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Abstract
Cassava (Manihot esculenta Crantz) is a clonally propagated 
staple food crop in the tropics. Genomic selection (GS) has been 
implemented at three breeding institutions in Africa to reduce 
cycle times. Initial studies provided promising estimates of predic-
tive abilities. Here, we expand on previous analyses by assess-
ing the accuracy of seven prediction models for seven traits in 
three prediction scenarios: cross-validation within populations, 
cross-population prediction and cross-generation prediction. We 
also evaluated the impact of increasing the training population 
(TP) size by phenotyping progenies selected either at random 
or with a genetic algorithm. Cross-validation results were mostly 
consistent across programs, with nonadditive models predicting 
of 10% better on average. Cross-population accuracy was gener-
ally low (mean = 0.18) but prediction of cassava mosaic disease 
increased up to 57% in one Nigerian population when data from 
another related population were combined. Accuracy across 
generations was poorer than within-generation accuracy, as ex-
pected, but accuracy for dry matter content and mosaic disease 
severity should be sufficient for rapid-cycling GS. Selection of a 
prediction model made some difference across generations, but 
increasing TP size was more important. With a genetic algorithm, 
selection of one-third of progeny could achieve an accuracy 
equivalent to phenotyping all progeny. We are in the early stages 
of GS for this crop but the results are promising for some traits. 
General guidelines that are emerging are that TPs need to contin-
ue to grow but phenotyping can be done on a cleverly selected 
subset of individuals, reducing the overall phenotyping burden.
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Core Ideas

•	 Accuracy is generally similar across breeding 
populations.

•	 Data sharing across programs improves predictions 
in some circumstances.

•	 Accuracy across generations is sufficient for rapid-
cycling genomic selection (GS) on several traits.

•	 Phenotyping small numbers of progeny can have a 
large impact on prediction accuracy.

•	 Prospects for GS in cassava are good and improving.
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Cassava, a root crop with origins in the Amazon 
basin (Olsen and Schaal, 1999), provides staple food 

for more than 500 million people worldwide (Howeler et 
al., 2013). It is widely cultivated in Sub-Saharan Africa, 
where the storage roots serve as primary source of car-
bohydrates and can be processed into a wide variety of 
products such as fufu, lafun, gari, abacha, tapioca, and 
starch (Chukwuemeka, 2007; Bamidele et al., 2015).

Cassava is a diploid (2n = 36) and highly heterozygous 
non-inbred crop that is propagated vegetatively by farmers 
using stem cuttings, though most genotypes flower and 
can be used to produce botanical seeds from either self- or 
cross-pollination. Among the most important traits tar-
geted for improvement are storage root yield, dry matter 
content (DM), starch content, tolerance to postharvest 
physiological deterioration, carotenoid content, and resis-
tance to pests or diseases (Esuma et al., 2016).

Development and implementation of breeding strate-
gies in cassava represent a challenge because of the crop’s 
heterozygous nature and long breeding cycle. A tradi-
tional cassava-breeding program relies on phenotypic 
characterization of mature plants that have been clonally 
propagated. Typically, cycles of selection take 3 to 6 yr 
from seedling germination to multilocation yield trials 
and additional years are required to evaluate promising 
genotypes before variety release (Fig. 1).

Marker-assisted selection has been effective in cas-
sava for the selection of promising genotypes for resis-
tance to cassava mosaic disease (CMD) (Okogbenin 
et al., 2007; Ceballos et al., 2015; Parkes et al., 2015). 
However, the use of marker-assisted selection is limited 
primarily to traits with known large-effect loci, which 
makes this method infeasible for complex traits (Dekkers 
and Hospital, 2002; Heffner et al., 2009).

With the advent of next-generation sequencing tech-
nologies, it is now affordable to profile single nucleotide 
polymorphism (SNP) markers genome-wide (Barabaschi 
et al., 2015), which can support the use of GS, a breeding 
method that uses such markers to predict the breeding 
values of unevaluated individuals (Meuwissen et al., 
2001). Genomic selection can optimize and accelerate 
pipelines for population improvement and variety devel-
opment and release (Heffner et al., 2009) with a reduc-
tion in breeding time resulting from selection of parental 
genotypes with superior breeding values at the seedling 
stage based on genotypes alone.

Many genomic prediction models are available, dif-
fering from each other primarily with respect to the 
genetic architecture that they assume. For example, 
genomic best linear unbiased prediction (GBLUP) 
assumes an infinitesimal genetic architecture (nearly 
equal and small contributions by all genomic regions to 
the phenotypes). In contrast, models like BayesB alter 
that assumption, putting emphasis on major-effect loci 
and variable selection (Gianola et al., 2009; Legarra et 
al., 2011; Habier et al., 2011). Evaluation of different GS 
models with nonsimulated data indicates that prediction 
accuracy varies across species and traits (Heslot et al., 

2012; Resende et al., 2012; Gouy et al., 2013; Charmet et 
al., 2014; Rutkoski et al., 2014; Cros et al., 2015).

Previous studies in cassava have estimated genetic 
parameters and evaluated prediction accuracy by apply-
ing the GBLUP model with small training sets and 
low-density markers (Oliveira et al., 2012, 2014). Histori-
cal phenotypic data from the International Institute of 
Tropical Agriculture (IITA), combined with markers 
obtained from genotyping-by-sequencing (GBS), showed 
promising results for cassava breeding with GS (Ly et al., 
2013). In that study, the predictive ability (accuracy) was 
measured as the correlation between predictive values 
and the phenotypic value ranged from 0.15 to 0.47 across 
traits (Ly et al., 2013).

There are ongoing efforts within the Next Genera-
tion Cassava Breeding project (www.nextgencassava.
org, accessed 14 Aug. 2017) to increase the rate of genetic 
improvement in cassava and unlock the full potential of 
cassava production. The project is currently in the early 
stages of implementing GS at three African research insti-
tutes: the National Crops Resources Research Institute 
(NaCRRI) in Uganda, the National Root Crops Research 
Institute (NRCRI) in Nigeria, and the IITA, also in Nigeria.

In the present study, we evaluated the potential of 
GS as a breeding tool to increase the rates of genetic 
gain in datasets associated with all three Next Genera-
tion Cassava Breeding breeding programs. We assessed 
predictive ability by cross-validation within TP datasets 
for seven traits: DM, fresh root weight (RTWT), root 
number (RTNO), shoot weight (SHTWT), harvest index 
(HI), severity of CMD (MCMDS), and plant vigor. We 
compared the performance of seven GS models for these 
traits in each of the breeding programs.

One important topic in GS concerns the feasibility 
of prediction across generations and across TPs from 
different breeding populations or programs. To increase 
the rate of gain achievable by GS, prediction models will 
need to accurately rank unevaluated progenies rather 
than genotypes contemporary with the TP. It is well 
known that recombination and divergence relative to the 
TP associated with recurrent selection reduces the accu-
racy of cross-generation prediction, making this kind 
of prediction a major challenge for GS (Jannink, 2010; 
Lorenz et al., 2011). Accuracies in these scenarios have 
not been previously estimated in cassava. Therefore, we 
tested the accuracy of cross-generation prediction with 
the IITA TP and two successive cycles of progeny that 
have been phenotyped. Similarly, given that the previous 
results indicated only a small level of genetic differentia-
tion among clones from different populations (Wolfe et 
al., 2016b), we tested whether combining information 
from different populations could increase prediction 
accuracy in the smaller populations.

Finally, in a typical scenario, a GS program will 
phenotype all selected materials and a subset of the 
unselected material to update the training model. We 
further investigated the impact of phenotyping differ-
ent sized subsets of materials for the TP update. We 

www.nextgencassava.org
www.nextgencassava.org
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compared random subset selections to selections based 
on a TP optimization algorithm (Akdemir et al., 2015).

This study is a starting point for successful applica-
tion of GS in African cassava. Similar to other studies, 
factors such as trait heritability, the prediction model, 
and TP composition play important roles in determining 
the prediction accuracy and the rate the of genetic prog-
ress. For example, traits with higher heritability like DM 
are considered to be more likely to respond to selection 
and lead to larger genetic gain over cycles of selection 
(Kawano et al., 1998; Ceballos et al., 2015). Our results 
will serve to guide implementation strategies for GS in 
cassava breeding programs.

Materials & Methods

Germplasm
In this study, we analyzed data from the GS programs 
at three African cassava breeding institutions: NaCRRI, 
NRCRI, and IITA. Germplasm from NaCRRI included 
411 clones descended from crosses among accessions 
from East Africa, West Africa, and South America. The 
collection from NRCRI was made up of 899 clones, 211 
of them in common with the IITA breeding germplasm. 
The remaining 688 clones were materials derived either 
in part or directly from the International Center for 
Tropical Agriculture in Cali, Columbia. Wolfe et al. 
(2016b) shows details of the origins and pedigrees of the 
NaCRRI and NRCRI clones used in this study.

The primary IITA germplasm we analyzed is also 
known as the Genetic Gain (GG) collection, which 
comprises 709 elite and historically important breed-
ing clones and a few landraces that have been collected 

starting in the 1970s. These materials have also been pre-
viously described in Okechukwu and Dixon (2008), Ly et 
al. (2013), and Wolfe et al. (2016b).

