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Abstract 

The accumulation and removal of transposable elements (TEs) is a major driver of genome size evolution 

in eukaryotes. In plants, Long Terminal Repeat (LTR) retrotransposons (LTR-RTs) represent the majority of TEs 

and form most of the nuclear DNA in large genomes.  Unequal recombination (UR) between LTRs leads to 

removal of intervening sequence and formation of solo-LTRs. UR is a major mechanism of LTR-RT removal in 

many angiosperms, but our understanding of LTR-RT-associated recombination within the large, LTR-RT-rich 

genomes of conifers is quite limited.  We employ a novel read-based methodology to estimate the relative rates of 

LTR-RT-associated UR within the genomes of four conifer and seven angiosperm species. We found the lowest 

rates of UR in the largest genomes studied, conifers and the angiosperm maize. Recombination may also resolve 

as gene conversion, which does not remove sequence, so we analyzed LTR-RT-associated gene conversion events 

(GCEs) in Norway spruce and six angiosperms. Opposite the trend for UR, we found the highest rates of GCEs in 

Norway spruce and maize.  Unlike previous work in angiosperms, we found no evidence that rates of UR 

correlate with retroelement structural features in the conifers, suggesting that another process is suppressing UR 

in these species. Recent results from diverse eukaryotes indicate that heterochromatin affects the resolution of 

recombination, by favoring gene conversion over crossing-over, similar to our observation of opposed rates of 

UR and GCEs. Control of LTR-RT proliferation via formation of heterochromatin would be a likely step toward 

large genomes in eukaryotes carrying high LTR-RT content. 

 

Downloaded from https://academic.oup.com/gbe/advance-article-abstract/doi/10.1093/gbe/evx260/4708324
by guest
on 12 December 2017



 

 

Introduction 

Transposable elements (TEs) are a major component of many eukaryotic genomes and long-terminal-

repeat (LTR)-retrotransposons (LTR-RTs) constitute the largest part of the DNA repetitive fraction in many 

plants (Feschotte, et al. 2002). Because of their ability to quickly replicate and attain a very high copy number, 

LTR-RTs are often responsible for striking genome size variation, even between closely related species. The 

shrinkage of genomes via removal of LTR-RTs can also occur quickly as demonstrated in rice (Vitte, et al. 2007), 

maize (SanMiguel, et al. 1998), cotton (Hawkins, et al. 2009) and Medicago truncatula (Wang and Liu, 2008). 

There are two recombinant mechanisms that can remove LTR-RTs from host genomes: unequal recombination 

(UR), also called intrastrand homologous recombination, and illegitimate recombination (IR) (Devos, et al. 2002; 

Ma, et al 2004).  UR occurs between LTRs of the same or different LTR-RTs and produces solo-LTRs in one step 

(Vicient, et al. 1999), whereas IR, which unlike UR is not homology-driven, only gradually eliminates tracts of 

LTR-RT sequences and leaves incomplete elements in the genome (Devos, et al. 2002; Ma, et al 2004).  So far, 

all angiosperm genomes studied show significant frequencies of solo-LTRs (e.g., Devos, et al. 2002, Vicient, et 

al. 1999, SanMiguel, et al. 1996; Dubcovsky, et al. 2001; Fu and Dooner, 2002; Vitte and Panaud, 2003), thus UR 

is a common process in angiosperms that can counteract genome expansion via LTR-RTs. The emerging scenario 

in conifers is quite different: LTR-RTs seem to accumulate slowly and consistently over tens of millions of years 

(Nystedt, et al. 2013, Zuccolo et al. 2015), and our evidence to date suggests that the above mechanisms for LTR-

RT removal have been largely inefficient (Nystedt, et al. 2013). These findings could largely explain the huge 

sizes characterizing many conifer genomes.  

Gene conversion events (GCEs) represent another homology-driven form of recombination and, when 

occurring between LTRs of an LTR-RT, are another possible outcome of intraelement recombination (Chen, et al. 

2007; Shi, et al. 2010).  In gene conversion, a recombination event transfers DNA information from a donor 

sequence to an acceptor sequence, modifying the acceptor sequence without significant sequence removal (contra 

UR).  Gene conversion may occur between allelic haplotypes, but GCEs that occur between LTRs of a single 
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LTR-RT are considered ectopic or interlocus events because they involve nonallelic sequences, similarly to the 

UR events that establish solo-LTRs.  Although there are very few genome-wide studies on GCEs involving plant 

LTR-RTs, GCEs involving gene duplicates have been assessed in multiple angiosperms (Mondragon-Palomino 

and Gaut, 2005; Wang and Paterson, 2011; Guo, et al. 2014).  About 13% of duplicated genes in rice and 

sorghum experienced gene conversion after separation of these lineages (Wang, et al. 2009).  Physical proximity 

between paralogous genes facilitates gene conversion in these species (Wang and Paterson, 2011), and notably, 

GCEs are more common in gene-rich regions, where the density of LTR-RTs is much lower than the whole-

genome average (Wang and Paterson, 2011). As would be expected for a homology-driven process, the intensity 

of gene conversion is also strongly associated with the sequence divergence of the loci involved, with higher 

divergence leading to fewer GCEs (Chen, et al. 2007; Dooner and Martinez-Ferez 1997; Li, et al. 2006). 

A detailed examination of the frequency of GCEs between intraelement LTRs can also provide a more 

complete view of the genomic context of recombinative events involving LTR-RTs.  Host genomes employ 

epigenetic mechanisms to suppress retroelement transcription and proliferation (Bucher, et al. 2012), and areas 

that are particularly rich in retroelements can condense to interstitial heterochromatin (Lippman, et al. 2004).  

