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Abstract: Aza-Michael reactions between primary aliphatic and aromatic amines and various
Michael acceptors have been performed under environmentally-friendly solventless conditions using
acidic alumina as a heterogeneous catalyst to selectively obtain the corresponding mono-adducts
in high yields. Ethyl acrylate was the main acceptor used, although others such as acrylonitrile,
methyl acrylate and acrylamide were also utilized successfully. Bi-functional amines also gave the
mono-adducts in good to excellent yields. Such compounds can serve as intermediates for the
synthesis of anti-cancer and antibiotic drugs.
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1. Introduction

The aza-Michael addition involves the formation of a C-N bond between nitrogen donors and
α,β-unsaturated compounds [1–3]. This reaction is particularly important in the production of
antibiotics, anticancer agents and bioactive molecules such as β-amino acid oligomers that can mimic
the biological activity of cationic α-helical antimicrobial peptides without getting broken down by the
body [4,5].

Primary amines react with Michael acceptors to form the corresponding mono-adduct, which can
react further to give the bis-adduct (Scheme 1). Unfortunately it is quite difficult to selectively and
separately obtain the mono-adduct and the bis-adduct from the same starting materials and in fact
there has been little emphasis on this.
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Scheme 1. Aza-Michael mono- and bis-addition. 

Originally the aza-Michael reaction was catalysed by harsh bases, which resulted in the formation 
of several side products [2]. With time came the advent of Lewis acid catalysts such as lanthanum 
trichloride [6], cerium (IV) ammonium nitrate (V) [7], zirconium (IV) chloride [8], samarium (III) 
triflate [9], and cadmium (II) chloride [10]. These catalysts present a lot of disadvantages: they are 
expensive, require harsh conditions and hazardous solvents, need relatively long reaction times, and 
they are homogeneous and hence difficult to separate and recycle. Ionic liquids, despite being 
homogeneous, have also became popular and provide good results, despite the fact that the procedures 
involving their reuse and recovery are always time-consuming, elaborate and costly [11]. 

Scheme 1. Aza-Michael mono- and bis-addition.

Originally the aza-Michael reaction was catalysed by harsh bases, which resulted in the formation
of several side products [2]. With time came the advent of Lewis acid catalysts such as lanthanum
trichloride [6], cerium (IV) ammonium nitrate (V) [7], zirconium (IV) chloride [8], samarium (III)
triflate [9], and cadmium (II) chloride [10]. These catalysts present a lot of disadvantages: they are
expensive, require harsh conditions and hazardous solvents, need relatively long reaction times,
and they are homogeneous and hence difficult to separate and recycle. Ionic liquids, despite being
homogeneous, have also became popular and provide good results, despite the fact that the procedures
involving their reuse and recovery are always time-consuming, elaborate and costly [11].
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Recently there has been an ideological shift towards green organic chemistry [12,13], not least
in the aza-Michael reaction. As a result there has been the advent of heterogeneous catalysts
such as silica-supported sulphuric (VI) acid [14], polymer-supported catalysts [15,16] metal organic
frameworks [17], graphene oxide [18], Amberlyst-15 [19], and basic alumina [20]. In addition of
microwave- and ultrasound-assisted reactions have been introduced [21]. Although most of these
catalysts are recoverable, these studies have rarely focused on selective formation of mono-adducts
from primary amines or they only focused on a few substrates. In some cases toxic solvents were still
required and long reaction times were needed.

Continuing our efforts to explore heterogeneous catalysis in organic synthesis under green
conditions [22] we have recently reported an environmentally-friendly procedure to efficiently obtain
selectively mono- or bis- aza-Michael adducts using acidic alumina as heterogeneous catalyst [23].

Consequently, in continuation of previous studies performed by our research group on
aza-Michael reactions, we here further explore the scope and efficiency of acidic alumina as a
heterogeneous catalyst for aza-Michael additions [23,24]. We have widened the range of substrates in
order to selectively form mono-adducts in solvent-free conditions under reflux.

2. Results and Discussion

Following our previously optimized procedure all reactions were performed by mixing the two
starting materials in the presence of 0.2 g of acidic alumina per mmol of substrate whilst heating to
reflux under solventless conditions [23]. The molar ratio of the Michael donor and acceptor was always
kept at 1.5:1 and the aza-Michael adduct products were purified by column chromatography. We found
that several Michael acceptors, different from methyl acrylate, as well as a variety of functionalised
amines, together with a combination of both, were also effective under the developed procedure
conditions, confirming the versatility and main advantages of this catalyst. In fact it does not require
special preparation, it is cheap and easily available and it is used under neat conditions.