In addition, two generations of GS progeny were 
analyzed (Fig. 2). The parents of each set of progeny were 
chosen on the basis of their GEBVs as described previ-
ously (Wolfe et al., 2016b). The first, GS cycle 1 (C1) com-
prised 2890 clones from 166 full-sib families with 85 par-
ents from the GG collection. Because of inconsistency in 
the timing and amount  of flowering and seed set among 
clones, successful crossing is a challenge in cassava. To 
obtain the full set of desired matings among parents of 
C1, crossing blocks were planted in two successive years 
(2013 and 2014). In 2013, 79 parents produced 2322 seed-
lings (135 full-sib families). In 2014, 17 parents, 11 of 
which were reused from the previous year and another 
six of which were new parents from the GG collection, 
gave rise to an additional 568 seedlings (31 new full-sib 
families). The C1 families had a mean size of 17.4 siblings 
(median: 15, range: 2–78).

Finally, in 2014, a crossing block was planted with 89 
selected C1 parents, which generated 1648 GS Cycle 2 (C2) 
seedlings in 242 full-sib families. The Cycle 2 families had 
a mean size of 6.8 individuals (median: 6, range: 1–20).

Phenotyped Traits
Seven traits were analyzed in this study. Plant vigor was 
recorded as 3 = low, 5 = medium, and 7 = high 1 mo after 
planting at IITA and NRCRI and 3 mo after planting at 
NaCRRI. We used the across-season average MCMDS for 
our analyses; this was the mean of measurements taken 
at 1, 3, and 6 mo after planting, on a scale of 1 (no symp-
toms) to 5 (severe symptoms). Dry matter content was 

Fig. 1. Schematic of a conventional cassava breeding cycle. Arrows between trials indicate the selection of materials for further pheno-
typing trials. Red arrows indicate the selection of materials as parents for crossing.
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expressed as a percentage of dry root weight relative to 
fresh root weight (RTWT). At IITA, DM was measured by 
drying 100 g of fresh roots in an oven, whereas at NRCRI 
and NaCRRI, the specific gravity method (Kawano et al., 
1987) was used. Root weight and SHTWT were expressed 
in kilograms per plot, whereas HI was the proportion of 
total biomass per plot (i.e., RTWT). Root number was the 
number of fresh roots harvested per plot. For all analyses 
below, RTNO, RTWT, and SHTWT were natural-log 
transformed to obtain normally distributed residuals.

The phenotyping trials analyzed in this study have 
been described in part in previous publications (Wolfe 
et al., 2016a; 2016b). However, complete details on the 
phenotyping trial design particular to this study are 
provided in Supplemental File S1. All phenotyping tri-
als were conducted between 2013 and 2015. Clones from 
NaCRRI were evaluated in three locations with differ-
ent agro-ecological conditions in Uganda: Namulonge, 
Kasese, and Ngetta. Clones from NRCRI were tested in 
three locations in Nigeria: Kano, Otobi, and Umudike. 
Meanwhile, IITA clones were evaluated in four locations 
within Nigeria: Ibadan, Ikenne, Ubiaja, and Mokwa.

Two-Stage Genomic Analyses
Except where noted otherwise, a two-step approach 
was used to evaluate genomic predictions in this study. 
This approach was used to correct for heterogeneity in 
the experimental designs and increase computational 
efficiency. The first stage involved accounting for trial 
design-related variables with a linear mixed model.

For NaCRRI we fitted the model shown in Eq. [1]: 

( ) ( )= b+ + + +ey X Z Z Zclone range loc.year block range	 	 c r b , [1]

where b included a fixed effect for the population mean, 
the location–year combination, and for plot-basis traits 
(RTWT, RTNO, and SHTWT); the number of plants 
harvested per plot was included as a covariate; the vector 
c and the corresponding incidence matrix Zclone repre-
sented a random effect for the clone where ( )s2~ N 0, cc I ; 
I represented the identity matrix; and the range variable 
was nested in location–year–replication and was repre-
sented by the incidence matrix Zrange(loc.year) and the ran-
dom effects vector ( )s2~ N 0, rr I . Ranges were equivalent 
to the row or column along which plots were arrayed. 
Blocks were also modeled, with a block being a subset 
of a range. Block effects were nested in ranges and were 
incorporated as random variables with the incidence 
matrix Zblock(range) effects vector ( )s2~ N 0, bb I . Finally, the 
residuals e  were random, with ( )ee s2~ N 0,I .

The model for NRCRI was: 

( ) ( ) ( )= b+ + + + +ey .	 	 c s r bclone set loc year rep set block repX Z Z Z Z , [2]

where Zset was the incidence matrix corresponding to 
the random effect for the planting group (see above), 
which was nested in location–year, with ( )s2~ N 0, ss I . 
Replication effects were nested in sets and treated as 
random with the incidence matrix Zrep(set) and the effects 
vector ( )s2~ N 0, rr I . Blocks were nested in replications, 
treated as random, and represented by the design matrix 
Zblock(rep) and the effects vector ( )s2~ N 0, bb I . The fixed 
effects for NRCRI included were the same as those for 
NaCRRI, with the addition of a term for trial (i.e., TP1 
and TP2; see above).

For IITA, data from all trials described above were 
fitted together using the model in Eq. [3]:

Fig. 2. Schematic of International Institute of Tropical Agriculture (IITA) genomic selection, 2012–2015. Three generations of the IITA 
genomic selection program are illustrated here. From the genetic gain (GG) population, 85 parents were selected and crosses over 2 
yr (‘TMS13F’ in 2012–2013 and ‘TMS14F’ in 2013–2014) gave rise to 2890 Cycle 1 (C1) progeny. Predictions based on data from the 
GG were used to select 89 parents from among C1 in 2013, giving rise to 1648 Cycle 2 (C2) progeny in 2014. The GG were clonally 
evaluated in 2013–2014 and 2014–2015. The ‘TMS13’ C1 progeny were evaluated in 2013–2014 and 2014–2015. The ‘TMS14’ C1 
progeny were evaluated with the C2 progeny in 2014–2015.
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( )= b+ + +ey .	 	 c rclone range loc yearX Z Z . [3]

The range effect was fitted as random. The fixed 
effects were the same as those described for NaCRRI, 
except the proportion of harvested plants (out of the total 
originally planted) was used instead of the number har-
vested as a cofactor. This was done to correct for differ-
ences in plot sizes.

For the clone effect, the best linear unbiased predic-
tion (BLUP) (ĉ), which represents an estimate of the total 
genetic value (estimated genetic value, EGV) for each 
individual, was extracted. The EGVs were de-regressed 

by dividing by their reliability ( -
s21 	 )

c

PEV , where PEV is 

the prediction error variance of the BLUP. This was done 
to avoid applying shrinkage to the same data twice (once 
in the first step and again in the genomic prediction 
step). The mixed models above were solved with the lmer 
function of lme4 package (Bates et al., 2014) in R (https://
cran.r-project.org, accessed 30 Aug. 2017).

We used de-regressed the EGVs as the response 
variables and weighted error variances in downstream 
genomic evaluations. Error variances were weighted 
according to Garrick et al. (2009) via Eq. [4]:

-
-

+

2

2
2

2

1

1
10.1

H
r H

r

, [4]

where H2 is the proportion of the total variance 
explained by the clonal variance component, s2

c . Weight-
ing error variances during the genomic prediction step 
was done to preserve information from the first step 
about differences between clones in the reliability of the 
de-regressed BLUPs being used to represent their genetic 
value. These differences occur mostly because of imbal-
ances in the number of observations among clones. This 
information would otherwise be ignored when making 
genomic predictions with a two-step procedure.

Genotyping Data
The cassava collections described above were genotyped 
with GBS (Elshire et al., 2011) with the ApeKI restriction 
enzyme recommended by Hamblin and Rabbi (2014). 
Single nucleotide polymorphisms were called with the 
TASSEL 5.0 GBS pipeline version 2 (Glaubitz et al., 2014) 
and aligned to the cassava reference genome, version 6.1 
(http://phytozome.jgi.doe.gov, accessed 14 Aug. 2017; 
International Cassava Genetic Map Consortium, 2015). 
Genotype calls were only allowed when a minimum 
of two reads was present; otherwise, the genotype was 
imputed (see below). Furthermore, the GBS data were 
filtered so that clones with >80% missing and mark-
ers with >60% missing genotype calls were removed. 
Markers with extreme deviation from Hardy–Weinberg 

equilibrium (Χ2 > 20) were also removed. Only biallelic 
SNP markers were considered for further analyses. We 
used a combination of custom scripts and common vari-
ant call file (Danecek et al., 2011) manipulation tools to 
accomplish this pipeline. Finally, imputation was con-
ducted with Beagle version 4.0 (Browning & Browning, 
2009). A total of 155,871 markers were obtained follow-
ing these procedures. For genomic prediction in a given 
population or dataset, we further filtered out SNPs with a 
minor allele frequency less than 0.01.