Regions of heterochromatin, including those found at centromeres and telomeres, have long been thought to 

suppress homologous recombination.  Recent studies contradict this assumption by indicating that it is not 

homology-driven repair that is suppressed within heterochromatin but rather resolution via crossing-over (Talbert 

and Henikoff, 2010).  In maize centromeres, crossing-over is entirely suppressed but GCEs are widespread (Shi, 

et al. 2010), and in Drosophila, GCEs are common within centromeres and are also free of interference affecting 

crossing-over (Miller, et al. 2016), perhaps due to features of double-stranded break (DSB) repair specific to 

heterochromatin (Chiolo, et al. 2011; Peterson, 2011).  Thus the fraction of genomic LTR-RTs occurring within 

heterochromatin could covary with relative rates of GCEs vs. UR at LTR-RTs.  Further evidence for the 

predominant genomic context of LTR-RTs in a species could be gained by determining whether structural 

features of LTR-RTs are associated with UR, as has been observed in some angiosperms (Vitte and Panaud, 

2003; Du, et al. 2012; El Baidouri and Panaud, 2013).  Such associations could indicate that homology and other 

Downloaded from https://academic.oup.com/gbe/advance-article-abstract/doi/10.1093/gbe/evx260/4708324
by guest
on 12 December 2017



 

 

‘local’ features of the genome can affect rates of crossing-over, while the lack of such associations could indicate 

that the rate of crossing-over is more strongly affected by the ‘regional’ context such as heterochromatin. 

Which brings us again to the large, LTR-RT-rich genomes of conifers.  To date, observations in conifers 

have been limited to just LTR-RT-associated UR affecting just three LTR-RT groups in a single species, Norway 

spruce (Picea abies) (Nystedt, et al. 2013).  Similarly, to our knowledge, there have been few studies addressing 

the intensity and features of GCEs between LTR-RT elements, and none involved multiple species (Shi, et al. 

2010; Kejnovsky, et al. 2007; Sharma, et al. 2013; Trombetta, et al. 2016).  Here, we analyze 23 different LTR-

RT groups in P. abies and analyze 9 LTR-RT groups in three other conifers: the closely related species white 

spruce (P. glauca) and two species belonging to the genus Pinus that separated from Picea about 140 million 

years ago (Buschiazzo, et al. 2012): loblolly pine (Pinus taeda) and sugar pine (P. lambertiana). We apply the 

same methodology to LTR-RT groups in seven angiosperm genomes: the herb Arabidopsis thaliana, the trees 

Amborella trichopoda and Populus trichocarpa, the woody vine Vitis vinifera, and the monocots/grasses 

Brachypodium distachyon, Oryza sativa (rice), and Zea mays (maize). The strategy we developed targeted tens of 

thousand of LTR-RT and solo-LTR copies at once. We also conducted a detailed analysis of rates of GCEs based 

upon detailed investigation of hundreds of LTR-RT elements identified in angiosperms and in Picea abies. 

We show that the lowest rates of UR in the 11 species studied occur in the largest genomes: all four 

conifers as well as the angiosperm maize.  We also show in our detailed analysis of GCEs that the highest rates of 

GCEs in the 6 species studied occur in the largest genomes, P. abies and maize.  There is some variability in solo-

LTR frequency between different LTR-RT groups in conifers, but we show in Norway spruce that this variation 

does not significantly correlate with any of the most evident structural features of the LTR-RT groups. Taken 

together, our results indicate a deep general difference in the genomic context of LTR-RTs in large, LTR-RT-rich 

plant genomes, and in light of other recent results, suggest that such differences may apply to eukaryotes with 

large genomes more generally. 
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Results 

Using representative LTR-RTs and short reads to estimate the ratio of solo-LTRs to complete LTR-RTs 

We developed the method shown in Figure 1 to infer the rate of UR by estimating the ratio of solo-LTRs 

to complete LTR-RTs (S-to-C ratio).  Our method uses representative full-length LTR-RT sequences and short-

read sequence data and determines the numbers of tracts spanning the 5' and 3' ends of the LTR that could be 

mapped (M) and could not be mapped (U) to the representative complete LTR-RT elements.  The rationale of this 

approach is that genomic reads covering a complete LTR-RT should, on average, produce the same amount of 

mapped and unmapped tracts, whereas genomic reads covering a solo-LTR should produce only unmapped tracts. 

If the host genome contains only complete LTR-RT elements, then the amount of mapped versus unmapped tags 

should be approximately equal, resulting in an M/U ratio of ~1; due to stochastic error the ratio may occasionally 

slightly exceed 1. On the other hand, any notable reduction of this ratio from 1 indicates the presence of solo-

LTRs in the genome (Figure 1).  The ratio of solo-LTRs to complete LTR-RT elements (S-to-C) can be readily 

calculated as 𝑈/𝑀 − 1.  We have extensively evaluated the consistency of the pipeline, including comparisons 

with results obtained via our own manual curation, evaluation of several possible biases affecting whether tracts 

are mapped or unmapped, establishing that relative coverage of reads datasets does not bias M/U ratios, and 

comparisons with previous estimates from the literature.  Further details are available in Methods under ‘Pipeline 

validation’, and in supplemental tables indicated there. 

We analyzed LTR-RT groups belonging to the Ty1-copia and Ty3-gypsy superfamilies in four conifer 

species and seven angiosperm species; sources of short-read sequence data and estimates of LTR-RT content and 

genome size for each studied species are provided in Table S1.  See Methods for complete details of group 

identification and selection in the study species. 

In the conifer Picea abies, we identified 23 abundant LTR-RT groups (7 from the Ty1-copia superfamily 

and 16 from Ty3-gypsy) using phylogenetic analysis (Figure S2) and applied our method to a sequence dataset 

containing more than 39 million 100-bp Illumina reads, corresponding to a total of 3.9 Gbp or about 0.2× 
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coverage of the whole genome (Table S1). For the related P. glauca we examined the nine most abundant of the 

23 P. abies LTR-RT groups (5 Ty1-copia and 4 Ty3-gypsy) in a dataset of 43 million 100-bp Illumina reads (4.3 

Gbp, 0.21× genomic coverage). We studied nine abundant LTR-RT groups in Pinus taeda (Figure S3) using 39.4 

million 128-bp Illumina reads (5.04 Gbp, 0.23× coverage), and analyzed these same nine LTR-RT groups in P. 

lambertiana using a dataset of 39.4 million 128-bp Illumina reads (5.04 Gbp, 0.17× coverage) (Table S1). 

Representative sequences for all studied LTR-RT groups are provided in Supporting Dataset D1. 