Table 1. Mono-addition of various primary amines 1a–l to ethyl acrylate (2).
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Ethyl acrylate (2) (Table 1) was the main Michael acceptor used to study the activity of the catalyst.
Linear aliphatic primary amines (entries 1 and 2) provided good yields (78%–76%) albeit lower than
those of cyclic ones, as expected according to their smaller steric hindrance. c-Pentylamine (entry 4) for
example, produced the mono-adduct at 90% yield after heating for 3 h at 70–80 ˝C. Multi-functional
amines such as allyl amine and propargyl amine (entries 5 and 6) gave good to excellent results,
showing that negative inductive effects are short ranged and not very effective in decreasing the
electron density on the nitrogen. However, 2-aminobutanol (entry 3) gave a lower yield because
of the competing oxa-Michael addition and probably also because of product adsorption onto the
catalyst. Meanwhile, primary aromatic amines (entries 8, 10 and 11) afforded the mono-adducts in
excellent yields (89%–98%) in between 3 and 5 h, whereas a poor yield was only obtained when
2-aminothiazoline (entry 7) was used as a Michael donor, even after allowing the reaction to proceed
for over 68 h at 90 ˝C. The end product was a thick yellow oil with a pungent smell similar to that of
rotten eggs. A possible reason for the low yield could be the negative mesomeric effect which decreases
the charge density on the nitrogen [3]. The good yields obtained for functionalised amines stimulated
us to try them out with methyl acrylate (5) as Michael acceptor and very good results were once more
obtained (Table 2).

Table 2. Yields and conditions for mono-addition of various primary multi-functional amines with
methyl acrylate (5).
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Other Michael acceptors were then tested and tried out (Table 3). Excellent yields were obtained
for acrylonitrile acceptor (83%–100%) and for acrylamide (90%–95%) despite the fact that for the latter
acceptor slightly longer reaction times were needed (entries 8 and 9). Contrastingly, the yields obtained
for the additions of n-alkylamines to methyl methacrylate (12), methyl trans-crotonate (14) and methyl
trans-cinnamate (16) were slightly less impressive, even if the reaction time was increased (entries
10–14). These observations can be explained in terms of steric reasons. To further prove this, no
bis-adduct was observed to be formed during the course of their reaction.

Finally other challenging Michael acceptors were tested. When β-nitrostyrene was used, the
mono-adduct which was supposedly formed could not be characterized by 1H-NMR. This could be
because the mono-adduct or the Michael acceptor itself were not stable. In fact, it is reported that
β-nitrostyrene undergoes [2 + 2] cycloaddition in the presence of sunlight [25]. Even when the reaction
was repeated in the absence of light, the product obtained was still not characterized by proton NMR
because the crude was exposed to light during column chromatography. Moreover, the silica used
in the column could itself have caused the product to decompose. Styrene yielded only very small
traces with n-butylamine, whilst no product was formed with aniline. This confirmed that without
the presence of electron withdrawing groups, the benzene ring by itself is not enough to decrease the
electron density in the double bond.
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Table 3. Yields and conditions for mono-addition of various amines with different Michael acceptors.
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system (Waters®,En Yvelines Cedex, France) with a tandem quadrupole mass spectrometer after 
dissolving the sample in methanol. Reactions were monitored using TLC and GC on a Shimadzu GC-
2010 plus gas chromatograph equipped with a flame ionisation detector and HiCap 5 GC column 
with dimensions of 0.32 mm (internal diameter) × 30 m (length) × 0.25 mm (film thickness), using 
nitrogen as carrier gas. 

(1n)
92 (9n) 70/4

6 8 p-CH3OPhCH2NH2 (1o) 100 (9o) 90/4
7 8 CH(CH3)2NH2 (1p) 95 (9p) ´20/3
8 Acrylamide (10) n-C4H9NH2 (1a) 95 (11a) 75/6
9 10 PhNH2 (1h) 90 (11h) 95/7
10 Methyl methacrylate (12) n-C4H9NH2 (1a) 68 (13a) 75/5
11 12 n-C6H13NH2 (1b) 78 (13b) 90/5
12 12 n-C5H11NH2 (1q) 76 (13q) 90/5
13 Methyl trans-crotonate (14) n-C4H9NH2 (1a) 71 (15a) 75/6
14 Methyl trans-cinnamate (16) n-C4H9NH2 (1a) 43 (17a) 70/48

a Yields of pure isolated mono-adducts; b Heating time.

The products of addition of primary n-alkyl amines to α,β-unsaturated aldehydes/ketones such
as: trans-cinnamaldehyde, 2-hexenal, 2-heptenal, 2-cyclopentenone and 2-cyclohexenone could not
be characterized. When column chromatography was performed, the eluted products which were
obtained soon turned dark and very viscous. A probable explanation for this could be that these
acceptors were forming α,β-unsaturated imines instead of the mono-adducts. These are reportedly
very unstable and can oligomerize easily [26].

