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Summary 

Photochemical processes and related technologies have been often used in the 20
th

 century for 

the disinfection of drinking water and wastewater (secondary and tertiary sewage effluents). 

Recently, direct ultraviolet (UV) photolysis, photocatalysis and advanced oxidation 

procedures have been widely reported as emerging methods for the removal of organic 

micropollutants from water. Nowadays, based on the progress made in analytical techniques‘ 

sensitivity, micropollutants such as pharmaceuticals can be determined down to ng L
-1

 scale 

in the aquatic environment. There is growing interest in the removal of these contaminants 

from water, particularly driven by the overall public concern about potential toxic effects they 

might induce in humans and ecosystems.  

In this work, the beta-blocker nebivolol has been detected for the first time in effluent samples 

of 12 wastewater treatment plants (WWTPs) in Germany. The photolytic degradation of 

nebivolol has been investigated under three different UV sources, namely, UV-C (main 

emission band at 254 nm), UV-B (main emission band at 312 nm) and UV-A (main emission 

band at 365 nm) in different matrices: pure water, pure water in the presence of a hydroxyl 

radical scavenger and in wastewater. During the photodegradation study, no elimination of 

nebivolol was observed under UV-A radiation. In contrast, nebivolol degradation under UV-B 

and UV-C radiation followed pseudo first order reaction kinetics, with the highest removal 

rate under UV-C radiation in pure water (k = 7.8 × 10
−4

 s
−1

). Also the degradation mechanism 

of nebivolol under the UV-B and UV-C radiation has been studied. Three transformation 

products (TPs) were identified after UV-B and UV-C photolytic degradation using high 

resolution mass spectrometry. The TPs are formed by the substitution of the fluorine atom 

from the benzopyran ring with a hydroxyl group. The biologically active part of nebivolol is 

still preserved in the identified TPs even after two hours of irradiation. The matrices‘ pH 

plays an important role for the elimination mechanism of the micropollutants in the 

environment. With regard to photolysis, the different species might have various photolytic 

degradation pathways, transformation products and kinetics of mechanism-based degradation. 

In order to demonstrate this, the influence of different pH values (3, 5, 7 and 9) on the 

reaction kinetics and on the degradation mechanism of ciprofloxacin by direct ultraviolet 

photolysis (UV-C irradiation) and photocatalysis (TiO2/UV-C) has been investigated. During 

the photolytic and photocatalytic degradation of ciprofloxacin, pseudo-first order kinetics 

were found with the highest removal rates at pH 9 (kUV and TiO2/UV= 4.0 × 10
−4

s
−1

). 18 

transformation products have been identified at different pH values (3, 5, 7 and 9). Four 
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transformation products have been detected for the first time, two of the newly proposed 

structures were supported by the results obtained using deuterated ciprofloxacin.  

Photolysis was studied for five further common micropollutants. A corrosion inhibitor (1H-

benzotriazole) and four pharmaceuticals from different compound classes were included in 

the study: a -blocker (metoprolol), an antibiotic (sulfamethoxazole), an anti-inflammatory 

drug (diclofenac) and an anti-epileptic agent (carbamazepine). The photodegradation was 

affected by the WWTP effluent matrix. Organic and inorganic substances in wastewater or 

natural water environments played a dual role of sensitizer and quencher in the 

photodegradation. In this study, photodegradation rate constants of metoprolol and 

carbamazepine increased in presence of WWTP effluent matrix, probably due to the presence 

of photosensitizer compounds. In contrast, diclofenac and sulfamethoxazole showed 

decreased photodegradation rate constants, due to physical or chemical quenching of the 

photochemical degradation intermediates by competitors. The matrix also posed non-

negligible influences on benzotriazole photodegradation process. Overall, direct photolysis 

was demonstrated to be relevant for micropollutant abatement from the aquatic environment. 

However, to promote the photolysis application on a broader scale, it is essential to further 

understand how this process is affected by the UV sources, micropollutant structures and 

matrix composition. 
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Zusammenfassung  

Photochemische Prozesse und verwandte Technologien wurden im 20. Jahrhundert häufig für 

die Desinfektion von Trinkwasser als auch Abwasser (sekundäre und tertiäre 

Kläranlagenabwässer) eingesetzt. Aktuell werden die direkte UV-Photolyse, Photokatalyse 

und erweiterte Oxidationsverfahren zur Entfernung von organischen Mikroschadstoffen in 

Wasser angewendet. Basierend auf den Entwicklungen neuester Analysetechniken und die 

damit einhergehende höhere Empfindlichkeit können heutzutage Mikroschadstoffe wie 

beispielsweise Arzneimitelwirkstoffen bereits in dem unteren ng L
-1

 Bereich in aquatischen 

Umweltproben nachgewiesen werden. Zudem gibt es ein steigendes Interesse an der 

Entfernung von solchen Kontaminanten aus den Gewässern in der Öffentlichkeit, 

unteranderem aufgrund von potentiell toxischen Effekten auf den Menschen und die Umwelt. 

In dieser Arbeit wurde zum ersten Mal der beta-Blocker Nebivolol in Ablaufproben von 12 

deutschen Kläranlagen detektiert. Der photolytische Abbau von Nebivolol wurde mit drei 

verschiedenen UV-Quellen in Reinstwasser, Reinstwasser in Anwesenheit eines 

Hydroxylradikalfängers und in Abwasser untersucht. Die eingesetzten UV-Quellen waren 

UV-C (Emission bei 254 nm), UV-B (Hauptemission bei 312 nm) und UV-A (Hauptemission 

bei 365 nm). Während der photolytischen Untersuchungen konnte keine Elimination von 

Nebivolol mittels UV-A-Bestrahlung festgestellt werden. Im Gegensatz dazu konnte bei dem 

Einsatz von UV-B- und UV-C-Strahlern ein Abbau nach pseudo-erster Ordnung mit der 

höchsten Eliminationsrate bei UV-C in Reinstwasser erreicht werden (k = 7.8 × 10
−4

 s
−1

). 

Auch der Abbaumechanismus von Nebivolol bei dem Einsatz von UV-B-und UV-C-Strahlern 

wurden in dieser Arbeit untersucht. Dabei konnten drei Transformationsprodukte (TPs) nach 

UV-B- und UV-C-Bestrahlung mittels hochauflösender Massenspektrometrie identifiziert 

werden. Die TPs werden bei der Substitution von Fluor-Atomen des Benzopyran-

Ringsystems mit einer Hydroxylgruppe gebildet. Der biologisch aktive Teil von Nebovolol ist 

auch nach Bestrahlung von zwei Stunden noch in den TPs vorhanden. Der pH-Wert der 

Matrix spielt bei dem Eliminationsmechanismus in der Umwelt eine wichtige Rolle. Im 

Hinblick auf die Photolyse, können die verschiedenen Spezies unterschiedliche 

Reaktionsmechanismen und -kinetiken haben, die zur verschiedene Abbauwegen und 

Transformationsprodukten führen. Um dies zu demonstrieren, wurde der Einfluss von 

verschiedenen pH-Werten (3, 5, 7 und 9) auf die Reaktionskinetik und den 

Abbaumechanismus von Ciprofloxacin während der UV-Photolyse (UV-C) und 

Photokatalyse (TiO2/UV-C) untersucht. Während des photolytischen und photokatalytischen 
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Abbaus von Ciprofloxacin, konnte eine Kinetik pseudo-erster Ordnung mit der höchsten 

Eliminationsrate bei pH 9 (kUV and TiO2/UV= 4.0 × 10
−4

s
−1

) festgestellt werden. Insgesamt sind 

18 Transformationsprodukte bei den verschiedenen pH-Werten (3, 5, 7 und 9) identifiziert 

worden. Vier dieser Transformationsprodukte wurden das erste Mal detektiert, zwei der neu 

vorgeschlagenen Strukturen werden unterstützt durch Untersuchungsergebnisse mit 

deuteriertem Ciprofloxacin. Der Einsatz der Photolyse wurden für weitere fünf bekannte 

Mikroschadstoffe untersucht, ein Korrosionsschutzmittel (1H-Benzotriazol) und vier 

Arzneimittelwirkstoffe verschiedener Substanzklassen. Diese waren zum einen ein ß-Blocker 

(Metoprolol), ein Antibiotikum (Sulfamethoxazol), ein Entzündungshemmer (Diclofenac) 

sowie ein anti-Epilektikum (Carbamazepin). Der photolytische Abbau war von der 

Abwassermatrix beeinflusst. Einige organische und/oder anorganische Substanzen, welche in 

Abwasser oder natürlichen Gewässern vorkommen, wirkten sich verstärkend oder auch als 

Quencher auf den photolytischen Abbau aus. In dieser Arbeit konnte einen Anstieg der 

photolytischen Abbauraten von Metoprolol und Carbamazepin in Anwesenheit der 

Abwassermatrix, wahrscheinlich auf Grund der Anwesenheit von Photosensibilisatoren, 

gezeigt werden. Im Gegensatz dazu konnte für Diclofenac und Sulfamethoxazol eine 

Reduktion der photolytischen Abbauraten gezeigt werden. Dies kann auf physikalisches oder 

chemisches Quenchen der photochemischen Zwischenprodukte von Kompetitoren 

zurückgeführt werden. Auch auf den photolytischen Abbau von Benzotriazol hat die Matrix 

einen nicht zu vernachlässigenden Einfluss. Durch diese Arbeit konnte die Relevanz der 

direkten Photolyse zur Elimination von Mikroschadstoffen in der aquatischen Umwelt gezeigt 

werden. Um die Anwendung der Photolyse in einem größeren Maßstab einzusetzen, ist es 

essentiell, den Einfluss der UV-Quellen, der für den Abbau relevanten Strukturelemente der 

Mikroschadstoffe sowie der Matrixzusammensetzung auf den Prozess besser zu verstehen. 
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1. Introduction 

1.1 Preface 

Life on earth without water would be non-existent. Water is certainly the most valuable 

natural resource that exists on our planet and it is essential for all species in our life. Nearly 

71% of the earth's surface is covered with water, the oceans hold about 96.5% of the water 

resources. Only 2.5% exists as freshwater in the form of icecaps and glaciers in the polar 

regions (about 99%) and ~ 0.3% as freshwater in rivers, lakes and groundwater. In spite of the 

lack of freshwater on the earth, we continuously pollute it with various chemicals like 

pesticides, biocides, industrial chemicals, personal care products and pharmaceuticals.  

The occurrence of pharmaceuticals in the water sources has been widely discussed and 

published in the literature in the last decade, making them an emerging concern for the public 

due to their potential to reach drinking water. Pharmaceuticals are stable compounds, with 

pharmacological effects. Unfortunately, this stability means that they also persist after they 

have been excreted from the human body, thus reaching the wastewater treatment plants. 

Because they are not (fully) eliminated there, they might create an environmental problem. 

During the last several decades, in particular over the past two decades, the production and 

consumption of pharmaceuticals has amplified due to the population growth. Several 

thousand compounds, belonging to a variety of therapeutic classes, are used as medicine and 

annually hundreds of tons are being consumed. 

Pharmaceuticals have been detected in urban and livestock agricultural wastewater and 

surface water. Therefore, a classification of their environmental hazard and an environmental 

risk assessment was carried out by many countries [1, 2]. Environmental risks of some 

pharmaceuticals have been detected, for others, gaps of knowledge still exist. 

Estrogens and diclofenac have been identified as pharmaceuticals affecting the wildlife [3, 4]. 

Other pharmaceuticals, including antibiotics, antiparasitics, antidepressants and anticancer 

medications give reason for concern [5-8].  

The present chapter provides a short overview of organic trace pollutants in the environment, 

focusing on sources and effects of β-blockers and fluoroquinolones in the aquatic 

environment. The analysis methodologies and the identification of the pharmaceuticals and 

their transformation products in water and wastewater are of particular interest since the main 

focus of present work is to investigate the photolytic and semiconductor photocatalytic 

degradation of the -blocker nebivolol and the fluoroquinolone antibiotic ciprofloxacin in 

water. 
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1.2 Pharmaceuticals in the environment: Sources and effects  

The global use of pharmaceuticals in human and veterinary medical therapy, aquaculture and 

agricultural products has frequently led to the release of a wide spectrum of pharmaceuticals 

in the environment. The occurrence of pharmaceuticals in the aquatic environment and their 

effects have been extensively investigated and several studies have been published in the last 

decade [9]. The progress in their detection, even at trace levels, is attributable to the advances 

in the analytical techniques and instrumentation [9] (see abaixo). Many studies have 

confirmed the presence of pharmaceuticals at very low concentrations, in the range of ng L
-1

 

to µg L
-1

, in wastewater [10], surface water [11, 12], groundwater [13-15] and even drinking 

water [16]. Pharmaceuticals and their metabolites enter the aquatic environment through 

different routes, which are presented in Figure  1.1. Firstly, they can be emitted during their 

production and transport. The emissions of pharmaceuticals during manufacturing in the EU, 

US and Canada to the aquatic environment rarely occurs, due to the strong regulations 

existing in these countries. Nevertheless, these do not prevent the occurrence of some local 

incidents during manufacturing, transport or storage, which might lead to the release of 

different pharmaceuticals in the environment.  

 

Figure  1.1 Fate and transport of pharmaceuticals in the environment. 
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The major pharmaceutical emission sources into the environment stem from human 

consumption and veterinarian applications (see the paragraph  1.2.1 and  1.2.2). After 

administration, most of the drugs are excreted through the urine and faeces and end up in 

municipal wastewater and the wastewater treatment plants (WWTPs). Escher, et al. [17] 

estimated that 62% of pharmaceuticals load in the WWTPs originates from household use, 

while the other 38% originates from hospitals.  

Some pharmaceuticals are largely metabolized before they are excreted, while others are 

poorly metabolised and excreted mainly intact. For example diclofenac is excreted around 

15% as parent compound [18], while in the case of atenolol the excretion rate for the active 

pharmaceutical ingredient is more than 90% [19]. Most of these drugs and their metabolites 

are not eliminated from municipal wastewater and via the WWTPs effluent they may end up 

in the aquatic environment. Drugs administered in livestock and their metabolites are excreted 

with manure. Farmers use manure and sometimes the WWTP sludge to fertilize their fields, 

thus the pharmaceutical and veterinary residues may end up in the soil and from there further 

in the surface and ground water. Application of veterinary drugs in aquaculture, leads to direct 

emission into surface and ground water. 

Expired pharmaceuticals may be disposed of either via the household drains or via the 

household solid waste. If they are disposed of via the household drains, they end up intact into 

the WWTPs, if their disposal occurs with the household waste, outdated drugs might end up 

on landfill sites, and further may reach the ground water through the landfill leachate [20].  

The estimated annual worldwide consumption of active pharmaceuticals is around a few 

hundred thousand tons. In Germany more than 2,300 pharmaceutical products, with an 

estimated annual consumption of more than 30,000 tons, are sold in human medicine [21]. 

According to information from the Federal Environment Agency [22], about half of human 

pharmaceuticals are classified as potential pollutants because they are toxic and not readily 

degradable. In 2012 the consumption of around 1,200 pharmaceuticals with possible pollution 

relevance was 8,120 tons [23]. Approximately 600 active pharmaceuticals are approved in 

animal medicine [24]. Many of these substances are used also in human medicine. Antibiotics 

make up the bulk of the veterinary medicines sold. As biologically active substances, human 

and veterinary pharmaceuticals have in principle (eco) toxicological potential [25].  

Many studies have shown that pharmaceuticals have adverse effects on wildlife even at very 

low concentrations. Kidd, et al. [4] found in a controlled study on the fathead minnow (type 

of fish living in the downstream of some wastewater outfalls), that the chronic exposure to 

low concentrations (5 - 6 ng L
-1

) of the 17α-Ethinylestradiol led to feminization of males 
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through the production of vitellogenin mRNA and protein. This has impacts on gonadal 

development, as evidenced by intersex in males and altered oogenesis in females, and, 

ultimately, a near extinction of this species from the lake. Oaks, et al. [3] reported that 

diclofenac, administarted either by direct oral exposure or through diclofenac-treated 

livestock, has caused renal failure and visceral gout in the case of vultures. Diclofenac was the 

reason behind the catastrophic decrease in the numbers of vultures in India. 

Therefore, under the water framework directive (WFD) of the European commission, 

environmental quality standards (EQS) have been established for 33 substances, the so called 

‗priority substances‘, and eight other pollutants were listed in the Annex X of the WFD [26]. 

When the directive on environmental quality standards was amended in 2013, a watch list 

mechanism was established, requiring a temporary monitoring of other substances for which 

evidence suggested a possible risk to or via the environment. The purpose of this watch 

mechanism was to identify other priority substances. In addition, the 2013 directive identified 

three other substances (the natural hormone 17β-Estradiol (E2), the anti-inflammatory drug 

diclofenac and the synthetic hormone 17α-Ethinylestradiol (EE2), used in contraceptives) for 

inclusion in the first watch list to facilitate the determination of appropriate measures to 

address the risk posed by these substances [27]. In 2015 the watch list was expanded to 

include other pharmaceuticals which were classified as emerging pollutants [28]. In the 

future, the substances included in the watch list might be placed on the list of priority 

substances (Annex X), and further measures should be taken for monitoring and controlling 

their emissions. For example the EQS proposed a maximum level of 0.1 µg L
-1

 for diclofenac, 

0.5 µg L
-1

 for carbamazepine and 0.15 µg L
-1

 for sulfamethoxazole in surface waters [29]. 

However, these pharmaceuticals were detected up to several µg L
-1

 in the wastewater 

treatment plant effluents [24, 30]. 

The increase of pharmaceuticals‘ consumption makes them an emerging concern for the 

public due to their potential to reach drinking water. At very low concentrations 

pharmaceuticals are unlikely to pose any direct perceptible risks to human health, but they 

might have an indirect effect when a resistance to pathogens is developed [31, 32]. 

Pharmaceuticals are synthetic chemicals designed to have pharmacological effects on the 

organism. Thus, it is to be expected that they will be critical against bacteria, fungi, higher 

organisms, but sometimes they also might have negative impacts on human health [33].  

Antibiotics have an impact on cell functions, which might change the genetic expression of 

virulence factors or transfer of antibiotic resistance [34].  
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A number of preliminary reports [10, 35] proposed that even low concentrations of human 

and veterinary pharmaceuticals can have adverse effects on a variety of organisms [17], and 

consequently might cause a threat to wildlife [31].  

1.2.1 β-Blockers in the environment 

β-Blockers are β-adrenergic receptor antagonist drugs. They belong to the group of 

cardiovascular pharmaceuticals and are generally used for treatment of hypertension and 

cardiac dysfunction. The most commonly used β-blockers are atenolol, propranolol and 

metoprolol (see Figure  1.2. for their structures); thus they are widely consumed in the world. 

According to sales data from IMS Health AG, in Germany alone consumption exceeds 200 

tons yearly of β-Blockers; e.g. more than 157 tons of metoprolol were consumed in Germany 

in 2012. Metoprolol was classified on the first place among the top 25 medicines prescribed in 

USA in 2013, and accounts for more than 80% of total -blocker consumption in Europe 

according to sales data from IMS Health [36, 37]. In 2004 more than 35 and 18 tons of 

propranolol and atenolol respectively, were consumed in France [38]. Due to their massive 

use, -blockers have been detected in aquatic environments [39, 40] and have shown effects 

on fishes [41]. Haider and Baqri [42] found that aqueous solutions of propranolol and other β-

blockers have an effect on the oocyte maturation of catfish. Huggett, et al. [43] observed 

growth dysfunctions on the invertebrates in the presence of 0.5 mg L
-1

 of propranolol.  
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Figure  1.2 Chemical structure of β-blockers. The active moieties responsible for the biological activity 

are highlighted with bold line, based on [44]. 

 

β-blockers have been frequently identified in aquatic environments (Table  1.1) because of 

their low sorption affinity on the activated sludge [45]. The average removal reported in 

conventional wastewater treatments plants ranges from 58% to 80% for atenolol, 20 - 40% for 

metoprolol, and 20 - 60% for propranolol [46-48]. Maszkowska, et al. [39] indicated in their 

study a high hydrolytic stability of nadolol, metoprolol and propranolol with estimated half-

lives of more than one year. 

Their high hydrolytic stability, as well as their high mobility in natural soils/sediments causes 

these drugs to be bioavailable and to accumulate in the water ecosystems [49].  
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Table  1.1 β-blockers concentrations in different aqueous matrices. The aqueous matrices were 

categorized: +++ for cmax> 1000 ng L
-1

; ++ for cmax 100-1000 ng L
-1

; + for cmax <100 ng L
-1

; n.d. if no 

data were available. 