Variation in ratio of solo-LTRs to complete LTR-RTs among species 

In P. abies we analyzed 146,028 tracts, 50,825 for Ty1-copia and 95,203 for Ty3-gypsy (Table S2A), 

reflecting the relative abundances of these LTR-RT superfamilies in the genome (Nystedt, et al. 2013). Assuming 

the read dataset is an unbiased representation of the whole genome, these figures indicate several tens of thousand 

elements belonging to each of these groups in the complete P. abies genome. The overall M/U ratio is 0.85, 

corresponding to an S-to-C ratio of 0.18, roughly 1 solo-LTR for every 5.6 complete LTR-RTs (Figure 2, Table 

S2A). In the closely related species P. glauca we analyzed 86,410 tracts (Table S2B). The overall M/U ratio was 

0.81, with roughly 1 solo-LTR for every 4 complete LTR-RT elements (Figure 2, Table S2B). Although the 

underrepresentation of solo-LTRs vs. complete LTR-RT is less pronounced in P. glauca than in P. abies, the M/U 

ratios for the LTR-RT groups tested were not significantly different between the two Picea species (p = 0.21, 

Wilcoxon test). 

In the conifer Pinus taeda we analyzed 153,229 tracts, yielding an overall M/U ratio of 0.88, 

corresponding to 1 solo-LTR to ~7.5 complete LTR-RTs (Figure 2, Table S2C). In its congener P. lambertiana, 

we analyzed 122,518 tracts (Table S2D). The overall M/U ratio was 0.79, translating to 1 solo-LTR to ~3.7 

complete LTR-RTs (Figure 2, Table S2D). The M/U ratios for the LTR-RT groups studied in the two Pinus 

species did not differ significantly (p = 0.67, Wilcoxon test). 

Turning to the seven studied angiosperms, we identified LTR-RT groups and applied the same method; 

representative LTR-RT sequences are available in Supporting Dataset D1.  M/U ratios calculated for the most 
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abundant LTR-RT groups taken as a whole are consistently lower than those calculated in conifers and S-to-C 

ratios are consistently higher, with the exception of Z. mays, which has the largest genome by far of the 

angiosperms studied (Figure 2, Table S3). The lowest M/U ratio among angiosperms was in O. sativa (0.39) and 

the ratios of the other analyzed species (excluding Z. mays) consistently indicate an excess of solo-LTRs (Figure 

2, Table S3). 

Previous studies in angiosperms have shown that the ratio of solo-LTRs to complete LTR-RTs is 

positively correlated with element features such as the LTR length (Du, et al. 2012) and the ratio of LTR length to 

internal region length (El Baidouri and Panaud, 2013), suggesting that, at least in angiosperms, structural features 

of LTR retrotransposon impact solo-LTR formation. We applied a similar analysis to the Picea abies dataset 

because it contained many more LTR-RT groups than the other three conifers. In contrast to the earlier results for 

angiosperms, neither of these structural features correlated with the M/U ratios of the groups (LTR length: 

Spearman’s rs = –0.24, p = 0.86; LTR length/internal region length: Spearman’s rs = –0.18, p = 0.8). 

We extended this analysis to test two other element features, total LTR-RT abundance and LTR-RT GC 

content, and found no correlation between M/U ratio and either feature (element abundance: Spearman's rs= 0.15, 

p = 0.76; LTR-RT GC content: Spearman’s rs = –0.05, p = 0.59). 

Variation in intralement gene conversion rate among species 

To identify GCEs, sequence alignments of intraelement LTRs were screened using GENECONV 

(Sawyer, 1999), one of the most widely used programs in gene conversion studies (e.g., Drouin, 2002; Xu, et al. 

2008; Casola, et al. 2010; Casola, et al. 2012). Because of the high substitution rate experienced by TEs including 

LTR-RTs, the initial complete identity between converted regions of LTRs tends to be quickly eroded 

(SanMiguel, et al. 1998). To account for this, we combined results from several GENECONV runs at various 

levels of stringency for mismatches between LTR alignments (see Methods). We found intraelement GCEs in 

55% of P. abies LTR-RTs from fosmids (Figure 3). In the 1.0 genome assembly, we observed GCEs in 36% of 

LTR-RTs, affecting 40% of Ty3-gypsy elements and 27% of Ty1-copia elements. The lower percentage of GCEs 

in the P. abies genome assembly is downward biased; the fraction of repetitive sequence within fosmid 
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assemblies is more closely approximating that inferred to be in the P. abies genome in vivo than does the lower 

fraction of repetitive sequence observed in the genome assembly (Nystedt, et al. 2013). 

In angiosperms a lower fraction of LTR-RTs showed signs of gene conversion compared to P. abies 

fosmids, again with the exception of Z. mays, with an average of 23% of LTR-RTs across all studied 

angiosperms. This ranged from a single GCE observed in A. thaliana up to 40% elements with GCEs in Z. mays 

(Figure 3). Parallel differences in levels of gene conversion were also observed when comparing GENECONV 

analyses with varying stringency levels. Perfectly identical and presumably more recent gene conversion 

segments (Gscale = 0), were observed in 34% of P. abies fosmid LTR-RTs (Figure 3) and 16% of assembly LTR-

RTs, while in angiosperms, conversion segments were identified in 5-30% of LTR-RTs, with A. thaliana and Z. 

mays again at the extremes of this frequency spectrum (Figure 3) and only Z. mays approaching the frequency 

observed in P. abies. GENECONV analyses with the lowest stringency threshold (Gscale = 1) resulted in slight 

increases of the proportion of converted elements, with the notable exception of the P. abies LTR-RTs from the 

genome assembly (Figure 3). 

Despite the high fraction of observed GCEs in some species, conversion segments in all species were 

relatively short, and ranged between 222 and 428 bp except in rice (Figure S1). As expected, higher-stringency 

GENECONV analyses detected much shorter stretches of perfectly identical conversion segments between LTRs, 

and revealed especially short segments in the two genomes with the oldest elements, A. trichopoda and P. abies. 