3. Materials and Methods

3.1. General Information

All commercially available chemicals were purchased from Aldrich (St. Louis, MO, USA) and
used without further purification. Acidic alumina (grain size: 0.05–0.2 mm, 70–290 mesh ASTM, pH
4.5, activity degree 1, Scharlau, Barcelona, Spain) was used without further activation. IR spectra were
recorded on a IRAffinity-1 FTIR spectrometer (Shimadzu, Kyoto, Japan) calibrated against a 1602 cm´1

polystyrene absorbance spectrum. Samples were analysed as a thin film or in a Nujol™ mull between
sodium chloride plates. The 1H and 13C-NMR spectra were recorded on an Avance III HD® NMR
spectrometer (Bruker, Coventry, England), equipped with an Ascend 500 11.75 Tesla Superconducting
Magnet, operating at 500.13 MHz for 1H and 125.76 MHz for 13C, and a Multinuclear 5 mm PABBO
Probe (Bruker, Coventry, England). Samples were dissolved in deuterated chloroform (with TMS).
For a few products NMR analysis was performed using a Bruker AM250 NMR spectrometer fitted
with a dual probe at frequencies of 250 MHz for 1H-NMR and 62.9 MHz for 13C-NMR. Processing was
carried out using an Aspect 3000 computer having 16 K and 64 K complex points for 1H and 13C-NMR
respectively. Mass spectra were performed using a ACQUITY® TQD system (Waters®,En Yvelines
Cedex, France) with a tandem quadrupole mass spectrometer after dissolving the sample in methanol.
Reactions were monitored using TLC and GC on a Shimadzu GC-2010 plus gas chromatograph
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equipped with a flame ionisation detector and HiCap 5 GC column with dimensions of 0.32 mm
(internal diameter) ˆ 30 m (length) ˆ 0.25 mm (film thickness), using nitrogen as carrier gas.

3.2. Procedure for Preparation of Mono-Adducts

The amine (7.5 mmol) and the Michael acceptor (5 mmol) in a molar ratio of 1.5:1 were refluxed
with stirring in the presence of acidic alumina (1 g, 200 mol%). Heating was performed using an oil
bath and the reaction was followed by TLC and GC until completion. The reaction was then allowed
to cool down to room temperature and filtered through a filter paper. The catalyst was rinsed with
ethyl acetate/hexane and then concentrated by rotary evaporation. The crude reaction mixture was
purified using a silica-filled chromatographic column using hexane/ethyl acetate as eluents. Usually,
for aliphatic amines, the mono-adduct was eluted using 7:3, 6:4 or 5:5 hexane/ethyl acetate whilst
for aromatic ones the solvent mixture used was 8:2 hexane/ethyl acetate. The yields of the purified
products were recorded and then IR and NMR spectroscopy and MS spectrometry were performed.

3.3. Product Identification

Ethyl 3-(butylamino)propanoate (3a) [26,27]. Yellow oil. IR (neat, cm´1): ν = 3323, 2958, 2931, 2860, 1724,
1463, 1373, 1348, 1184, 1126, 1030, 852, 787. 1H-NMR (CDCl3, 500 MHz): δ (ppm) 4.14 (q, J = 7.2 Hz,
2H), 2.88 (t, J = 6.5, 2H), 2.61 (t, J = 7.2 Hz, 2H), 2.51 (t, J = 6.6 Hz, 2H), 1.50–1.39 (m, 2H), 1.38–1.33(m,
2H), 1.26 (t, J = 7.2 Hz, 3H), 0.91 (t, J = 7.4, 3H).

Ethyl 3-(hexylamino)propanoate (3b) [28]. Yellow oil. IR (neat, cm´1): ν = 3323, 2957, 2927, 2857, 1732,
1456, 1373, 1180, 1126, 1030, 787. 1H-NMR (CDCl3, 500 MHz): δ (ppm) 4.14 (q, J = 7.2 Hz, 2H), 2.88 (t,
J = 6.5 Hz, 2H), 2.60 (t, J = 7.2 Hz, 2H), 2.51 (t, J = 6.6 Hz, 2H), 1.47 (t, J = 7.1 Hz, 3H), 1.33–1.25 (m, 8H),
0.88 (t, J = 6.9 Hz, 3H). 13C-NMR (CDCl3, 126 MHz): δ (ppm) 172.81, 60.32, 49.82, 45.09, 34.78, 31.74,
30.01, 26.98, 22.58, 14.18, 14.00. MS (ES+) m/z (%) = 202 [MH+] (20), 114 (100), 44 (48).

