fast transients are
dominant, a single RC branch reduces the complexity of the
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Fig. 1. Electric circuit model.

model, holding a good accuracy. The VOC-SOC non-linear
relationship is modelled as a controlled generator, in which
the control function is implemented with a LUT. Note that
the VOC-SOC relationship is almost invariant with respect
to the battery temperature, ageing and manufacturing process
tolerances [14].

The values of the model parameters R0, R1 and C1 change
over time with the operating conditions. This is because
the dynamic cell response depends on battery temperature
[9], current rate (C-rate), SOC and ageing. The state space
equations of the model are reported in (1), where τ1 = R1C1.

dSOC

dt
= − iL

Qr

dv1
dt

= −v1
τ1

+
iL
C1

vM = VOC −R0iL − v1

(1)

III. MWLS-BASED PARAMETER IDENTIFICATION
ALGORITHM

The objective is to identify the parameters R0, R1 and C1

of the model described in (1). To this end, the model is first
linearised around the cell operating point and the parameters
are considered constant in the identification window. The VOC-
SOC relationship is approximated by a piecewise linear curve
VOC = α0 + α1SOC, where α0 and α1 change with the
operating point. Then, the discrete-time transfer function of
the linearised ECM is obtained using the bilinear transform:

Y (z−1)− α0

U(z−1)
= −b2z

−2 + b1z
−1 + b0

a2z−2 + a1z−1 + 1
(2)

where Y (z−1) and U(z−1) are the z-transforms of the voltage
output vT and current input iL, respectively [8]. The coeffi-
cients of the discrete-time transfer function (2) can be written
as follows:

a1 = − 4τ1
2τ1 + T

(3)

a2 =
2τ1 − T

2τ1 + T
(4)

b0 = −
[
4R0 + 2T

(
α1

Qr
+
R0

τ1
+

1

C1

)
+
α1T

2

Qrτ1

]
γ (5)

b1 = −
(
2α1T

2

Qrτ1
− 8R0

)
γ (6)

b2 = −
[
4R0 − 2T

(
α1

Qr
+
R0

τ1
+

1

C1

)
+
α1T

2

Qrτ1

]
γ (7)

where γ = τ1/(4τ1 + 2T ) and T is the sampling time.
The second order AutoRegressive eXogenous (ARX) model

is the time-domain representation of the discrete-time transfer
function (2):

y(k) =− a1y(k − 1)− a2y(k − 2) + α0(1 + a1 + a2)

+ b0u(k) + b1u(k − 1) + b2u(k − 2)
(8)

Equations (3) and (4) yield 1+a1+a2 = 0, thus (8) simplifies
as follows:

y(k)− y(k − 2) =a1(y(k − 2)− y(k − 1)) + b0u(k)

+ b1u(k − 1) + b2u(k − 2)
(9)

Eq. (9) is used to build an overdetermined linear sys-
tem, which is solved by the LS method obtaining the vec-
tor [a1, b0, b1, b2]. The latter yields the ECM parameters
[R0, R1, C1] by inverting equations (3), (5), (6) and (7). The
y(k) and u(k) samples used to build the overdetermined linear
system belong to the identification window, which is then
shifted in time. These samples are obtained by decimating the
voltage and current samples acquired by the BMS. Thus, the
sampling time T of the ARX model is related to the number of
samples M in the identification window and its length LW, by
the relationship LW =M · T . Before decimation, the voltage
and current samples are filtered by a third-order Butterworth
low-pass filter. This avoids aliasing and allows noise, affecting
the measured voltage and current signals, and the dynamics out
of interest to be filtered out.

A. Algorithm parameter tuning

The number of samples in the identification window is
determined by the affordable complexity in finding the LS
solution [12]. The sample time is fixed by the sampling period
of the monitoring circuit in the BMS and is typically between
10ms and 100ms. Therefore, the only tunable algorithm’s
parameters are LW and the cut-off frequency of the filter fc.
A good procedure is to first determine a range of reasonable
values based on the characteristics of the system or on some
general considerations. Then, a tuning phase is carried out by
using a load current profile typical of the target application.
The best combination of LW and fc is found by evaluating
the rms error of the ECM predicted voltage, when LW and
fc vary in their defined ranges, and by choosing the couple
of values that minimise this error. The latter is computed
as the difference between the measured voltage and the one
predicted by the ECM, when the parameters R0, R1 and C1

are identified by the MWLS algorithm.
The maximum value of LW has to be chosen so that the

assumption of constant model parameter values still holds
in the identification window. Regarding its minimum value,
we observe that the equations used to compute the vector
[R0, R1, C1], obtained from equations (3), (5), (6) and (7),
depend on the term a1/(2+a1). The value of a1 should thus be
sufficiently far from -2 to obtain a non ill-conditioned problem.
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Fig. 2. Cell parameters extracted from a PCT test.