The structure and sequence composition of converted and non-converted LTR-RTs and their LTRs were 

further inspected to disentangle the possible role of these local features in promoting GCEs. Across most species, 

longer full-length elements, and especially longer LTRs were associated with gene conversion, with the exception 

of B. distachyon for both traits and Z. mays for LTR length (Figure 4A, B). In line with these findings, the 

alignments used to detect GCEs are much longer in converted versus non-converted LTRs of most species (Figure 

4C). Thus there could be bias in the GENECONV analyses toward increasing the number of detected gene 

conversion events in longer elements, because longer alignments tend to contain more overall substitutions than 

shorter ones, which in turn increases the statistical power for detection. However, this association is absent in B. 

distachyon and Z. mays, which show similar alignment lengths in converted and non-converted LTRs. A 
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comparable trend was observed for the ratio of LTR length to internal length (Figure 4D). Overall, the length of 

LTR-RTs and LTRs appears to be a major determinant of the frequency of GCEs in P. abies and in most 

examined angiosperms. 

The sequence identity was similar in converted LTRs compared to non-converted LTRs, including for 

LTRs in Norway spruce and A. trichopoda which showed notably lower overall identity than in the other studied 

species (Figure 4E). This is counter to the trend typically observed between gene copies, for which paralogous 

genes with GCEs tend to share higher sequence similarity than non-converted paralogs (Xu, et al. 2008; Casola, et 

al. 2010). Taken together with the length-related results above, this suggests the gene conversion events we 

observed within LTR-RTs may have been facilitated primarily by LTR length, rather than sequence similarity. As 

for the M/U ratio, we did not find a significant difference in GC-content between converted and non-converted 

LTRs (Figure 4F). 

One possible source of bias resulting from an interaction of GCEs and mapping success could be due to 

gene conversion events between internal regions of LTR-RTs and the flanking DNA of these elements (Vitte and 

Panaud 2003; Ma, et al. 2005). If common, such events could skew the proportion of mapped reads onto full-

length LTR-RT sequences compared to solo LTR-RTs. However, only 3/77 full-length elements were found to 

show evidence of internal-to-flanking DNA gene conversion in one study (Vitte and Panaud 2003), whereas a 

single example was described among 53 LTR-RTs analyzed in the orthologous Orp regions of maize, sorghum 

and rice (Ma, et al. 2005). The low frequency of gene conversion between internal LTR-RT sequences and their 

flanking regions observed in these studies suggests that this process is unlikely to have introduced a significant 

bias in our mapping data. 

This comparison of the structure and composition of converted and non-converted LTR-RTs and their 

LTRs indicates that while these factors may be important in determining when individual GCE events may occur, 

as has also been found by other studies already cited, these factors do not differ systematically among our studied 

species in a manner that could explain the differences we observe in GCE events in large plant genomes (Figure 

3). 
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Largest genomes have lowest fractions of solo-LTRs and highest rates of GCEs 

Considering the solo-LTR to complete LTR-RT fractions and LTR-RT-associated GCE rates together 

(Figure 5), these rates are positively correlated in the species with small- to medium-sized genomes (Arabidopsis 

thaliana to Amborella trichopoda; n = 6, Spearman’s rs = 0.841, p = 0.036) while the correlation reverses and 

weakens to nonsignificance when including the large-genome species Zea mays and Picea abies (n = 8, 

Spearman’s rs = −0.216, p = 0.61).  As unequal recombination and gene conversion are both homology-driven 

processes which differ in whether they do or do not resolve in crossing-over, this suggests the possibility that 

resolution via crossing-over around LTR-RTs occurs at much lower rates in large-genomed species. 

Discussion 

Our results indicate that general, genome-wide differences in the resolution of LTR-RT-associated 

recombinative events covary with plant genome size. For gene conversion events, this is a positive and roughly 

linear relationship, with the highest rates in the largest genomes (Figure 3). For unequal recombination leading to 

solo-LTRs, our results suggest the occurrence of two distinct regimes: for small- to medium-sized genomes, rates 

of solo-LTR production are positively correlated and roughly linear, while rates are much lower in species with 

larger genomes, on the order of maize or larger (Figure 2).  The occurrence of two distinct regimes is even more 

apparent when the rates are plotted together, for those species in which both were estimated (Figure 4). 

The degree of solo-LTR under-representation in conifers shows some variability between different LTR-

RT groups, but this variation does not significantly correlate with any of the most evident structural features of 

LTR-RTs in P. abies.  This contrasts with previous results in angiosperms showing positive correlations between 

LTR-associated UR and LTR length-related features (Vitte and Panaud, 2003; Du, et al. 2012; El Baidouri and 

Panaud, 2013), as well as our observed frequency of GCEs, which positively correlates with lengths of element 

features (Figure 4A).  The highest levels of LTR-RT-associated GCEs were observed in the genomes of the two 

species where LTR-associated UR appears to be most strongly suppressed, which were also the two studies 

species with the largest genomes: P. abies and maize (Figure 5). 
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The contextual suppression of UR may be achieved via several potentially co-occurring processes, 

including reduction in homologous recombination via reduced numbers of double-stranded breaks, a preference 

for non-homologous DNA repair pathways such as IR, and the favoring of alternative outcomes of homologous 

recombination that do not result in crossing-over, in particular gene conversion. Our results support the existence 

of this latter process in plants with large genomes.  One mechanism that could underly this process would be the 

formation of heterochromatin in LTR-RT-rich regions via methylation. Evidence supporting a possible role of 

methylation in limiting and/or controlling the recombination processes has been collected in both animals and 

plants, albeit limited to particular cellular developmental stages such as meiosis. DNA methylation can restrain 

TEs from adopting chromatin features amenable to meiotic recombination in mice (Zamudio, et al. 2015). In the 

germ line of honeybees, methylated genes show a reduced rate of crossing-over (CO) events (Wallberg, et al. 

2015). Similarly, DNA methylation and chromatin states were identified as key factors in explaining the striking 

variation of meiotic CO rate along Arabidopsis thaliana chromosomes (Colomè-Tatchè, et al. 2012; Mirouze, et 

al. 2012). Yelina et al. (2015) demonstrated that DNA methylation has a pivotal role in establishing domains of 

meiotic recombination along chromosomes and it is sufficient to silence CO hot spots in Arabidopsis. 

Genome size-associated differences in the regulation of LTR-RT-associated heterochromatin which 

thereby affects recombination seems the most plausible mechanism which could explain our results.  