Ethyl 3-(1-hydroxybutan-2-ylamino)propanoate (3c). Very thick yellow oil. IR (neat, cm´1): ν = 3362,
3316, 2965, 2934, 2876, 1724, 1558, 1454, 1373, 1348, 1313, 1249, 1250, 1188, 1146, 1096, 1049, 1032, 794.
1H-NMR (CDCl3, 500 MHz): δ (ppm) 4.16 (q, J = 7.2 Hz, 2H), 3.61 (dd, J = 10.7, 4.0 Hz, 1H), 3.28 (dd,
J = 10.70, 6.8 Hz, 1H), 3.02–2.97 (m, 1H), 2.83–2.79 (m, 1H), 2.55–2.53 (m, 1H), 2.49 (t, J = 6.4 Hz, 2H),
1.54–1.41 (m, 2H), 1.27 (t, J = 7.2 Hz, 3H), 0.93 (t, J = 7.5 Hz, 3H). 13C-NMR (CDCl3, 126 MHz): δ (ppm)
172.83, 62.64, 60.52, 60.23, 42.00, 35.09, 24.20, 14.16, 10.34. MS (ES+) m/z (%) = 190 [MH+] (22), 102
(100), 30 (8).

Ethyl 3-(cyclopentylamino)propanoate (3d) [29]. Yellow oil. IR (neat, cm´1): ν = 3323, 2955, 2868, 1728,
1465, 1373, 1350, 1242, 1184, 1165, 1047, 1030, 854, 785. 1H-NMR (CDCl3, 500 MHz): δ (ppm) 4.14 (q,
J = 7.2 Hz, 2H), 3.07 (quin, J = 6.8 Hz, 1H), 2.86 (t, J = 6.6 Hz, 2H), 2.51 (t, J = 6.6 Hz, 2H), 1.88–1.81 (m,
2H), 1.73–1.64 (m, 3H), 1.56–1.48 (m, 2H), 1.38–1.29 (m, 2H), 1.26 (t, J = 7.2 Hz, 3H). 13C-NMR (CDCl3,
126 MHz): δ (ppm) 176.34, 52.80, 51.55, 49.80, 39.94, 29.69, 22.54, 13.99. MS (ES+) m/z (%) = 186 [MH+]
(30), 98 (100), 30 (26).

Ethyl 3-(prop-2-en-1-ylamino)propanoate (3e) [30]. Light-yellow oil. IR (neat, cm´1): ν = 3323, 3076,
2980, 1736, 1643, 1558, 1463, 1456, 1373, 1254, 1242, 1184, 1115, 1030, 997, 918, 790. 1H-NMR (CDCl3,
500 MHz): δ(ppm) 5.91–5.83 (m, 1H), 5.17 (dq, J = 17.1, 1.6 Hz, 1H), 5.08 (dq, J = 10.3, 1.4 Hz, 1H), 4.12 (q,
J = 7.2 Hz, 2H), 3.25 (t, J = 6.1 Hz, 2H), 2.87 (t, J = 6.5 Hz, 2H), 2.50 (t, J = 6.5 Hz, 2H), 1.77 (s, NH, 1H),
1.24 (t, J = 7.2 Hz, 3H). 13C-NMR (CDCl3, 126 MHz): δ (ppm) 172.67, 136.40, 116.11, 60.39, 52.11, 44.31,
34.62, 14.16.

Ethyl 3-(propargylamino)propanoate (3f). Dark-yellow oil. IR (neat, cm´1): ν = 3418, 3391, 3291, 2982,
2935, 2909, 2851, 1724, 1466, 1459, 1373, 1258, 1184, 1119, 1096, 1030, 910, 856, 756. 1H-NMR (CDCl3,
500 MHz): δ (ppm) 4.15 (q, J = 7.2 Hz, 3H), 3.44 (d, J = 2.5 Hz, 1H), 2.97 (t, J = 6.5 Hz, 2H), 2.52 (t,
J = 6.5 Hz, 2H), 2.20 (t, J = 2.4 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H). 13C-NMR (CDCl3, 126 MHz): δ (ppm)
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172.58, 81.88, 71.50, 60.49, 60.39, 43.92, 38.10, 34.56. MS (ES+) m/z (%) = 156 [MH+] (46), 88 (13), 68 (100).

Ethyl 3-(4,5-dihydro-1,3-thiazol-2-ylamino)propanoate (3g) [31]. Yellow oil. IR (neat, cm´1): ν = 3395, 3051,
2955, 2858, 1728, 1651, 1612, 1558, 1504, 1447, 1416, 1373, 1354, 1308, 1277, 1238, 1169, 1115, 1042, 984,
941, 918, 928, 733, 698. 1H-NMR (CDCl3, 500 MHz): δ (ppm) 4.10 (q, J = 8.1 Hz, 2H), 3.75–3.61 (m, 2H),
3.61–3.45 (m, 2H). 3.22–3.14 (m, 2H), 2.71–2.59 (m, 2H), 1.24 (t, J = 8.3 Hz, 3H).