Assessment of Prediction Accuracy  
via Cross-Validation
To obtain unbiased estimates of prediction accuracy, we 
used a k-fold cross-validation scheme (Kohavi, 1995). In 
brief, each breeding program dataset [NRCRI collection 
(NR), NaCRRI collection (UG), and GG] was split ran-
domly into k = fivefold mutually exclusive training and 
validation sets. The training set composed of four out of 
five of the subsets was used to estimate marker effects for 
predictions. The estimated marker effects were used to 
predict the breeding value of the validation set individu-
als. The process of subset assignment and genomic pre-
diction was repeated 25 times for each model. For each 
repeat, predictions were accumulated from each indi-
vidual when it was in the validation subset. Prediction 
accuracy was then calculated as the Pearson correlation 
between the EGV (not de-regressed) and the accumu-
lated predicted values for that repeat.

Genomic Prediction Methods
In this study, we compared the accuracy of genomic pre-
diction via seven methods that are briefly described below. 
These methods differ in their assumptions about genetic 
architecture and whether the prediction being made 
represents a genome estimated breeding value (GEBV 
that included additive effects or a genome estimated total 
genetic value, which includes additive and nonadditive 
effects. Prediction models were compared by examining 
several prediction scenarios (described in detail below), 
including 25 replications of fivefold cross-validation, cross-
generation, and cross-population prediction.

Genomic BLUP
Prediction with GBLUP involves fitting a linear mixed 
model of the following form: = + +y g	 	X Zb e . Here, y is 
a vector of the phenotype and b is a vector of fixed, non-
genetic effects with the design matrix X. The vector g is a 
random effect, the BLUP, which represents the GEBV for 
each individual. Z is a design matrix indicating observa-
tions of genotype identities, and ε is a vector of residuals. 
The GEBV is obtained by assuming ( )sg 2~ N 0, gK , where 
s2

g  is the additive genetic variance and K is the square, 
symmetric genomic realized relationship matrix based 
on SNP markers. The genomic relationship matrix was 
constructed with the function A.mat in the R package 
rrBLUP (Endelman, 2011) and follows the formula of 
VanRaden (2008), Method 2. Predictions using GBLUP 

https://cran.r-project.org
https://cran.r-project.org
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were made with the function emmreml in the R package 
EMMREML (Akdemir and Okeke, 2015).

Reproducing Kernel Hilbert Spaces
We made predictions with reproducing kernel Hilbert 
spaces (RKHS). The genomic relationship matrix used 
in the GBLUP model described above can be considered 
as a parametric (additive genetic) kernel function and 
exists as a special case of RKHS (Gianola and van Kaam, 
2008; Morota and Gianola, 2014). For RKHS predictions, 
we used a mixed model of the same form as for GBLUP 
above. Unlike the case of GBLUP, we used a Gaussian 
kernel function: 

( )( )	 ijexpijK d= - q , [5]

where Kij was the measured relationship between two 
individuals, dij was their Euclidean genetic distance based 
on marker dosages, and θ was a tuning (sometimes called 
a “bandwidth”) parameter that determines the rate of 
decay of correlations among individuals. Because this is a 
nonlinear function, the kernels we used for RKHS could 
capture nonadditive as well as additive genetic variation. 
Thus the BLUPs from RKHS models represent genome 
estimated total genetic values rather than GEBVs.

Because the optimal θ must be determined, a range of 
values was tested in two ways. First, we did cross-valida-
tion with the following θ values and selected the one with 
the best accuracy: 0.0000005, 0.000005, 0.00005, 0.0001, 
0.0005, 0.001, 0.004, 0.006, 0.008, 0.01, 0.02, 0.04, 0.06, 
0.08, and 0.1 (single-kernel RKHS). Second, we used the 
emmremlMultiKernel function in the EMMREML pack-
age (Akdemir and Okeke, 2015) to fit a multikernel model 
with six covariance matrices, with the following band-
width parameters and allowed restricted maximum likeli-
hood to find optimal weights for each: 0.0000005, 0.00005, 
0.0005, 0.005, 0.01, and 0.05 (multikernel RKHS).

Bayesian Marker Regressions
We tested four well-established Bayesian prediction 
models: BayesCpi (Habier et al., 2011), the Bayesian 
LASSO (BL; Park and Casella, 2008), BayesA, and BayesB 
(Meuwissen et al., 2001). In ridge-regression (equivalent 
to GBLUP), marker effects were all shrunk by the same 
amount, because we assume they are all drawn from a 
normal distribution with the same variance. Further, all 
markers have a nonzero effect and most have small effects, 
essentially assuming that the genetic architecture of the 
trait is infinitesimal. In contrast, the Bayesian models we 
tested allow for alternative genetic architectures by induc-
ing differential shrinkage of marker effects. For BayesA 
and Bayesian LASSO, all markers have a nonzero effect 
but the marker variances are drawn from scaled-t and 
double-exponential distributions respectively, which are 
both distributions with thicker tails and greater density 
at zero. Both BayesB and BayesCpi are variable selec-
tion models because the marker variances come from a 

two-component mixture of a point mass at zero and either 
a scaled-t distribution (BayesB) or a normal distribu-
tion (BayesCpi). Fitting BayesB and BayesCpi begins by 
estimating a parameter pi, representing the proportion of 
markers with a nonzero effect. We performed Bayesian 
predictions with the R package BGLR (Pérez and De Los 
Campos, 2014). Following Heslot et al. (2012) and others, 
we ran BGLR for 10,000 iterations, discarded the first 1000 
iterations as burn-in, and thinned the remainder to every 
fifth sample. Marker dosages were mean-centered on the 
combination of training and test sets before analysis. Con-
vergence was confirmed visually in initial test runs using 
the CODA package in R (Plummer et al., 2006).

Random Forest
Random Forest (RF) is a machine learning method used 
widely in regression and classification (Breiman, 2001; 
Strobl et al., 2009). The use of RF regression with marker 
data has been shown to capture epistatic effects and has 
been successfully used for prediction of genome estimated 
total genetic value (Breiman, 2001; Motsinger-Reif et al., 
2008; Michaelson et al., 2010; Heslot et al., 2012; Charmet 
et al., 2014; Sarkar et al., 2015; Spindel et al., 2015). In 
prediction, a random forest is a collection of r regression 
trees grown on a subset of the original dataset that is boot-
strapped over observations and randomly sampled over 
predictors. Averaging the prediction over trees for valida-
tion observations then aggregates the information. We used 
RF with the parameter with ntree set to 500 and the num-
ber of variables sampled at each split (mtry) equal to 300. 
We implemented RF with the randomForest package in R 
(Liaw and Wiener, 2002). As in the Bayesian regressions, 
marker dosages were mean-centered before RF analysis.

Comparison of Models Based  
on the Similarity of Rankings
To test for GS model similarities among breeding pro-
grams, we clustered the GEBV output on a breeding 
program basis. Genomic estimated breeding values from 
each model were scaled and centered on a column basis 
with the scale function in R and were then used to con-
struct a matrix of Euclidean distances between models. 
Distance matrices were used as an input for hierarchical 
clustering using the Ward criterion implemented in the 
hclust R function (Heslot et al., 2012).

Cross-Generation Genomic Predictions
Because nearly all of the IITA germplasm from C1 and C2 
had been clonally evaluated, we were able to test the pros-
pects for predicting unevaluated progeny. We predicted 
all traits via all methods in four scenarios: GG predicting 
C1, GG predicting C2, C1 predicting C2, and GG + C1 
predicting C2. Unlike the other predictions presented in 
this study, cross-generation predictions were done in a 
single step (raw phenotype and genomic data were fitted 
simultaneously). The exception was for RF, where correc-
tion for location and blocking factors is not supported. 
For RF prediction, we used the same de-regressed EGVs 
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as for cross-validation. The software and parameters used 
were the same as already described. The design model was 
the same as that described for IITA above.

Training Population Update
We evaluated the impact on cross-generation prediction 
accuracy of phenotyping different size subsets of the un-
selected C1 (materials selected for crossing in each cycle 
were phenotyped, but unselected materials were not phe-
notyped in all cases). We selected subsets of C1 using two 
methods: randomly and with a genetic algorithm imple-
mented in the R package STPGA (Akdemir et al., 2015).

The STPGA package uses an approximation of the 
mean PEV expected for a given set of training individu-
als in combination with a given set of test genotypes as 
a criterion (which does not require phenotype data) for 
selecting the “optimal” training set. The genetic algo-
rithm implemented by STPGA is used to rapidly find the 
training set that minimized the selection criterion (the 
mean PEV of the test set; Akdemir et al., 2015). To speed 
up computation, STPGA uses principal components 
rather than raw SNP markers as genetic predictors.

Parents selected for further recombination were 
cloned into a crossing block. This was the point at which 
additional unselected seedlings must be chosen for phe-
notyping to incorporate their data in predictions of the 
eventual progeny that are produced. Since the next gen-
eration of progeny had not yet been produced, we targeted 
STPGA on the parents of C2. Figure 3 provides a sche-
matic of GS with the TP update and optimization with 
STPGA. We constructed a genomic relationship matrix 
with only C1 (including the parents of C2). We did a prin-
cipal component analysis on the kinship matrix and took 
the first 100 principal components as genomic predictors. 
We ran 1000 iterations of the genetic algorithm 10 times 
at each sample size. Sample sizes ranged from 200 to 2400 
at increments of 400 (Supplemental Table S1). Predictions 
at each sample size were then made with each of 10 ran-
dom and 10 optimized training sets using GBLUP in two 
scenarios: either just the sample of C1 was used to train 
the model or the sample of C1 plus all of GG were used.