Alternatively, there may exist significant differences in the regulation of the recombination process between seed 

plants with small- to medium-sized genomes and those with large, LTR-RT-rich genomes.  In favor of a 

heterochromatin-based mechanism, we would predict that genome-wide methylation levels would covary with 

rates of LTR-RT-associated GCEs, not only in plants with large genomes but also in other taxa.  Methylation is 

certainly elevated in the genomes of conifers, occurring at more than 83% of the total cytosines in Picea abies 

(Ausin et al., 2016) and at more than 64.4% of the cytosines analyzed in Pinus pinea (Saez-Laguna, et al. 2014) 

and is consistently higher than that of other annual and perennial plants (Avramidou, et al. 2015, Ausin et al, 

2016). 

Other factors may contribute to the observed variation in GCEs between species.  For instance, the 

retroelements sampled from species with higher rates of GCEs may experience particularly high frequency of 
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gene conversion compared to other LTR-RT families. Given that we selected several distantly related families 

from each species for our analyses, including elements from both Ty3-gypsy and Ty1-copia groups (Figures S2, 

S3), this is unlikely to have influenced our results significantly. 

A recent study examining a limited number of LTR-RT families in four species of salamanders (Frahry, 

et al. 2015) has provided similar evidence of a relationship between UR suppression and large genome size. 

Salamander genomes are huge, having sizes ranging from ~14 Gbp up to ~120 Gbp, this largest over 6 times that 

of Norway spruce. Low amounts of solo LTRs were detected and no single LTR-RT structural feature was 

identified as being a strong predictor of solo-LTR underrepresentation (Frahry, et al. 2015). That eukaryotes as 

evolutionarily far apart as conifers and salamanders share these features regarding LTR-RT removal, with both 

also characterized by very large genome sizes, is suggestive of a more general mechanism related to the control of 

TE amplification and removal in large genomes. We predict that these salamander genomes also show an elevated 

rate of LTR-RT-associated gene conversion events. 

Taken together, our results are also consistent with the hypothesis recently put forward by Nina Fedoroff 

(Fedoroff, 2012) to explain the accumulation of large amounts of repetitive elements in eukaryote genomes 

despite the presence of mechanisms leading to their removal by unequal or illegitimate recombination. She 

suggested that TEs can accumulate in huge quantities because of, not in spite of, the epigenetic mechanisms used 

to control their proliferation. These epigenetic mechanisms maintain heterochromatin where repeats are rich, 

suppressing the expression and transposition of TEs, but also simultaneously reducing recombinational events 

that could lead to TE removal. The largest genomes we studied – the four conifers plus maize – are also the 

genomes with the strongest evidence for suppression of sequence-removing unequal recombination. As the 

studies cited above indicate in maize and Drosophila, heterochromatin does not suppress all forms of 

recombination, rather just those that lead to crossing-over and hence unequal and illegitimate recombination. 

While the epigenetic status and the chromatin state within and among the LTR-RT groups were not examined in 

the present study, our results do suggest an important interplay between LTR-RT content, recombination 

outcomes and heterochromatin, and are entirely consistent with Fedoroff’s hypothesis.  
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Our results across seed plants emphasize the importance of another prediction arising from Fedoroff’s 

(Fedoroff, 2012) hypothesis. When TE proliferation is more rapid than TE removal, runaway increases in genome 

size can occur if controls on TE activity develop after proliferation but before significant removal, with the 

relative balance determined by characteristics of the mechanisms employed to control TE activity. Further 

investigations of the relationship between epigenetic status, chromatin configuration, and the resolution of 

homology-dependent recombination in LTR-RT elements across many more taxonomic groups will be required to 

address the overall impact of transposable elements in genome size evolution across eukaryotes. 

Methods 

Species sampled 

We selected four conifer species and seven angiosperms species for study. The conifers (Picea abies, P. 

glauca, Pinus taeda and P. lambertiana) were the only gymnosperms with sufficient high-quality genomic 

sequence available at the start of the study. The angiosperms include both monocots and dicots and feature a 

range of genome sizes. Arabidopsis thaliana, Brachypodium distachyon, Oryza sativa, Vitis vinifera and Zea 

mays have each been subject to earlier LTR-RT-related study relevant to facilitating comparisons and evaluating 

the pipeline described herein. Amborella trichopoda is the basal extant angiosperm, while Populus trichocarpa 

has a high-quality genome and complete LTR-RT elements had been previously identified (Natali, et al. 2015).  

Though the conifers examined include two congeneric pairs, the species are separated by considerable divergence 

time estimates that vary from the early Miocene for Picea abies and P. glauca (~14-20 Mya, Nystedt, et al. 2013), 

around the origin of the genus Oryza (Zou, et al. 2013), to the early Cretaceous for Pinus taeda and P. 

lambertiana (~110-140 Mya, Saladin, et al. 2017), roughly at the separation of the Amborella lineage from all 

other angiosperms (Amborella Genome Project. 2013). 
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Identifying LTR-RT groups in P. abies 

LTR-RT groups were identified on the basis of phylogenetic analyses. Reverse Transcriptase (RT) 

domains 100 amino acids long (Table S4) were used as queries in tBlastN searches of 100,000 P. abies 454 

random sheared reads (ftp://congenie.org/Data/ConGenIE/) (Sundell, et al. 2015). All significant hits (E-value < 

1e-5) longer than 80 residues were retrieved, totalling 670 and 1410 paralogous sequences for each of the Ty1-

copia and Ty3-gypsy superfamilies, respectively.  Sequences were aligned separately for each superfamily using 

the software MUSCLE (Edgar, 2004). The alignments (Supporting Datasets S2 and S3) were then used to build 

Neighbor-Joining phylogenetic trees using the software MEGA6 (Tamura, et al. 2013). Overall we identified 7 

Ty1-copia and 16 Ty3-gypsy groups supported by high bootstrap values (Figure S2). We calculated the 

evolutionary divergence between identified LTR-RT groups using the Poisson-corrected number of amino acid 

substitutions per site ( 𝑑 ), averaged over all pairwise comparisons between groups as implemented in MEGA6 

(Tamura, et al. 2013).  As expected, the evolutionary divergence between groups is greater than that within 

groups for all groups tested (Table S8). A representative reverse transcriptase sequence for each of the 23 groups 

was used to search the Picea abies assembly scaffolds longer than 50 kbp using tBlastN (Camacho, et al. 2009). 