Hence, from (3), the value of T should not be much less than
τ1, i.e., T ≥ τ1/10. This implies that LW ≥M · (τ1/10).

The cut-off frequency of the filter and the sampling time
must satisfy the Shannon theorem (fc ≤ 1/(2T )), thus fc ≤
M/(2LW). The minimum value is obtained considering that
it cannot be too low in order to preserve the fast dynamics of
the battery, so fc ≥ 0.5/(2πτ1).

IV. CASE STUDY

Battery powered gardening tools represent a valuable case-
study to investigate the performance of the MWLS algorithm.
This is because they can provide different types of power
profiles, which allow us to explore different battery operating
conditions. In particular, two tools with different power re-
quirements are considered. The battery consists of 24 lithium-
ion cells, manufactured by LG Chem. The cells are arranged
in 12 series-connected groups of two parallel-connected cells.
The battery is monitored by a BMS, which measures the
voltage, current and temperature of each cell group.

A cell group has been characterised using a Pulse Current
Test (PCT), which is commonly used to extract the parameters
of lithium-ions cells [9]. It consists of a series of current pulses
separated by rest times. A current pulse changes the cell SOC
and excites the RC branches of the cell model. In the rest time,
the voltage evolution is used to extract the parameters of the
ECM. The resulting parameters measured at room temperature
are shown in Fig. 2.

Four tests have been selected to assess the algorithm in
different cases. They all start with a fully charged battery,
which is completely discharged operating the tool in its normal
use. The first two tests (test 1 and test 2) have been carried
out on a tool with a low power requirement of 160W. The
others two (test 3 and test 4) come from the second tool, which
has a rated power absorption of 320W. The tuning procedure
has been performed on test 1 and the selected parameters are
used for the model parameter identification of the 12 series-
connected groups in the four tests.

1412108642
540

480

420

360

300

240

180

25

20

15

30

120

60

rm
s
 e

rr
o
r 

(m
V

)

f
c
 (mHz)

L
W

 (s)

Fig. 3. rms error of the voltage predicted by the ECM, as function of the
identification window length LW and of the cut-off frequency fc of the filter.

V. RESULTS AND DISCUSSION

The procedure described in Section III-A allows us to define
a range for LW and fc in which we can found a combination
of these two parameters that minimise the ECM error.

The values of LW and fc are varied in the ranges of 60–
540 s and 2–14mHz, respectively. The ranges’ bounds are
calculated considering that a new sample is acquired every
100ms and that the identification window is composed by
M = 20 samples. The error computed considering the first
group of two parallel-connected cells, when the battery is
exerted with test 1, is shown in Fig. 3. This figure highlights
an area around LW = 210 s and fc = 5mHz, where the error
is low and the values of the MWLS parameters should be
chosen. Therefore, LW = 210 s and fc = 5mHz has been
selected and used to apply the algorithm on all the battery
cell groups in each test.

Fig. 4 shows a comparison between the voltage rms errors
obtained by using the parameters identified by the MWLS and
those extracted offline from the PCT. The errors obtained with
online identification are clearly lower in the third and fourth
test. As these tests have been executed on the tool with the
higher mean power absorption, a battery temperature increase
of about 30 ◦C is observed, as shown in Fig. 5 for test 3.
It is worth noting that MWLS is able to take into account
the variations of the model parameters due to the temperature
change during the use, providing better results in the cell
voltage prediction. In more detail, the parameters are close
to those extracted by the PCT in the first half of the test, but
they are quite different at the end of the test where the battery
temperature reaches about 50 ◦C. This result clearly shows the
benefits of using an online parameter identification algorithm.

The situation is slightly different for the other tool (test 1
and test 2). In this case, the online identified parameters are
similar to those extracted from the PCT at room temperature
and the rms errors are comparable. Indeed, the battery tem-
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Fig. 4. Comparison of the voltage rms error obtained by using the parameters
of the MWLS and those extracted offline. Each point corresponds to a group
of two parallel-connected cells in the four tests.

perature remains almost constant to the ambient value during
these tests, as the power absorbed by the tool is relatively low.

VI. CONCLUSIONS

This paper has presented a tuning procedure that guarantees
a reliable use of the MWLS algorithm for the parameter
identification of a lithium-ion cell ECM in different applica-
tions, by simply changing two programmable parameters. The
tuning procedure selects the MWLS algorithm parameters that
minimise the model voltage prediction error in the considered
application, which in this work is battery powered gardening
tools. The experimental tests show the effectiveness of this
algorithm and how the online model parameter identification
improves the accuracy of the ECM, particularly when the
battery temperature varies during the use.
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