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1. INTRODUCTION 

1.1 Problem Statement1 

Genes are part of cells in all living organisms and carry information that define organisms’ 

physical traits. Scientists have developed genetic engineering tools that can isolate a gene from 

one organism and insert it into the genome of another organism to change the physical traits of 

the organism. In agriculture, genetic engineering can be a valuable tool to create transgenic 

plants with traits that would otherwise not exist or be very costly to create. An example is a 

maize plant that produces its own toxins to defend itself against insects (i.e., insect-resistant 

maize) or a soybean plant that is resistant to a broad-spectrum herbicide (i.e., herbicide-resistant 

soybeans). Other traits make plants more resistant to, for example, droughts and viruses (Tait 

and Barker, 2011). 

Worldwide Cultivation of Genetically Modified Crops 

In spring 1996, farmers in the United States first commercially cultivated genetically 

engineered crops. These crops are widely referred to as GMOs (genetically modified organisms) 

or GM (genetically modified) crops. The GM crops that occupy the largest area worldwide are 

soybeans, maize, cotton, and rapeseed (James, 2016). The genetically modified traits that seed 

companies apply to these crops and that farmers commercially grow are, so far, almost entirely 

those that generate first-generation GM crops (Tait and Barker, 2011). First-generation GM 

crops are modified to increase crop productivity.2  The two most relevant traits are insect 

resistance and herbicide resistance or a combination of those traits, which is referred to as 

stacked traits. 

In 2016, twenty years after the first GM crop cultivation in the United States, farmers in 

the European Union still commercially cultivated only one GM crop—Bt maize MON810, 

which is resistant to the European Corn Borer (Ostrinia nubilalis). More than 94 percent of Bt 

maize cultivation in the European Union occurs in Spain (James, 2016). Farmers use the 

harvested Bt maize mainly as a feed for livestock production. Other GM crops have no EU-

authorization for commercial cultivation. However, several GM crops have the approval for 

import into the European Union. Soybeans and soybean meal from Brazil, Argentina, and other 

countries in the Americas are the most imported GM commodities to the European Union 

                                                 
1 Parts of this problem statement are based on Venus, T.J. and Wesseler, J., 2015. Evolution of European GM-free 

Standards: Reasoning of Consumers and Strategic Adoption by Companies, Review of Agricultural and Applied 

Economics 2, pp. 20-27. 
2 Whereas first-generation GM crops impact production efficiency, second-generation GM crops, also referred to 

as value-enhanced crops, include plant varieties that have “modified output characteristics adding end-user value 

to the commodity” (Jefferson-Moore and Traxler, 2005). 
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(James, 2016). Like Bt maize, GM soybean finds its use almost entirely in feed production as a 

protein source. 

GM Regulation in the European Union 

The EU definition of a GMO is technology-based, and hence, the GMO regulatory framework 

regulates a novel organism based on the technique used to create it (Breyer et al., 2009). Safety 

evaluations assess whether GMOs are safe for human and animal consumption and the 

environment. When seed companies submit their documents, they must often wait for several 

years to receive a decision (Smart et al., 2017). Long and expensive approval processes 

including safety assessments deterred many institutions such as seed companies from 

submitting new GM crops in the European Union to obtain approval for cultivation. However, 

many GM crops received authorization for import into the European Union. As in other 

countries, the EU GMO regulation prohibits the use of non-approved GMOs in food or feed, 

but manufacturers can use GMOs that received authorization as a GM food or GM feed, 

respectively.  

Opponents’ and Proponents’ Views on GM Crops 

The use of GMOs is controversial. The proponents point to effects such as increased crop 

productivity, longer shelf life, lower use of environmentally harmful pesticides, and lower 

levels of fungal toxins (e.g., mycotoxins) (e.g., Uzogara, 2000). Through these direct effects, 

GM crops should lower food prices and reduce hunger in developing countries, reduce 

greenhouse gas emissions, improve food and feed safety, allow more biofuel production, or 

decrease soil erosion (Federici, 2010; Kimbrell and Paulsen, 2014). Additionally, they note that 

the strict regulations on GMOs increase the authorization costs, which only larger companies 

can afford (Kalaitzandonakes et al., 2007). The opponents often point to long-term uncertainties 

related to the safety of GMOs with respect to human health and the environment (Herring and 

Paarlberg, 2016). Concerns about the effects on human health include unexpected allergenic 

reactions, antibiotic resistance, and increased toxicity levels in food products (Herring, 2008). 