β-blockers 

 

Hospital 

wastewaters 

WWTPs 

effluent 

Surface 

water 

Ground 

water 

References 

 

Acebutolol n.d. +++ ++ n.d. [48, 50-52] 

Atenolol +++ +++ ++ + [13, 36, 48, 50, 52-61] 

Sotalol +++ ++ ++ ++ [36, 48, 50, 52, 55, 57, 58] [62] 

Metoprolol +++ +++ +++ + [36, 38, 43, 48, 50-52, 54-60, 

62-66] 

Propranolol + +++ ++ + [36, 38, 43, 48, 51, 52, 54-60, 

63-65, 67, 68] 

Betaxolol ++ ++ + n.d. [48, 51, 55, 58, 63, 64] 

Bisoprolol n.d. +++ +++ + [38, 48, 62-64] 

Oxprenolol n.d. + + n.d. [48, 51] 

Pindolol ++ + n.d. n.d. [55, 58] 

Timolol + + + n.d. [48, 55, 58, 64] 

Carazolol + + ++ n.d. [55, 58, 64] 

Nadolol + ++ + n.d. [43, 48, 58, 64] 

Celiprolol n.d. ++ n.d. n.d. [52, 64] 

Nebivolol n.d. n.d. n.d. n.d.  

 

Atenolol was detected in the highest ranges concentrations in wastewater (Table  1.1), in some 

cases ranging up to mg L
-1 

[38]. As a result of the incomplete removal during conventional 

wastewater treatment, these compounds were also found in surface waters in the ng L
-1

 to 

mg L
-1 

range [57].  

1.2.2 Fluoroquinolone antibiotics in the environment 

Quinolones are a potent group of antibiotics, with effects on both bacteria type gram-negative 

and gram-positive. Quinolones and derivatives are applied for the therapeutic treatment of 

both humans and animals. Nalidixic acid, the first compound of this type, was developed in 

the 1960s. The second generation of more effective quinolones, named fluoroquinolones 

(FQs), were developed between 1980s and 1990s, including norfloxacin, enoxacin, 

ciprofloxacin and ofloxacin. The fluoroquinolones represent the third largest group of 

antibiotics, accounting for 17% of the global market [69]. In Figure  1.3. the skeleton of 4-

quinolone is displayed, while Table  1.2 presents all types of fluoroquinolones. The 
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modification on the 4-quinolone skeleton aims to create new and more effective FQ 

compounds, with better pharmacological properties and less side effects. 

 

Figure  1.3 4-quinolone skeleton of fluoroquinolones. 

 

Table  1.2 Structural formulae of fluoroquinolones. 

 

FQs Name Abbreviation M / 

g mol
-1

 

R1 R5 R6 R7 X8 

Ciprofloxacin CIP 331.35 
 

H F 
  

Danofloxacin DAN 357.37 
 

H F 
  

Difloxacin DIF 399.39 
 

H F 
  

Enoxacin ENO 320.31 –CH2–CH3 H F 
 

=N– 

Enrofloxacin ENR 359.46 
 

H F 
  

Fleroxacin FLE 369.34 
–CH2–CH2–

F 
H F 

  

Flumequine FLU 261.25 H H F H 

 

Levofloxacin LEV 361.37 H H F 
 

 

Lomefloxacin LOM 351.35 –CH2–CH3 H F 
  

Marbofloxacin MAR 362.36 H H F 
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Moxifloxacin MOX 401.43 
 

H F 
 

–O–CH3 

Norfloxacin NOR 319.33 –CH2–CH3 H F 
  

Ofloxacin OFL 361.37 H H F 
 

 

Pefloxacin PEF 333.36 –CH2–CH3 H F 
  

Sarafloxacin SAR 385.36 
 

H F 
  

Tosufloxacin TOS 404.34 

 

H F 

 

=N– 

Trovafloxacin TRO 416.35 

 

H F 
 

=N– 

 

FQs are widely used in hospitals, households, and in veterinary applications. In Germany 

alone approximately 571 tons of antibiotics were consumed yearly, among which FQs 

represented a large fraction [37]. Both human and veterinary FQs are expected to enter the 

environment in active form through excretion via urine (~80%) and the faeces (20%) [70]. 

Approximately 70% of the consumed FQs are excreted unchanged, and are only partially 

eliminated from water and in WWTPs [71]. Due to their high consumption, FQs can reach 

water bodies through different routes. The first and main route is the point source WWTP 

effluent but a second relevant route are the veterinary applications of FQs in livestock and in 

aquaculture.  

Interest is growing in the fate of the FQs in the WWTPs since residues of these have been 

detected in the natural environment of many countries. The total FQs load determined in 

Chinese WWTP effluents, with a size from 100,000 to 2,400,000 population equivalent (PE), 

were in the range of 216 to 1,228 g d
-1

, while values ranging from 190 to 326 g d
-1

 were 

determined in WWTPs in the EU. On the other hand the total load of FQs in hospital 

wastewater was determined to be in the range of 0.3 to 29 g d
-1

 in Norwegian, Swiss and 

Chinese hospitals. The concentrations observed for CIP, NOR, OFL and other FQs in the 

WWTPs influent were up to 30 times lower in comparison to the hospital wastewaters. 

Verlicchi, et al. [58] reported that 5%, 15% and 67%, respectively, of NOR, CIP and OFL 

load entering the WWTP originated from hospital use. This indicates that the contribution of 
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hospital loads to the overall FQ load is situation specific, and that both sources are of 

importance, with hospital wastewaters as a point source and urban wastewater as a more 

disperse source of FQ pollution (Table 1.3).  

Table  1.3 FQs concentrations in different aqueous matrices. The aqueous matrices were categorized: 

+++ for cmax
 
> 1,000 ng L

-1
; ++ for cmax 100 - 1,000 ng L

-1
; + for cmax < 100 ng L

-1
. n.d. if no data were 

available. 

FQs Hospital 

wastewaters 

WWTPs 

effluent 

Surface 

water 

Ground 

water 

References 

CIP +++ ++ ++ + [14, 30, 51, 66, 68, 71-75] 

DAN n.d. + ++ + [14, 75] 

DIF n.d. + + n.d. [75-77] 

ENO ++ ++ + n.d. [51, 68, 71, 76, 78] 

ENR + + + + [14, 30, 75-77, 79] 

FLE + + + n.d. [75, 76, 79] 

FLU n.d. + n.d. n.d. [73] 

LEV + + n.d. n.d. [71, 75] 

LOM + ++ + n.d. [51, 74-77, 79] 

MAR + n.d. n.d. n.d. [75] 

MOX n.d. + + n.d. [75, 76, 78, 79] 

NOR +++ ++ + + [14, 51, 71-77, 79] 

OFL +++ ++ ++ + [14, 51, 68, 71, 73-77, 79-81] 

PEF + + n.d. n.d. [75] 

SAR n.d. + + n.d. [75-77] 

TOS n.d. + + n.d. [77] 

TRO + n.d. n.d. n.d. [71] 

 

1.3 Analysis of pharmaceuticals in water and wastewater  

The evolution and improvement in the detection of a broader range of compounds made 

possible the determination of several pharmaceuticals in the concentration of ng L
-1

 to µg L
-1

 

in various environmental matrices (e.g. surface water, groundwater, wastewater and drinking 

water). This is principally attributable to the technological progress in the sensitivity and 

accuracy of detection equipment and analytical methods. Today liquid chromatography-mass 

spectrometry (LC-MS) with various MS detectors is the dominant analytical technique for 

pharmaceutical analysis in water and wastewater [82]. The selection of the analytical methods 
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is basically dependent on the physical and chemical properties of the target compound (see 

Figure  1.4). Pharmaceutical compounds contain in their structure many functional groups 

such as -SH, -OH, -NH and –COOH, and have the tendency to form intermolecular hydrogen 

bonds [83]. These intermolecular hydrogen bonds affect the inherent volatility of the 

compounds, their tendency to interact with column packing materials and their thermal 

stability.  

 

 

Figure  1.4 Level of hydrophilicity and hydrophobicity of pharmaceutical compounds, based on [84]. 

 

Despite the advantages offered by LC-UV in the analysis of polar compounds (e.g., β-

blockers, fluoroquinolone antibiotics), the method is unable to provide sufficient information 

about the compounds‘ structure. It is very difficult from the LC-UV data alone to say with 

certainty that a particular peak is pure and contains only a single compound. Using a unit 

resolution mass spectrometer as a mass-specific detector for LC, provides the masses of all 

compounds present in the peak, which could be helpful to identify them, and an excellent 

method to verify the purity of the investigated sample. In LC-MS various detectors are 

employed, including Ion trap (IT), single quadrupole (SQ), triple quadrupole (TQ), and 

quadrupole ion trap (QIT). The instruments are used for target analysis, i.e. quantitative or 

qualitative analysis of known compounds with reference standards. However for non-target 

analysis many different compounds could potentially lead to the same unit mass in the unit 

resolution mass spectrometer. To dereive a unique sum formula for unknown compounds, a 

high resolution mass spectrometer (HRMS), such as orbitrap, time-of-flight (TOF), 

quadrupole time-of-flight (QTOF), and sometimes fourier transform ion cyclotron resonance 

(FT-ICR) mass spectrometers, connected to LC are required. Another growing trend is the 

combination of screening for large multi analyte list followed by target quantification. 

Therefore an instrument with high mass resolution and mass accuracy is needed. Hence, we 
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have to characterize two important terms: The mass resolution, which is the ability to separate 

ions of different m/z and it is manifested in the sharpness of the peaks seen in the mass 

spectrum [85]. Mass resolution can be calculated by using (Eq 1): 

              Eq. 1 
 

Where m is the mass of an ion peak and ∆m is the distance to another peak overlapping such 

that there is a 10% valley between the two peaks (Figure  1.5). 

 

Figure  1.5 Example for the calculation of mass resolution, m = 1000 and ∆m = 0.208, so the 10 % 

valley definition gives a resolution of 1000 / 0.208 = 4,800. 

 

And the mass accuracy, which is usually reported in parts per million (ppm) (Eq 2), of a 

spectrometer represents the difference between the calculated mass of an ion and its observed 

mass, expressed relative to the observed mass (Eq 3) [86]. 

Mass accuracy (   )            ⁄     Eq. 2  

                –                Eq. 3 

The suspect screening and/or non-target screening can be achieved by tandem-in-time 

instruments, generally, time-of-flight (TOF). These are capable of up to 60,000, but their 

sensitivity and the linear dynamic range are still lower than for the other technologies. 

Orbitrap technology is increasingly applied due to the combination of high resolving power 

(up to 280,000), high mass accuracy (<2 ppm), and a sensitivity down to the femtogram 

range. Fourier transform ion cyclotron resonance (FT-ICR) mass analyzers have been rarely 

used in polar organic trace analytics due to their high costs and to the fact that the FT-ICR 

does not support the fast chromatography analysis. Hybrid instruments such as quadrupole 

TOF (QTOF), linear ion trap or quadrupole orbitrap (LTQ Orbitrap or Q Exactive
TM

) have 
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particularly shown excellent detection and identification capabilities for low molecular weight 

compounds in various matrices based on high resolution accurate mass measurements of 

precursor and product ions.  

These instruments are able to record a complete mass spectrum of each pulse of ions 

introduced, so the sensitivity they achieve is extremely high. This advantage makes these 

instruments suitable for the suspect screening analysis to confirm the suspected compounds, 

such as known or predicted transformation products or compounds, for which no reference 

standards are available (see Figure  1.6). 

In contrast to suspect screening, non-target (unknown) screening in a strict sense starts 

without any a priori information on the compounds to be detected.  

The information about the compounds is derived solely from the chromatograms and mass 

spectra. Therefore, high resolving power with high mass accuracy are recommended. For this 

type of experiment, an identification by HRMS(/MS) alone is not sufficient and many 

procedures are recommended for the evaluation steps. The workflows are often focused on 

one specific evaluation step; the following key features have emerged: (i) first step is a 

manual or automatic peak search by exact mass filtering from the chromatographic run, which 

leads to a list of detected ions; (ii) second step is an assignment of an elemental formula to the 

exact mass of interest; and (iii) the third step is searching in database of plausible structures 

for the determined elemental formula [87]. 
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Figure  1.6 Comparison of systematic workflows of environmental samples analysis (i) quantitative 

target analysis with reference standards, (ii) suspect screening without reference standards, and (iii) 

non-target screening of unknowns in environmental samples. Reproduced from Krauss, et al. [82]. 

 

The most widely applied ionization technique is electrospray ionization (ESI), followed by 

atmospheric pressure chemical ionization (APCI) [88, 89]. A large number of polar molecules 

can be ionized in both techniques. Furthermore, the soft ESI generates little fragmentation and 

provides molecular ions in positive or negative mode, thus the molecular weight can easily be 

determined [90]. The APCI is usable for molecules showing a low tendency to (de)protonate, 

so the molecules often induce a stronger fragmentation in APCI [91]. A further ionization 

technique, called atmospheric pressure photon ionization (APPI), is more selective for 

individual substance groups and more dependent on the ionization conditions such as flow 

rate, type and quantity of the non-polar dopant (e.g. toluene, acetone) responsible for the 

charge or proton transfer [92]. Therefore, APPI is suitable for the determination of non-polar 

substance groups such as polycyclic aromatic hydrocarbons. Accordingly, the APPI is 

typically suitable for GC-MS analyses [93].  
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1.4 Elimination of pharmaceuticals from water and wastewater 

In the last two decades, nutrient removal from the water bodies has become increasingly 

important worldwide. Eutrophication caused by extreme nitrogen and phosphorus in 

wastewater discharges has disrupted the aquatic life in receiving water bodies, with a 

subsequent decline in water quality. 

Wastewater treatment plants in affected areas and watersheds have to provide additional 

nutrient removal prior to discharge. Biological nutrient removal is incorporated as part of the 

secondary treatment or as tertiary treatment. Most of the domestic wastewater treatment 

plants use biological nitrification–denitrification together with biological oxygen demand 

(BOD) removal, and/or chemical precipitation for removal of phosphorus. Wastewater 

treatment plants are essentially divided into two basic stages: primary and secondary 

treatment (Figure  1.7). Primary treatment in most municipal wastewater treatment plants 

consists of preliminary and primary stages. These typically consist of screens to remove the 

large floating objects, grit chambers to settle cinders, sand, and small stones, comminutors, 

and primary clarifiers to settle smaller particles and suspended solids. The secondary 

treatment consists of a biological process followed by a secondary clarifier. If the secondary 

effluent meets the regulatory standards for BOD and the total soluble solids (TSS), then it is 

discharged to receiving waters following disinfection. The solids and sludge collected from 

the various units undergo further processing and treatment before disposal. Various options 

are available for sludge processing.  

 

 
Figure  1.7 Flow diagram of a conventional wastewater treatment plant (figure taken from Riffat [94]). 
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Pharmaceuticals‘ elimination during water and wastewater treatment occurs by several 

mechanisms, where typically one mechanism dominates, depending on the pharmaceutical 

specifications and the water and wastewater conditions. 

In general two elimination processes are important in wastewater treatment: adsorption to 

suspended solids (sewage sludge) and biodegradation. Adsorption is dependent on both, 

hydrophobic and electrostatic interactions of the pharmaceutical with particulates and 

microorganisms. For example, acidic pharmaceuticals, having pKa values ranging from 4.9 to 

4.1, such as ibuprofen, ketoprofen, diclofenac and indomethacin, occur as anions at neutral 

pH, and have little tendency towards adsorption onto the sludge [95]. However, basic 

pharmaceuticals and zwitterions can adsorb to sludge to a significant extent, as has been 

shown for fluoroquinolone antibiotics [96]. When a pharmaceutical compound is present 

mainly in the dissolved phase, biodegradation is suggested to be the most important 

elimination process in wastewater treatment. This can occur either in aerobic (and anaerobic) 

zones in activated sludge treatment, or anaerobically in sewage sludge digestion. In general, 

biological decomposition of pharmaceuticals increases with an increased hydraulic retention 

time and with the age of the sludge applied in activated sludge treatment. For example, 

diclofenac has been shown to be significantly better biodegraded only when the sludge 

retention time was at least 8 days [97]. In addition to biological reactions, many chemical 

reactions could be observed such as oxidation-reduction (redox), hydrolysis and acid-base 

reactions.  

Primary and secondary treatment alone in WWTPs has been unable to meet many 

communities‘ demands on the water supply. The increasing need to reuse water calls for 

better wastewater treatment. These challenges are being met through better methods of 

removing pollutants in treatment plants, such as advanced oxidation processes or through 

prevention of pollution. 

1.5 Advanced oxidation processes: photolysis and semiconductor 

photocatalysis 

The concept of ―advanced oxidation processes‖ (AOPs) was established by Glaze, et al. [98]. 

AOPs depend mainly on the formation of reactive and short-lived oxygen including 

intermediates such as hydroxyl radicals (
•
OH) and they exploit the high reactivity of these 

species [99]. The underlying oxidative reaction mechanisms essentially imitates the natural 

photo-initiated processes that take place in sunlit surface waters or in the Earth‘s atmosphere. 

The hydroxyl radical is a powerful oxidant (Table  1.4), with a short life and high reactivity, 

and is considered as a non-selective reagent. 
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Table  1.4 The redox potential of a number of chemical systems used for water treatment. 

 

Oxidant agent Redox potential (eV) 
•
OH 2.80 

•
O 2.42 

O3 2.07 

H2O2 (acidic) 1.78 

Cl2 1.36 

 

The photochemical processes are usually classified under this broad definition of AOPs. Most 

of these processes use a combination of UV with strong oxidants, e.g. O3 and H2O2, or 

catalysts, e.g. photocatalyst, and irradiation, e.g. ultrasound (US) systems (Table  1.5). 

 

Table  1.5 List of typical photochemical systems  

 

Photochemical systems 

UV 

UV / H2O2 

UV / O3 

UV / H2O2 / O3 

UV / H2O2 / Fe
+2

 

UV / TiO2 

UV / H2O2 / TiO2 

UV / US 

 

The essential photochemical mechanism, termed photooxidation, is induced via the electron 

excited by the influence of the UV/VIS radiation . Three class of photooxidation reactions are 

distinguished in: 

Photoionization: occurs when a molecule (M) absorbs electromagnetic radiation, followed by 

the ejection of an electron from the electronically excited molecule (M
*
) into the surrounding 

medium and finally leads to the formation of a radical cation (M
•+ 

) (Eq. 4). An excited 

electron from the excited molecule (M
*
) might be quenched by oxygen and yield reactive 

oxygen species (Eq. 5), which initiate the photochemistry with the molecules (M) (Eq. 6). 
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Eq. 4 

 
Eq. 5 

 
Eq. 6 

 

Photooxidation: initiated by transient or reactive species which are formed from an 

electronically excited precursor molecule X
*
 (Eq. 7). X is an auxiliary oxidant (a-Ox) such as 

H2O2 or O3. 

 
Eq. 7 

 

Photooxygenation reactions: which occur via the reactive oxygen species, and have been 

classified into three different types depending on the oxygen-containing products. 

Type I: formed by the reaction of radical ions with the ground state of molecular oxygen (
3
O2) 

via intermediary peroxyl radicals (M-O-O
•
) (Eq. 8). 

Type II: obtained by sensitized photooxidations via singlet molecular oxygen (
1
O2), which has 

an electrophilic character, typical biradical (Eq. 9). 

Type III: produced by reaction of superoxide radical anions (O2
•-
) with a suitable molecule M 

(Eq. 10). 

 
Eq. 8 

 
Eq. 9 

 
Eq. 10 

 

Photocatalysis is one of the AOPs recently used to remove residual micropollutants from the 

aquatic environment. Titanium dioxide (TiO2) has been intensively used as a semiconductor 

photocatalyst to remove the micropollutants from water [100]. The photochemistry of 

semiconductors like TiO2 plays an important role in the research concerning heterogeneous 

photocatalysis and solar synthetic chemistry [101]. The band gap energy Ebg of TiO2 is about 

3.2 eV [102]. This energy is equivalent to the wavelength λ of 385.5 nm. Therefore, TiO2 is 

able to absorb parts of solar electromagnetic radiation in the UV-A (320 to 400 nm) radiation 

range. The mechanism of photocatalysis with TiO2 occurs via absorption of electromagnetic 

radiation of energy greater than the band gap Ebg, leading to the excitation of an electron e
-
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from the valence band (VB) to the conduction band (CB). This leaves behind a positive hole 

h
+
 in the valence band. The excited electrons migrate to the reductive side of the TiO2 surface, 

while the positive holes migrate to the oxidative surface (see Figure  1.8).  

 

Figure  1.8 Schematic illustration of the photophysical and photochemical processes of the 

semiconductor particle TiO2 , modified according to [102]. 

 

The formation of an electron-hole pair (h
+

vb- e
-
cb) is followed by the oxidation of adsorbed 

water molecules by electron transfer to h
+

vb with formation of hydroxyl radicals and H
+
 (Eq 

11). Otherwise, adsorbed substrate molecules (R-X) may be oxidized directly by electron 

transfer at the h
+

vb side of the TiO2 particle with formation of radical cations of the substrate 

(Eq. 12). At the reductive side of TiO2 particles adsorbed oxygen molecules are acting as 

electron acceptors to form superoxide radical anions according to Eq. 13, which yield 

hydroperoxyl radicals after protonation (Eq. 14). Hydrogen peroxide and molecular oxygen 

are then formed by disproportionation of intermediary hydroperoxyl radicals (Eq 15). 