Ethyl 3-(phenylamino)propanoate (3h) [32]. Orange oil. IR (neat, cm´1): ν = 3401, 3053, 3022, 2980, 2933,
2904, 2870, 1736, 1720, 1604, 1558, 1506, 1375, 1317, 1251, 1180, 1114, 1099, 1047, 1028, 869, 858, 750, 692.
1H-NMR (CDCl3, 500 MHz): δ (ppm) 7.18 (t, J = 7.4 Hz, 2H), 6.72 (t, J = 6.4 Hz, 1H), 6.62 (d, J = 8.7 Hz,
2H), 4.14 (q, J = 7.2 Hz, 2H), 4.02 (broad s, 1H), 3.45 (t, J = 6.4 Hz, 2H), 2.61 (t, J = 6.4 Hz, 2H), 1.26 (t,
J = 7.2 Hz, 3H).

Ethyl 3-(benzylamino)propanoate (3i) [30]. Yellow oil. IR (neat, cm´1): ν = 3325, 3086, 3062, 3028, 2981,
2904, 2835, 1732, 1496, 1454, 1373, 1350, 1180, 1119, 1095, 1029, 737, 698. 1H-NMR (CDCl3, 500 MHz): δ
(ppm) 7.31 (d, J = 4.7 Hz, 4H), 7.28–7.19 (m, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.80 (s, 2H), 2.90 (t, J = 6.5 Hz,
2H), 2.53 (t, J = 6.5 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H).

Ethyl 3-(4-ethylphenylamino)propanoate (3j) [33]. Dark-brown oil. IR (neat, cm´1): ν = 3395, 3101 2963,
2932, 2870, 1732, 1616, 1520, 1473, 1458, 1396, 1373, 1315, 1242, 1180, 1126, 1095, 1045, 1026, 822.
1H-NMR (CDCl3, 500 MHz): δ (ppm) 7.00 (d, J = 8.5 Hz, 2H), 6.56 (d, J = 8.5 Hz, 2H), 4.14 (q, J = 7.1 Hz,
2H), 3.89 (broad s, 1H), 3.42 (t, J = 6.4 Hz, 2H), 2.59 (t, J = 6.4 Hz, 2H), 2.52 (q, J = 7.6 Hz, 2H), 1.25 (t,
J = 7.2 Hz, 3H), 1.17 (t, J = 7.6 Hz, 3H). 13C-NMR (CDCl3, 126 MHz): δ (ppm) 172.47, 145.58, 133.64,
128.63, 113.28, 60.59, 39.83, 34.04, 27.93, 15.95, 14.21. MS (ES+) m/z (%) = 222 [MH+] (10), 134 (100),
119 (1).

Ethyl 3-(4-methoxyphenylamino)propanoate (3k) [34]. Dark-brown oil. IR (neat, cm´1): ν = 3383, 3237,
3067, 2986, 2955, 2940, 2909, 2835, 1724, 1627, 1513, 1465, 1458, 1442, 1373, 1296, 1238, 1180, 1119,
1092, 1034, 826, 760, 725. 1H-NMR (CDCl3, 500 MHz): δ (ppm) 6.77 (d, J = 9.0 Hz, 2H), 6.60 (d,
J = 9.0 Hz, 2H), 4.14 (q, J = 7.1 Hz, 2H) 3.73 (s, 3H), 3.39 (t, J = 6.4 Hz, 2H), 2.58 (t, J = 6.4 Hz, 2H), 1.25 (t,
J = 7.2 Hz, 3H).

Ethyl 3-(isobutylamino)propanoate (3l) [35]. Yellow oil. IR (neat, cm´1): υ = 2964, 2927, 2875, 2247, 1454,
1377, 698. 1H-NMR (CDCl3, 250 MHz): δ (ppm) 0.91 (t, J = 7.33 Hz, 3H), 1.05 (d, J = 6.1 Hz, 3H),
1.27–1.57 (m, 1H), 2.05 (s, 1H), 2.51 (t, J = 6.7 Hz, 1H), 2.61 (sx, J = 6.7 Hz, 1H), 2.85-3.05 (m, 1H), 3.48 (q,
J = 6.7 Hz, 1H), 4.55 (q, J = 6.7 Hz, 1H). 13C-NMR (CDCl3, 62.9 MHz): δ (ppm) 10.1, 19.1, 19.8, 29.5,
42.5, 53.9, 118.8.

Methyl 3-(prop-2-en-1-yl)propanoate (6e) [36]. Light-yellow oil. IR (neat, cm´1): ν = 3323, 3076, 2953,
1736, 1728, 1643, 1558, 1456, 1436, 1364, 1238, 1196, 1177, 920, 854, 790. 1H-NMR (CDCl3, 500 MHz):
δ(ppm) 5.91–5.83 (m, 1H), 5.18 (dq, J = 17.2, 1.7 Hz, 1H), 5.10 (dq, J = 10.3, 1.6 Hz, 1H), 3.69 (s, 3H), 3.26
(dt, J = 3.0, 1.4 Hz, 2H), 2.89 (t, J = 6.5 Hz, 2H), 2.53 (t, J = 6.5 Hz, 2H). 13C-NMR (CDCl3, 126 MHz):
δ(ppm) 173.19, 136.51, 116.11, 52.19, 51.62, 44.38, 34.51.