Cross-Population Genomic Predictions
We predicted all traits using all methods in three scenar-
ios: GG + NR predicting UG, GG + UG predicting NR, 
and NR + UG predicting GG (Supplemental Table S2A). 
Cross-population predictions were made with the predic-
tion models described above and followed the two-step 
approach as described above.

We selected optimized subsets of the combined data-
sets with a genetic algorithm implemented in the R pack-
age STPGA (Akdemir et al., 2015). Random subsets of the 
same size as the optimized subsets (300, 600, 900, and 
1200) were selected for comparisons between predictive 
accuracies. Predictions at each sample size were then made 
for 10 random and 10 optimized training sets with GBLUP.

Results
After quality control and keeping only markers with >1% 
minor allele frequency, the datasets had between 70,010 
and 78,212 SNP markers (Table 1). Principal component 
analysis of the genomic relationship matrix indicated some 
genetic differentiation between Nigerian populations (GG 
and NR) and the Ugandan TP (UG; Supplemental Fig. 
S1a). In contrast, there was little differentiation between 
the NRCRI and IITA GG datasets, even when we com-
pared only the nonoverlapping clones. We also calculated 
the FST between populations as implemented in vcftools 
(Danecek et al., 2011). In agreement with results from 
the principal component analysis, the FST between GG 
and NR was only 0.008, but was 0.019 and 0.021 between 
the Ugandan and the Nigerian populations, GG and NR, 
respectively. There was a similar amount of genetic dif-
ferentiation between the IITA C2 progeny and its grand-
parental GG population (FST = 0.02), as there was between 
GG and UG (Table 1, Supplemental Fig. S1b).

The mean inbreeding coefficient (F), as measured 
by the mean of the diagonal of the genomic relationship 
matrix, was similar for all populations, ranging from 0.933 
in GG to 0.965 in C1. The mean rate of heterozygous loci 
was also similar between populations, ranging from 0.15 
to 0.17. There was no notable decrease in heterozygosity 
or increase in the inbreeding coefficient from GG to C1 or 
from C1 to C2 (Table 1; Supplemental Fig. S2).

In general, broad-sense heritability was highest in 
the C1 (mean = 0.46 across traits), lowest for NRCRI 
(mean = 0.13), and similar for the IITA GG, and NaCRRI 
TPs. Averaging across populations, broad-sense heri-
tability was highest for MCMDS (0.57), followed by HI 
(0.43) and DM (0.39). However, broad-sense heritability 
was generally low for yield components (Table 1).

Prediction Within Breeding Populations
We tested seven genomic prediction models that differed 
in their extent and the kind of shrinkage, which is rel-
evant in modelling different genetic architectures, and in 
their ability to capture nonadditive effects (Supplemental 
Fig. S3 to Supplemental Fig. S5).

Overall, breeding populations exhibited differences 
in the cross-validated prediction accuracies between 
methods and across traits (Table 2 and Supplemental Fig. 
S3 to Supplemental Fig. S5). For NRCRI (n = 899), the 
mean predictive accuracy values across methods ranged 
between -0.02 for plant vigor and 0.27 for HI. For 
NaCRRI (n = 411), the mean predictive accuracy values 
ranged between 0.23 for SHTWT and 0.46 for HI. Mean-
while, the predictive accuracy values for GG (n = 709) 
ranged between 0.22 for plant vigor and 0.66 for DM.

In the NRCRI population, RKHS and RF, which cap-
ture nonadditive effects, had the highest predictive accu-
racy values for all traits except plant vigor. The trait with 
the highest predictive accuracy was RTWT (RF (0.34)) 
and the lowest predictive accuracy was found for vigor 
(multi-kernel RKHS (-0.03)).
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In the NaCRRI population, the multikernel RKHS 
model showed the highest predictive accuracies for all 
traits except for CMD, for which BayesB showed the 
highest value (r = 0.50). In this population, CMD had the 
overall highest predictive accuracy across traits, whereas 
SHTWT exhibited the lowest predictive accuracy (Bayes-
ian LASSO, r = 0.18).

In the IITA GG population, Bayesian approaches 
performed better for vigor, CMD, SHTWT, and DM, but 
the RKHS method showed higher predictive accuracies 
for HI and for yield related traits such as RTWT and 
RTNO. Meanwhile, RF gave better predictive accuracy 
when it was used to estimate GEBVs.

Some trait–dataset combinations exhibited better pre-
dictive accuracies than others. For example, NaCRRI popu-
lation had better predictive accuracies for yield components 
like HI, RTWT and RTNO but the highest predictive values 
for CMD and DM were obtained in the GG population.

Similar to Heslot et al. (2012), we compared the 
cross-validated GEBVs following a clustering approach. 
The results in Supplemental Fig. S6 show the hierarchi-
cal cluster trees from the combined results of the three 
breeding populations. Differences in the clustering of 
methods are observed across datasets (Fig. 4). In the 
NRCRI data, we found two groups of clustering GS 
methods, with BayesB, BayesC, and GBLUP in one group 
and the rest on the other group. In the NaCRRI and IITA 
populations, nonparametric methods such as RKHS and 
RF clustered together, BayesA clustered with Bayesian 
LASSO, and GBLUP clustered with BayesC or BayesB.

Cross-Population Prediction
Previous studies have reported close relatedness between 
the clones in the next-generation TPs (Wolfe et al., 
2016b). One important question within this project is 
whether or not datasets from different breeding pro-
grams can be combined in a training set to increase pre-
dictive accuracy. The application of any prediction model 
with the combined dataset would then benefit from an 
increase in the TP size with the prospect of using such 

Table 2. Summary of cross-validated predictive accura-
cies by prediction model, trait, and breeding program. 
The highest predictive accuracy across methods within a 
trait and within a breeding program is indicated in bold. 

Trait Program
Bayes 

A
Bayes 

B
Bayes 

C BL‡ GBLUP

Multi- 
kernel-
RKHS

Random 
Forest Mean

NRCRI 0.12 0.12 0.11 0.12 0.10 0.18 0.15 0.13
DM NaCRRI 0.29 0.29 0.30 0.29 0.30 0.33 0.34 0.31

GG 0.67 0.67 0.67 0.68† 0.67 0.67 0.63 0.66
NRCRI 0.27 0.26 0.27 0.24 0.27 0.30 0.31 0.27

HI NaCRRI 0.46 0.45 0.45 0.45 0.45 0.48† 0.47 0.46
GG 0.37 0.39 0.39 0.40 0.39 0.41 0.39 0.39

NRCRI 0.23 0.22 0.23 0.24 0.22 0.32 0.34 0.26
RTWT NaCRRI 0.31 0.30 0.30 0.29 0.31 0.37† 0.35 0.31

GG 0.31 0.31 0.33 0.33 0.32 0.33 0.34 0.33
NRCRI 0.19 0.18 0.18 0.19 0.18 0.21 0.20 0.19

RTNO NaCRRI 0.35 0.34 0.34 0.30 0.35 0.39† 0.36 0.34
GG 0.33 0.33 0.34 0.35 0.35 0.34 0.35 0.34

NRCRI 0.18 0.19 0.19 0.19 0.17 0.25 0.24 0.20
SHTWT NaCRRI 0.21 0.22 0.22 0.18 0.24 0.26 0.25 0.23

GG 0.31 0.32 0.32 0.33† 0.32 0.33† 0.29 0.31
NRCRI 0.23 0.22 0.20 0.21 0.19 0.24 0.29 0.23

MCMDS NaCRRI 0.50 0.50 0.42 0.41 0.40 0.45 0.48 0.45
GG 0.58 0.60† 0.57 0.56 0.56 0.57 0.60† 0.57

NRCRI -0.03 -0.02-0.02 -0.03 -0.02 -0.03 -0.03 -0.02
VIGOR NaCRRI 0.35 0.34 0.34 0.34 0.35 0.38† 0.38† 0.34

GG 0.23 0.23 0.24 0.24 0.23 0.22 0.18 0.22
Mean 0.31 0.31 0.30 0.30 0.30 0.33 0.33

† The highest predictive accuracy within a trait across breeding programs.

‡ BL, Bayesian Lasso; GBLUP, genomic best linear unbiased prediction; RKHS, reproducing kernel 
Hilbert spaces; GG, International Institute of Tropical Agriculture Genetic Gain germplasm collection; 
NRCRI, National Root Crops Research Institute; NaCRRI, National Crops Resources Research Institute; 
DM, dry matter content; HI, harvest index; RTWT, root weight; RTNO, root number; SHTWT, shoot 
weight; MCMDS, mean cassava mosaic disease severity; VIGOR, early plant vigor.

Table 1. Summary and comparison of phenotype and 
genotype datasets analyzed in this study.