Some concerns about the environment have been found to be real, but they are not a direct cause 

of GMOs, as these effects can equally apply to conventional agriculture (Gilbert, 2013). These 

concerns are, for example, that GM crops indirectly facilitate monoculture and hence, lower 

plant diversity, that target insects and weeds get resistant over time, leading to long-term 

increases in pesticide applications (Perry et al., 2016), or that GM crops outcross with non-

target plants and create (super-)weeds that are difficult to control once these weeds are resistant 

to some broad-spectrum herbicides (Gilbert, 2013). Other concerns are that patents on these 
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GM crops are concentrated within a few seed companies, allowing them to control the 

worldwide food supply. Other reasons are based on ethics or religion (Finucane and Holup, 

2005). 

Labeling of GM Food Products 

So far, none of the GMOs that farmers commercially cultivate has been demonstrated to be 

more unsafe for human consumption or the environment than their non-GM counterparts 

(National Academies of Sciences and Medicine, 2016). Nevertheless, many consumers are 

concerned for various reasons. As with most safety and process attributes, consumers cannot 

distinguish GM from non-GM products before or after consumption, which makes the GMO 

attribute a credence attribute (Caswell, 1998; Darby and Karni, 1973). For example, consumers 

cannot reliably judge whether the maize chips they are buying were produced from GM or non-

GM maize, or whether the sugar in their soda comes from GM or non-GM sugar beet. Inspection 

tests can identify the GMO attribute in the first example if the chips were produced from GM 

maize, but these tests cannot identify the GM attribute in sugar because sugar from GM sugar 

beet does not contain (or contains very small amounts of) DNA. First-generation GM and non-

GM products are often considered to be vertically differentiated, as consumers are either 

indifferent or prefer the non-GM product if offered at the same price as the GM product (e.g., 

Fulton and Giannakas, 2004; Lapan and Moschini, 2007).  

Independent of whether the product contains the GMO or not, the EU GMO regulation 

requires that manufacturers label all products from GM crops (European Commission, 

2003a, ,b). The EU GMO regulation on positive mandatory labeling has been in place since the 

early 2000s. Shortly after the import of the first GMOs into the European Union, some retailers 

began to exclude GM store brands from their shelves (Kalaitzandonakes and Bijman, 2003). 

Already in the early 2000s, most EU retailers and manufacturers excluded most GM products 

to avoid protests by anti-GMO activist groups and the risk of boycotts (Gruère, 2006). The 

United Kingdom is one of the EU Member States with a few GM-labeled products (GM Freeze 

Online, 2017). 

Labeling of Non-GMO Food Products 

Even though retailers hardly offer any GM-labeled products in Europe, GM crops are widely 

used in food production. These GM crops are mostly used for feeding animals. Feeding GM 

crops to animals does not require labeling of the final livestock product because the GMO 

regulation exempts products that are derived with (the help of) GMOs (i.e., products in which 

manufacturers use GMOs in the production process only) from positive mandatory labeling 
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(European Commission, 2003b). For example, fresh milk derived from cows that consumed 

GM soybean meal is not required to be labeled as a GM product. The exemption also concerns 

the use of GM enzymes or other GM additives. However, some EU Member States have 

developed voluntary non-GMO certification standards to label products that limit the use of 

GMOs in the production process. In the European Union, the current GMO regulation can result 

in three possible product labeling categories (Venus et al., 2016): products labeled GMO, 

following the EU mandatory labeling regulation; products labeled non-GMO, following a 

national or private voluntary labeling standard; and non-labeled food products. 

In Austria, the Austrian Ministry of Health implemented a Directive in 1998 for defining 

non-GMO production (Federal Ministry of Austria, 2010) shortly after 1.2 million people 

signed a referendum against the use of GMOs in food and feed (Seifert, 2002). The non-GMO 

production standard allows a manufacturer in Austria to indicate that a product is neither from 

a GMO nor that it was derived with the use of GMOs. The Austrian non-GMO scheme allows 

a GMO presence to some extent, as the absolute absence of GMOs is often difficult to achieve. 