Methyl 3-(prop-2-yn-1-ylamino)propanoate (6f). Dark-orange oil. IR (neat, cm´1): ν = 3291, 2982, 2954,
2928, 2851, 2098, 1732, 1458, 1438, 1373, 1246, 1177, 1119, 1045, 1018, 910, 844, 756. 1H-NMR (CDCl3,
500 MHz): δ (ppm) 3.70 (s, 3H), 3.44 (d, J = 2.4 Hz, 2H), 2.98 (t, J = 6.5 Hz, 2H), 2.54 (t, J = 6.5 Hz, 2H),
2.22 (t, J = 2.4 Hz, 1H). 13C-NMR (CDCl3, 126 MHz): δ (ppm) 172.56, 81.88, 71.51, 60.49, 48.99, 43.92,
38.10, 34.56, 14.21. MS (ES+) m/z (%) = 142 [MH+] (10), 75 (13), 68 (100).

Methyl 3-(4-methoxybenzylamino)propanoate (6m) [27]. Yellow oil. IR (neat, cm´1): ν = 3421, 3067, 2997,
2951, 2909, 2835, 1732, 1612, 1585, 1512, 1458, 1439, 1416, 1362, 1300, 1246, 1172, 1107, 1034, 818, 775,
756, 702. 1H-NMR (CDCl3, 500 MHz): δ (ppm) 7.21 (d, J = 8.7 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 3.78 (s,
3H), 3.72 (s, 2H), 3.66 (s, 3H), 2.87 (t, J = 6.5 Hz, 2H), 2.52 (t, J = 6.5 Hz, 2H).
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3-(Hexylamino)propanenitrile (9b) [37]. Pale yellow oil. IR (neat, cm´1): υ = 3313, 2954, 2990, 2856, 2247,
1465, 1377, 1128. 1H-NMR (CDCl3, 250 MHz): δ (ppm) 0.85-0.95 (m, 3H), 1.20–1.40 (m, 6H), 1.40–1.55
(m, 3H), 2.53 (t, J = 6.3 Hz, 2H), 2.62 (t, J = 6.7 Hz, 2H), 2.92 (t, J = 6.72 Hz, 2H). 13C-NMR (CDCl3,
62.9 MHz): δ (ppm) 14.0, 18.7, 22.6, 26.9, 30.0, 31.75, 45.1, 49.3, 118.8.

3-(Cyclopentylamino)propanenitrile (9d) [38]. Yellow oil. IR (neat, cm´1): ν = 3310, 2955, 2866, 2245,
1473, 1458, 1419, 1373, 1350, 1246, 1123, 1045, 875, 771. 1H-NMR (CDCl3, 500 MHz): δ (ppm) 3.09 (q,
J = 6.7 Hz, 1H); 2.89 (t, J = 6.7 Hz, 2H), 2.50 (t, J = 6.6 Hz, 2H), 1.82–1.79 (m, 2H), 1.72–1.64 (m, 2H),
1.57–1.48 (m, 2H), 1.33–1.27 (m, 2H).

3-(Prop-2-yn-1-ylamino)propanenitrile (9f) [39]. Yellow oil. IR (neat, cm´1): ν = 3287, 2920, 2859, 2249,
2102, 1732, 1670, 1654, 1627, 1458, 1419, 1373, 1331, 1246, 1123, 1045, 910, 763, 656. 1H-NMR (CDCl3,
500 MHz): δ (ppm) 3.47 (d, J = 2.5 Hz, 2H), 3.00 (t, J = 6.7 Hz, 2H), 2.53 (t, J = 6.6 Hz, 2H), 2.40 (t,
J = 2.5 Hz, 1H). MS (ES+) m/z (%) = 109 [MH+] (74), 68 (100), 39 (2).

3-(Phenylamino)propanenitrile (9h) [40]. Thick brown oil. IR (neat, cm´1): ν = 3410, 3363, 3217, 3036,
3013, 2928, 2249, 1620, 1605, 1507, 1496, 1465, 1419, 1312, 1269, 1176, 1119, 1026, 995, 880, 752, 694.
1H-NMR (CDCl3, 500 MHz): δ (ppm) 7.21–7.18 (m, 2H), 6.78–6.72 (m, 1H), 6.67 (dd, J = 8.5, 1.1 Hz, 2H),
3.63 (broad s, 1H), 3.52 (q, J = 6.5 Hz, 2H), 2.62 (t, J = 6.6 Hz, 2H).