Broad-sense heritability

Trait

IITA¶

NRCRI NaCRRIAll IITA GG C1 C2

VIGOR 0.25 0.25 0.31 0.19 0.06 0.15
MCMDS 0.69 0.60 0.86 0.25 0.44 0.62
DM 0.49 0.59 0.62 0.51 0.01 0.14
HI 0.57 0.36 0.62 0.55 0.12 0.36
RTWT 0.31 0.10 0.36 0.00 0.10 0.27
RTNO 0.24 0.09 0.26 0.00 0.06 0.22
SHTWT 0.22 0.14 0.21 0.00 0.13 0.25
No. Clones 5247 709 2890 1648 899 411
Raw data points 8501 2924 3875 1702 2391 7662

Genetic diversity statistics

Mean Inbreeding Coefficient† 0.933 0.965 0.949 0.946 0.954
Std Dev. Kinship Coefficient‡ 0.080 0.089 0.092 0.080 0.118
MAF > 1% 76137 73096 70010 78212 75923
Median (MAF) 0.009 0.0067 0.0047 0.01 0.01

Mean Heterozygosity§ 0.16 0.15 0.17 0.15 0.15
Max. Heterozygosity 0.29 0.27 0.28 0.26 0.24
Min. Heterozygosity 0.07 0.07 0.10 0.07 0.08

Mean (MAF) 0.056 0.054 0.056 0.055 0.054

Mean FST between datasets

Populations 
compared FST

Populations 
compared FST

GG vs. NR 0.008 GG vs. C1 0.010
GG vs. UG 0.019 GG vs. C2 0.020
NR vs. UG 0.021 C1 vs. C2 0.014

† Mean of the diagonal of the genomic relationship matrix.

‡ Off-diagonal of the genomic relationship matrix.

§ Heterozygosity per individual per dataset.

¶ IITA, International Institute of Tropical Agriculture; GG, IITA Genetic Gain germplasm collection; C1, 
IITA Cycle 1; C2, IITA Cycle 2; NR, National Root Crops Research Institute (NRCRI); UG, National Crops 
Resources Research Institute (NaCRRI); DM, dry matter content; HI, harvest index; RTWT, root weight; 
RTNO, root number; SHTWT, shoot weight; MCMDS, mean cassava mosaic disease severity; VIGOR, 
early plant vigor;MAF, minor allele frequency.
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models in other cassava breeding programs in Africa. 
With that in mind, we used combined datasets of GG + 
NR, GG + UG, and UG + NR to predict the population 
that was not included in the training set (UG, NR, and 
GG, respectively).

When we predicted the traits in the UG dataset with 
the combined GG + NR full set, Bayesian models gave 
better predictive accuracies for MCMDS, RTNO, and 
DM. Random Forest gave better predictive accuracies for 
HI and RKHS was best for RTWT and SHTWT (Supple-
mental Table S2a).

The average predictive accuracy with the combined 
GG + NR full set as the training set with the GBLUP 
model was consistently lower for all the traits than  the 
average GBLUP cross-validation results (Supplemental 
Table S2a). Furthermore, the subsets selected by STPGA 
to predict the NaCRRI (UG) validation set gave, for all 
traits and all subset sizes, lower predictive accuracies 
than the GBLUP cross-validation model (Table 3; Supple-
mental Fig. S7; Supplemental Table S2b).

For plant vigor, MCMDS, and HI, the optimized 
STPGA subsets gave higher predictive accuracies than 
the combined GG + NR full training dataset. With few 
exceptions (MCMDS, SHTWT, and DM), the optimized 
STPGA datasets gave better prediction accuracies than 
the same sized random sets. As the optimized STPGA 
dataset increased in size, the predictive accuracy did not 
increase, except for RTNO, where the highest predictive 
accuracy was found when the TP size was 1200.

When the combined GG + UG full training dataset 
was used to predict the NRCRI TP, Random Forest and 
RKHS prediction models performed better for RTWT, 
SHTWT, RTNO, and plant vigor. Bayesian models gave 
better predictive accuracies for MCMDS and DM. For 
plant vigor, MCMDS and DM, the combined UG+GG full 
dataset gave better predictive accuracies than the GBLUP 
cross-validation model (Supplemental Fig. S8; Supple-
mental Table S2b). For prediction of the NRCRI TP, the 
optimized STPGA selected datasets gave better predictive 
accuracies for plant vigor, RTWT, RTNO, and SHTWT 
than the combined UG+ GG full training dataset.

To predict the NRCRI TP for all traits except RTNO (at 
n = 900 and n = 1200) and CMD (n = 900), the optimized 
datasets gave higher predictive accuracies than the random 
datasets. For plant vigor, CMD resistance, and DM, the 
selection of optimized datasets with STPGA gave better pre-
dictive accuracies than the GBLUP cross-validation model.

Among the STPGA datasets, the highest predictive 
accuracy was not always the result of an increase in TP 
size. For CMD resistance, the highest predictive accuracy 
was found for the smallest optimized dataset, with the 
same value as the highest optimized size,.

The predictive accuracy results of traits in the GG 
dataset using the full training set (UG+NR) varied across 
methods. Whereas Bayesian methods gave better predic-
tive accuracy values for MCMD and plant vigor, RKHS 
performed better for DM, HI, RTWT, and SHTWT. The 
combined (UG+NR) full training dataset for predicting 

Fig. 4. Hierarchical clustering of genomic prediction models based on cross-validated genomic estimated breeding values (GEBVs). 
Height on the y-axis refers to the value of the dissimilarity criterion. (A) Clustering of prediction models in the National Root Crops 
Research Institute (NRCRI) population. (B) Clustering of prediction models in the National Crops Resources Research Institute (NaCRRI) 
population. (C) Clustering of prediction models in the Genetic Gain (GG) population. GBLUP, genomic best linear unbiased predictor; 
BL, Bayesian Lasso; RF, random forest; RKHS, reproducing kernel Hilbert spaces multikernel model.
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the GG population gave lower predictive accuracies than 
the GBLUP cross-validation model for all traits. The 
GBLUP cross-validation model also gave better predictive 
accuracies for all the traits than the random and opti-
mized STPGA datasets. The optimized STPGA datasets 
gave better predictive accuracies than the random sets 
for all traits except for plant vigor and for DM (optimized 
dataset n = 900) (Supplemental Fig. S9; Supplemental 
Table S2b). For all traits except MCMDS and DM, the 
optimized STPGA subsets gave higher predictive accura-
cies than the combined UG+NR full training dataset.

For all the cross-population results, we tested if the 
optimized STPGA sets would do better than random 
with a binomial test, assuming the independence of the 
comparisons. We compared how many times the predic-
tion accuracy of STPGA was greater than random for all 
traits. We found that for prediction of the NR and UG 
sets, the STPGA-optimized sets performed better than 
the random sets. On the contrary, when we applied the 
same comparison of the STPGA sets with the predictions 
with full sets, the latter had a significantly higher num-
ber of full sets that was greater than STPGA’s predictive 
accuracy results.

Additionally, we tested if there was differential 
enrichment in the optimized STPGA training set of any 
of the populations relative to the source sets. We found a 
significant enrichment of the GG population (p < 0.001) 
in the STPGA of different sizes for the prediction of the 

NR set with GG + UG. Similarly, we found a significant 
enrichment of the NR population (p < 0.001) in the 
STPGA of different sizes for predicting the GG set with 
the UG-NR. On the contrary, we found no significant 
enrichment of any population in the STPGA-optimized 
sets predicting the UG population.

Cross-Generation Prediction
One major area where analysis was needed concerned 
prediction across generations. Selections can be done at 
the seedling stage if GEBV can be predicted from the pre-
vious generations and training data. Because nearly all of 
the IITA germplasm from C1 and C2 were clonally evalu-
ated, we were able to use these data to assess the accuracy 
of genomic predictions on unevaluated genotypes of the 
next generation. In general, the accuracy of prediction 
across generations was greatest when predicting C2, as 
shown by averaging across prediction models and traits 
for predictions trained either with C1 (mean = 0.19 ± SE 
0.02) or GG + C1 (0.19 ± 0.02). The accuracy was lower on 
average when we predicted C2 with GG (0.11 ± 0.01) than 
when we predicted C1 with GG (0.17 ± 0.02). Accuracy 
was lowest for both plant vigor and RTWT (0.06 ± 0.005) 
and was highest for MCMDS (0.32 ± 0.03) and DM (0.38 
± 0.01). Most prediction models performed similarly, as 
shown by the averaged accuracy across traits and train-
ing–test combinations, with RF performing worst (0.08 ± 
0.01) and BayesA and BayesB performing best (both 0.20 

Table 3. Summary of mean genomic best linear unbiased prediction (GBLUP) cross-validated predictive accuracies 
across populations. Four subset selection methods (random vs. STPGA) and the full set were considered. The high-
est predictive accuracy across subsets and the full set is indicated in bold.