 
Eq. 11 

 
Eq. 12 

 
Eq. 13 
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Eq. 14 

 
Eq. 15 

The application of photocatalysis for wastewater treatment has a significant advantage: the 

UV irradiation of TiO2 generates 
•
OH without the use of potentially hazardous short wave 

radiation or the addition of chemicals. However, there is an associated disadvantage, during 

photocatalysis with TiO2 most electrons and holes recombine before they reach the surface of 

the solid particle [103]. 

1.6 Transformation products of the pharmaceuticals oxidation 

Transformation products (TPs) are assumed to be more abundant in the aquatic environment 

than their parent compounds, and probably most of the TPs formed during the degradation of 

the parent compounds have not even been identified yet [104]. Therefore, the aquatic 

ecosystems are exposed to a changing and unknown cocktail of chemicals. At very low 

concentrations individual pharmaceuticals are unlikely to pose any direct perceptible risk to 

human health. On the other hand pharmaceuticals and their TPs can interact with each other 

resulting in additive or potentially even synergistic mixtures that could have indirect effects 

on humans, like developing resistance to pathogens [31, 32]. TPs might pose a higher risk 

than the parent compounds (i) when they form in a high yield; (ii) when they are more mobile 

than the parent compound; or (iii) if they have a higher toxicity [17]. TPs occurring in the 

environment can be classified into three categories: (a) Metabolites of the pharmaceuticals 

formed through initial metabolic reactions in the target organisms (oxidation or conjugation 

processes inside the livestock and human). (b) TPs formed during environmental reaction 

systems such as microbial degradation, redox reactions, hydrolysis, or photolysis [105]. (c) 

TPs formed during advanced water treatment processes (Oxidation processes such as 

advanced oxidation processes like chlorination, ozonation, UV and UV/H2O2). TPs could be 

measured and characterized as mentioned in chapter 1.3 using HRMS(/MS) in a suspect 

screening without reference standards or using a non-target screening workflow.  
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1.7 Scope of the thesis 

The aim of this thesis was to study the photodegradation of several micropollutants in water 

by UV irradiation. The photolysis of the micropollutants depends on the integrative effects of 

the photon flux (UV sources), the structure of the micropollutant and the water-matrix 

composition [106]. Therefore, the systematic investigation of the photodegradation of the 

micropollutants requires the study of the effects that these three interrelated components have. 

Figure  1.9 visualize the contribution of the different chapters‘ to the overall goal of the thesis.  

 

Figure  1.9 Visualization of the different chapters‘ contribution to the overall goal of the thesis. 

 

The photochemical reactions are initiated by the absorption of a photon. Thus the energy of an 

absorbed photon is transferred to electrons in the micropollutant and briefly changes their 

configuration (i.e., promotes the molecule from a ground state to an excited state). The 

absorption of direct radiation by the micropollutant is a necessary, yet insufficient, condition 

to lead to photodegradation. Often excited state micropollutants are not kinetically stable in 

the presence of O2 or H2O and can spontaneously decompose (oxidize or hydrolyze). 
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Sometimes micropollutants decompose to produce high energy, unstable fragments that can 

react with other micropollutants around them. The two processes are collectively referred to 

as direct photolysis or indirect photolysis, and both mechanisms contribute to the removal of 

micropollutants. Therefore, the efficiency of different UV sources, namely, UV-C (254 nm), 

UV-B (312 nm) and UV-A (365 nm) in the degradation of NEB was investigated, as well as 

their influence on its reaction kinetic and the photodegradation mechanism (see Chapter 2).  

Changes in the matrix‘s pH might lead to a modification of the molecule‘s structure, which 

could enhance or hamper the photodegradation rates. With regard to photolysis, the 

absorbance spectrum of the reactant dictates the choice of effective UV radiation sources: 

emission spectrum of the lamp used must match the absorbance spectrum of the molecule to a 

maximal extent. In additionally, the lamps must have sufficient power for successful 

photolysis degrdation. Thus, in Chapter 3 the influence of the pH on the reaction kinetics and 

the degradation mechanism of ciprofloxacin by direct ultraviolet photolysis (UV) and 

photocatalysis UV/TiO2 was investigate. 

Diclofenac, metoprolol, carbamazepine, sulfamethoxazole and 1H-benzotriazole 

concentrations have been monitored in the effluent of a wastewater treatment plant over a 

period of 4 months. This monitoring showed that traditional treatment alone in WWTPs was 

unable to abate the emerging micropollutants and thus underlined the need to have better 

methods of removing micropollutants in treatment plants. Therefore, the removal rates, 

reaction kinetics, and the UV dose required to reduce by 90% the concentration of the above 

mentioned micropollutants from water by direct UV photolysis, using three different UV 

sources, namely UV-C, UV-B and UV-A, have been investigated (see Chapter 4). 
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2 Photolytic degradation of the β-blocker nebivolol in aqueous 

solution 
redrafted from: Alaa Salma , Holger Lutze, Torsten C. Schmidt, Jochen Tuerk,  Water Research, 2017, 

116, 211-219. 

2.1 Abstract  

Nebivolol (NEB) is one of the top-sold prescription drugs belonging to the third generation of 

beta-blockers. However, so far, occurrence data in the environment are lacking. Within this 

study NEB has been found for the first time in effluent samples of wastewater treatment 

plants in Germany with an average concentration of 13 ng L
-1

.  

Its photodegradation behavior in the environment and in technical processes is largely 

unknown. To fill this gap, three different UV treatment procedures (UV-C at 254 nm, UV-B 

at 312 nm and UV-A at 365 nm) were investigated in three different matrices: pure water, 

pure water in presence of the hydroxyl radical (
•
OH) scavenger tert.-butanol and real 

wastewater. No elimination was observed during UV-A treatment. In contrast, NEB 

degradation during UV-B and UV-C treatment followed pseudo first order reaction kinetics, 

with highest removal rate during UV-C treatment in pure water (k = 7.8×10
-4

 s
-1

). The rate 

constant for UV-C irradiation decreased to 2.9×10
-4

 s
-1

 in the presence of the 
•
OH scavenger 

and in the presence of the wastewater matrix. The rate constant for the UV-B lamp was 

4.4×10
-4

 s
-1

, Three transformation products were identified after UV-B and UV-C photolytic 

degradation using high resolution mass spectrometry. The main photoreaction is the 

substitution of the fluorine atoms of NEB by hydroxyl groups. A photolytic cleavage of the C-

F bond can be excluded , as the high bond dissociation energy of aromatic C-F bonds (525 kJ 

mol
-1

), exceeds the energy of electromagnetic radiation applied in the present study (≥ 254 

nm, i.e., max. 471 kJ Einstein
-1

). The quantum yields for NEB degradation for the UV-C lamp 

achieved in pure water, the 
•
OH scavenged system and wastewater matrix were Φdeg = 0.53, 

0.19 and 0.22, respectively. For UV-B Φdeg was 0.023 ± 0.003, noticeable differences in 

quantum yield were not found . The photooxidation involves reactive oxygen species such as 

superoxide and singlet oxygen. These oxidative species may be formed upon reaction of 

photo-excited NEB with oxygen. 

2.2 Keywords 

Nebivolol, UV,  wastewater treatment, photolysis, transformation products  
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2.3 Introduction  

Due to the large-scale production and consumption of pharmaceuticals, these compounds 

and their human and wastewater treatment plant derived metabolites are discharged 

substantially into aquatic environments through sewage. The progress made in analytical 

chemistry [1] nowadays allows the measurement of pharmaceuticals at very low 

concentrations in the range of ng L
-1

 to µg L
-1

 in wastewater [2], surface water [3, 4], 

groundwater [5-7], and even drinking water [8]. Therefore micropollutants are discussed due 

to possible effects on the ecosystem and their potential to reach drinking water [9]. At very 

low concentrations, pharmaceuticals are unlikely to pose any direct perceptible risk to human 

health, but there could be indirect effects such as increasing resistence of pathogens against 

antibiotics [10, 11] or chronic effects in water organismns [12, 13]. They could possibly affect 

also aquatic ecosystems. β-blockers are a class of drugs used in various indications such as 

cardiac arrhythmias, hypertension and cardio protection after a heart attack. Thus, they are 

consumed widely in the world. Due to their massive use, β-blockers have been detected in 

aquatic environments [14, 15]. Haider and Baqri [16] found that aqueous solutions of 

propranolol and other β-blockers have an effect on the oocyte maturation of catfish. 

Triebskorn, et al. [17] observed that the exposure of rainbow trout to 1 µg L
−1

 of metoprolol 

showed ultrastructural changes in the liver and kidney, as well as in gills at concentration 

above 20 µg L
−1

. 

Huggett, et al. [18] studied growth dysfunctions on the invertebrates in the presence of 

0.5 mg L
-1

 propranolol. In another study, Huggett, et al. [19] found that exposure to 

0.5 mg L
−1

 of propranolol reduced growth rates of Japanese medaka. Propranolol has been 

detected in WWTP effluents at concentrations from 30 to 373 ng L
−1

 [18, 20, 21] and in 

surface waters [22, 23] at levels of ng L
−1

. On the other hand metoprolol has been detected at 

concentrations up to 590 ng L 
-1

 in environmental samples (rivers, lakes, etc.) [22, 24] and up 

to 122 ng L
−1

 in groundwater [6]. 

NEB belongs to the third generation of β 1 blockers and is used for the treatment of 

hypertension. Unlike non-selective drugs, which block both β 1 and β 2-receptors, nebivolol, 

being a β 1-selective drug, blocks primarily the cardiac and other β 1-adrenoceptors [25], and 

is used as a drug to treat high blood pressure [26]. Comparison between the safety of NEB 

and other beta-blockers shows that nebivolol has better pharmacological properties and less 

side effects [27], e.g. 5 mg daily administration of NEB is as efficacious as any other β-

adrenoceptor antagonist against hypertension, with no appreciable difference between peak 

and trough level of drugs. A daily administration of only 5 mg NEB achieves a higher blood 
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pressure normalisation rate than a 200 mg daily administration of metoprolol, 100 mg atenolol 

or 80 mg propranolol, respectively. NEB was listed as one of the top-sold prescription 

pharmaceuticals in the USA with more than 6.4 million prescriptions from April 2014 to 

March 2015 [28]. Compared to other beta blockers, NEB has been reported to have a higher 

selective β1-blocking activity, 320 times higher than that of propranolol and carvedilol [26], 

and it also has better pharmacological properties and less side effects [27]. Considering these 

advantages, the probability that the consumption of NEB in the future will increase is high. 

Consequently, the chance that NEB and its degradation products end up in the environment 

will also increase. Van Nuijs, et al. [29] reported the occurrence of up to 10 ng L
-1

 NEB in the 

influent of wastewater treatment plants but otherwise no data on occurrence of NEB and its 

potential effects on the aquatic environment are available. In nature, several drug compounds 

are degraded photolytically. However, the photodegradation behavior of NEB in the 

environment and in technical processes is so far largely unknown, Thus, the main goal of this 

study was to investigate the photolytic degradation of NEB and its transformation products. 

Therefore, the efficiency of different UV sources, namely, UV-C (254 nm), UV-B (312 nm) 

and UV-A (365 nm) for the degradation of NEB were investigated, as well as their influence 

on its degradation rate. Finally a photodegradation mechanism was proposed. Liquid 

chromatography – high resolution mass spectrometry (LC-HRMS) analysis was used to 

identify the intermediates at a specific degradation time. In addition, the photolytic reactions 

were also performed in NEB-containing wastewater for studying the effct of the wastewater 

matrix on the degradation process.  

2.4 Experimental section 

2.4.1  Reagents and materials  

Following chemicals were used as received: NEB (98%) was obtained from Chemos GmbH 

(Regenstauf, Germany). Its chemical and physical characteristics are summarized in 

Suppl.  6.1. The structure of NEB is a racemate of d-nebivolol and l-nebivolol with the 

stereochemical designations of [S3R]-nebivolol and [R3S]-nebivolol. NEB is soluble in N,N-

dimethylformamide, methanol, dimethylsulfoxide; sparingly soluble in polypropylene glycol, 

polyethylene glycol and ethanol; and very slightly soluble in dichloromethane, hexane and 

methyl-benzene [30, 31]. HPLC and UPLC/MS grade water and methanol were purchased 

from Th. Geyer (Renningen, Germany). Potassium ferric oxalate trihydrate 

(K3Fe(C2O4)3·3H2O) was received from Gentaur (Aachen, Germany). Sulfuric acid (H2SO4 

97%) was purchased from Merck (Darmstadt, Germany). Sodium acetate (CH3COONa), 
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Acetylacetone (C5H8O2 ≥ 99%), 4-Chlorobenzoic acid (pCBA 99%) and 1,10-phenanthroline 

monohydrate were supplied by Sigma-Aldrich (Steinheim, Germany). Ferrous sulfate 

(FeSO4.7H2O) and tertiary butanol (tert-BuOH ≥ 99. 7%) were obtained from Fluka 

(Steinheim, Germany). Ammonium acetate (NH4C2H3O2 >99%) and acetic acid (CH3COOH 

≥99%) were provided by Biosolve (CE Valkenswaard, Holand).  

2.4.2 Photodegradation investigations 

2.4.2.1 Experimental set-up 

All experiments were carried out in a small recirculating photoreactor (for further information 

see the supplementary material Suppl.  6.2). Three types of 15 W UV lampswere used during 

the experiments: (1) a UV-A lamp  mainly emitting in the wavelength range 315 to 400 nm, 

main emission band at 365 nm (Vilber Lourmat, Eberhardzell, Germany), (2) a UV-B lamp 

mainly emitting in the wavelength range 280 to 360 nm, main emission band at 312 nm 

(Vilber Lourmat, Eberhardzell, Germany) and (3) a low pressure UV lamp (New NEC Light 

Ing., Shiga, Japan) that mainly emits in the UV-C range (254 nm). The emission spectra are 

shown in Suppl.  6.3 of the supplementary material. An open rectangular cuboid pyrex glass 

reactor 48 x 4 x 3 (L x W x D) cm was used to irradiate the reaction solution. One reservoir 

was connected to the reactor and for every degradation experiment 500 mL of NEB solution 

(25 µmol L
-1

) was circulated using a peristaltic pump (Multifix constant MC 1000 FEC, 

Alfred Schwinherr KG, Schwäbisch-Gmünd, Germany). The reactor was fed with a 

continuous  laminar flow (100 mL min
-1

, length of the reactor 48 cm). The optical pathlength 

of the solution in the reactor was below 5 mm. A distance of 5 cm between the lamp and the 

reaction solution surface was maintained for all experiments.  

2.4.2.2 Ferrioxalate actinometry 

Ferrioxalate actinometry was conducted according to Bolton and Linden [32] to determine the 

fluence rate of the UV lamps. UV-A gave polychromatic radiation with the highest Eavg (1.95 

mW cm
-2

), followed by UV-B, also with polychromatic radiation (1. 67 mW cm
-2

) and UV-C 

produced  monochromatic radiation (0.64 mW cm
-2

). Detailed information about the 

experimental procedure, as well as the calculated values of the light intensity (I) (Einstein/s) 

and energy flux (Eavg) (W m
-2

) of the UV lamps can be found in the Ferrioxalate actinometry 

section in appendix  6.2. 

2.4.2.3 Kinetic experiments 

The degradation kinetics of NEB solutions were evaluated in triplicate experiments at neutral 

pH and room temperature (20 °C). Matrix influence on the degradation kinetics of NEB was 
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investigated in the effluent of the wastewater treatment plant Duisburg-Hochfeld, Germany 

(pH 7.2, dissolved organic carbon (DOC) 6.5 mg L
-1

, specific UV absorbance at 254 nm 

(SUVA254) 1.3 m
-1

, 220,000 population equivalent. The wastewater was spiked with 25 µmol 

L
-1

 of NEB. The formation of 
•
OH during the photodegradation process was evaluated based 

on a tert-BuOH assay. In sufficient excess of tert-BuOH, 
•
OH will quantitatively react with 

tert-BuOH to form formaldehyde with a yield of 50% per 
•
OH-attack [33]. Formaldehyde was 

determined using Hantzsch reaction [34]. Before the start of each new experiment, the whole 

experimental set-up was cleaned two times with pure water. The UV sources were 

equilibrated for 15 minutes before each experiment. 1 mL samples were collected in HPLC 

vials during the experiments at interval times of 0, 5, 10, 15, 20, 30, 45, 60, 90 and 120 

minutes. NEB elimination was measured by LC-MS/MS (see section 2.4.2).  

2.4.3 Analytical Methods 

2.4.3.1 Ion chromatography for fluoride determination 

A Metrohm compact ion chromatograph equipped with a 881 Compact IC pro1 conductivity 

detector (Metrohm AG, Herisau, Switzerland) was employed to measure fluoride. The 

separation was performed on a Metrosep A Supp 7 - 250/4.0 column (Metrohm AG, Herisau, 

Switzerland) with a 9.0 mM sodium carbonate (Na2CO3) eluent at a flow rate of 0.7 mL min
-1

. 

Under these conditions the retention time of fluoride was 6.72 min. The eluents and standards 

were purchased from Merck KGaA (Darmstadt, Germany). 

2.4.3.2 LC-MS/MS analysis 

A QTRAP 6500 (AB SCIEX Deutschland GmbH, Darmstadt, Germany) connected to a 1100 

series HPLC (Agilent Technologies, Waldbronn, Germany) was used to quantify the NEB 

concentration during the photodegradation process and in real wastewater samples. The 

chromatographic separation was performed on a 50 x 2 mm Chromolith
®
 Fast Gradient RP 

18e HPLC column (Merck KGaA, Darmstadt, Germany) at 40 °C. The mobile phase 

consisted of 0.1 % formic acid in water (v/v) (mobile phase A) and 0.1 % formic acid in 

acetonitrile (v/v) (mobile phase B). The gradient program started with 1.0% B organic phase, 

and it was raised to 99% B within 2.5 minutes, then kept constant for 30 seconds and 

afterwards again reduced to 1.0% B for 30 seconds, followed by a reequilibration of 4.5 min. 

The flow rate was 500 µL min
-1

. To achieve a fast gradient the mixing point was installed 

directly in front of the injection point of the HTS PAL Autosampler. NEB was quantified 

after positive electrospray ionisation (ESI 
+
) in multiple reaction monitoring (MRM) mode. 

The optimized MS operating conditions were as follows: the curtain gas was set at 40 psi, the 
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nebulizer source gas 1 at 55 psi, and the turbo ion source gas 2 at 60 psi. The optimal 

declustering potential was 100 V, and entrance potential 10 V. The NEB fragmentation was 

induced by collisionally activated dissociation with nitrogen gas. The collision gas pressure 

was set at 2.0 psi. A collision energy of 39 eV and a collision cell exit potential of 4.0 V were 

utilized. The precursor, quantifier, and qualifier ions of the HPLC–MS/MS quantification 

measurements were set at m/z 406, 151, and 103, respectively. A dwell time of 50 ms was 

employed. Data evaluation was done with Analyst
TM

 1.6.2 (AB Sciex Deutschland GmbH, 

Darmstadt, Germany). The calibration was weighted 1/x with a linear regression.  

2.4.3.3 LC-HRMS analysis for structure elucidation  

The transformation products (TPs) formed during the degradation of NEB were investigated 

using an Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, Germany). 

The TPs separation was carried out on an U-HPLC system (Thermo Scientific Accela™) 

consisting of a degasser, a quaternary pump, a thermostated Autosampler and a column oven. 

The chromatographic separation was performed on a 150 x 2 mm Synergi 4u Polar-RP 80A 

HPLC column (Phenomenex, Aschaffenburg, Germany) at 40 °C. The binary mobile phase 

consisted of 0.1% formic acid in water (v/v) (mobile phase A) and 0.1% formic acid in 

acetonitrile (v/v) (mobile phase B). The gradient program started with 5% B, and it was raised 

to 100% B within 10 minutes, then kept constant for 4 minutes and finally decreased again to 

5% B within 30 seconds. Finally, the column was re-equilibrated to the initial conditions and 

stabilized for 5 minutes. The flow rate was set to 200 µL min
-1

. Electrospray ionization (ESI) 

in positive and negative ionization mode was used. ESI was operated under the following 

specific conditions: ionization voltage -3.5 kV for negative mode and +4.0 kV for positive 

mode; sheath gas 35 psi; auxiliary gas 30 psi; sweep gas 0.03 arbitrary units and capillary 

temperature 350°C; capillary voltage 25 V and tube lens voltage 120 V. Accurate mass was 

calibrated using a standard solution mixture of caffeine, sodium dodecyl sulfate, sodium 

taurocholate, the tetrapeptide Met-Arg-Phe-Ala acetate salt and ultramark (Sigma Aldrich, 

Steinheim, Germany) according to the guidelines of the manufacturer. Nitrogen (>99.98%) 

was employed as a sheath, auxiliary and sweep gas. The samples were measured using a full-

scan experiment at a resolution of 50,000 (at m/z 400). Centroid mass spectra were acquired 

in the mass range of m/z 50–750. Instrument control and data acquisition (such as chemical 

formulas, retention time, fragment ions, products and the experimental m/z for product ions, 

and the error between the theoretical and experimental m/z for product ions) were performed 

with Xcalibur 2.1.0 software (Thermo Fisher Scientific, Bremen, Germany). 
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2.5 Results and discussion 

2.5.1 NEB occurrence in wastewater 

Coutu, et al. [35] applied a procedure to list common pharmaceuticals used in Switzerland 

according to their hazardous risk for the aquatic ecosystem and the human health. In this list 

NEB is on place 22 and 31 from 58 of the priorities for environment and human health, 

respectively. Indeed, NEB was measured in influent samples of wastewater treatment plants 

(WWTP) in Belgium in a concentration range of 1 - 10 ng L
 - 1

 but this was the sole published 

data. In our study NEB was found in effluent samples of 12 WWTPs in Germany 

(Figure  2.1). The calculated limit of detection (LOD) for a signal-to noise ratio (S/N) of 3 was 

1.4 ng L
-1

, while the calculated limit of quantification (LOQ) for a S/N of ten was 4.6 ng L
-1

. 