Also, Germany implemented its first national non-GMO labeling standard as part of its 

regulation on novel foods in 1998 (Federal Ministry of Germany, 1998). While the Austrian 

standard facilitates non-GMO labeling, the German standard was very strict, expensive, and 

legally uncertain for manufacturers to implement. In 2008, non-GMO labeling in Germany 

became part of the federal law on genetic engineering, and since then, similar to the Austrian 

regulatory framework, it has been facilitating non-GMO labeling (Federal Ministry of Germany, 

2004). In 2015, for example, 3.5 percent of new food products launched in Germany had a non-

GMO claim (Michail, 2015). In France, non-GMO labeling is regulated in the Decree of the 

Ministry of Economics, Finance, and Industry (2012-128), and has been in force since July 

2012. Additionally, South Tyrol and Hungary cover non-GMO labeling by law (Castellari et 

al., forthcoming).  

Strategic Choice of Vertical Product Differentiation 

Downstream suppliers with market power such as processors and retailers decide whether to 

offer products derived from or with (the help of) GMOs or not. Because some consumers are 

willing to pay a premium for products that comply with a non-GMO certification standard, 

suppliers can use labeling to differentiate their products from competitors. Vertical product 

differentiation allows firms to reduce price competition and to raise profits (e.g., Mussa and 

Rosen, 1978; Spence, 1976; Tirole, 1988). In the case of GM products, a small retail chain in 

the UK announced that it had removed all GM ingredients from its store brand products in 1998. 
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Within two years, major retail chains and major food manufacturers in Europe followed suit, 

and announced the removal of all GM ingredients from their store brand or branded products, 

respectively (Kalaitzandonakes and Bijman, 2003).  

Coexistence of GM and non-GM crops 

Positive mandatory labeling for products from GMOs and negative voluntary labeling for 

products derived without GMOs necessitate the coexistence of various systems. Even if GM 

crops are evaluated to be safe for human and animal health and the environment, the opinion of 

the European Commission is that the production systems should guarantee consumers, farmers, 

and businesses the freedom of choice between GM and non-GM products (European 

Commission, 2010). Coexistence then refers to the conditions under which GMO and non-

GMO agricultural products can be grown in the same territory and transported and marketed 

side-by-side, preserving the identity in accordance with the relevant labeling rules and purity 

standards (Schenkelaars and Wesseler, 2016). In addition to the distinction of GMO and non-

GMO products, coexistence is relevant to subgroups, such as EU-approved and unapproved 

GMOs, or products that do or do not comply with the non-GMO certification standard. 

Coexistence is a concept that occupies the whole supply chain from the seed company to 

the final consumer. At the farm level, the European Commission recommends that each EU 

Member State implements measures to ensure the coexistence of GM crops with conventional 

and organic farming (European Commission, 2010). In general, for the European Union at the 

farm level, non-GMO farmers can be considered to have the property right to non-GMO 

production (Soregaroli and Wesseler, 2005). The property right assignment has implications for 

coexistence policies and measures and the distribution of benefits and costs (Beckmann et al., 

2014). Hence, farmers who want to grow GM crops must ensure that their neighboring farmers 

can grow conventional or organic crops (e.g., the coexistence measures should prevent pollen 

drift from a GM crop field to a neighboring organic field). In the European Union, farm-level 

coexistence measures play, so far, a role for Bt maize only, as it is the only commercially grown 

GM crop in the region. Some EU Member States have developed specific ex-ante measures, 

such as a minimum distance between a GM and a non-GM crop field, and ex-post liability rules, 

such as joint and strict liability (e.g., Beckmann et al., 2010). 

In addition to the issues that arise at the farm level, there exist a number of issues for the 

supply chain. Farmers may either sell the crop or may use it in livestock production as feed. If 

a farmer sells a GM crop, he may receive a lower price than is the price for a non-GMO crop. 

If he avoids GM crops as feed, then he may get a premium for the livestock product for feeding 
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it non-GMO crops if he participates in a voluntary non-GMO production program. Hence, 

traders and processors who want to avoid GMOs need to segregate their products from the 

GMO supply chain and set up a system to preserve the identity of non-GMO products 

(Kalaitzandonakes et al., 2016). 

Regulation of New Plant Breeding Techniques 

The coexistence, segregation, and identity preservation system works well if physical product 

tests can identify genetic modifications in crops. Identification of the GM trait is possible with 

PCR-based methods3  in transgenic crops and products that contain their DNA. However, 

identification is usually not possible in crops that were derived by a variety of additional 

genomic modification techniques that have been recently developed. These techniques are often 

referred to as new plant breeding techniques (NPBTs) (Lusser and Davies, 2013).4 Over the last 

several years, the regulation of NPBTs has been discussed by regulators and the scientific 

community (Andersson et al., 2012; Breyer et al., 2009; Hartung and Schiemann, 2014; Lusser 

and Davies, 2013; Lusser et al., 2011; Pauwels et al., 2014; Podevin et al., 2013; Podevin et al., 