Regions surrounding the best positive matches were inspected using dot-plot analyses (Sonnhammer and Durbin, 

1995) to identify regions containing complete LTR-RT elements. At least five complete LTR-RT elements for 

each group were identified and retrieved (Table S5). 

Representative sequences for these and all other complete LTR-RT elements identified in studied species 

are provided in Supporting Dataset S1. 

Identifying elements in Picea glauca, Pinus taeda and P. lambertiana 

A subset of the 23 LTR-RT groups identified in P. abies including four Ty3-gypsy and five Ty1-copia 

groups was further investigated in P. glauca. Included in this subset were the seven most abundant groups 

identified in P. abies as well as two Ty3-gypsy groups that were medium-abundant in P. abies.  Complete LTR-

RTs representing paralogous groups were identified by searching the P. glauca genome assembly sequence 
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(Birol, et al. 2013) using the LTR sequence of P. abies LTR-RT elements as query in similarity searches followed 

by dot plot analysis (Sonnhammer and Durbin, 1995). 

We manually searched 111 fully sequenced P. taeda BACs (Genbank accession numbers: AC241263-

AC241362, GU477256, GU477266, HQ141589) (Kovach, et al. 2010) for the presence of LTR-RTs using dot 

plot analysis (Sonnhammer and Durbin, 1995 ). 112 complete LTR-RT elements were identified, LTRs were 

aligned and the alignments were used to build Neighbor-Joining trees for phylogenetic analysis, similarly to what 

was done for Picea abies above.  Note that LTRs were used to build the trees for Pinus taeda, while RT 

sequences were used in Picea abies; LTRs were used here because the number of elements considered was small 

enough to allow for manual curation.  Complete elements were arranged into 16 groups on the basis of LTR 

sequence similarity, and the nine most abundant groups were chosen for further investigation. 

LTRs of representative elements of the nine LTR-RT groups selected in P. taeda were used to search 

964,817 P. lambertiana contigs longer than 15 kb 

(http://dendrome.ucdavis.edu/ftp/Genome_Data/genome/pinerefseq/Pila/v1.0/pila.v1.0.scafSeq.gz).  

Representative elements for each of the nine groups in P. lambertiana were identified by dot plot analysis. 

Identifying elements in angiosperm genomes 

For Populus trichocarpa, full length LTR-RTs were from (Natali, et al. 2015). Full length LTR-RTs were 

downloaded from Repbase (Jurka, et al. 2005) for Arabidopsis thaliana, Amborella trichopoda, Brachypodium 

distachyon, Oryza sativa, Vitis vinifera and Zea mays. These LTR-RTs were used to evaluate their abundance in 

the respective host genome using RepeatMasker (Smit, et al. 2015) to search the corresponding genome 

assemblies. From three to five complete copies from each of the most abundant LTR-RTs group identified were 

retrieved for use in further analyses. 
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Estimating the ratio of solo-LTRs to complete LTR-RT elements 

For each of the targeted LTR-RT group identified in the different species analyzed, we used the following 

strategy to infer the ratio of complete LTR-RTs to solo-LTRs, with the numbering of each step corresponds to 

that illustrated in Figure 1: 

I. We retrieved from 3 to 15 complete LTR-RT paralogs from the host genome for each group as 

described above. 

II. For each complete element from (I) we extracted the first 50 nt of the 5' LTR and the last 50 nt of the 

3' LTR.  We refer to these LTR-RT-derived sequences as tags, in particular START tags for those 

originating from the 5’ of the element and END tags for those originating from the 3’ end of the 

element. If no divergence has occurred between LTRs of an inserted element and thus the LTRs 

remain identical in sequence, the START and END tags would each match both LTRs perfectly. 

III. Tags were mapped onto Illumina reads derived from the host genome using RepeatMasker (Smit, et al. 

2015). 

IV. Reads from (III) were filtered, retaining all the matches which met the following conditions: for 

START tags, the longest unmatched regions were 3 and 5 nucleotides at the 5' and 3' ends, 

respectively; for END tags, the longest unmatched regions were 5 and 3 nucleotides at the 5' and 3' 

ends, respectively. For each matching read passing filtering, we extracted a 20 nt region we call a 

tract. For START tags the START tract included 5 nt from the 5' end of the LTR together with the 

upstream 15 nt; for END tags the END tract included 5 nt from the 3’ end of the LTR together with 

the downstream 15 nt. Constructed in this way, a START tract will include interior sequence from a 

complete LTR-RT when the START tag from which it is derived matches the 3’ LTR of the complete 

LTR-RT, while for an END tract, this is true when it matches the 5’ LTR of a complete LTR-RT. 

V. Tracts were then mapped using BWA ALN (Li and Durbin, 2009) onto the complete LTR-RT paralog 

sequences used in (I), with the settings k=2, n=4, l=12.  
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VI. The numbers of mapped (M) and unmapped (U) tracts were determined from BWA output and used to 

infer relative genomic content of complete LTR-RT elements and solo-LTRs. 

Genomic reads covering a complete LTR-RT should, on average, produce the same amount of mapped 

and unmapped tracts, whereas genomic reads covering a solo-LTR should produce only unmapped tracts. The 

amount of mapped versus unmapped tags in a genome mostly containing complete LTR-RTs should be 

approximately equal, resulting in an M/U ratio of approximately 1. On the other hand, the presence of solo-LTRs 

in the genome should produce a notable reduction of this ratio from 1. There may be a bias toward unmapped 

reads, depending on the degree of divergence among genomic LTR-RTs; this can be controlled by ensuring 

START and END tags are derived from a variety of LTR-RT paralogs. We have endeavoured to be 

comprehensive for the groups studied, nevertheless a general caution for all genomic analyses of repetitive 

elements also applies here: because related elements within the same genome can show quite remarkable 

divergence, the results should be considered to be characteristic of the specific LTR-RT groups studied. Note also 

that some LTR-RT paralogs retrieved from assemblies contained N-gaps (Supporting Dataset S1); in all cases 

these gaps are not present at LTR borders, thus they do not affect this analysis.  