The linear range for NEB analysis was 2.5 ng L
-1

 to 25 µg L
-1

 with a good linearity (r
 
> 0.999) 

and good accuracy for each calibration point between 80 and 120 %. 

Median concentrations of NEB in WWTPs influent and effluent were respectively 21 and 

13 ng L
 - 1

, with maximum concentrations of 58 and 31 ng L
-1

. The average elimination rate 

during conventional biological wastewater treatment was 38 %. However, residual 

concentrations of NEB are still substantial and care has to be taken on the fate of NEB in the 

environment. 

 

 

Figure  2.1 NEB concntrations in influents and effluents of 12 German WWTPs presented as box-and-

whisker plots (median, 25 % quartile, 75 % quartile, maximum and minimum). 
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2.5.2 Degradation kinetics of NEB in photodegradation  

Figure  2.2 shows that no significant degradation of NEB by UV-A takes place whereas NEB 

is degraded by UV-B and UV-C up to > 90% within 2 hours. This can be explained by the 

fact that NEB does not absorb within the UV-A spectrum as can be seen in Suppl.  6.3 that 

compares the UV-Vis absorption spectrum of NEB and the emission spectra of the three used 

UV sources. NEB absorbs UV radiation in the range from 243 nm to 302 nm with a maximum 

at 281 nm.  

 

Figure  2.2 Elimination of NEB (A), inset: reaction kinetic plot (B) for the three UV sources 

(Experimental conditions c0 (NEB) = 25 µmol L
 - 1

, volume = 500 mL, flow rate = 100 mL min
 - 1

, 

pH = 7, T = 20 ± 2˚C). 

 

The degradation of NEB follows pseudo first-order kinetics with the highest rate for UV-C (k 

= 7.8 x 10
-4

 s
 - 1

) followed by UV-B (k = 4.7 x 10
-4 

s
 - 1

). Table  2.1 summarizes the 

investigated first order rate constants, quantum yields (Φ) and half life times (t1/2). 
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Table  2.1 Pseudo-first order rate constants (time-based and fluence-based), half life time and quantum 

yields (Φ) (for the full (polychromatic) emission spectrum of the radiation source) for NEB in 

ultrapure water, NEB in presence of tert-BuOH and wastewater matrix by UV-A, UV-B and UV-C 

photolysis 

 
 NEB 

 

NEB + t-BuOH 
 

NEB + wastewater matrix 

 UV-A UV-B UV-C 
 

UV-A UV-B UV-C 
 

UV-A UV-B UV-C 

k/s
-1

 1.3×10
-5

 4.7×10
-4

 7.8×10
-4

 
 

- 5.0×10
-4

 2.5×10 
– 4

 
 

2.8×10
-5

 4.4×10
-4

 2.9×10
-4

 

t½/min 868 25 15 
 

- 23 46 
 

419 26 40 

k'1/m
2
J

-1
 1.5×10

-6
 1.6×10

-4
 2.7×10

-4
 

 

7×10
-7

 1.8×10
-4

 9.7×10
-5

 
 

9.6×10
-7

 1.5×10
-4

 1.2×10
-4

 

Φdeg   - 0.02 0.53 
 

- 0.027 0.19 
 

- 0.023 0.22 

( - ) No significant degradation 

2.5.3 Influence of the of OH-radical in NEB degradation 

The degradation of NEB can take place through direct photolysis or indirectly, via reactions 

with reactive oxygen species (ROS) formed in the primary photochemical reactions [36], e.g. 

• 
OH [37] and singlet oxygen (

1 
ΔgO2) [38, 39]. The contribution of 

•
OH on the degradation 

kinetics of NEB were determined in presence of tert-BuOH. Degradation of NEB in the 

presence of the 
•
OH scavenger is presented in Figure  2.3. 

 

Figure  2.3 (A) NEB degradation in the presence of tert-BuOH, inset: (B) linear plots of ln (ct/c0) 

versus time of NEB degradation in the presence of tert-BuOH (Experimental conditions: c0 (NEB) = 

25 µmol L
 - 1

, c0 (tert-BuOH) = 10 mmol L
-1

, volume = 500 mL, flow rate = 100 mL min
 - 1

, pH = 7, 

T = 20 ± 2˚C). 
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Comparing Figure  2.2 A and Figure  2.3 A it can be seen that the 
•
OH scavenger had no 

significant effect on the NEB elimination in the case of UV-B or UV-A irradiation. However, 

using the UV-C lamp a significant effect on the NEB degradation was observed. The first 

order rate constant derived from Figure  2.3 B drops by a factor of approximately 3 Table  2.1. 

This indicates that 
• 
OH are formed during the photochemical degradation of NEB upon 

exposure to 254 nm radiation from the UV-C source. Indeed, 
• 
OH was quantified to be ≈ 5 

µM after complete turnover of NEB. The diagrams of NEB elimination rate versus the 
• 
OH 

concentration for the different UV lamps are presented in Suppl.  6.4. From these diagrams 

one can see that the UV-A and UV-B lamps practically produce no 
•
OH unlike the UV-C 

lamp. Hence, when the UV-C lamp is used there are probably two mechanisms involved in 

the degradation of NEB, namely, direct and indirect photooxidation by 
•
OH. Hydroxyl 

radicals may be formed by the contribution of VUV at 185 nm, since electromangenic 

radiation with that wavelength provides sufficient energy to photolyse water [40]. The 

influence of VUV is only significant for a very small optical path length of few micrometers 

[40]. However, in this layer H2O2 is formed by recombination of 
•
 OH, which may diffuse into 

the bulk solution were it is photolysed to 
•
OH by 254 nm UV-C radiation. 

2.5.4 Influence of the wastewater matrix on the degradation of NEB 

The influence of a real wastewater matrix on NEB photodegradation using the three different 

UV lamps was studied after raising the concentration of NEB in the samples to 25 µmol L
 - 1

. 

The photodegradation of NEB over time is shown in Suppl.  6.5 A. After 120 min, the 

percentage of NEB degraded by UV-B and UV-C lamp was 96 ± 1% and 87 ± 4%, 

respectively. As expected, UV-A was also not able to degrade NEB in wastewater. The 

pseudo-first-order rate constant of the photochemical degradation of NEB in the presence of 

the wastewater matrix is determined by plotting ln(ct/c0) versus time (see Suppl.  6.5 B). The 

rate constant for the UV-B lamp decreased slightly from 4.7 × 10
 - 4

 s
 - 1

 to 4.4 × 10
 - 4

 s
 – 1

 

compared to pure water. This decrease can be explained by the slight UV-absorption of the 

wastewater matrix shown in Suppl.  6.6. For the UV-C lamp the rate constant decreased 

strongly from 7.8 × 10
 - 4

 s
 - 1

 to 2.9 × 10
 - 4

 s
 - 1

. This effect was observed both in the presence 

of 
• 
OH scavengers and in the presence of the wastewater matrix. The determined half life 

time for NEB elimination under UV-C radiation was 15 min in pure water, 46 min in pure 

water with t-BuOH, and 40 min in wastewater (Table 1).  

The difference in the half life time of NEB elimination can be explained by scavenging of 

• 
OH by the organic matrix in analogy to the experiments in presence of tert-BuOH. However, 

the UV-C absorbance of the wastewater may additionally have reduced the UV-C fluence. 
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This is somewhat less pronounced for UV-B, since the wastewater does not absorp UV-B so 

strong.  

The quantum yields for NEB degradation under irradiation with the three different types of 

UV lamps and all conditions have been calculated and are presented in Table 1. Quantum 

yields means the number of NEB molecules transformed (direct and indirect photooxidation) 

per photon emitted by the radiation source to the surface of the sample (incident light). Since 

there is no NEB absorption and significant degradation in the UV-A range, no quantum yield 

could be calculated for the UV-A lamp. The quantum yield for NEB degradation for the UV-

B radiation was around 0.02 in all tested matrixes. However, under  UV-C radiation  different 

quantum yields were determined , i.e., 0.53 in pure water, 0.19 in pure water in the presence 

of tert-BuOH and 0.22 in wastewater, respectively Table  2.1. The tert-BuOH has an impact 

on the quantum yield for the UV-C lamp, unlike for the UV-B lamp. The quantum yield for 

the degradation of NEB in presence of tert-BuOH for the UV-C lamp was 10 times higher 

than for the UV-B lamp in pure water. 

2.5.5 Characterization of the transformation products of NEB formed 

during photolytic degradation 

The transformation products that resulted during the photolytic degradation of NEB were 

elucidated using high resolution mass spectrometry. Three transformation products could be 

detected during the photolytic degradation. Structure elucidation was based on the accurate 

mass measurements. Beside the sum formula, also fragment ions from collision-induced 

dissociation (CID) experiments, relative mass errors and double bond equivalents (DBEs) 

were considered. The low relative mass errors obtained in all cases provided a high degree of 

certainty in defining the molecular composition (Table  2.2). 

The retention time (R.T) of NEB was 4.32 min and yielded a [NEB+H] 
+
 ion with 

m/z 406.1819 (Figure  2.4). Fragmentation of the [NEB+H]
+
 ion yielded four product ions with 

m/z 282.1496, 177.0709, 151.0553 and 123.0605. The high abundance peak at m/z 151.0553 

represents the ion with the elemental composition C9H8OF (6-Fluoro-3,4-dihydro-2H-1-

benzopyran ion) and was probably produced through the homolytic cleavage of NEB from 

both sides. The first transformation product (TP1) of NEB had a retention time of 3.13 min 

and yielded a [TP1+H]
 +

 precursor ion at m/z 404.1863 (Figure  2.4). TP1 and NEB have two 

similar product ions (m/z 282.1496 and 151.0553) and two additional product ions at 

m/z 175.0753 and 149.0597 were obtained for TP1. The difference between the two precursor 

ions resembles the substitution of F with OH at the 6-Fluoro-3,4-dihydro-2H-1-benzopyran 

moiety. The transformation products TP 2 and TP 3 have a retention time of 2.95 and 2.09 
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min, respectively, and yielded the [TP2+H]
 +

 and [TP3+H]
 +

 precursor ions at m/z 402.1907 

and m/z 386.1959 (Figure  2.4). The structure of the TP2 and TP3 were also proposed. While 

the common product ions with NEB at m/z 282.1496 and 151.0553 disappeared, the product 

ion at m/z 149.0597 appeared. This indicates the substitution of both fluorine atoms by 

hydroxyl groups. 

 

Table  2.2 Accurate masses for NEB and its transformation products. 

 
Product 

ID 

Theoretical m/z 

for [M+H]+ 

Measured m/z 

for [M+H]+ 

Mass deviation 

(Δppm) 

R.T 

(min) 

Sum Formula 

NEB 406.1824 

282.1500 

177.0710 

151.0554 

123.0604 

406.1819 

282.1496 

177.0709 

151.0553 

123.0605 

1.2 

1.4 

0.6 

0.4 

0.8 

4.32 [C22H26O4NF2]
+ 

[C15H21O3NF]+
 

[C11H10OF]+
 

[C9H8OF]+
 

[C8H8F]+ 

TP 1 404.1867 

282.1500 

175.0754 

151.0554 

149.0597 

121.0648 

404.1863 

282.1498 

175.0753 

151.0553 

149.0597 

121.0649 

1.2 

0.7 

0.4 

0.5 

0.1 

0.9 

3.13 [C22H27O5NF]+ 

[C15H21O3NF]+
 

[C11H11O2]
+ 

[C9H8OF]+
 

[C9H9O2]
+

 

[C8H9O]+ 

TP 2 402.1911 

280.1543 

175.0754 

149.0597 

121.0648 

402.1907 

280.1542 

175.0753 

149.0596 

121.0649 

1.0 

0.5 

0.4 

0.7 

0.9 

2.09 [C22H28O6N]+ 

[C15H22O4N]+ 

[C11H11O2]
+ 

[C9H9O2]
+

 

[C8H9O]+ 

TP 3 386.1962 

204.1019 

191.1069 

163.0753 

149.0597 

121.0648 

386.1959 

204.1019 

191.1069 

163.0753 

149.0597 

121.0650 

0.8 

0.1 

1.5 

0.4 

0.4 

1.7 

2.95 [C22H28O5N]+ 

[C12H14O2N]+ 

[C12H15O2]
+ 

[C10H11O2]
+ 

[C9H9O2]
+ 

[C8H9O]+ 
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2.5.6 Proposed mechanisms for the photolytic degradation of NEB  

Figure  2.5 shows that the relative peak areas of the TPs suggest different transformation 

trends in the precence of UV-B and UV-C radiation although the exact concentrations of the 

TPs could not be determined as authentic standards were not available. During the UV-B 

radiation, the peak area of TP 1 increased during the first 30 min interval and then decreased 

rapidly.  Moreover TP 3 increased slightly over the time, while the peak area of TP 2 was 

steadily increasing throughout the photooxidation period (Figure  2.5 A). On the other hand, 

the peak areas of TP 1 and TP 2 increased simultaneously during UV-C radiation, but this 

time only the peak area of TP 1 decreased accompanied with the appearance of TP 3 during 

the last 60 min interval (Figure  2.5 B). The relative peak areas of TP 1 in UV-B and in UV-C 

radiation were similar. Conversely, the relative peak area of TP 2 for the UV-B radiation was 

twice as intense as in UV-C radiation.  

 

 

Figure  2.5 Relative peak area of NEB and corresponding transformation products as a function of time 

during UV-B (A) and UV-C (B) photolysis experiments carried out in pure water (c0 = 25 µM, volume 

= 500 mL, flow rate = 100 mL min
-1

, pH = 7, T = 20 ± 2 ˚C).  

 

The main photoreaction occurring is the photosubstitution of the fluorine atoms of NEB by a 

hydroxyl group with the formation of the TPs. TP 1 and TP 2 might be formed by 

defluorination followed by the addition of OH
 -
 to the dihydrobenzopyran, while TP 3 is 

formed by defluorination of the second fluorine atom. Figure  2.6 shows the increase of 

fluoride concentration during the degradation of NEB. As can be seen from this diagram the 

concentration of F
-
 under UV-B radiation was higher than under UV-C radiation. Principally 

the transformation from NEB to TP 1 yields 1 mole of F
- 

per mole NEB degraded and the 
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transformation of TP 1 to TP 2 or TP 3 yields another mole of F
-
. The slope of the linear  

regression shown in Figure  2.6 indicates a yield of ~1 mole fluoride per 1 mole NEB 

eliminated under conditions of UV-C radiation and ~2 moles in the case of UV-B radiation. 

This indicates that the degradation of NEB follows two different mechanisms for the two 

different UV treatment procedures, as will be explained below.  

  

 
Figure  2.6 Fluoride yield (mmol L

-1
) versus the NEB degradation (mmol L

-1
) during the UV-A, UV-B 

and UV-C radiation: NEB degradation calculated based on LC-MS, F
-
yield calculated based on ion 

chromatography.  

 

In laser flash photolysis studies the quantum yield of defluorination of fluoroquinolones (FQs) 

in neutral aqueous media have been determined to be in the range of Φ-F = 0.001 to 0.55  [41]. 

Most of the FQs‘ photodegradation is predominated by the triplet state through the heterolytic 

cleavage of fluorine atom or by reaction of the excited state with water in a nucleophilic 

substitution of the fluoride like in the case of ciprofloxacin (CIP), norfloxacin (NOR) and 

enoxacin (ENO) (Φ-F = 0.007 - 0.13) [42, 43]. This mechanism is in agreement with our 

results for NEB (Φ-F = 0.02) in the presence of the UV-B radiation. We could observe 

electron donating (alkoxy group [44, 45]) and electron withdrawing (fluorine [44, 45]) 

moieties  in the NEB structure. Therefore, the excited triplet state of the fluoro benzopyran 

ring of NEB reacts with water inducing a nucleophilic substitution of the fluoride 

(Scheme  2.1 (A)). The second photodegradation mechanism of the fluoroquinolones was 

reported to be initiated by formation of excited singlet state induced heterolytic cleavage of 
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the C-F bond with high photodegradation quantum yield in case of lomefloxacin (LOM) in 

water (Φ-F = 0.55) [41], which is in good agreement with our results for NEB (Φ-F = 0.53) in 

the presence of the UV-C radiation (Scheme  2.1 (B)). Intersystem crossing (ISC) is an 

efficient deactivation process from the excited singlet state to a triplet state. The excited triplet 

state quenching by oxygen may yield reactive oxygen species such as O2
.-
 (photochemistry 

type I reaction [46]), or form a singlet oxygen (
1
O2) [44] via energy transfer from the excited 

electron to the oxygen (photochemistry type II reaction [46]) (Scheme  2.1(C)). Other reactive 

species may be formed upon reactions of O2
∙-
 such as H2O2 (product of dismutation) or 

•
OH 

(product arising from photolysis of H2O2) (Suppl.  6.4).  

 

Scheme  2.1 The photodegradation mechanisms of the fluoro benzopyran in the excited state reactivity. 

 

2.6 Conclusions 

Upon UV radiation NEB mainly reacted by defluorination and substitution of the fluorine by 

hydroxyl groups. As the determined TPs are formed by the substitution of the fluorine atom 

from the benzopyran ring with a hydroxyl group, the biologically active part of the NEB 

structure is still preserved [25, 27, 47]. Suppl.  6.8 illustrates the biologically active part of the 

NEB structure in comparison to other β-blockers. This illustrates the importance of coupling 

the studies on the kinetics of micropollutant degradation with mechanistic studies in order to 

evaluate if the advanced oxidation process can deactivate the biological effectiveness of the 

compound and also of its transformation products.  
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3 pH effects on photolysis and photocatalsis of ciprofloxacin 
 

redrafted from: Alaa Salma , Sven Thoröe-Boveleth , Torsten C. Schmidt, Jochen Tuerk, Journal of 

Hazardous Materials, 2016, 313, 49-59. 

3.1 Abstract  

Ciprofloxacin (CIP) is a broad-spectrum antibiotic with five pH dependent species in aqueous 

medium, which makes its degradation behavior difficult to predict. For the identification of 

transformation products and prediction of degradation mechanisms, a new experimental 

concept making use of isotopically labeled compounds together with high resolution mass 

spectrometry was successfully established. The utilization of deuterated ciprofloxacin (CIP-

d8) facilitated the prediction of three different degradation pathways and the corresponding 

degradation products, four of which were identified for the first time. Moreover, two 

molecular structures of previously reported transformation products were revised according to 

the mass spectra and product ion spectra of the deuterated transformation products. 

Altogether, 18 transformation products have been identified during the photolytic and 

photocatalytic reactions at different pH values (3, 5, 7 and 9). In this work the influence of pH 

on both reaction kinetics and degradation mechanism was investigated for direct ultraviolet 

photolysis (UV-C irradiation) and photocatalysis (TiO2/UV-C). It could be shown that the 

removal rates strongly depended on pH with highest removal rates at pH 9. A comparison 

with those at pH 3 clearly indicated that under acidic conditions ciprofloxacin cannot be 

easily excited by UV irradiation. We could confirm that the first reaction step for both 

oxidative treatment processes is mainly defluorination, followed by degradation at the 

piperazine ring of CIP. 

3.2  Keywords 

Ciprofloxacin; photolysis; photocatalytic degradation; transformation products. 
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3.3 Introduction  
 

Antibiotics are one of the most important pharmaceutical groups widely used by humans as 

well as in veterinary medicine and aquaculture. The worldwide consumption of antibiotics is 

in the range of 100,000 to 200,000 t yearly [1], from which approximately 10,200 t are used 

in Europe [2], and nearly 23,000 t in the USA [3]. 

Among the emerging pharmaceuticals are the quinolones, a family of synthetic broad-

spectrum antibiotics, which were classified by Ball [4] in three generations. This classification 

is accredited by the European Centre for Disease Prevention and Control (ECDC), while the 

American authors mainly classified them in four generations based on Andriole [5] A 

surveillance study conducted in 2010 in Europe reported that the consumption of second-

generation quinolones was on average three times higher than that of the first- and the third-

generation. From the second-generation quinolones, ciprofloxacin (CIP) represented 73% of 

the total consumption, with 0.39 up to 1.8 daily doses (DD) per 1000 inhabitants [6].  