Train Test Trait

300 600 900 1200

Full CVGBLUP†STPGA Random STPGA Random STPGA Random STPGA Random

NR + GG UG VIGOR 0.199 0.083 0.182 0.102 0.221 0.152 0.200 0.174 0.193 0.353
NR + GG UG MCMDS 0.293 0.224 0.284 0.264 0.262 0.279 0.284 0.291 0.285 0.404
NR + GG UG DM 0.272 0.209 0.282 0.227 0.258 0.254 0.252 0.272 0.284 0.296
NR + GG UG HI 0.294 0.176 0.278 0.230 0.266 0.215 0.228 0.214 0.206 0.454
NR + GG UG RTWT 0.155 0.072 0.165 0.124 0.181 0.156 0.179 0.174 0.193 0.314
NR + GG UG RTNO 0.149 0.068 0.171 0.151 0.175 0.167 0.195 0.190 0.206 0.348
NR + GG UG SHTWT -0.014 0.059 0.042 0.075 0.027 0.066 0.037 0.071 0.075 0.244
UG + NR GG VIGOR -0.011 0.054 0.032 0.049 0.050 0.061 – – 0.060 0.231
UG + NR GG MCMDS 0.374 0.325 0.377 0.341 0.372 0.374 – – 0.382 0.558
UG + NR GG DM 0.216 0.173 0.221 0.212 0.235 0.238 – – 0.244 0.666
UG + NR GG HI 0.261 0.210 0.252 0.204 0.222 0.213 – – 0.215 0.386
UG + NR GG RTWT 0.079 0.077 0.095 0.073 0.084 0.061 – – 0.063 0.320
UG + NR GG RTNO 0.132 0.096 0.130 0.110 0.113 0.097 – – 0.099 0.345
UG + NR GG SHTWT 0.154 0.110 0.163 0.160 0.145 0.156 – – 0.162 0.321
GG + UG NR VIGOR 0.054 -0.003 0.029 0.003 0.039 0.014 0.017 0.011 0.016 -0.024
GG + UG NR MCMDS 0.193 0.138 0.186 0.154 0.189 0.190 0.193 0.188 0.213 0.188
GG + UG NR DM 0.116 0.110 0.151 0.142 0.166 0.155 0.168 0.167 0.184 0.104
GG + UG NR HI 0.149 0.122 0.157 0.145 0.151 0.151 0.164 0.155 0.181 0.271
GG + UG NR RTWT 0.080 0.070 0.120 0.048 0.099 0.058 0.096 0.071 0.082 0.220
GG + UG NR RTNO 0.074 0.064 0.066 0.051 0.041 0.054 0.040 0.053 0.053 0.180
GG + UG NR SHTWT 0.094 0.089 0.107 0.088 0.107 0.099 0.112 0.106 0.119 0.169

† CVGBLUP = cross-validation GBLUP within the test population; GG, International Institute of Tropical Agriculture Genetic Gain germplasm collection; NR, National Root Crops Research Institute; UG, National Crops 
Resources Research Institute; DM, dry matter content; HI, harvest index; RTWT, root weight; RTNO, root number; SHTWT, shoot weight; MCMDS, mean cassava mosaic disease severity; VIGOR, early plant vigor.
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± 0.03). For MCMDS, we found that prediction accuracy 
was greatest with BayesA and BayesB (Fig. 5, Supplemen-
tal Fig. S10, Supplemental Table S3).

Training Population Update
The first 100 principal components of the C1 kinship 
matrix were used as predictors for STPGA and explained 
97.7% of the genetic variance. In all cases, the genetic 
algorithm converged within the 1000-iteration run (Sup-
plemental Fig. S11).

Given the constraints of breeding programs 
described above, it was necessary to select samples of 
C1 that were optimized for predicting the parents of C2, 
rather than the C2 themselves. Despite targeting the 
parents of C2, we used selected training sets to predict 
C2, thus simulating the addition of phenotypes to the 
training set. Because of this, we compared the accuracy of 
subsets of C1 predicting C2 to the accuracy of predicting 
the parents of C2. As the number sampled increased from 
200 to 2400, averaging across traits and methods for sub-
set selection (STPGA and at random), accuracy increased 
by 120 and 105% when predicting C2 and the parents of 
C2, respectively. The increase in accuracy was smaller 
when we included the 709 GG clones in the prediction, 
increasing only by 43 and 36% respectively when predict-
ing C2 and parents of C2 (Supplementary Table S4).

The STPGA approach consistently selected training 
datasets with a lower expected mean PEV on the test set 
than random sampling, across training set sizes (Supple-
mental Fig. S12). Further, using STPGA to select clones 
for phenotyping gave 13% better accuracy on average 
(average accuracy of 0.242 vs. 0.214, two-tailed t = 6.29, 
df = 4458, p < 0.0001) than random sampling. Broken 
down by validation set, STPGA was significantly better 
than random for predicting the parents of C2 (t = 9.8, 
df = 2147, p < 0.0001) but was not significantly better for 
predicting C2 (t = 1.41, df = 2227, p = 0.16).

We compared these accuracies with that of the full 
set of C1 (or GG + C1) and to the cross-validation accu-
racy within the test set (C1 for prediction of the parents 
of C2, and C2 for predictions of C2). When predicting 
C2, which was our primary goal, the subsets were almost 
always inferior to the full set, with the exceptions of the 
middle sizes for RTWT, but the advantage was very small 
(Fig. 6, Supplemental Fig. S13). However, STPGA-selected 
subsets tended to have better accuracy than the full set, 
especially for yield components when predicting the 
parents of C2, which were the genotypes targeted by the 
optimization algorithm (Fig. 7, Supplemental Fig. S14).

The correlation between the selection criterion 
(mean PEV) used by STPGA and the training set size is 
strong for all traits (range = -0.57 to -0.61). Aside from 

Fig. 5. Plot of cross-generation prediction accuracies. Seven genomic prediction methods were tested for seven traits (panels). For each 
model (colors, x-axis within panels), four predictions were made: Genetic Gain (GG) predicting Cycle 1 (C1), GG predicting (Cycle 2) 
C2, C1 predicting C2, and GG + C1 predicting C2, indicated by shapes. All data are from the International Institute for Tropical Agri-
culture (IITA) genomic selection program. DM, dry matter content; HI, harvest index; RTWT, root weight; RTNO, root number; SHTWT, 
shoot weight; MCMDS, mean cassava mosaic disease severity; VIGOR, early plant vigor.
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simply increasing the TP size, we wanted to assess the 
extent to which the mean PEV could be used as a pre-
dictor of the achievable accuracy. Regression of predic-
tion accuracies for each sample (regardless of whether 
it was selected randomly or by STPGA) on mean PEV 
explained between 8% (RTNO) and 46% (DM) of the 
variance in accuracy. Multiple regression including mean 
PEV and training set size as predictors showed PEV to be 
the more significant predictor (across all traits). In fact, 
training set size was not a significant explanatory vari-
able for RTWT or RTNO (Supplemental Table S5).

Discussion
The Next Generation Cassava Breeding Project (www.
nextgencassava.org, accessed 15 Aug. 2017) aims to assess 
the potential of genomic selection in cassava to reduce the 
length of the breeding cycle and increase the number of 
crosses and selections per unit of time. The project is imple-
menting GS in three breeding programs from Nigeria and 
Uganda, with genotypic and phenotypic data from TPs and 
two cycles of selection available on a database dedicated to 
cassava (www.cassavabase.org, accessed 15 Aug. 2017).

Using a cross-validation scheme, we contrasted the per-
formance of GBLUP, RKHS (single-kernel and multikernel), 
BayesA, BayesB, BayesCpi, Bayesian LASSO, and RF for 
yield components (RTWT, RTNO, SHTWT, HI, and DM) 
and CMD resistance data from the breeding programs.

In general, the performance of predictive models is 
known to be conditional on the genetic architecture of 
the trait under consideration (Daetwyler et al., 2010; Su 
et al., 2014). Although nonadditive models, including 
RF and RKHS, capture dominance and epistasis effects, 
GBLUP is more suitable for prediction when traits are 
determined by an infinite number of unlinked and non-
epistatic loci, with small effects.

Not surprisingly, heritability varied between popula-
tions, conceivably as a consequence of the differences in 
the number and design of field trials among breeding pro-
grams. For most traits, it is not possible to determine the 
reason for differences in heritability exactly. However, for 
DM, we can hypothesize that the difference in phenotyping 
protocols between programs (the specific gravity method 
at NRCRI and NaCRRI versus oven drying at IITA) could 
account for the observed differences. We note the estimate 
of zero heritability for RTWT, RTNO, and SHTWT in the 

Fig. 6. The relationship between training set size and the accuracy of predicting the International Institute for Tropical Agriculture Cycle 
2 (C2) (across generations). The accuracy of prediction for seven traits (panels) with the IITA Genetic Gain (GG) population training 
data plus data from different sized subsets (x-axis) of their progeny, Cycle 1 (C1) is shown. Subsets of a given size were selected either 
at random or with the genetic algorithm implemented in the R package STPGA. Ten random and 10 STPGA-selected subsets were 
made for each training set size. Error bars are the SE around the mean for the ten samples. Horizontal black lines show the mean cross-
validation accuracy for C2 (validation set; solid line) and the accuracy of the full set of GG + C1 predicting C2 (dashed line). DM, dry 
matter content; HI, harvest index; RTWT, root weight; RTNO, root number; SHTWT, shoot weight; MCMDS, mean cassava mosaic dis-
ease severity; VIGOR, early plant vigor.

www.nextgencassava.org
www.nextgencassava.org
http://www.cassavabase.org
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IITA C2 and acknowledge this is likely to account for the 
quality of cross-generation prediction in that dataset.

The cross-validation results were mostly consistent 
across breeding programs and the superiority of one 
prediction method over the others was trait-dependent. 
Random Forest and RKHS usually predicted phenotypes 
more accurately for yield-related traits, which are known 
to have a significant amount of nonadditive genetic 
variation (Wolfe et al., 2016a). Similar findings have been 
made in wheat (Triticum aestivum L.) for grain yield, an 
additive and epistatic trait, in which RKHS, radial basis 
function neural networks, and Bayesian regularized neu-
ral networks models clearly had a better predictive ability 
than additive models like BL, Bayesian ridge-regression, 
BayesA, and BayesB (Perez-Rodriguez et al., 2013).