The ratios of solo-LTRs (S) per complete LTR-RT (C), as well as the reciprocal ratio of complete LTR-

RTs per solo-LTR, can be quantified using the relations: 

𝑆
𝐶
=
𝑈
𝑀
− 1,

𝐶
𝑆
=

𝑀
𝑈 −𝑀

 

The pipeline was run for each species analyzed, using a whole-genome shotgun Illumina reads dataset assumed to 

represent an unbiased sample of each genome (see Table S1 for ENA accession numbers). For most read sets, a 

subset of reads were used; additionally, for paired-end datasets, only the first read of each pair was used. The 

amounts of read sequence used from each read set and relative genomic coverage provided by each reads dataset 

are also detailed in Table S1. 
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Pipeline validation 

The reliability of the above pipeline was tested in Picea abies and Pinus taeda using alternative 

approaches and other data sources. In Picea abies, we randomly selected 4,348 sequences (175 Mbp in total, 

provided in Supporting Dataset S4) from a large collection of fosmid pool scaffolds and estimated the M/U ratio 

for the Ty3-gypsy group Alisei. Each fosmid pool contained ~40 Mbp of fosmid sequence, representing ~0.2% of 

the total genome of P. abies, and is more representative of the true content of repetitive sequences in the genome 

than is the whole-genome shotgun assembly (Nystedt, et al. 2013). The assembled fosmid sequences were 

manually searched for the presence of Alisei LTRs using dot plot analyses (Sonnhammer and Durbin, 1995). We 

identified 171 complete elements and 18 solo-LTRs, giving an M/U ratio (0.90) consistent with the one estimated 

by the pipeline (0.89). 

In Pinus taeda, representative LTRs from each LTR-RT group were also used to manually search the 

previously mentioned 111 fully sequenced BACs (totalling ~11 Mbp) (Kovach, et al. 2010) using dot plot 

analysis (Sonnhammer and Durbin, 1995). Positive matches were checked to see if they belonged to a complete 

LTR-RT or to a solo-LTR. In total 243 sites were identified: 187 complete LTR-RTs and 56 solo-LTRs. These 

figures translated to a M/U ratio of 0.77 that is somewhat less than the pipeline estimate of 0.88. 

The underestimation of the M/U ratio for Pinus taeda, in contrast to the close agreement for Picea abies, 

could simply be a stochastic effect of a lesser amount of high-quality sequences available for Pinus taeda vs. 

Picea abies (11 Mbp vs. 175 Mbp).  Our restriction of the search in P. abies to a single LTR-RT group (Alisei) 

might have compensated for this to some degree, as indicated by the similar numbers of complete elements 

recovered, but this also could have allowed for greater tolerance for divergence when recovering solo-LTRs and 

thus greater relative numbers of solo-LTRs within the Pinus taeda BACs (see below), where this restriction was 

not applied.  Nevertheless, for both species validation data provide further support for a strong under-

representation of solo-LTRs. 

We also specifically tested the accuracy of pipeline step (III) which maps tags onto Illumina reads using 

RepeatMasker.  In particular, we evaluated the average similarity of the positive matches as well as the fraction of 
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positive matches having a similarity value smaller than 80%. The latter fraction could include artefactual matches 

to very divergent elements or unrelated elements. The overall similarity is above 90% for all species with the 

exception of Amborella trichopoda at 87.84% (Table S6). These values are well above the lowest similarity value 

(80%) proposed by Wicker et al. (2007) for defining a LTR-RT family. Furthermore the fraction of matches 

having similarity lower than 80% is quite limited, usually under 2% of the total, with the highest value reaching 

2.38%, again in A. trichopoda (Table S6). 

We evaluated the potential for tracts to be erroneously classified as “unmapped” during pipeline step (V) 

by collecting all unmapped tracts and clustering them using CD-HIT (Fu et al., 2012).  Our reasoning is that 

unmapped tracts should reflect the random distribution of sequences adjacent to LTR-RT insertions and therefore 

should mostly differ from each other. Any large cluster of highly similar unmapped sequences would be 

suggestive of artefactual errors. We screened all of our unmapped tracts for such instances and no suspicious 

cases were identified (results not shown). 

We also evaluated the potential for biases in mapping percentages during pipeline step (V) introduced by 

the generation of START and END tags from different ends of representative retroelements.  If cases of element 

truncation are common, a clear difference in the mapped/unmapped (M/U) ratios should be apparent when 

calculated using tracts derived from START and END tags separately.  In the overall majority of the cases for 

both angiosperms and gymnosperms, these ratios are in very good agreement and we observed no systematic bias 

involving tags from either origin nor in gymnosperms vs. angiosperms (Table S7). 

We also considered the possible confounding effect of differences in relative genomic coverage provided 

by reads datasets among the studied species, as this negatively covaries with genome size (Table S1), an 

important factor in our conceptual models.  We attempted to separate these effects by evaluating linear models in 

which M/U ratio was dependent upon on both relative coverage and genome size. A fully specified model showed 

neither coverage, genome size, nor their interaction to be individually significant (p > 0.24 for genome size, 

p > 0.75 for coverage and interaction) though the full model was (F3,112 = 17.45, p < 1x10-8).  Dropping the 

interaction term did not significantly weaken the model (likelihood ratio test, p = 0.89), and a model lacking the 

interaction term showed genome size to be a significant predictor of M/U (p < 1x10-5) while relative coverage 
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was not (p > 0.74).  Though sample size is limited, we interpret these results to indicate that genome size is a 

predictor of M/U and relative coverage is not. 

Finally, we compared our estimated solo-LTR to complete LTR-RT ratios with the literature, which 

included five of the seven angiosperm species considered in this study (Table S9). Our results are in good 

agreement with those calculated in Z. mays by SanMiguel et al. (1996) and El Baidouri and Panaud (2013), with 

those calculate in O. sativa by Ma et al (2004) and El Baidouri and Panaud (2013) and with those assessed in B. 

distachyon by El Baidouri and Panaud (2013). The most apparent discrepancy was seen for V. vinifera, for which 

we report a slight excess of solo-LTRs (ratio 1.28) while El Baidouri and Panaud (2013) report a slight deficit 

(ratio 0.84). It is however important to consider that data available in literature were obtained using a wide array 

of different strategies as well as varying definitions of solo-LTRs. Because of this, the direct comparisons of data 

from such different sources is not straightforward. 