Due to their broad application, the quinolones and their metabolites often end, in their 

pharmacologically active form, in the environment [7]. Besides sorption to sewage sludge and 

biological degradation in wastewater treatment, photochemical reactions are relevant after 

released into the environment [8]. CIP has been detected in hospital wastewaters in 

concentrations from 3 ng/L to 21 µg/L [9, 10], as well as in wastewater treatment plant 

(WWTP) effluents [11], in concentrations from 6 ng/L up to several µg/L [10] in secondary 

treated effluent. Quinolones reaching the environment may lead to development of bacterial 

resistance that could have toxic effects on fauna and flora with severe impacts on aquatic 

ecosystems [12]. Thus, reducing the emissions of quinolones into the environment is of 

strategic importance.  

Advanced oxidation processes (AOPs), such as ozonation [13], sonification [14], photolysis 

[15], and photocatalysis [16] are viable methods for the removal of quinolones. Recently, 

TiO2 has been intensively used as a semiconductor photocatalyst to remove fluoroquinolones 

(FQs) [16-21], including CIP.  

CIP has multiple ionisable functional groups, which makes the pattern of acid-base 

equilibrium quite complex. The carboxylate group at C-3, the N-1' and N-4' amino groups at 

the piperazine ring, and the N-1 atom in the quinolone ring (Scheme  3.1) are the most 

significant proton binding sites, leading to pKa values for CIP of 3.64, 5.05, 6.95 and 8.95 

[22]. Scheme  3.1 also illustrates the inter conversion between the species in aqueous medium. 

The concentration ratio of the different forms depends on the pH value. At neutral pH the 

largely dominant species is zwitterionic rather than nonionic, while the cationic form and the 
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anionic form predominate in acidic and in basic solutions, respectively. Thus, the often shown 

nonionic structure of CIP is rather misleading when looking into reaction reactivities and 

degradation mechanisms of ciprofloxacin. 

 

Scheme  3.1 Molecular structures and pKa values of the different ciprofloxacin species. 
 

The calculated distribution percentage of the different ciprofloxacin species as a function of 

the pH [15, 22], is shown in  the appendix Suppl.  6.12. 

The pH might play an important role for the elimination mechanism of the pharmaceuticals in 

the environment. With regard to photolysis, the different species might have various 

photolytic degradation pathways, transformation products, and kinetics of mechanism-based 

degradation. Therefore, modifying the pH leads to structural changes that could enhance or 

hamper the CIP degradation by direct photolysis via UV radiation or UV/TiO2 photocatalysis. 

The aim of this work was to investigate the influence of pH on the reaction kinetics and the 

degradation mechanism of ciprofloxacin by direct ultraviolet photolysis and photocatalysis. 

For structural elucidation of transformation products a new concept using isotopically labeled 

surrogate compounds was evaluated using high-resolution mass spectrometry. Previous 

studies observed that the main photoreaction pathway mechanism for ciprofloxacin 

degradation involves photosubstitution of the fluorine atom by a hydroxyl group via the triplet 

state of CIP [23] through inter system crossing (ISC) [24]. Only few studies have focused on 

the investigation of the cleavage at the piperazine ring during photodegradation. Therefore, 

we used ciprofloxacin-d8, which is deuterated at the piperazine ring (Suppl.  6.13), for 

identifying the formed transformation products. 
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3.4 Material and methods 

3.4.1 Materials  

Ciprofloxacin (CIP), hydrochloric acid (HCl), nitric acid (HNO3) and sodium hydroxide 

(NaOH) were purchased from Fluka (Buchs, Germany). CIP-d8 was obtained from Santa 

Cruz Biotechnology Inc. (Heidelberg, Germany). HPLC and UPLC/MS grade water and 

methanol were purchased from Th. Geyer (Renningen, Germany). P-25 titanium dioxide was 

supplied by Evonik Industries (Hanau, Germany).  

3.4.2  Immobilization of TiO2 on glass plates 

0.375 g P-25 titanium dioxide was immobilized as photocatalyst on glass plates according to a 

previously described procedure [17]. In brief, a glass plate surface was conditioned before 

TiO2 suspension deposition as follows. In a first step the glass plate was struck with sand to 

obtain a rough surface, thus increasing the surface area, followed by washing with water and 

treatment with NaOH solution in order to increase the number of OH groups. A 7.5 g L
-1

 TiO2 

(80% anatase and 20% rutile) suspension was prepared in deionized water. The pH of the 

suspension was adjusted to 3 with diluted HNO3, followed by sonication. 50 mL of the 

prepared suspension were carefully poured on the surface of the glass and allowed to dry at 

room temperature. Afterwards, the plates were heated at 100 °C for an hour, followed by 

heating for 4 h at 475 °C. The final TiO2 concentration on the plate was 20.5 g m
-2

 and the 

specific area 48.3 m
2 

g
-1

,  as determined by the Brunauer–Emmett–Teller (BET) method from 

nitrogen adsorption–desorption isotherms at (-196°C) using an adsorption analyzer from 

Micromeritics Xiaoxuan Gemini 2375 (Burladingen, Germany).  

3.4.3 Degradation experiments 

Photolytic and photocatalytic degradation experiments were performed in a home-made 600-

mL pyrex reactor equipped with a 3.8 x 48 cm rectangle glass plate (Suppl.  6.14 in  the 

appendix). For every degradation experiment a ciprofloxacin concentration of 60 µmol L
–1

 

was prepared in 500 mL deionized water followed by adjusting the pH using HCl or NaOH 

solution. The solution was then pumped over the glass plate using a peristaltic pump at a flow 

rate of 0.5 L min
-1

. It should be noted that the solution layer over the plate was less than 5 mm 

in thickness during the experiments. A horizontal UV lamp that emits light at a wavelength of 

254 nm (15 W UV-C lamp, F15T8/UV, New NEC Light Ing., Shiga, Japan) was placed close 

to the glass plate. Before starting the photocatalytic experiments the solution was cycled for 

30 min over the coated glass plate in order to achieve adsorption equilibrium. The same 

procedure was followed for the photolytic experiments without the plate. The irradiation time 
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was 120 minutes. Samples were collected after 2, 4, 8, 12, 20, 30, 45, 60, 90 and 120 min, and 

filtered with a 0.45 µm regenerated cellulose acetate syringe filter (Macherey-Nagel, Dueren, 

Germany) before being analyzed by LC-MS. The degradation experiments were carried out in 

triplicate for each pH value (3, 5, 7 and 9). 

The photon fluence rate for the UV lamp was also determined in triplicate experiment by 

chemical actinometry using ferrioxalate as an actinometer and was found to be 1.5 × 10
–

5 
E m

2 
s

−1
. 

3.4.4 CIP-d8 degradation and samples enrichment using solid phase 

extraction (SPE) 

An extra experiment was performed using labeled CIP-d8, with the eight deuterium atoms at 

the piperazine ring. The same experimental conditions as described previously were applied. 

A solution of 10 µmol L
-1

 of CIP-d8 was photodegraded by photocatalysis at pH 7. In order to 

identify the transformation products by high-resolution time of flight mass spectrometry, the 

samples were 10 times concentrated using solid phase extraction (SPE) cartridge with Strata-

XL polymeric sorbent (Phenomenex, Aschaffenburg, Germany). The selected 6-mL Strata-

XL cartridge with 200 mg sorbent (100 µm particle size) was conditioned with 3×1 mL 

methanol and 3×1 mL deionized water. 10 mL of each sample was loaded onto the SPE 

cartridge, washed with 3×1 mL of methanol/deionized water (50/50, v/v) and dried with a 

gentle stream of nitrogen. Finally, elution was performed twice with 1 mL of acetonitrile and 

formic acid (98/2, v/v). The extracts were dried under a gentle nitrogen stream and 

reconstituted with 1 mL of acetonitrile in deionized water (5/95, v/v) for LC–MS/MS 

analysis. Using the concept of isotopically labeled surrogates like deuterated ciprofloxacin in 

this study helps in structural elucidation of transformation products. High resolution mass 

spectrometry is preferred, because of the possibility to calculate the exact sum formula of the 

new transformation products. Nevertheless also unit resolution mass spectrometers could be 

used together with isotopically labeled compounds for the description of the reaction 

mechanism and identification of the preferred reaction site by the mass differences of the 

detected product ion spectra.  

3.4.5 LC-MS/MS analysis 

The concentration of CIP was analyzed during the photodegradation process using LC 20 

HPLC system (Shimadzu, Duisburg, Germany) coupled by a TurboIonSpray
®

 source to a 

3200 QTRAP
®
 tandem mass spectrometer (AB Sciex, Darmstadt, Germany). The separation 

was performed on a 150 mm × 2 mm Synergi 4u Polar RP 80A column (Phenomenex, 
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Aschaffenburg, Germany) with a water–methanol gradient of 0.1% formic acid in water (v/v 

mobile phase A) and 0.1% formic acid in methanol (v/v mobile phase B) with a flow rate of 

0.3 mL min
-1

 at 40°C. The gradient program started with 60% organic phase, after 2 minutes 

it was raised to 100% B, and then kept constant for 30 seconds and afterwards again reduced 

to 60% B for 30 seconds. The column was re-equilibrated to the initial conditions and 

stabilized for 5 minutes.  The total run time was 8 min. CIP was quantified after positive 

electrospray ionisation (ESI
+
) in multiple reaction monitoring (MRM) mode. The optimum 

operating conditions were as follows: the curtain gas (CUR) was set at 15 psi, the nebulizer 

source gas 1 at 40 psi, and the turbo ion source gas 2 at 80 psi. The declustering potential 

(DP) and entrance potential (EP) were optimized to 50 V and 6.0 V, respectively. The CIP 

fragmentation was induced by collisional activated dissociation (CAD) with nitrogen. The 

collision gas pressure was set at 2.0 psi for MRM quantitation. A collision energy (CE) of 27 

eV and a collision cell exit potential (CXP) of 4.0 V were utilized. The Precursor ion (Q1), 

quantifier, and qualifier ions (Q3) of the HPLC–MS/MS quantification measurements were 

set at 332.3, 288.4, and 314.3, respectively, with the transition m/z 332  288 being used for 

quantification and m/z 332  314 for verification. A dwell time of 150 ms was employed. 

Data evaluation was done with Analyst
TM

 1.5 (AB Sciex, Darmstadt, Germany). The 

calibration was weighted 1/x with a linear regression.  

The transformation products (TPs) formed during CIP degradation at different pH values were 

investigated by a non-target UPLC–MS method. The samples were measured using the 

Aquity-UPLC-System, which was coupled to a high resolution Q-ToF-MS (SYNAPT-G1, 

Waters, Eschborn, Germany). The chromatographic separation was performed on a 100 x 2 

mm BEH C18 1.7 µm HPLC column (Waters, Eschborn, Germany) at 50 °C. The binary 

mobile phase consisted of 0.1% formic acid in water and 0.1% formic acid in acetonitrile. The 

gradient program started with 5% organic phase, within 10 minutes it was raised to 100% and 

was kept constant for 4 minutes and finally decreased again to 5%. The flow rate was 300 µL 

min
-1

. 

Samples were introduced into the atmospheric pressure ionization source after LC separation, 

and ionized by ESI in positive mode. Accurate mass calibration was achieved by the 

measurement of sodium formate (CHO2Na, Merck, Darmstadt, Germany) at the start and end 

of each chromatographic run and a single lock-mass correction was used during analyses, 

using the [M+H]
+
 ion of leucine encephalin (Sigma-Aldrich, Schneldorf, Germany) as the 

lock mass at m/z 556.2771. The scan range was set from m/z 50 to m/z  950. The desolvation 

and ion source block temperatures were set at 350 °C and 120 °C, respectively. Nitrogen was 
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used as nebulizer (30 L h
-1

) as well as desolvation gas (900 L h
-1

). The optimized voltages for 

the probe and ion source components were 3 kV for the capillary, 30 V for the sample cone 

and 3 V for the extractor cone. 

Tandem mass spectrometry (MS/MS) experiments were performed using argon in the 

collision cell at a pressure of 1 bar. Data were collected in centroid mode, and MS
E
 analysis 

was performed with two scan functions: 4 eV for the low collision energy scan and a collision 

energy ramp of 10–30 eV for the high-collision energy scan. MS
E
 achieved almost 

simultaneously the acquisition of MS and MS/MS data from a single injection. MassLynx 4.1 

and Unifi software (Waters, Eschborn, Germany) were used to evaluate the data provided by 

the Q-ToF mass spectrometer and finally elucidate the structure of the transformation 

products. Based on chemical formulas proposed, fragment ions, ring and double bond 

equivalents (DBEs) and relative mass errors between the theoretical and experimental m/z for 

product ions were obtained from the accurate m/z values provided by the high resolution of 

the Q-ToF mass spectrometer.  

3.5 Results and discussion  

3.5.1 Influence of pH on the degradation of CIP  

The degradation kinetics were evaluated at four different pH values (3, 5, 7 and 9) in aqueous 

solution for two distinct methods: direct ultraviolet photolysis (UV-C irradiation) and 

photocatalysis (TiO2/UV-C).  

The kinetics of the degradation process have been determined by measuring the decrease of 

CIP concentration at different time. The results for both photolytic and photocatalytic 

degradation are shown in Figure  3.1 and pseudo-first order kinetics were found (R
2
 ≥ 0.97, n 

= 3) with the highest removal rates at pH 9 (kUV and TiO2/UV = 4.0x10
-4 

s
-1

). A drop of the pH to 

3, resulted in a lower removal rate (kUV = 4.0x10
-5

 s
-1

; kTiO2/UV = 1.0x10
-4 

s
-1

). The differences 

in the degradation rate values are due to the pH-dependent speciation of CIP in the aqueous 

medium as shown inset in Figure  3.1.  
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Figure  3.1 Ciprofloxacin elimination as a function of time during photolytic (A) and photocatalytic (B) 

treatment. Average results of triplicate measurements are shown. Relative standard deviation is 

indicated by error bars but often smaller than symbol sizes. Inset: effect of pH values on the removal 

rate constants of photolytic and photocatalytic degradation of 60 µM CIP at 120 min interval. 
 

The degradation rate for each of the photolytic and photocatalytic reaction is the highest at pH 

9, which is 10 times higher than the observed reaction constant at pH 3 under the photolytic 

degradation, and achieved a four times higher k in comparison of the photocatalytic 

degradation. That might be due to the absorption rate of the different ciprofloxacin species 

(CIP
1+/

CIP
+/–

, CIP
+/–

/CIP
1–

) under UV-C radiation. Suppl.  6.15. in  the appendix shows the 

changes in the absorption spectra of CIP at different pH values as well as the overlap with the 

UV-C emission spectrum at 254 nm. Drakopoulos and Ioannou [25] study the excitation and 

emission spectra of the intrinsic fluorescence of CIP and other fluoroquinolones in aqueous 

solutions at different pH values. They found that the maximum intensity of fluorescence of 

CIP is observed in weakly acidic solutions, while in strongly acidic and strongly alkaline 

solutions there is decreased fluorescence intensity. This behavior might be explained by the 

pH dependence of the photolysis of CIP. The energy levels of the singlet and triplet state of 

CIP probably makes the CIP undergo a photo-induced chemical reaction [26]. Many studies 

on FQs mention that their photo-induced oxidation depends on the photo-generation of FQs in 

triplet state [23, 27, 28]. The previous studies showed that the transformation products are a 

result of the CIP defluorination as a direct oxidation. Other TPs are formed by reactive 

oxygen species like 
1
O2, O2

•–
 and HO

•
. These reactive components were obtained via the 

energy transfer between excited CIP and the molecular oxygen from the solution. This 

reaction is called a photodynamic complex II [15, 16], and the reactive oxygen species form 

as a result of hydrolysis at the piperazine ring [15, 27, 29]. 
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The photolytic degradation rate (CIP
3+

/CIP
2+

, CIP
2+

/CIP
1+

) after 120 minutes at pH 3 and pH 

5 is 33±4% and 43±2%, respectively. As mentioned earlier the change in the absorption 

spectra of CIP with the pH value may have an impact on the photolytic reaction. An 

improvement of the elimination rates was observed when TiO2 was used as photocatalyst, 

with elimination rates of 57±3% at pH 5 and 58±5% at pH 3. This improvement is due to the 

properties of the TiO2 catalyst at different pH values and consequently to the different 

oxidation mechanism for photocatalysis in comparison to photolysis. The TiO2 surface is 

positively charged at acidic conditions and negatively charged at basic conditions [18, 30, 31]. 

Between pH 4 and 8 the overall non-charged TiO2 species dominates [30]. Thus, in this pH 

range the CIP species can be adsorbed on the TiO2 surface due to van der Waals interactions 

[19]. During all degradation experiments, a decrease in the pH values was observed, except 

for pH 3. It was also observed that during the photolytic and photocatalytic degradation at 

acidic conditions most of the TPs are preserving the fluorine atom, while at basic conditions 

most of the TPs are losing it. The release of hydrogen fluoride during the ciprofloxacin 

degradation at basic conditions causes a pH drop [32], while the preservation of the fluorine 

atom on the TPs at pH 3 keeps the pH constant during the degradation process. This fluorine 

removal is potentially due to the reaction through the CIP
3*

. This will be explained in detail in 

paragraph 3.4. The changes of pH values as a function of the degradation time are illustrated 

in Suppl.  6.16 A,B in  the appendix. 

3.5.2 Characterization of the transformation products of CIP resulted 

during photolytic and photocatalytic degradation 

The transformation products that resulted during the photolytic and photocatalytic degradation 

of CIP were investigated in dependence of the pH. An additional experiment with deuterated 

labeled ciprofloxacin (CIP-d8) was used for the identification of several degradation product 

structures. Seven observed photolytic transformation products were identified that agree with 

the transformation products (TPs) identified in previous studies. Table  3.1 shows the 

theoretical and the measured masses together with calculated sum formula for CIP and its 

transformation products measured by high-resolution mass spectrometry.  
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3.5.3 Elucidation of transformation products for different ciprofloxacin 

species 

In total eighteen transformation products were detected during the photolytic and 

photocatalytic degradation reactions at the four investigated pH values (Table  3.1). TP 1, the 

dominant transformation product, was determined at all studied pH values during both 

photolytic and photocatalytic processes. We suppose that TP 1 was formed during the 

photooxidation of CIP, which was induced by the UV radiation. Transformation products TP 

3, 5, 11, 12 and 15 were observed only in presence of TiO2. TP 3 and TP 5 are probably 

secondary cleavage products. The stepwise cleavage took place at the piperazine ring of TP 1. 

On the other hand, TP 11, 12 and 15 were formed during further stepwise cleavage at the 

piperazine ring of ciprofloxacin. At pH 3 seven and eleven TPs were detected during the 

photolytic and photocatalytic degradation, respectively. It was observed that the 

transformation products TP 1, TP 11 and TP 17, are formed by a cleavage at the piperazine 

ring, again. 

During the photolytic and photocatalytic degradation at pH 5 eight and ten TPs were detected, 

respectively. TP 1 was still the dominant transformation product. This was also the case for 

TP 11 during the photocatalytic treatment. TP 17 and also TP 2 had a significantly smaller 

intensity in comparison to TP 1. TP 2 was observed at pH ≥ 5 during both photolytic and 

photocatalytic degradation. 

Nine and thirteen TPs were detected at pH 7, while at pH 9 seven and eleven TPs could be 

analysed during both photolysis and photocatalysis. At pH ≥ 7, TP 1 and TP 2 were again the 

dominant transformation products. TP 11 and TP 17 could not be detected at pH 9. 

TPs 7, 8, 9 and 10 were observed at pH ≥ 7 during both photolysis and photocatalysis and 

these transformation products were formed by stepwise cleavage of the piperazine ring of the 

defluorinated CIP. Elimination of ciprofloxacin and relative intensities of the formed 

transformation products are shown in dependence of the treatment time in Suppl.  6.17 of  the 

appendix. The use of peak areas for a relative comparison of the distribution of the 

compounds can only serve as an indication about the underlying concentration distribution. 

However, it can be used for the identification of the most important compounds, which can be 

investigated in detail afterwards.  

The dominant transformation pathway during the photolysis and photocatalysis above pH 7 

was pathway I, while at pH 7 pathway II was preferred. At acidic conditions the degradation 

follows mainly pathway III. 
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3.5.4 Proposed mechanisms for the photolytic and photocatalytic 

degradation of CIP 

The pattern of the photocatalytic reaction is based on the irradiation of titanium dioxide 

(TiO2) particles in presence of dissolved molecular oxygen. The most accepted mechanism of 

TiO2 photocatalysis includes redox reactions of adsorbed water and oxygen molecules or of 

other substrates [49]. The formation of the electron-hole pair  (h
+

vb – e
–

cb) after excitation is 

followed by the oxidation of adsorbed water molecules by electron transfer to h
+

vb with the 

formation of hydroxyl radicals and H
+
. The oxygen molecules that are adsorbed at the 

reductive site of the TiO2 particle serve as electron acceptors leading to the formation of 

superoxide radical anions according to Eq. 1 [50]. The superoxide radical anion is a weak 

base of the conjugated acid HO2
•
 in water [51], with a pKa value of 4.8 [52] (see Eq. 2). 