3-((Pyridin-2-ylmethyl)amino)propanenitrile (9n) [41]. Orange oil. IR (neat, cm´1): υ = 3307, 3174, 2927,
2852, 2247, 1593, 1471, 1435, 1126, 997, 761. 1H-NMR (CDCl3, 250 MHz): δ(ppm) 2.56 (t, J = 6.71 Hz,
2H), 2.99 (t, J = 6.71 Hz, 2H), 3.99 (s, 2H), 7.19 (dd, J = 4.88, 7.32 Hz, 1H), 7.32 (d, J =7.33 Hz, 1H), 7.67
(td, J = 1.83, 7.33, 7.33 Hz, 1H), 8.53–8.60 (m, 1H). 13C-NMR (CDCl3, 62.9 MHz): δ (ppm)18.8, 44.7, 54.3,
118.7, 122.3, 122.4, 136.7, 149.3, 158.8.

3-(4-Methoxybenzylamino)propanenitrile (9o). Yellow oil. IR (neat, cm´1): ν = 3337, 3062, 3001, 2935, 2909,
2835, 1732, 1612, 1585, 1512, 1465, 1458, 1420, 1300, 1177, 1034, 1111, 1033, 817, 772, 756, 702. 1H-NMR
(CDCl3, 500 MHz): δ (ppm) 7.22 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 3.79 (s, 3H), 3.76 (s, 2H),
2.91 (t, J = 6.6 Hz, 2H), 2.49 (t, J = 6.7 Hz, 2H). 13C-NMR (126 MHz, CDCl3): δ (ppm) 158.87, 131.60,
129.26, 118.76, 55.30, 52.58, 44.25, 18.77. MS (ES+) m/z (%) = 121 (100), 77 (43). (70), 69 (57) 71 (100),
30 (66).

3-Isopropylamino)propanenitrile (9p) [28]. Yellow oil. IR (neat, cm´1): ν = 3394, 3310. 2967, 2932, 2870,
2249, 1732, 1654, 1474, 1450, 1420, 1377, 1327, 1246, 1177, 1130, 1092, 1045, 848, 756. 1H-NMR (CDCl3,
500 MHz): δ (ppm) 2.93 (t, J = 6.7 Hz, 2H), 2.86 (sep, J = 6.3 Hz, 1H), 2.51 (t, J = 6.7 Hz, 2H), 1.08 (d,
J = 6.3 Hz, 6H).

3-(Butylamino)propanamide (11a) [42]. Very thick colourless oil. IR (neat, cm´1): ν = 2986, 2940, 2909,
1739, 1446, 1373, 1242, 1049, 937, 848. 1H-NMR (CDCl3, 500 MHz): δ (ppm) 5.38 (broad s, 2H), 2.88 (t,
J = 5.9 Hz, 2H), 2.63 (t, J = 7.1 Hz, 2H), 2.38 (t, J = 5.9 Hz, 2H), 1.51–1.45 (m, 2H), 1.36 (m, 2H), 0.92 (t,
J = 7.3 Hz, 3H).

3-(Phenylamino)propanamide (11h). Very thick light-yellow oil. IR (neat, cm´1): ν = 3341, 3194, 3045,
3012, 2963, 2862, 2245, 1664, 1645, 1614, 1508, 1423, 1320, 1265, 1180, 1118, 991, 910, 875, 810, 733, 694.
1H-NMR (CDCl3, 500 MHz): δ (ppm) 7.22 (t, J = 7.4 Hz, 2H), 6.76 (t, J = 7.4 Hz, 1H), 6.67 (d, J = 8.2 Hz,
2H), 5.35 (broad s, 2H), 3.96 (broad s, 1H), 3.51 (t, J = 6.0 Hz, 2H), 2.56 (t, J = 6.0 Hz, 2H). 13C-NMR
(126 MHz, CDCl3): δ (ppm) 175.63, 49.15, 45.47, 35.35, 20.39, 13.90. MS (ES+) m/z (%) = 165 [MH+] (11),
106 (100), 77 (14).

Methyl 3-(butylamino)-2-methylpropanoate (13a) [26]. Yellow oil. IR (neat, cm´1): ν = 3327, 2957, 2932,
2874, 2860, 2821, 1740, 1558, 1463, 1454, 1435, 1377, 1361, 1255, 1196, 1199, 1177, 1165, 1138, 987, 833,
758. 1H-NMR (CDCl3, 500 MHz): δ (ppm) 3.69 (s, 3H), 2.88 (dd, J = 11.7, 7.9 Hz, 1H), 2.69–2.55 (m,
4H), 1.50–1.42 (m, 3H), 1.37–1.29 (m, 2H); 1.17 (d, J = 7.0 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H). 13C-NMR
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(CDCl3, 126 MHz): δ (ppm) 172.84, 62.64, 60.52, 60.23, 42.00, 35.10, 24.21, 14.17, 10.34. MS (ES+)
m/z (%) = 174 [MH+] (30), 86 (100), 57 (2), 44 (16).