During revision, we learned of a similar method employing LTR-RT-derived tags described by Macas, et 

al. (2015) when examining genome size variation in the legume tribe Fabeae.  Though methodological details 

differ and our sampling of representative LTR-RTs, tag sites, and pipeline validation are more extensive, we 

would expect that both methods would produce broadly similar results.  We would expect our method to be more 

stable when applied to taxa such as conifers, in which transposable elements can be quite old and diverged, where 

a Blast-based method might produce an unreasonably large number of element groups; we have not subjected this 

to test. 

Intraelement LTR gene conversion 

Gene conversion events (GCEs) between LTRs of complete elements were detected using the software 

GENECONV (Sawyer, 1999). We identified a total of 137 complete elements from angiosperm genomes and 353 

complete elements from the P. abies 1.0 genome assembly (Nystedt, et al. 2013) and fosmid pool assemblies (295 

elements from the genome assembly and 58 elements from fosmids)  using the same method as that described 

above to identify complete LTR-RT elements in P. abies.  Each LTR sequence was extracted from the full-length 

copy element using BEDTools (Quinlan and Hall, 2010) and the two LTRs of each element were compared 
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locally against each other using BLAST+ 2.2.29 (Camacho, et al. 2009) with the following settings: blastn –task 

blastn –dust no –evalue 1e-05. Alignments from the BLASTN results were parsed using custom Perl scripts and 

utilized to search for gene conversion segments using GENECONV (Sawyer, 1999). Through permutation 

analyses of sequence alignments, GENECONV determines the probability that regions of the alignment showing 

a high level of nucleotide similarity derive from gene conversion events rather than stochastic variation of 

nucleotide substitutions. Recent gene conversion events appear as stretches of identical nucleotides in alignments 

of homologous sequences; converted segments derived from older GCEs tend to accumulate substitutions 

between the donor and acceptor sequences, thus appearing as shorter identical stretches interrupted by single-

nucleotide substitutions or larger indels in the alignments. 

The following GENECONV settings were used: /w123 /lp /f /eb /g0 [or /g1 or /g2] -include_monosites. 

These settings allowed to search for gene conversion segments in alignments with two sequences only and to 

consider run of missing data sites or indel sites as single ‘polymorphisms’. Each aligned sequence was run 

through GENECONV three times with three different values for the gscale (g) option: 0, 1 and 2. The gscale 

value determines the mismatch penalties associated with conversion segments. A gscale value of 0 allows no 

mismatches in the segments, gscale 1 applies the lowest mismatch penalties and often results in more segments 

being detected, and gscale 2 applies more strict mismatch penalties and tends to identify a number of segments 

intermediate between the results of gscale 0 and 1 (Sawyer, 1999). Segments discovered using different gscale 

values usually overlapped, although segments observed with gscale 0 tend to be shorter and to represent younger 

GCEs, while segments identified using gscale 1 tend to be the longest and could represent older segments that 

have accumulated more mismatches. 
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Figure Legends 

Figure 1. Method to estimate ratio of solo-LTRs to complete LTR-RTs within a species. (I) Retrieve or assemble 

3 to 10 paralogs for each LTR-RT group. (II) Extract 50-nt START and END tags from LTRs of 

paralogs. (III) Find genomic reads matching START and END tags with RepeatMasker (Smit, et al. 

2015), allowing for mismatches. (IV) For each matching read, extract a 20-nt tract containing 5 nt from 

the tag and 15 nt flanking sequence. Tracts are taken from the 5’ or 3’ ends of START or END tag 

matches, respectively. (V) Map each tract to the LTR-RT paralogs collected in (I) using BWA ALN (Li 

and Durbin, 2009), allowing for mismatches. Count the numbers of mapped (M) and unmapped (U) 

tracts. Genomic reads covering complete LTR-RTs yield tracts that are mapped and unmapped in equal 

numbers, while genomic reads covering solo LTRs produce only unmapped tracts. (VI) The relative 

genomic content of solo LTRs to complete LTR-RTs is inferred from the ratio of mapped to unmapped 

tracts. See Methods for further details and pipeline validation results. 

Figure 2.  Ratios of solo-LTRs to complete LTR-RT elements, as a proxy for rates of unequal recombination, 

from seven angiosperm species and four conifer species versus genome size (log10 axis). For each species, 

ratios for separate LTR-RT groups are shown together with the total ratio of solo-LTRs to complete LTR-

RT elements for all tracts. Shown above B. distachyon, V. vinifera and O. sativa are the numbers of LTR-

RT groups from each species with ratios that exceed the upper limit of the y-axis.  See Table S1 for 

genome size references and Tables S2 and S3 for all LTR-RT group ratios. 

Figure 3.  Proportion of examined LTR-RTs with intraelement gene conversion events (GCEs) between LTRs 

versus genome size (log10 axis). Pooled results for all identified GCEs are shown, together with separate 

results for Gscale parameters in order of increasing stringency against mismatches for detection of GCEs 

between aligned sequences; see Methods for further details. Species are colored as in Figure 2. 
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Figure 4. Characteristics of examined LTR-RTs inferred to contain (values on x-axis) or lack (values on y-axis) 

gene conversion events (GCEs); the diagonal dashed lines represent equal values in both cases. Plotted 

values are within-species means ± standard error. Separate P. abies values are shown for LTR-RTs in 

fosmid pool assemblies (filled circles) and the genome assembly (open circles); the latter contains a 

biased, lower proportion of repetitive sequences than the P. abies genome in vivo, see main text. 

Arabidopsis thaliana is excluded due to just one observed GCE.  Species are colored as in Figure 2 

Figure 5.  Proportion of examined LTR-RTs with intraelement gene conversion events (GCEs) between LTRs 

versus the total ratio of solo-LTRs to complete LTR-RT elements, as a proxy for rates of unequal 

recombination. Proportion of GCEs shown is for all identified GCEs (equivalent to solid dots in Figure 

3). Species are colored as in Figure 2 and symbol area is proportional to genome size of each species.  

The correlation among the six small- to medium-genome species is positive (Spearman’s ρ = 0.841, 

rs = 0.036) while including the two large-genome species reverses and weakens the correlation to 

nonsignificance (Spearman’s rs = −0.216, p = 0.61). 
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