However, HO2
•
 radicals can disproportionate according to Eq. 3 with the formation of 

molecular oxygen and hydrogen peroxide. Thus, the acid-base equilibrium of Eq. 2 is shifted 

to HO2
•
 and therefore the effective basicity of O2

•–
 is significantly increased. This is also 

confirmed by the low oxidation of CIP in acidic medium. Otherwise, the adsorbed CIP may 

be oxidized directly by electron transfer at the h
+

vb site of the TiO2 catalyst (see Eq. 4) with 

formation of radical cations of the substrate. However, adsorption of ciprofloxacin on the 

surface of TiO2 is weak due to repulsion between the protonated species of CIP in water and 

the TiO2 charged surface. 

 

 
Eq. 1 (reduction) 

 
Eq. 2 (protonation) 

 
Eq. 3 (disproportionation) 

 
Eq. 4 (oxidation) 

The photolytic degradation of CIP in presence of molecular oxygen is not based on hydroxyl 

radical formation but probably takes place through photooxygenation reactions. These 

photooxygenation reactions are often very complex [53, 54] and depend on the electronic 

excitation of CIP (Eq. 5). Afterwards, the electronically excited state of CIP may form 

radicals via single bond homolysis. Carbon centered radicals are efficiently trapped by 

molecular oxygen to yield peroxyl radicals (CIP-O-O
•
). These can decompose and finally 

produce the corresponding oxidation products.  

TiO2 (e– cb) + O2 TiO2  + O2 
•–

O2
•– + H+ HOO 

•

2HOO 
• O2 + H2O2

TiO2 (h+ vb) + CIP TiO2 + CIP 
•+
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Other mechanisms that have been observed during direct photolysis of CIP include electron 

transfer to molecular oxygen with formation of a super oxide radical anion and a substrate 

radical cation (Eq. 6). The radical cations can recombine, rearrange or hydrolyze to the final 

reaction products. 

The electronically excited state of CIP may also be quenched by molecular oxygen with 

formation of singlet molecular oxygen (Eq. 7) [55].  

 

 
Eq. 5 (electronic excitation) 

 
Eq. 6 (electron transfer) 

 
Eq. 7 (quenching) 

Oxygen in its singlet excited state is a more reactive species compared to the molecular 

oxygen in its ground state [55]. This reactivity is due to the high oxidizing potential, which is 

approximately 1 volt higher than the one of molecular oxygen in its ground state. 

Consequently, singlet oxygen is significantly more electrophilic [56], reacting rapidly with 

unsaturated carbon-carbon bonds, neutral nucleophiles such as sulfides [57, 58] and amines 

[56, 59], as well as with anions, by forming an hydroperoxide as intermediate compound.  

We assume that TP 1 (C17H20N3O4) and TP 2 (C17H20N3O5), which are formed both in CIP 

photolytic and photocatalytic degradation reactions at pH 5, 7 and 9, are products from the 

photooxidation reaction through the CIP
3*

 triplet state [28], and the nucleophilic aromatic 

substitution Sn(Ar) reaction [32]. These TPs are formed to a major extent in neutral and basic 

medium and to a minor extent in acidic medium. Seven of the 18 transformation products 

observed during the photolytic and photocatalytic degradation reactions have been identified 

using labelled CIP-d8 (Table  3.2). To the knowledge of the authors, four of the transformation 

products, namely TP 3 (C17H17N3O6), TP 4 (C16H17N3O5), TP 5 (C16H17N3O6) and TP 6 

(C17H19N3O7) were identified for the first time. 12 of the other 14 transformation products 

corroborated previous findings, the other two are newly proposed structures, namely TP 7 

(C17H17N3O5),(1-cyclopropyl-7-(7,8-dioxa-1,4-diazabicyclo[4.2.0]oct-4-yl)-4-oxo-1,4-

dihydroquinoline-3-carboxylic acid) and TP 15 (C17H16N3O5F), (1-cyclopropyl-7-(7,8-dioxa-

1,4-diazabicyclo[4.2.0]oct-4-yl)-6-fluoro-4-oxo-1,4-dihydroquinoline-3- carboxylic acid). 

Structure of these two compounds has been elucidated using deuterated CIP-d8. The proposed 

structures of the deuterated transformation products TPD 7 (C17H10D7N3O5) and TPD 15 

(C17H9D7N3O5F) were compatible with the corresponding non-deuterated transformation 

CIP + hu CIP 
3*

CIP 
3* + 3O2 O2 

•– + CIP 
•+

CIP 
3* + 3O2

CIP + 1O2
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products of CIP. These transformation products have shown the same retention time in the 

HPLC-MS chromatograms, an equal sum formula, and similar product ion spectra. The 

fragment pattern spectra of TP 3, TP 7 and TP 15 shows that an O-O peroxide ring is formed 

between the superoxide radical anion and the piperazine ring. In the next step this ring can be 

opened and by further oxidation TPD 8 (C18H11D6N3O4) and TPD 16 (C16H12D5N3O4F) are 

formed. The corresponding non-deuterated derivatives are TP 8 (C18H17N3O4) and TP 16 

(C16H17N3O4F), respectively. Additionally, the use of CIP-d8 facilitated the identification of 

three competing pathways for the CIP photodegradation.  

Pathway I: The main photoreaction occurring is photosubstitution of the fluorine atom of CIP 

by the hydroxyl radical with the formation of TP 1 (C17H19N3O4). The proposed structure for 

TP 1 was already reported previously [15, 27, 33, 39]. The corresponding deuterated 

derivative is TPD 1 (C17H12D8N3O4), which showed the same retention time as TP 1 in the 

HPLC-MS chromatograms. The fragment pattern obtained for TP1, [M+H]
+
 m/z 330.1454, 

was compatible with the one obtained for TPD 1 (Suppl.  6.18, MS
2
 spectrum of TPD 1). 

In the next step, TP 2 is formed from TP 1 by addition of HO
–
. Several authors proposed that 

the most reasonable sites at which the addition of a hydroxyl radical could occur are positions 

C8, C5 and C2, respectively, at the quinolone ring [34, 39, 60]. This could not be 

corroborated in our study. In contrast, the fragment pattern of the corresponding deuterated 

derivative TPD 2 (C17H12D8N3O5) (Suppl.  6.18, MS
2
 spectrum of TPD 2), indicates that the 

addition of HO
–
 is taking place at the secondary aliphatic amine groups (N-4') at the 

piperazine ring as mentioned in Scheme  3.2. Ferdig, et al. [42] have investigated the 

transformation products of ciprofloxacin and six other fluoroquinolones in aqueous solutions 

under sunlight irradiation for 6 days. In their study it was assumed that either substitution of 

the fluorine atom for a hydroxyl group or subjected to the amine groups (N-4') at the 

piperazine ring takes place. However, they were more inclined to the second assumption 

because of the stepwise cleavage that took place at the piperazine ring for other detected 

transformation products. Using the isotopically labeled ciprofloxacin we could clearly 

distinguished between the exchange of fluorine by an hydroxyl group in the first step 

following by the addition of HO
–
 to the piperazine ring in a second reaction.  
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Scheme  3.2 Photocatalysis of CIP-d8 for structural elucidation of transformation product TPD 2 as 

surrogate of TP 2 (1-cyclopropyl-6-hydroxy-7-(4-hydroxypiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-

3-carboxylic acid). 
 

At pH ≥ 7, TP 3 is further transformed to TP 4 (C16H18N3O5) and TP 5 (C16H18N3O6) 

(C17H18N3O6) under photocatalytic oxidation and to TP 6 (C17H20N3O7) under photolytic 

oxidation. We hypothesize that the transformation at the piperazine ring occurs via addition of 

oxygen with the formation of a peroxy-piperazine ring (1,2 dioxetanes), followed by the loss 

of a CO group and opening of the piperazine ring which produces a nitrous moiety in TP 4, a 

keton-derivative, and a carboxylic group in TP 5. We assume that hydroperoxide forms as an 

intermediate compound, induced by a dioxetane via cycloaddition of singlet oxygen at the 

piperazine ring. 

Pathway II: The reaction occurs with CIP molecular fragmentation at the C-F bond in the 

excited state or by water addition, followed by fluoride loss. This could be attributed to the 

deprotonation of the amino substituent that can increase the electron donating ability. So we 

note that reaction takes place at the piperazine ring. One of the identified transformation 

products formed following this pathway is TP 7 (C17H17N3O5), as defluorination 

photodegradation product of CIP, with the corresponding deuterated derivative TPD 7 

(C17H11D7N3O5). The fragment patterns are also illustrated in supplementary material 

(Suppl.  6.18, MS
2
 spectrum of TPD 7). The further irradiation of TP 7 (C17H17N3O5) led to 

loss of a CO group and opening of the piperazine ring forming TP 8 (C16H18N3O4) and the 

corresponding deuterated derivative TPD 8 (C16H11D6N3O4) Scheme  3.3 shows structures of 

the transformation products of TPD7 and TPD8. TP 8 (C16H18N3O4) is further transformed to 

TP 9 (C15H17N3O3), which was previously identified by Turiel, et al. [40], as the main 
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photolytic degradation product of CIP at pH 7. TP 10 (C13H13N2O3) is the final transformation 

product of CIP following this pathway under neutral conditions.  

 

Scheme  3.3 Structural elucidation of transformation products of TPD 7 and TPD 8 as surrogates for TP 

7 and TP 8, respectively. 
 

Pathway III occurred especially at neutral and acidic pH in presence of TiO2 at the piperazine 

ring with preservation of the fluorine atom. TP 11 (C17H16N3O3F) under photocatalytic 

oxidation is further degraded to TP 12 (C17H18N3O4F), which has been previously suggested 

by Ferdig, et al. [42]. The addition of HO
–
 is done on the amine group as mentioned in 

pathway I. TP 13 (C17H19N3O5F) is further degraded from TP 11 (C17H16N3O3F) under 

photocatalytic oxidation; TP 14 (C17H16N3O4F), a ketone derivative, is formed from TP 13 

without any cleavage on the piperazine ring. This structure has been suggested by Sturini, et 

al. [61] who have investigated the degradation of CIP in untreated river water under solar 

light as well as under the same conditions in the presence of suspended TiO2. TP 16 

(C16H16N3O4F) is formed from TP 15 (C17H16N3O5F) via piperazine ring cleavage and CO 

group loss. The corresponding deuterated derivative is TPD 16 (C16H11D5N3O4F). TP 16 

(C16H16N3O4F) is further degraded to TP 17 (C15H16N3O3F) and TP 18 (C13H12N2O3F). 

Previously, TP 18 (C13H12N2O3F) was isolated and identified by NMR as final degradation 

product of CIP at low pH [47, 48]. We were also able to identify TPD 18 (Suppl.  6.18, MS
2
 

spectrum of TPD 18) as end product of the CIP-d8 photodegradation at pH 7. Using the 

concept of deuterated surrogate compounds, we could clearly show that the interaction takes 

place at the piperazine ring of CIP via quenching the electron of the triplet state by oxygen, 

leading to the formation of singlet oxygen (
1
O2) and the superoxide anion (O2

–
). 
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Scheme  3.4 illustrates these pathways correspond to some extent to the ones proposed in 

previous studies carried out on photolytic degradation of fluoroquinolones [23, 27-29, 32, 61]. 

(i) Photosubstitution of the fluorine atom by an hydroxyl group is expected to be a quite 

common result in neutral and moderately basic solutions; or (ii) defluorination which occurs 

in neutral solutions; (iii) Fluorine conservation under strongly acidic conditions. Moreover, in 

the latter case, the excited state of the FQs causes electron or hydrogen transfer from the 

electron-rich moiety present, namely the amine groups subsequent to oxidative degradation of 

the piperazine ring. In the photocatalytic process induced by combined UV-A or sunlight with 

TiO2, a sizeable fraction of incoming light is absorbed by the titania particles and therefore 

the photosubstitution of the fluorine is in competition with the TiO2. The interaction with the 

adsorbed FQs would tend to direct photo-hole (h
+
) oxidation and hydroxyl radical addition on 

the sites exhibiting the highest electron density [51, 55]. A combination of TiO2 as 

photocatalyst and UV-C irradiation as photon source enhanced both the photolysis  and the 

photocatalysis mechanism for the degradation of CIP due to the higher photon energy 

produced by UV-C in comparison with UV-A or sunlight. 

3.6 Conclusions 

The pseudo-first order reaction kinetics were dependent on the different dissociation species 

of ciprofloxacin. The highest removal rate was observed at pH 9. Structure elucidation and 

identification of transformation products could be carried out by the use of isotopically 

labeled surrogate compounds by both unit and high resolution mass spectrometry. Three 

degradation pathways and the corresponding degradation products were identified. To the 

knowledge of the authors, four transformation products have been detected for the first time, 

two more were newly proposed structures supported by results using deuterated ciprofloxacin. 

We could confirm that the first step in both photolytic and photocatalytic degradation is 

mainly defluorination, followed by degradation at the piperazine ring of ciprofloxacin. 
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4 Evaluation of UV irradiation effects on the photolytic 

degradation of micropollutants in water 
 

4.1 Abstract  

Pharmaceuticals are micropollutants of emerging concern that have been detected in the 

aquatic environment and in some cases in drinking water at nanogram per liter levels. 

Photolysis is often used as an effective disinfection step for drinking water and wastewater. 

Recently, direct ultraviolet (UV) photolysis has been widely reported as a method for the 

removal of organic micropollutants. The first aim of this study was monitoring the 

concentrations of diclofenac, metoprolol, carbamazepine, sulfamethoxazole and benzotriazole 

in the effluent of a wastewater treatment plant over a period of 4 months. While the second 

aim was to investigate the removal of the five micropollutants from water by direct UV 

photolysis, using three different UV sources, namely UV-A, UV-B and UV-C. The 

degradation rates of the pharmaceuticals were determined. Diclofenac shows moderate 

degradation under UV-A radiation, while carbamazepine, sulfamethoxazole, benzotriazole 

and metoprolol were hardly degraded by this wavelength range. UV-B and UV-C showed a 

good yield on the degradation of the investigated pharmaceuticals. The photodegradation rate 

constants of metoprolol and carbamazepine increased in presence of WWTP effluent matrix 

under UV-B and UV-C irradiation in comparision to experiments performed in deionized 

water. This promotion is probably due to the presence of photosensitizer compounds in the 

WWTP effluent matrix. In contrast, diclofenac and sulfamethoxazole showed decreased in the 

photodegradation rate constants, which might be due to the physical or chemical quenching of 

the photochemical degradation intermediates. The WWTP effluent matrix also posed non-

negligible influences on benzotriazole photodegradation process. Overall, direct photolysis 

was demonstrated to be relevant for micropollutant abatement from the aquatic 

environmental. However, it is essential to further understand how this process is affected by 

the UV sources, micropllutant structures and matrix composition.  

 

4.2 Keywords 

Advanced oxidation processes, photolysis, quantum yield, pharmaceuticals 
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4.3 Introduction 

The evolution and increase of chemical analysis techniques‘ sensitivity [1] made possible the 

measurement of micropollutants at very low concentrations, in the range of ng L
-1

 to µg L
-1

, in 

wastewater [2], surface water [3], groundwater [4-6], and even drinking water [7]. 

Micropollutants (pharmaceuticals, personal-care products, corrosion inhibitors, pesticides, 

etc.) are being detected continuously around the world in wastewater effluents, water bodies, 

and water supplies [2, 7, 8]. Several prescription drugs such as diclofenac, carbamazepine, 

sulfamethoxazole and others have been found in the aquatic environment [9]. Therefore, 

pharmaceuticals, as an important part of micropollutants, are raising concerns due to the 

possible negative effects that they might have on the ecosystem and their potential to reach 

drinking water [10]. Pharmaceuticals are released to the environment by various routes, 

including human excretion, direct waste disposal to sewage, and from veterinary application. 

Monitoring efforts are being conducted by the European Union (EU) in the aquatic 

environment on several pharmaceuticals and hormones to evaluate and support possible future 

regulations. Recently, the EU (Commission Implementing Decision EU 2015/495 of March 

2015) added the natural hormone E1 and the antibiotic erythromycin to their watch list, which 

already included diclofenac and two other hormones, namely EE2 and E2. 156 

micropollutants were analyzed in effluents from 90 European wastewater treatment plants 

(WWTPs). Among them diclofenac, carbamazepine, and some antibiotics showed the highest 

median concentration levels [11]. Diclofenac has been also found to occur nearly ubiquitous 

in water bodies and was even detected in German groundwater in concentrations up to several 

µg L
-1 

 [12], as well as in groundwater in Spain [13]. Diclofenac has been identified as a 

pharmaceutical affecting the wildlife [14]. Bradley, et al. [15] investigated the fate and 

transport of 110 pharmaceuticals from wastewater effluents to shallow groundwater. About 

43 - 55% of the target pharmaceuticals were detected in surface waters and 6 - 16% were 

detected in groundwater. Carbamazepine and sulfamethoxazole were detected at 

concentrations > 0.02 μg L
-1

. Metoprolol has been frequently identified in aquatic 

environments due to its low sorption affinity on activated sludge [16]. Maszkowska, et al. 

[17] indicated in their study a high hydrolytic stability of metoprolol with an estimated half-

life of more than one year. Other studies showed that metoprolol can reach concentrations of 

up to 0.35 µg L
-1 

in groundwater [5] and up to 0.038 µg L
-1 

in drinking water [18]. 

Benzotriazole is a heterocyclic compound used as corrosion inhibitor. It is considered one of 

the most detected micropollutants in the aquatic environment [2]. It was detected in different 

European river waters in the range of 0.5 - 8.0 µg L
-1

 [19], as well as in groundwater at a 
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maximum concentration of 1 µg L
-1

 [6]. Diclofenac, carbamazepine, sulfamethoxazole 

metoprolol and benzotriazole have been considered as emerging contaminants in the EU due 

to the fact that they have often been detected in the aquatic environment [19]. Bergmann, et 

al. [20] classified them as high priority micropollutants in the environment due to their 

potential effect in the environment depending on their ecotoxicity, environmental 

concentrations and quantities consumed.  

In recent years, advanced oxidation processes (AOPs) have been developed to fill up the gap 

in the existing water treatment methods, which are not sufficiently efficient to remove 

micropollutants from wastewater [21, 22]. Photodegradation of micropollutants was studied 

using different light sources including UV light [23], solar simulation [24] and natural 

sunlight [25] for a variety of water matrices including pure water [26], fresh water (from 

rivers and lakes) [27] and wastewater [28]. The effectiveness of photodegradation depends on 

the integrative effects of photon flux, the structure of the molecule and water-matrix 

composition [24]. For example, Baeza and Knappe [29] found that the water matrix (ultrapure 

water, lake water, wastewater treatment plant effluent) has an effect on photodegradation of 

diclofenac and sulfonamides (sulfamethoxazole, sulfamethazine, sulfadiazine) under the UV -

 C irradiation. The pseudo first-order kinetic rate constants of the direct and indirect 

photolysis of carbamazepine and diclofenac depended on their initial concentrations (at mg/L 

levels) [30]. Salma, et al. [31] reported that the photodegradation mechanism of nebivolol 

varied with the UV source.  

In this study, selected micropollutants, namely diclofenac, metoprolol, carbamazepine, 

sulfamethoxazole and benzotriazole, in the effluent of the wastewater treatment plant at 

Duisburg-Hochfeld have been monitored over a period of 4 months, and their 

photodegradation in the water and WWTP effluent was investigated. To that end, the 

systematic investigation of photolysis under different UV lamps, namely UV-C (254 nm), 

UV-B (312 nm) and UV-A (365 nm) in the elimination of the above mentioned 

micropollutants from water and wastewater was studied in a bench-scale reactor. 

4.4 Experimental section 

4.4.1 Reagents and materials  

Water for LC-MS, acetonitrile and methanol were received from Th. Geyer GmbH & Co. KG 

(Renningen, Germany). Diclofenac, metoprolol, carbamazepine, sulfamethoxazole and 

benzotriazole have been purchased from Sigma-Aldrich (Taufkirchen, Germany) (see 

Table  4.1).  
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The UV absorption spectra of the investigated compounds are shown in Figure  4.1.  

Table  4.1 Physical and chemical properties of the studied micropollutants [32].  

 

 Diclofenac Carbamazepine Sulfamethoxazole Metoprolol Benzotriazole 

Molecular weight (g mol-1) 296.2 236.2 253.2 267.3 119.1 

Solubility in water (mg L-1) 2.37 17.66 3942 4777 5957 

pKa 4 15.96 1.97/ 6.16 9.67/ 14.09 0.60/ 8.63 

Molecular sum formular C14H11Cl2NO2 C15H12N2O C10H11N3O3S C15H25NO3
 C6H5N3 

Molecular Structures 

  
 

 
 

 

 

Figure  4.1 Absorption spectra of the investigated compounds (1 mg L
-1

, pH = 7) and emission spectra 

of the UV-lamps used in this study.  