Though the cross-validation results within the 
breeding programs are encouraging for the use of GS, 
prediction values across breeding programs were fairly 
low. Mean FST values were low (less than 0.05), indicating 
that the three breeding populations share genetic mate-
rial. Despite this, our results indicate that the prospect 
for sharing data across Africa to assist in GS is limited to 
certain traits (most notably MCMDS) and populations. 

Indeed, obtaining a larger training set by combining TP 
did not always lead to higher prediction accuracies than 
what could already be achieved within that population, 
as shown by the cross-validation results.

In animal models, prediction with multibreed popu-
lations has also been shown to be poor, with most of 
the observed accuracy caused by population structure 
(Daetwyler et al., 2012). An alternative kernel function 
has been proposed to estimate the covariance between 
individuals based on markers, which can improve the 
fit to the data to account for the genetic heterogeneity of 
breeding populations (Heslot and Jannink, 2015).

Conceivably, in our study, the addition of individuals 
from different breeding programs was detrimental caused 
by the inconsistent heritability of most traits. Another pos-
sibility is genotype × environment interaction. The impact 
of genotype × environment interactions on predictive accu-
racy has been reported in wheat when the same population 
was evaluated in different environments (Crossa et al., 
2010; Endelman, 2011). Similarly, in cassava with historical 
data from the IITA’s GG population, prediction across loca-
tions led to a decrease in accuracy (Ly et al., 2013).

Fig. 7. The relationship between training set size and the accuracy of predicting the parents of Cycle 2 (C2) [from Cycle 1 (C1), within-
generation). The accuracy of the predictions for seven traits (panels) with the International Institute for Tropical Agriculture Genetic Gain 
(GG) population training data plus data from different sized subsets (x-axis) of their progeny, Cycle 1 is shown. Subsets of a given 
size were selected either at random or with the genetic algorithm implemented in the R package STPGA. Ten random and 10 STPGA-
selected subsets were made for each training set size. Error bars are the SE around the mean for the 10 samples. Horizontal black lines 
show the mean cross-validation accuracy for C1 (validation set; solid line) and the accuracy of the full set of GG + C1 predicting the 
parents of C2 (dashed line). DM, dry matter content; HI, harvest index; RTWT, root weight; RTNO, root number; SHTWT, shoot weight; 
MCMDS, mean cassava mosaic disease severity; VIGOR, early plant vigor.
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Using the training sets selected based on an optimized 
algorithm gave better predictive ability than randomly 
assigned samples but showed a decrease in accuracy 
when compared with the GBLUP cross-validation results. 
Although in previous studies, the predictive accuracies 
with full sets were lower than those obtained with opti-
mized subsets (Rutkoski et al., 2015), in our study, we found 
the opposite, indicating that a larger training set was more 
advantageous. Combining data from different experiments 
and populations for cross-population prediction remains 
promising for traits like CMD, where the GWAS results 
indicate a stable large-effect quantitative trait loci through-
out the tested breeding populations (Wolfe et al., 2016b).

When predicting unevaluated progenies from the 
next generation (cross-generation prediction), our results 
indicated, in our judgment, that accuracy should be suf-
ficient for DM, MCMDS, and, to a lesser extent, HI (Fig. 5). 
Although accuracy is stable across the generations tested 
for DM with most models, for MCMDS to be successful, 
we recommend using a Bayesian shrinkage model such 
as BayesA or BayesB. The advantage of these models over 
GBLUP for CMD resistance probably arises because of the 
major known quantitative trait loci segregating in the popu-
lation (Rabbi et al., 2014; Wolfe et al., 2016a) and the ability 
of these two models to allow differential contributions of 
markers near the quantitative trait loci to the prediction. 
One disadvantage of BayesB, in particular, is that the known 
polygenic background resistance for CMD may become de-
emphasized in favor of heavy selection on the major effect 
gene(s) (Hahn et al., 1980; Legg and Thresh, 2000; Akano et 
al., 2002; Rabbi et al., 2014; Wolfe et al., 2016b).

We noted that RF and RKHS performed poorly across 
generations; this is a result that makes sense, given that 
the predictability of epistatic and dominant interactions 
declines with recombination (Lynch and Walsh, 1998).

On the basis of the datasets analyzed in this study, it 
was apparent that the size of a TP had a significant impact 
on prediction accuracy for most traits. Thus breeding 
programs will benefit from phenotyping the maximum 
possible amount. In agreement with the results in other 
crops (Rincent et al., 2012; Akdemir et al., 2015; Isidro et 
al., 2015), our results indicate that optimization algorithms 
like STPGA can provide at least a small advantage over 
random selection of materials for phenotyping.

Each breeding program will need to determine the 
amount of phenotyping vs. genotyping to do to maximize 
prediction accuracy and selection gain based on the cost 
and availability of land, labor, and genotyping. An analysis 
in barley (Hordeum vulgare L.) by Endelman et al. (2014) 
provides a good example of the potential complexity of 
these decisions. The authors show, as we do, that having a 
larger number of phenotyped individuals is always benefi-
cial, and that it is usually beneficial to focus on evaluating 
new lines at the expense of additional phenotyping of old 
lines. However, if genotyping costs are high, the cost–ben-
efit balance shifts toward more evaluation of the existing 
lines (Endelman et al., 2014). Endelman et al.’s (2014) study 
focused on prediction in biparental populations. Although 

this is likely to apply to cassava breeding populations, 
we stress the necessity of doing such an analysis for each 
breeding application separately.

An important result is that STPGA was able to find 
subsets that were better than the full set for predicting 
the parents of C2. The parents of C2 are members of 
C1 and were the individuals targeted by STPGA. One 
possible interpretation is that the benefit comes from 
phenotyping members of the same generation. If that 
were true, we could make a significant difference in accu-
racy by phenotyping a subset of clones from the current 
generation before predicting GEBV for the entire set of 
selection candidates. To do this without lengthening 
the selection and recombination cycle, harvested stems 
would need to be stored long enough for phenotypic data 
to be curated, predictions and selections to be conducted, 
and STPGA to be run. Methods of storing cassava stakes 
for up to 30 d are available, indicating that such a scheme 
could be possible (Sungthongw et al., 2016). Even without 
improved stem cutting storage, this could be done while 
only lengthening the selection and recombination cycle 
to perhaps 1.5 to 2 yr, which would still be significantly 
faster than conventional cassava breeding.

A related possibility is to place annual selection pres-
sure on traits that are predictable across generation (e.g., 
MCMDS, HI, and DM). Predictions of total genetic value 
for yield traits for selection of clones that will be tested as 
potential varieties could then be done after clonal evalua-
tion data become available on at least a subset of contem-
porary genotypes. Further trials will be necessary to deter-
mine whether there is an advantage to this type of strategy.

The primary promise GS offers to cassava breeding 
is the ability to select and recombine germplasm more 
frequently and thus hopefully speed the rate of popula-
tion improvement while combining a myriad of quality, 
disease, and yield-related traits into a single genotype 
that can be released as a variety. The applicability of the 
results from the different prediction models in cassava is 
then dependent on whether the goal is the prediction of 
breeding values of progeny or the selection of advanced 
lines for testing as varieties.

We are still in the early stages of GS in this crop, but 
the results are promising, at least for some traits. The 
TPs need to continue to grow and quality phenotyping is 
more critical than ever. However, general guidelines for 
successful GS are emerging. Phenotyping can be done on 
fewer individuals, cleverly selected, making for trials that 
are more focused on the quality of the data collected.

Supplemental Information
Supplemental File S1: Supplementary methods describing 

the details of the field trial design.
Supplemental Table S1: Details of the prediction scenarios 

tested using different sized subsets of the IITA Cycle 1.
Supplemental Table S2: Cross-population prediction results. 

(A) Cross-population results of seven prediction models 
for the combined datasets (full set model). CVGBLUP, 
cross-validation GBLUP results within training 
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populations. Bold italic typeface indicates the highest 
predictive accuracy across prediction models.(B) Cross-
population results for STPGA-optimized and at random 
with the GBLUP model. GG, IITA genetic gain; NR, 
National Root Crops Research Institute; UG, National 
Crops Resources Research Institute; DM, dry matter 
content; HI, harvest index; RTWT, root weight; RTNO, 
root number; SHTWT, shoot weight; MCMDS, mean 
cassava mosaic disease severity; VIGOR, early plant vigor.

Supplemental Table S3: Raw accuracies from cross-generation 
predictions. Accuracy levels from each combination of 
training set and validation set tested. Data from each trait 
are given in the rows and those for each model are shown 
in the columns.

Supplemental Table S4: Mean and standard error accuracies 
and PEV means for seven traits are shown. There were 
four combinations of training and test sets and two 
different subset selection methods (random vs. STPGA) 
considered. DM, dry matter content; HI, harvest index; 
RTWT, root weight; RTNO, root number; SHTWT, 
shoot weight; MCMDS, mean cassava mosaic disease 
severity; VIGOR, early plant vigor; C1, Cycle 1; C2, Cycle 
2; PofC2, parents of C2.