Methyl 3-(hexylamino)-2-methylpropanoate (13b) [43]. Yellow oil. IR (neat, cm´1): ν = 3327, 2955, 2928,
2872, 2857, 1732, 1558, 1463, 1456, 1435, 1377, 1361, 1259, 1201, 1175, 1138, 989, 893, 833, 761, 727.
1H-NMR (CDCl3, 500 MHz): δ (ppm) 3.69 (s, 3H), 2.88 (dd, J = 11.5, 7.8 Hz, 1H), 2.70–2.59 (m, 4H),
1.50–1.42 (m, 3H), 1.37–1.29 (m, 6H); 1.16 (d, J = 6.9 Hz, 3H), 0.88 (t, J = 7.1 Hz, 3H). MS (ES+)
m/z (%) = 202.10 [MH+] (22), 114 (100), 44 (46).

Methyl 3-(pentylamino)-2-methylpropanoate (13q) [43]. Yellow oil. IR (neat, cm´1): ν = 3327, 2955, 2930,
2873, 2859, 1732, 1558, 1463, 1456, 1435, 1379, 1361, 1257, 1196, 1177, 1138, 1060, 989, 833, 750. 1H-NMR
(CDCl3, 500 MHz): δ (ppm) 3.69 (s, 3H), 2.90 (dd, J = 11.6, 7.8 Hz, 1H), 2.74–2.52 (m, 4H), 1.50–1.42 (m,
2H), 1.34–1.30 (m, 5H), 1.19 (d, J = 7.0 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H). MS (ES+) m/z (%) = 210 [MH+]
(100), 101 (20), 73 (7).

Methyl 3-(butylamino)-3-methylpropanoate (15a) [44]. Yellow oil. IR (neat, cm´1): ν = 3390, 2958, 2931,
2874, 1732, 1458, 1439, 1377, 1304, 1250, 1196, 1180, 1096, 1053, 1010, 879, 756, 710. 1H-NMR (CDCl3,
500 MHz): δ (ppm) 3.66 (s, 3H), 3.14–3.01 (m, 1H), 2.68–2.59 (m, 1H), 2.59–2.51 (m, 1H), 2.47 (dd,
J = 15.3, 6.8 Hz, 1H), 2.32 (dd, J = 15.3, 6.1 Hz, 1H), 1.48–1.40 (m, 2H), 1.38–1.32 (m, 2H), 1.10 (d,
J = 6.4 Hz, 3H), 0.90 (t, J = 7.3 Hz, 3H).

Methyl 3-(butylamino)-3-phenylpropanoate (17a) [45]. Thick light-yellow oil. IR (neat, cm´1): ν = 3395,
3063, 3028, 2954, 2932, 2862, 1716, 1663, 1635, 1578, 1543, 1496, 1450, 1435, 1373, 1330, 1315, 1277, 1242,
1204, 1173, 1045, 980, 864, 768, 702. 1H-NMR (CDCl3, 500 MHz): δ (ppm) 7.52–7.50 (m, 1H), 7.40–7.32
(m, 3H), 7.28–7.25 (m, 1H), 3.66 (s, 3H), 3.45–3.35 (m, 1H), 2.72 (dd, J = 15.6, 8.6 Hz, 1H), 2.63 (dd,
J = 15.6, 5.4 Hz, 1H), 2.48–2.39 (m, 2H), 1.61–1.55 (m, 2H), 1.50–1.47 (m, 2H), 0.88 (t, J = 7.2 Hz, 3H). MS
(ES+) m/z (%) = 221 [MH+] (7), 82 (100), 57 (53).

4. Conclusions

This study expanded the scope of our previously reported protocol for the synthesis of aza-Michael
mono-adducts and confirmed the significant advantage of this method in producing the mono-adducts
with high selectivity. Acidic alumina has shown to be a suitable catalyst to selectively obtain the
mono-adducts in aza-Michael reactions with the additional advantage of the solvent-free heterogeneous
conditions. A wide range of aliphatic/aromatic primary amines and Michael acceptor combinations
have been tested successfully, while preserving several other functionalities.

All reactions were performed under green, heterogeneous and solventless conditions in the
presence of 0.2 g of acidic alumina per mmol of substrate. Aliphatic amines gave good to excellent
yields with the highest (100%) obtained in the addition of 4-methoxybenzylamine to acrylonitrile.
Interestingly, cyclic amines provided better results than linear ones, whilst aromatic amines formed
only the mono-adducts in excellent yields, with the highest yield of 98% in the reaction between
ethyl acrylate and 4-methoxyaniline, and no trace of bis-addition product. Methyl methacrylate and
methyl trans-cinnamate provided slightly lower yields due to steric hindrance. Bifunctional amines
reacted successfully, the highest yield being that of 93% obtained for addition of propargylamine to
ethyl acrylate.
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