 

4.4.2  Sample preparation 

24 h composite samples on different days of the week were collected from the effluent of 

WWTP Duisburg-Hochfeld (92,000 population equivalent, PE). Also information on the weather 

condition (wet /dry) was gathered. The collected samples were filtered with 0.45 μm 

regenerated cellulose syringe filters (Chromafil RC-45/15MS, Machery-Nagel, Düren, 

Germany), and measured with LC-MS/MS. 

4.4.3  HPLC-MS/MS analysis 

HPLC-MS/MS analysis were performed with an Agilent 1100 series HPLC system consisting 

of an Agilent 1260 Infinity Quaternary LC communication bus module, 1100 LC- vacuum 
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degasser, Agilent 1100 series binary pump, a CTC Pal HTS auto sampler (CTC Analytics, 

Zwingen, Schweiz), and column oven (Hotdog, Prolab Instruments GmbH, Reinach, 

Switzerland) coupled to a QTRAP 6500 system (AB SCIEX Deutschland GmbH, Darmstadt, 

Germany). Data analysis was conducted with the Analyst™ software 1.6.2 (AB Sciex, 

Darmstadt, Germany). The chromatographic separation was performed on a C18 

Chromolith® Fast Gradient RP 18e endcapped monolithic HPLC silica column (50×2 mm, 

Merck KGaA, Darmstadt, Germany) at 40 °C. The eluents, water (A) and methanol (B), 

contained each 0.1% formic acid, the pH was between 2.2 and 2.8 and no buffer was added. 

The eluents were applied for the chromatographic separation of 50 μL sample aliquots at a 

flow rate of 0.5 mL min
−1

. The gradient program started with 1% B organic phase and 

increased to 99% B within 5 min, then was kept constant for 3 min and afterwards the 

gradient decreased to 1% B in 10 seconds. After 11 min, the column was rinsed and re-

equilibrated. All analyses were carried out in the MRM mode with the most intense 

transitions as listed in Table  4.2. A second MRM transition verifying the compound is 

additionally indicated as well as compound-specific instrumental parameters. Preceding 

experiments revealed the optimized settings for curtain gas (40 psi), ion source temperature 

(550 °C), ion source gases (55 and 60 psi), positive electrospray ionization (5,500 V), and 

collision cell exit potential (4 V) and these were kept constant for all compounds. Calibration 

was performed in the working range of 10 – 1000 ng L
-1

, with a good linearity (r
2
 > 0.99) and 

an accuracy between 80 and 120%.  

Table  4.2 Optimized MRM conditions for the HPLC/MS/MS analysis. 

 

Compound RT Quantification 

transition 

Verification 

transition 

Declustering 

potential 

Collision 

energy 

[min] m/z m/z DP [V] CE [eV] 

Diclofenac 8.2  296 → 214  296 → 215 80 50 

Metoprolol 3.2  268 → 133  268 → 103 102 35 

Carbamazepine 5.7  237 → 194  237 → 193 126 28 

Sulfamethoxazole 2.8  254 → 156  254 → 92 85 23 

1H-Benzotriazole 2.1  120 → 65  120 → 92 51 31 
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4.4.4 Ferrioxalate actinometry  

Ferrioxalate actinometry was conducted according to Bolton and Linden (2003) to determine 

the fluence rate of the UV lamps. UV-A gave polychromatic radiation with the highest Eavg 

(1.95 mW cm
-2

), followed by UV-B, also with polychromatic radiation (1.67 mW cm
-2

), while 

UV-C produced monochromatic radiation (0.64 mW cm
-2

). Detailed information about the 

experimental procedure, as well as the calculated values of the light intensity (I) (Einstein/s) 

and energy flux (Eavg) (W cm
-2

) of the UV lamps can be found in the Ferrioxalate actinometry 

section in the supplementary material  6.2. 

4.4.5 Photodegradation experiments 

The experiments were carried out in a 2-L glass photoreactor (see Figure  4.2) provided by 

IBL Umwelt- und Biotechnik GmbH (Heidelberg, Deutschland). 1 mg L
-1

 pharmaceutical 

solutions (diclofenac, carbamazepine, sulfamethoxazole, benzotriazole and metoprolol) were 

prepared in millipore grade water. The experiments were evaluated in triplicate, one hour for 

each experiment. 1 mL sample was collected in HPLC vials during the experiments at an 

interval time of 0, 5, 10, 15, 20, 30, 45 and 60 minutes. Three types of 15 W UV lamps were 

used during the experiments: (1) a UV-A lamp, mainly emitting in the wavelength range 315 

to 400 nm, main emission band at 365 nm with an average fluence rate (Eavg) of 1.95 mW cm
-

2
 (Vilber Lourmat, Eberhardzell, Germany), (2) a UV-B lamp mainly, emitting in the 

wavelength range 280 to 360 nm, main emission band at 312 nm and an Eavg of 1.67 mW cm
-2

 

(Vilber Lourmat, Eberhardzell, Germany) and (3) a low pressure UV lamp (New NEC Light 

Ing., Shiga, Japan) that mainly emits in the UV-C range (254 nm) with an Eavg of 0.64 mW 

cm
-2

. The emission spectra of the UV lamps are shown in Figure  4.1. The lamp was 

introduced into the reactor and kept separated from the irradiated solution using a quartz glass 

tube. The reactor was connected to a cooling system RM6 Thermostat (Lauda-Königshofen, 

Germany) by a peristaltic pump Multifix constant MC 1000 FEC, Alfred Schwinherr KG 

(Schwäbisch-Gmünd, Germany), which fed continuously the thermostat with an irradiate 

solution at a flow rate of 100 mL min
-1

 to maintain the temperature of the system at 20 ± 1 °C 

for constant reaction conditions. The solution was continuously mixed with a magnetic stirrer 

(Heidolph MR 1000, Schwabach, Germany) at 300 rpm. Before starting each new experiment, 

the whole experimental setup was cleaned twice by running pure water into the reactor for 10 

minutes in order to remove any contaminant left from the previous experiment. Also the UV 

lamp was pre-heated by running it for 15 minutes before each new experiment. 
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Figure  4.2 Scheme of the experimental set-up, namely of the UV photooxidation reactor. 

 

4.4.6  Kinetic experiments 

The photodegradability of the micropollutants was individually investigated under three 

different UV sources that cover UV-A, UV-B and UV-C emission range (see Figure  4.1). The 

reaction kinetic during micropollutant degradation by UV photolysis was modeled using the 

following equation: 

  
[ ] 

[ ] 
              (Eq.1) 

Where k1 [s
-1

] is the time-based pseudo first-order rate constant for the direct photolysis of 

each compound; it can be obtained from the slope of a plot of ln ([c]0/[c]t) vs. reaction time 

for the direct photolysis. If ln ([c]0/[c]t) is plotted versus the UV dose [J cm
-2

], one can obtain 

the corresponding direct photolysis fluence-based rate constant k
'
1 [cm

2
 J

-1
] (Bolton and 

Stefan, 2002). 

The quantum yield is a fundamental parameter that quantifies the photon efficiency of a 

photochemical reaction. According to Bolton and Stefan [33], the quantum yield Φc depends 

on the wavelength and can be determined from the fluence-based first-order rate constant: 

 

   
  
          

     (  )
         (Eq.2) 
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Where Uλ is the energy of one mole of photons at wavelength λ in J Einstein
-1

 and εc is the 

molar absorption coefficient in M
-1

cm
-1

. 

The UV dose required to degrade 90% of the micropollutants H´90 (mJ m
-2

)  through direct 

photolysis under UV-A, UV-B and UV-C irradiation was calculated using equation 3 as 

described by Bolton and Linden [34]. 

     
       

      
          (Eq.3) 

4.5 Results and discussions 

4.5.1  Occurrence of the micropollutants in the wastewater treatment plant 

effluent 

The occurrence and fate of micropollutants in WWTP effluents has been recognized as one of 

the emerging issues in environmental chemistry [35]. Loos, et al. [19] identified 156 

micropollutants in 90 European WWTPs. 125 of the micropollutants (80% of the target 

micropollutants) in European wastewater effluents were determined at concentrations ranging 

from ng L
-1

 to mg L
-1

. Figure  4.3 presents as black boxplots the concentration range in which 

the investigated micropollutants were detected in the effluent of the wastewater treatment 

plant Duisburg-Hochfeld over a period of 4 months. The bars illustrate the variation in the 

substances‘ concentrations that can be due to the sampling on different days of the week and 

at different weather conditions (wet / dry). The grey boxplots present the data determined in 

other studies for the same type of substances [18, 19, 22, 36-61]. 

3.1 µg L
-1

and 3.0 µg L
-1

 represent the determined median concentration of diclofenac and 

metoprolol (see boxplots). These values corroborate the ones determined in a previous study 

performed in WWTPs in Germany [35, 36, 46]. Other countries reported lower concentrations 

[19, 37, 45, 62]. Carbamazepine and sulfamethoxazole were detemined in median 

concentrations of 1.3 µg L
-1

 and 0.19 µg L
-1

. These values are similar to the ones observed in 

several other studies [19, 37, 45, 49, 50, 54, 62]. 

The determined median concentration of benzotriazole was 4.6 µg L
-1

, making it
 
one of the 

most abundant emerging contaminants in the environment. In this study the WWTP effluents 

had a benzotriazole maximum concentration of 8.1 µg L
-1

 (see boxplots). The median 

concentration of benzotriazole in our WWTP effluent samples was lower than the ones 

proposed in other studies [58, 59, 61]. The high occurrence of benzotriazole in WWTPs is 

probably due to the wide use of this substance as a corrosion inhibitor (e.g., in engine 

coolants, antifreeze liquids, aircraft deicers, metal processing) and for silver protection in 

dishwashing detergents. Benzotriazoles also used in plastics, automobile parts, building 
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materials, paint, skin creams, and shampoos [63], which is believed to represent a major route 

for the contamination of the environment [55-57]. 

 

 

Figure  4.3 Boxplots (black) of the concentration of diclofenac, metoprolol, carbamazepine, 

sulfamethoxazole and benzotriazole in the studied effluent wastewater treatment plant at different days 

over a period of 4 months, compared to the values determined in previous studies (grey) in effluent 

wastewater treatment plants from Germany, Spain, Sweden, Switzerland, Italy, China, France, 

Taiwan, Canada, and USA [18, 19, 22, 36-61]. Data above each box denote the number of positive 

results and the number of studies considered (which are influenced by the limit of detection in the 

specific studies). 

 

4.5.2 Photolysis of the micropollutants  

Pseudo first-order degradation was observed for all investigated micropollutants under direct 

UV photolysis. The UV directs photolysis pseudo first-order rate constants k [s
-1

], as well as 

the quantum yields Φc for the investigated compounds are given in Table  4.3 

Diclofenac shows moderate degradation in the UV-A range, while carbamazepine, 

sulfamethoxazole, benzotriazole and metoprolol were hardly degraded by the UV-A 

irradiation. Under UV-B irradiation, diclofenac and sulfamethoxazole show fast photolytic 
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degradation. In comparison benzotriazole and carbamazepine were removed less than 10% 

and the photolytic degradation was negligible in the case of metoprolol. It is obvious that the 

UV-C lamp is very effective in the direct photodegradation of diclofenac and 

sulfamethoxazole, since they have the highest direct photolysis rate constants among all 

investigated micropollutants. 

In the wastewater matrix the photolytic degradation of carbamazepine, benzotriazole and 

metoprolol seems to improve, probably due to the presence of photosensitizer compounds, 

which play an important role in natural photochemical degradation [64]. On the other hand, a 

decrease in the photolytic degradation of sulfamethoxazole and diclofenac was observed. 

According to von Sonntag [65] the photochemical degradation mechanisms can be divided 

into direct and indirect photolysis. In the case of direct photolysis, the absorption of radiation 

by the pollutants leads to photodegradation. While in the case of indirect photolysis various 

reactive intermediate oxidants such as singlet oxygen (
1
O2), hydroxyl radical (

•
OH) and 

peroxy radicals (
•
OOH) form as a result of phototransformation of photosensitizer compounds 

[64]. In this study we found that carbamazepine, benzotriazole and metoprolol can be 

eliminated by indirect photodegradation. More than 30% of carbamazepine, benzotriazole and 

metoprolol were removed under UV-B and UV-C irradiation. 

The quantum yields for micropollutants degradation under irradiation with the three different 

types of UV lamps and all conditions have been calculated and are presented in Table  4.3. 

Quantum yields mean the number of molecules transformed (direct and indirect 

photooxidation) per photon absorbed, which is emitted by the radiation source to the surface 

of the sample (incident light). Many researchers have reported a very fast removal of 

diclofenac upon UV irradiation. Shu, et al. [30] reported that the quantum yield for diclofenac 

achieved by MP-UV (1 kW) was 0.035, while Wols and Hofman-Caris [66] found a quantum 

yield of 0.29 by LP-UV (120 W output UV-C 38 W). In our study a quantum yield of 0.01 

and 0.007 were found for diclofenac under the UV-B (2.9 W) and UV-C (2.6 W) irradiation, 

respectively. Sulfamethoxazole also exhibits good degradability by direct photolysis under 

UV-B and UV-C irradiation. Quantum yields of 0.011 and 0.0037 were obtained in the case 

of sulfamethoxazole under the UV-B (2.9 W) and UV-C (2.6 W) irradiation, respectively. 

Benzotriazole shows a significant degradation by direct photolysis only under the UV-C 

irradiation, with quantum yields of 0.00026 and 0.00024 under the UV-B (2.9 W) and UV-C 

(2.6 W) irradiation, respectively. For carbamazepine quantum yields of 0.0011 and 0.00007 

were achieved under the UV-B (2.9 W) and UV-C (2.6 W) irradiation, respectively. These 

values are comparable with the ones determined in previous research [30, 67]. Metoprolol 
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exhibited low quantum yields under the UV-B (2.9 W) and UV-C (2.6 W) irradiation. This is 

probably due to the fact that metoprolol absorbs at 225 nm, which is outside the range of the 

UV-B (2.9 W) and UV-C (2.6 W) lamps. The quantum yield is wavelength-dependent, so the 

disparity between the values determined in our study and the ones determined by other 

researchers is due to the distribution of the micropollutants absorption in the UV spectrum 

range, which is overlapping in different proportions with emitted spectrum range of the UV 

lamps. On the other hand, Carlson, et al. [68] have reported that the quantum yield for both 4-

Nonylphenol and 4-tert-octylphenol are dependent on their initial concentration, which is 

decreasing as the concentration increases. Hessler, et al. [69] also reported similar trends; the 

quantum yields for photolysis of atrazine and metazachlor at 253.7 nm are a function of 

concentration. According to these previous research results we suppose that the quantum 

yields of the studied micropollutants are also dependent on their initial concentration. 

 

Table  4.3 Kinetic data determined during the micropollutants‘ degradation experiments in the bench 

scale reactor under UV-A, UV-B and UV-C irradiation in deionized water and WWTP effluent (k = 

reaction constant, t1 /2 = half-life, repetition n =3, the standard deviations are given for the rate 

constants and the correlation coefficients of the plots are given in the brackets). 

 

UV-A Deionized water WWTP effluent 

Substance k [s-1] / 10-5 t1/2 [min] 

Quantum 

yield 

(Φc) / 10-4 

Removal

 % 
after 60 

min 

H՜90  

(mJ m - 2)   
k [s-1] / 10-5 t1/2 [min] 

Removal % 
after 60 min 

Diclofenac 15 ± 1.2 (0.96) 79 5.40 45 2.4E+06 
37 ± 1.8 

(0.96) 32  29 

Metoprolol 
0.41 ± 0.06 

(0.94) 
2800 0.76 2 9.0E+07 

53 ± 2.3 

(0.96) 22 36 

Carbamazepine 
0.95 ± 0.03 

(0.93) 
1200 0.15 4 4.3E+06 

26 ± 2.1 
(0.95) 45 38 

Sulfamethoxazole 
0.93 ± 0.04 

(0.92) 
1200 0.32 4 4.0E+07 

11 ± 1.5 

(0.98) 110 21 

Benzotriazole 
1.3 ± 0.3 

(0.92) 
860 0.78 5 2.6E+07 

14 ± 1.3 

(0.95) 82 24 

UV-B Deionized water WWTP effluent 

Substance 
k [s-1] / 10-

5 
t1/2 [min] 

Quantum 

yield 
(Φc) / 10-4 

Removal 
% 

after 60 

min 

H՜90  

(mJ m - 2)   
k [s-1] / 10-5 t1/2 [min] 

Removal % 

after 60 min 

Diclofenac 
97 ± 4.1 

(0.98) 
12 100 97 1.0E+05 

23 ± 1.8 

(0.93) 51 36 

Metoprolol 
0.74 ± 0.07 

(0.91) 
1600 0.34 3 1.5E+07 

4.5 ± 0.2 
(0.91) 250 40 

Carbamazepine 
2.8 ± 0.05 

(0.95) 
420 1.10 10 3.5E+06 

1400 ± 23 

(0.88) 0.8 99 

Sulfamethoxazole 
81 ± 3.6 

(0.98) 
14 110 96 1.2E+05 

7.1 ± 0.4 

(0.93) 160 35 

Benzotriazole 
1.6 ± 0.2 

(0.97) 
710 2.6 6 6.0E+06 

66 ± 2.2 
(0.96) 17 35 
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UV-C Deionized water WWTP effluent 

Substance 
k [s-1] / 10-

5 
t1/2 [min] 

Quantum 

yield 
(Φc) / 10-4 

Removal 
% 

after 60 

min 

H՜90  

(mJ m - 2)   
k [s-1] / 10-5 t1/2 [min] 

Removal % 

after 60 min 

Diclofenac 
120 ± 3.3 

(1.00) 
9 71 99 3.8E+04 

36 ± 4.0 
(0.82) 32 34 

Metoprolol 
1.4 ± 0.03 

(0.89) 
840 16 5 3.5E+06 

69 ± 5.2 

(0.81) 17 62 

Carbamazepine 
1.8 ± 0.09 

(0.79) 
640 0.73 8 2.5E+06 

83 ± 4.8 

(0.93) 14 95 

Sulfamethoxazole 
170 ± 3.5 

(0.96) 
7 37 99 2.5E+04 

10 ± 1.2 
(0.84) 110 34 

Benzotriazole 
9.7 ± 0.2 

(0.97) 
120 2.4 31 4.7E+05 

11 ± 0.7 

(0.90) 100 33 

 

The UV dose required to degrade 90% of the micropollutants H´90 through direct photolysis 

under UV-A, UV-B and UV-C irradiation are present in Table  4.3.  

The UV dose required to reduce 90% of sulfamethoxazole and diclofenac concentrations in 

water by one order of magnitude is in the range of 1.0×10
4 

- 1.0×10
5
 mJ cm

-2
. In comparison, 

Bolton and Stefan [33] and Carlson, et al. [68] reported that the UV-C fluence required to 

remove 90% of N-nitrosodimethylamine and sulfamethoxazole from water are approximately 

1000 and 780 mJ cm
-2

, respectively. These results are consistent somewhat with our results, 

since the start concentrations of N-nitrosodimethylamine and sulfamethoxazole 

(10 ~ 100 µg L
-1

) are about 10 to 100 factor lower than the micropollutant concentrations used 

in our study, namely 1000 µg L
-1

.  

The present investigation proves the effectiveness of direct photolysis in the degradation of 

diclofenac and sulfamethoxazole. On the other hand, direct photolysis has less effect on 

carbamazepine and benzotriazole degradation, and negligible effect on metoprolol 

degradation. 
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5 General conclusions and outlook 
 

The photodegradation process of several micropollutants under different conditions and in 

different matrices was investigated in this thesis, including reaction kinetics and mechanisms. 

The analytical method developed for these studies, based on liquid chromatography coupled 

to tandem mass spectrometry (LC-MS/MS), to measure the selected compounds in 

wastewater treatment plants, and to follow their photolytic degradation rates proved to be very 

efficient to investigate the degradation of the studied micropollutants. 

The study showed that the photodegradation of the studied micropollutants obeyed pseudo-

first-order reaction kinetics and that the photodegradation process can be influenced by the 

choice of the UV source (here UV-A, UV-B and UV-C), the matrix (here pure water, pure 

water in the presence of 
• 
OH scavenger and in wastewater) in which the process takes place, 

as well as the matrix‘s pH. New knowledge was gained regarding the combination of the 

photodegradation process with the matrix effect. These results show that different UV sources 

as well as the matrix conditions have a high impact on the result of the photodegradation. This 

confirmed some of the knowledge already reported in literature for other processes and 

compounds [1-4]. However, the role of UV sources is worthwhile as reported here. Therefore, 

by knowing the fluence rate of the photoreactor and the degradation rate of the 

micropollutants, practitioners can easily design an efficient photolysis system that will 

achieve an acceptable level of trace micropollutant degradation. It is necessary to emphasize 

the fact that the absorbance spectrum of the micropollutant affects the choice of the most 

effective UV radiation source for its degradation. This is the one for which the emission 

spectrum shows the maximal overlapping with the absorbance spectrum of the micropollutant. 