Supplemental Table S5: The results from two regressions are 
shown. The top table shows the results from a multiple 
regression in which the mean PEV and the training set 
size were used as competing predictors of the accuracy 
achieved by different sized subsets for each trait 
respectively. The bottom table is a similar regression with 
only a single predictor, the mean PEV. In the multiple 
regression, predictors were mean-centered and scaled to 
unit variance.

Supplemental Fig. S1: Population genetic structure of the 
datasets analyzed in this study, illustrated by plotting 
the first two components (PCs), following a principal 
component analysis (PCA) of the genetic relationship 
matrix. The training populations for each breeding 
institute’s genomic selection program are compared on 
the left (A). The breeding cycles (genetic gain, Cycle 1 
and Cycle 2) from the IITA genomic selection program 
are contrasted on the right (B).

Supplemental Fig. S2: Histogram of the kinship coefficients 
[off-diagonals of the genomic relationship matrix (GRM)] 
on left and inbreeding values (diagonals of the GRM) 
on the right for all five datasets analyzed in this study. 
The GRM was constructed for each dataset separately 
with markers with >1% minor allele frequency. IITA, 
International Institute of Tropical Agriculture; GG, IITA 
genetic gain; C1, IITA Cycle 1; C2, IITA Cycle 2; NR, 
National Root Crops Research Institute; UG, National 
Crops Research Resources Institute.

Supplemental Fig. S3: GS cross-validation accuracies in the 
NaCRRI dataset. Fivefold cross-validation results are 
shown for seven traits measured with GBLUP, RKHS 
(GAUSS_K0.01, single RKHS kernel; MultiKernelGauss, 
and multikernel RKHS), BayesA, BayesB, BayesC, 
Bayesian Lasso (BL), and Random Forest. DM, dry matter 
content; HI, harvest index; RTWT, root weight; RTNO, 

root number; SHTWT, shoot weight; MCMDS, mean 
cassava mosaic disease severity; VIGOR, early plant vigor.

Supplemental Fig. S4: GS cross-validation accuracies 
in the NRCRI dataset. Fivefold cross-validation 
results are shown for seven traits with GBLUP, RKHS 
(GAUSS_K0.01, single RKHS kernel; MultiKernelGauss, 
multikernel RKHS), BayesA, BayesB, BayesC, Bayesian 
Lasso (BL), and Random Forest. DM, dry matter content; 
HI, harvest index; RTWT, root weight; RTNO, root 
number; SHTWT, shoot weight; MCMDS, mean cassava 
mosaic disease severity; VIGOR, early plant vigor.

Supplemental Fig. S5: GS cross-validation accuracies in 
the Genetic Gain dataset. Fivefold cross-validation 
results are shown for seven traits with GBLUP, RKHS 
(GAUSS_K0.01, single RKHS kernel; MultiKernelGauss, 
multikernel RKHS), BayesA, BayesB, BayesC, Bayesian 
Lasso (BL), and Random Forest. DM,  dry matter content; 
HI, harvest index; RTWT, root weight; RTNO, root 
number; SHTWT, shoot weight; MCMDS, mean cassava 
mosaic disease severity; VIGOR, early plant vigor.

Supplemental Fig. S6: Hierarchical clustering of genomic 
prediction models based on the cross-validated genomic 
estimated breeding values (GEBVs). Height on the 
y-axis refers to the value of the dissimilarity criterion. 
Clustering of the prediction models in the combined 
results for all populations is shown. GBLUP, genomic 
best linear unbiased predictor; BL, Bayesian Lasso; RF, 
Random Forest; RKHS, reproducing kernel Hilbert 
space (multikernel model).

Supplemental Fig. S7: Cross-population prediction of UG, 
showing the accuracy of the predictions for seven traits 
with the combined NR + GG population training data. 
Subset sizes (x-axis) were selected either at random or by 
using the genetic algorithm implemented in the R package 
STPGA. Ten random and 10 STPGA-selected subsets were 
made at each training set size. Error bars are the SE around 
the mean for the 10 samples. Horizontal lines show the 
mean cross-validation accuracy for the UG population 
(validation set, orange line) and the accuracy of the full NR 
+ GG set predicting the UG population (red line).

Supplemental Fig. S8: Cross-population prediction of NR, 
showing the accuracy of the predictions for seven traits 
with the combined UG + GG population training data. 
Subsets sizes (x-axis) were selected either at random or by 
using the genetic algorithm implemented in the R package 
STPGA. Ten random and 10 STPGA-selected subsets were 
made at each training set size. Error bars are the SE around 
the mean for the 10 samples. Horizontal lines show the 
mean cross-validation accuracy for the NRCRI population 
(validation set, orange line) and the accuracy of the full UG 
+ GG set predicting the NR population (red line).

Supplemental Fig. S9: Cross-population prediction of GG, 
showing the accuracy of prediction for seven traits with 
the combined NR + UG population training data. Subset 
sizes (x-axis) were selected either at random or by using the 
genetic algorithm implemented in the R package STPGA. 
Ten random and 10 STPGA-selected subsets were made 
at each training set size. Error bars are the SE around the 
mean for the 10 samples. Horizontal lines show the mean 
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cross-validation accuracy for the GG population (validation 
set, orange line) and the accuracy of the full NR + UG set 
predicting the GG population (red line).

Supplemental Fig. S10: Cross-generation prediction accuracies. 
In the IITA genomic selection dataset, there are three 
generations of clones: the genetic gain (GG), their progeny 
in Cycle 1 (C1), and C1’s progeny, Cycle 2 (C2).  For each 
of seven traits (rows) and seven prediction models (x-axis, 
colors), we made four cross-generation predictions 
(columns): GG predicting C1, GG predicting C2, C1 
predicting C2, and GG + C1 predicting C2. DM, dry matter 
content; HI, harvest index; RTWT, root weight; RTNO, root 
number; SHTWT, shoot weight; MCMDS, mean cassava 
mosaic disease severity; VIGOR, early plant vigor.

Supplemental Fig. S11: Convergence of the genetic 
algorithm implemented in the R package STPGA.  Plot 
of the optimization criterion (mean PEV, y-axis) versus 
the iteration of the genetic algorithm (x-axis) across 
training sample sizes (panels). Samples were drawn from 
the IITA Cycle 1 (C1), excluding the parents of Cycle 2 
(PofC2). The algorithm was set to find the smallest mean 
PEV with the PofC2 as the test (validation) set and a 
sample of C1 as the training set. Ten runs of the genetic 
algorithm are shown in different colored lines.

Supplemental Fig. S12: Does STPGA find lower mean PEV 
across sample sizes than random selection? The size of 
training samples used in four prediction scenarios (rows) 
is plotted against the mean PEV of the subset for every 
trait and each of 10 samples elected either by the genetic 
algorithm implemented in the R package STPGA (red) 
or randomly (blue). The actual mean PEV and number of 
training samples are plotted here, with variations from 
planned sample sizes and PEV means initially expected 
because of missing data for some traits or individuals. 
The genetic algorithm implemented by STPGA was run 
10 times. The validation set target for the optimization 
algorithm were the parents of IITA’s Cycle 2 (PofC2) and 
the training sets were samples of differing size of the IITA 
Cycle 1 (C1). Predictions were made either with samples 
of C1 only (Rows 1 and 2) or with samples of C1 plus the 
entire GG (Rows 3 and 4). Validation sets were either the 
PofC2 (Rows 1 and 3) or the C2 (Rows 2 and 4). 

Supplemental Fig. S13: The relationship between training 
set size and accuracy predicting IITA Cycle 2 (across 
generations). The accuracy of prediction for seven 
traits (panels) with different sized subsets (x-axis) of 
IITA Cycle 1 (C1) is shown. Subsets of a given size were 
selected either at random or with the genetic algorithm 
implemented in the R package STPGA. Ten random and 
10 STPGA-selected subsets were made at each training 
set size. Error bars are the SE around the mean for 
the 10 samples. Horizontal black lines show the mean 
cross-validation accuracy for Cycle 2 (C2, validation 
set; solid line) and the accuracy of the full set of GG + 
C1 predicting C2 (dashed line). GBLUP was used for all 
predictions. DM,  dry matter content; HI, harvest index; 
RTWT, root weight; RTNO, root number; SHTWT, 
shoot weight; MCMDS, mean cassava mosaic disease 
severity; VIGOR, early plant vigor.

Supplemental Fig. S14: The relationship between training 
set size and the accuracy of predicting the parents 
of Cycle 2 (C2) from Cycle 1 (C1) (within-generation 
prediction). The accuracy of prediction for seven traits 
(panels) with different sized subsets (x-axis) of the IITA 
C1 is shown. Subsets of a given size were selected either 
at random or with the genetic algorithm implemented 
in the R package STPGA. Ten random and 10 STPGA-
selected subsets were made at each training set size. 
Error bars are the SE around the mean for the 10 
samples. Horizontal black lines show the mean cross-
validation accuracy for the C1 (validation set; solid line) 
and the accuracy of the full set of GG + C1 predicting 
the parents of C2 (dashed line). GBLUP was used for all 
predictions. DM, dry matter content; HI, harvest index; 
RTWT, root weight; RTNO, root number; SHTWT, 
shoot weight; MCMDS, mean cassava mosaic disease 
severity; VIGOR, early plant vigor.
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