Additionally, the UV lamps should have a sufficient photon flux and appropriate geometry for 

successful photoreactor desigen. The mechanisms of the photochemical degradation of the 

micropollutants can be mainly divided into direct and indirect photolysis. The principle of 

direct photolysis is the direct light absorption by the specific compound. In the case of 

indirect photolysis, photosensitizers play an important role in the phototransformation of the 

micropollutants, which takes place via reactions with reactive oxygen species (ROS), e.g. 
•
OH 

[5] and singlet oxygen (
1
O2), [6, 7] formed in the primary photochemical reactions [8]. Also 

the matrix can play a dual role of sensitizer and quencher for the reactive species, which is 

important for the elimination mechanism of micropollutants in the environment. The co-

existence of other constituents, as the ones present in wastewater treatment plants effluents 

(WWTPs), may influence the elimination of the micropollutans, since water constituents such 
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as the dissolved organic matter (DOM) and the bicarbonate ion (HCO3
-
) may scavenge the 

reactive oxygen species (
•
OH, 

1
O2). With regard to photolysis, the different species of 

micropollutant might have various photolytic degradation pathways, transformation products 

and reaction kinetics. Therefore, modifying the pH leads to structural changes that could 

enhance or hamper the photolytic reactions. 

In this study the degradation by direct photolysis of the micropollutants was successful at lab 

scale; the effectiveness of the method should be tested also at pilot scale. 

It is important to underline the fact that knowledge on the TPs is still very limited in general 

and especially when it comes to assessment and prediction of their formation during the 

photodegradation. Two different types of high resolution mass spectrometer were used to 

identify the TPs of the photodegradation for each of CIP and NEB. The LC-QTOF-MS was 

applied to identify the CIP transformation products. While the LC-Orbitrap-MS was used to 

identify the NEB transformation products. Both techniques have particularly shown excellent 

detection and identification capabilities for TPs in various matrices based on high resolution 

accurate mass measurement of precursor and product ions. 

Even though HR-MS, like the LC-QTOF-MS which provides high mass resolution accuracy 

can provide exact masses and mass fragments that lead to the identification of TPs, it is not 

sufficient to confirm chemical structures. High purity and isolated analytical standards are 

needed for confirmation either by MS or other analytical methods like NMR, raman or 

infrared spectroscopy. In the case where no analytical standards are available and only MS 

spectra are obtained, the TPs are ―tentative identificated‖. Therefore, the degradation study of 

CIP proved the effectiveness of using deuterated compounds, in this case deuterated 

ciprofloxacin, in identifying the transformation product structures.  

During the degradation study of NEB it was observed that the biologically active part of the 

NEB‘s structure is still preserved in its transformation products. This illustrates the 

importance of coupling the studies on the kinetics of micropollutant degradation with 

mechanistic studies in order to evaluate if the advanced oxidation process can deactivate the 

biological effectiveness of the compound and also of its transformation products.  

This research has led to many questions in need of further investigation. In order to fill 

this gap, future photooxidation studies should focus on ecotoxicity assessment and genotoxic 

effects of micropollutants and their transformation products especially on higher organisms 

such as plankton and fish. 

A cost-benefit analysis of photolysis and photocatalysis should be carried out and results 

compared with other AOPs [9, 10]. The use of light-emitting diodes (LEDs) as radiation 
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source should be studied, possibly emerging as a new technology with lower energy 

consumption, longer lifetime, and cheaper than fluorescent lamp sources [11, 12].  
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6 Appendix 

6.1 Supplementary material of chapter 2  
 

Suppl.  6.1 Physical and chemical properties of nebivolol. 

 

Molecular weight (g mol
-1

) 405.4 

Solubility in water (mg L
-1

) 83.99 

pKa 8.65 

Chemical structure of [S3R]-

nebivolol and [R3S]-nebivolol.  

 

 

 

 

 

 

 

 

Sum formula C22H25F2NO4 

 

 

http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Fluorine
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Nitrogen
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Degradation kinetics 

Influence of the UV source on the photodegradation of NEB 

Suppl.  6.2 Experimental set up of the lab scale plant: (a) pyrex reactor, (b) UV sources, (c) reservoir, 

(d) sampling point, (e) peristaltic pump, (f) flow direction (dimensions are not to scale). 
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Suppl. 6.3 shows the overlap between Nebivolol‘s absorption and the three UV lamps‘ 

emission spectra, namely a 15 W medium-pressure mercury lamp emitting light at 315–400 

nm (UV-A range), a 15 W medium-pressure mercury lamp emitting light at 280–360 nm (UV-

B range) and a 15 W low-pressure mercury lamp emitting light at 254 nm (UV-C range). NEB 

absorbs light between 243 nm and 302 nm with the highest absorbance at 281 nm. In contrast 

to the UV-B and UV-C lamp, there is no overlap between the emission spectrum of the UV-A 

lamp and the absorption spectrum of NEB. 

 

 

Suppl.  6.3 Absorption spectrum of nebivolol (primary Y-axis) overlaid with the normalized emission 

spectra of the three investigated UV lamps. 
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Influence of the OH radical scavenger on the degradation of NEB  

 

Suppl.  6.4 Plot of the elimination rate of Nebivolol versus the OH radical products during the UV 

irradiation. 

 

 

Suppl.  6.5 (A) Nebivolol degradation, inset: (B) Linear plots of ln(c/c0) versus time of nebivolol 

degradation in the presence of the wastewater matrix, (Experimental conditions: c0 = 25 µmol L
-1

, 

volume = 500 mL, flow rate = 100 mL min
-1

, pH = 7, T = 20 ± 2 ˚C). 

 
 

Suppl.  6.6 UV absorption spectrum of nebivolol in Milipore water and in wastewater (Experimental 

conditions: c0 (NEB) = 25 µmol L
-1

, pH = 7, T = 20 ± 2 ˚C). 
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Kinetic experiments 

Suppl.  6.7 Summary of kinetic parameters of nebivolol degradation. 

 

UV 

k (s
-1

) Half life (min) Elimination % after 2 h 

NEB 

NEB 

+              

t-BuOH 

NEB 

in 

WWTP 

matrix 

NEB 

NEB 

+            

t-BuOH 

NEB 

in 

WWTP 

matrix 

NEB 

NEB 

+ 

 t-BuOH 

NEB 

in water 

matrix 

UV-A 1.3 x10
-5

 - 
2.8 x10

-

5
 

868 - 419 
13 9 27 

UV-B 4.7 x10
-4

 5.0 x10
-4

 
4.4 x10

-

4
 

25 23 26 
96 97 96 

UV-C 7.8 x10
-4

 2.5 x10
-4

 
2.9 x10

-

4
 

15 46 40 
99 84 87 

Note: ―-― = no degradation  
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Suppl.  6.8 Chemical structures of NEB and its and transformation products in comparison with other 

β-blockers. The active moieties responsible for the biological activity are highlighted.  
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Ferrioxalate actinometry 

The UV dose was calculated as the volume averaged irradiance multiplied by the exposure 

time. Since, in a collimated beam, irradiance and fluence rate are the same, these 

measurements also allowed the determination of the fluence rates. 

30 mM ferrioxalate solution is prepared by dissolving 14.737 g of K3Fe(C2O4)3 and 2.745 mL 

H2SO4 in pure water in a 1-L volumetric flask. H2SO4 is added to prevent the oxidation of 

Fe(II) to Fe(III) by reacting with the water (Hydrolysis) and oxygen present. 

The concentration of Fe(II) formed during the irradiation is measured based on standard 

actinometric ferrioxalate solution. Based on the standard curve created from the standard 

solution (Suppl.  6.9), the Fe(II) concentrations of the actual samples are calculated from the 

absorbance values measured at 510 nm (1,10-phenanthroline, Ԑ = 10910 dm
3
 mol

−m
 cm 

−c
).  

 

 

Suppl.  6.9 Standard curve for ferrioxalate actinometry. 

 

 
The molar absorption coefficient of the Fe(C2O4)3

3−
 ion at the detection wavelength can be 

determined by the slope of the standard curve, being ɛ= 1.14 x 10
4
 (M

-1
cm

-1
). 

The number of photon produced per time is calculated by the slope of Fe(II) concentration 

and the studied time. They were 7.2x10
-5

 mol min
-1

, 5.4 x10
-5

 mol min
-1

, and 2.1 x10
-5

 mol 

min
-1 

under irradiation with UV-A, UV-B, and UV-C, respectively. Additionally, the light 

intensity of the UV lamps was calculated based on equation (3), from the photon formed (I) 

(Einstein s
-1

 m
-2

) and the energy flux (Eavg) (W m
-2

) 
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       (    ) 

I Light intensity Einstein s
-1

 m
-2

 

Δn Ferrous iron photo-generated mol 

Φ Quantum yield for  

ferrioxalate (0.006 M) 

Φλ= 1.20 at 254 nm 

Φλ= 1.23 at 312 nm 

Φλ= 1.26 at 365 nm 

AI Irradiated area m
2
 

t Irradiation time s 

           

  
       (    ) 

V1 Irradiated volume mL 

V2 Volume taken from the 

irradiated samples 

mL 

V3 Volume after dilution for 

concentration determination 

mL 

ct Concentration of ferrous iron 

after dilution 

M 

     ∑          (    ) 

Eavg Average photon irradiance W m
-2

 

I Light intensity Einstein s
-1

 m
-2

 

Uλ Energy carried by 1 mol of 

photons of wavelength λ 

J Einstein
-1

 

 

Suppl.  6.10 Results of the actinometry experiment. 

 

Parameter UV-A UV-B UV-C 

Einstein s
-1

 10.1 x 10
-7

  7.9 x 10
-7

 2.8 x 10
-7

 

λ (nm) 315 - 400   270 - 360 254  

Eavg (J.m
-2

min
-1

) 766 172 155 

 

For monochromatic radiation the photolytic degradation rate of the compound can be 

expressed with the following formula: 

  (
  

  
)  

    
 (   )    (  )

    
      (    ) 
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And for polychromatic radiation, it is: 

  (
  

  
)  ∑

  
   

 (   )  
   (  )

    
    (    )  

 

c0 Initial concentration M 

ct Final concentration M 

Φc Quantum yield   

εc Molar absorption coefficient M
-1

cm
-1

 

E p(avg) Average photon irradiance   

t time s 

 

   
 

 

 

 
       (    ) 

εC Molar absorption coefficient M
-1

cm
-1

 

A Absorbance at certain 

wavelength 

 

ct Compound concentration M 

d path length  cm 

 

Fluence H′ is one expression to substitute two parameters of the equation and to integrate 

fluence based rate expression for direct photolysis of one compound at one irradiation 

wavelength. Eavg is another expression to express the average irradiance with the following 

relation: 

        
 (   )        (    ) 

For polychromatic radiation: 

      ∑     
 (   )        (    )  

     
 (   )       (    ) 

For polychromatic radiation 

   ∑     
 (   )      (    )  

E′avg Average photon irradiance W m
-2

 

Uλ Energy carried by 1 mol of 

photons of wavelength λ 

J Einstein
-1

 

H′  J m
-2
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The E′avg is the average photon irradiance and can be determined from the chemical 

actinometry with addition correction factors of Water Factor (WF) and Divergence Factor 

(DF). 

   
       

    (  )
     (    ) 

   
 

   
       (    ) 

WF Water factor  

a Absorption coefficient of the solution 

at the wavelength of irradiation 

m
-1

 

l Path length m 

DF Divergence factor  

L Distance from the top of solution in 

irradiation dish to the light source 

m 

 

From eq. 4, eq.6, and eq.7 the following integrated formula is formed: 

  (
  

  
)  

      (  )

      
     (     ) 

For polychromatic radiation: 

  (
  

  
)  ∑

  
   

   (  )

      
  

     (     )  

The final formula for the fluence based first order rate constant k′1 is: 

  
  

      (  )

      
      (     ) 

For polychromatic radiation: 

  
  ∑

  
   

   (  )

      
       (     )  

 

The fluence-based first-order rate constant k′1 for the investigated compounds can be 

determined from the photochemical kinetic experiment . k'1 (m
2
 J

-1
) is calculated from the plot 

of ln(c0/ct) versus H′. 

 

Thus, the quantum yield ΦC at various wavelengths can be determined from the degradation 

specific compound experiments. After the compound-specific photochemical parameters ΦC 

and εC are known, the fluence based rate constants at given wavelength can be further 

estimated. 
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The H′ values are calculated from multiplication of average photon irradiance (energy flux 

value) and time elapsed. The k′1 determined from the plot H′ vs. ln(c0/ct) are shown in 

Suppl.  6.11.  

Suppl.  6.11 k′1 determination from H′ and ln(c0/ct) plot. 

 

After k′1 values have been calculated, the quantum yield of nebivolol under all conditions 

could be determined. Table  2.1 shows the experimental fluence based rate constants of 

nebivolol direct photolysis under irradiation with three different types of UV lamps. Since 

there is no absorption and degradation of nebivolol in UV-A range, no quantum yield could 

be calculated for UV-A. 

  

y = 0.0003x + 0.1708 
R² = 0.9935 

y = 0.0002x - 0.1079 
R² = 0.9981 

y = 1E-06x + 0.0149 
R² = 0.8085 

-1E+00

0E+00

1E+00

2E+00

3E+00

4E+00

5E+00

6E+00

0.E+00 2.E+04 4.E+04 6.E+04 8.E+04 1.E+05

ln
 c

0
 /

 c
t 

H´ 

UV-C UV-B UV-A
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6.2 Supplementary material of chapter 3  

 

Suppl.  6.12 Distribution of the ciprofloxacin (CIP) species at different pH values based on the pKas 

reported in the literature 15 (the structures are shown in scheme 1). 

 
 

Suppl.  6.13 Structural formula of (CIP-d8), emphasizing the 8-deuterium atoms at the piperazine ring. 

 

 

 

Suppl.  6.14. Experimental set-up. 
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Suppl.  6.15. Spectra of the UV-C Lamp and the absorption spectra of a 60 μM ciprofloxacin 

unbuffered aqueous solution at different pH values. 

 

 

 

 

Suppl.  6.16. The change of pH values during the photolytic (A) and photocatalytic (B) degradation of 

ciprofloxacin. 
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Suppl.  6.17. Photolysis and photocatalysis transformation products of CIP plotted as a functionof the 

irradiation time monitored by LC- MS at pH 3, 5, 7 and 9. 
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Suppl.  6.18. MS2 spectrum of CIP and its transformation products, proposed fragment structure of 

detected ions. 
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6.3 List of abbreviations 

 

•
OH Hydroxyl radical 

°C
 

degree Celsius 
•
OOH peroxy radicals  

1
O2 singlet molecular oxygen  

3
O2 triplet molecular oxygen  

AI Irradiated area 

Apr. April 

Aug. August 

AOPs Advanced oxidation processes  

a-Ox auxiliary oxidant  

APPI atmospheric pressure photon ionization  

Aλ Absorbance at wavelength λ 

BDE Bond dissociation energy 

BOD Biochemical oxygen demand 

C Speed of light 

c0 Initial concentration 

C18 Octadecyl carbon chain, C18H37 alkyl group 

C5H8O2 Acetylacetone 

CB conduction band  

CE  collision energy  

CEP  collision cell entrance potential  

CH3COOH acetic acid  

CH3COONa Sodium acetate  

CID collision-induced dissociation 

CIP Ciprofloxacin 

cm Centimetre 

ct Final concentration 

CXP  collision cell exit potential  

D Deuterium 

Da  Dalton  

DAN Danofloxacin 

DBEs double bond equivalents  

DD daily doses  

DIF Difloxacin 

DOC Dissolved organic carbon 

DOM  Dissolved organic matter 

DP  Declustering potential  

Dr. rer. nat.  Doctor rerum naturalium  

E Energy flux  

E2 17-Estradiol 

Eavg Average photon irradiance 

Ebg Band gap energy  

ECDC European Centre for Disease Prevention and Control  

EE2 17-Ethinylestradiol 

EI  Electron impact ionization 

ENO Enoxacin 

ENR Enrofloxacin 
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EP  Entrance potential  

EPI  Enhanced product ion scan  

EQS Environmental quality standards 

ESI  Electrospray ionization  

ESI  Electrospray ionisation 

et al.  et alii or et aliae  

eV  Electron volt  

F
─
 Fluoride 

F2 Fluorine 

Feb. Februar 

FeSO4
.
7 H2O Ferrous sulfate  

FLE Fleroxacin 

FLU Flumequine 

FQs Fluoroquinolones  

FT-ICR Fourier transform ion cyclotron resonance  

FT-IR-MS Fourier transform infrared mass spectrometer 

g  Gram  

GC Gas chromatography 

GC-MS Gas chromatography-mass spectrometry 

GmbH  Gesellschaft mit beschränkter Haftung  

GmbH & Co.KG  Gesellschaft mit beschränkter Haftung & Compagnie 

Kommanditgesellschaft  

H Planck constant 

H´ UV dose  

h
+
 Positive hole  

H2O Water 

H2SO4 Sulfuric acid 

HCl Hydrochloric acid  

HF Hydrofluoric acid 

HNO3 Nitric acid  

HO2
●
  Perhydroxyl radical 

HO2
─
  Hydrogen peroxide anion 

HPLC  High performance liquid chromatography  

HRMS  High resolution mass spectrometry 

I Light intensity 

ISC Inter system crossing  

IT Ion trap  

IUTA  Institut für Energie- und Umwelttechnik e.V. (Institute of Energy and 

Environmental Technology)  

Jun. Juni 

Jul. Juli 

K Reaction constant  

K3Fe(C2O4)3•3H2O Potassium ferric oxalate trihydrate  

kg  Kilogram  

L  Litre  

LC  liquid chromatography  

LC-MS  liquid chromatography - mass spectrometry  

LEV Levofloxacin 

Ln Natural logarithm  

LOD  Limit of detection  

log  Logarithm  
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LOM Lomefloxacin 

LOQ  Limit of quantification  

LTQ Orbitrap Linear ion trap/orbitrap  

M  Mol  

M* Electronically excited molecule  

m/z  Mass-to-charge ratio  

M
•+ 

 Radical cation  

Mar. März 

MAR Marbofloxacin 

mg  Milligram  

min  Minute  

mL  Millilitre  

mm  Millimeter  

M-O-O
•
 Peroxyl radicals  

MOX Moxifloxacin 

MRM  Multiple reaction monitoring  

MS  Mass spectrometry  

N Number of measurements 

n.d.  not determined  

Na2CO3 Sodium carbonate  

NaOH Sodium hydroxide  

NEB Nebivolol 

Ng Nanogramme 

ng  Nanogram  

NH4C2H3O2 Ammonium acetate  

Nm nanometer 

NOR Norfloxacin 

O2 Oxygen 

O2
─
 Superoxide 

O2
•-
 Superoxide radical anions  

O3 Ozone 

OFL Ofloxacin 

pCBA 4-Chlorobenzoic acid  

PE  Population equivalent  

PEF Pefloxacin 

pH pH value 

pKa  Acid dissociation constant  

ppm  Parts per million  

Prof.  Professor  

psi  Pound-force per square inch  

Q1 Precursor ion (quadrupole 1 of a triple quadrupole mass spectrometer) 

Q3 Qualifier ions (quadrupole 3 of a triple quadrupole mass spectrometer) 

QC  Quality control  

QIT Quadrupole ion trap  

QqQ Triple quadrupole (mass spectrometer)  

QTOF Quadrupole TOF (mass spectrometer) 

QTRAP Hybrid mass spectrometer, where the third quadrupole could be used as 

quadrupole or linear ion trap  

R.T. Retention time  

Redox Oxidation-reduction  

S/N  Signal-to-noise  
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SAR Sarafloxacin 

SD Standard deviation 

SPE Solid phase extraction 

SQ Single quadrupole (mass spectrometer)  

Suppl.  Supplementary material  

t  Ton  

t1/2 Half life times  

tert-BuOH  Tertiary butanol  

TiO2 Titanium dioxide 

TOF Time-of-flight  

TOS Tosufloxacin 

TPs Transformation products  

TQ Triple quadrupole (mass spectrometer) 

TRO Trovafloxacin 

TSS Total suspended solids 

UHPLC Ultra high performance liquid chromatography 

US Ultrasound  

USA United States of America 

UV  Ultraviolet  

UV/TiO2 Photo excitation of titanium dioxide 

UV-A  Ultraviolet emitting in the wavelength range 315 to 400 nm 

UV-B Ultraviolet emitting in the wavelength range 280 to 360 nm 

UV-C  Ultraviolet emitting in the wavelength range 200 to 280 nm 

Uλ Energy of one mole of photons at wavelength λ  

V Volume 

V  Volt  

v/v Volume to volume ratio 

VB  Valence band 

VIS  Visible 

vol  Volume  

VUV Vacumm ultraviolet 

W Watt 

WF Water factor 

WFD Water Framework Directive 

WWTP  Wastewater treatment plant  

Β Beta 

εc Molar absorption coefficient 

Λ Wave length 

μL  Microlitre  

μm  Micrometer  

Φ Quantum yield 
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