2012; Sprink et al., 2016; Wolt et al., 2016). It is the European Court of Justice that will render 

a final and binding opinion on the interpretation of the EU law on how to regulate NPBTs 

(Laaninen, 2016). The current regulatory system is binary: GMO or not. If a crop derived by 

NPBTs is regulated as a GMO, then it must comply with the EU GMO regulation, which implies 

an expensive and time-consuming GMO authorization process and the requirement of GMO 

labeling (Kalaitzandonakes et al., 2007; McDougall, 2011; Smart et al., 2017). This 

categorization has wide-ranging implications for the welfare of consumers and producers as 

well as for the coexistence and identity preservation systems along the supply chain 

(Kalaitzandonakes et al., 2016).  

1.2 Objectives, Research Questions, and Basic Methods 

The EU regulatory framework allows firms to vertically differentiate products through either 

the adoption of a non-GMO label or the production of goods that do not require GMO labeling. 

Furthermore, for the cultivation of GMO and non-GMO products side by side, some EU 

Member States have defined a number of specific coexistence measures. From this line of 

argumentation follows the overall underlying question that I investigate in this thesis:  

 

                                                 
3 PCR stands for polymerase chain reaction and is a technique to amplify specific DNA sequences to identify, for 

example, transgenic material in organisms. 
4 The major NPBT categories are site-specific mutagenesis, cisgenesis and intragenesis, breeding with transgenic 

inducer line, grafting techniques, and agro-infiltration techniques. 
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What does the system that regulates GMOs in the European Union imply for coexistence, 

product labeling, and firms’ strategic decision making related to vertical product 

differentiation? 

 

The body of the thesis is based on four articles. In these articles, I address four research 

questions related to the topics introduced in the problem statement of this thesis.  

 

Question 1: What are the costs of coexistence measures for genetically modified maize in 

Germany? 

Many EU Member States introduced coexistence policies that require GM crops cultivating 

farmers to comply with a set of agricultural practices. The policies are diverse and farmers in 

many cases can choose between different policies. The benefits and costs of the different 

policies from a farmers’ perspective are not well known. In Germany, commercial Bt-maize 

cultivation was allowed from 2005 to 2008. Germany is one of the EU Member States that 

defined ex-ante coexistence measures and ex-post liability rules that farmers who wanted to 

cultivate Bt-maize had to follow. Applying these measures creates costs to Bt-maize farmers, 

which has implications for farmers’ decisions whether to cultivate Bt-maize or not. Farmers 

have to make a trade-off between the adoption of coexistence measures and their expected 

incremental gross margin from cultivating Bt-maize versus conventional maize. The costs of a 

number of coexistence measures are estimated with the help of a choice experiment in which 

farmers make a trade-off between an incremental gross margin as the monetary attribute and a 

set of coexistence measures with different levels as non-monetary attributes. 

 

Question 2: What drivers and institutional set-up are leading the German non-GMO market 

from niche to mainstream? 

Germany is one of a few EU Member States that have embedded non-GMO labeling into 

national law and in which the market share of these products has increased rapidly in recent 

years. A multi-stakeholder nonprofit organization that includes various supply chain 

participants, as well as other institutions such as consumer and environmental NGOs, was 

founded in 2010. The different stakeholders have some common and some diverging objectives 

that are combined by the multi-stakeholder organization. The organization has set a voluntary 

production and certification standard that operationalizes non-GMO labeling. This 

operationalization and its relation to stakeholder objectives form the basis of a framework that 

is used to systematically discuss the development of the growing non-GMO market in Germany. 
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Question 3:  What are the market and welfare effects of regulating New Plant Breeding 

Techniques as a GMO technology under the present coexistence, segregation, and 

labeling regulations? 

Crops that enter different food supply chains are an interesting case for evaluating the market 

and welfare effects of GMO regulations. Rapeseed is a crop that can be crushed and separated 

into oil and meal. Oil can be used as food for human consumption or as feedstock for processing 

into biodiesel. Whereas oil from GM rapeseed requires labeling if it is used as food, it does not 

require labeling if it is converted into biodiesel, and neither is labeling required for livestock 

products derived from GM rapeseed meal. Since most EU retailers have decided to exclude 

GM-labeled products from their shelves, GM rapeseed is not a feasible option for food oil 

production. GM rapeseed can, however, be used in biodiesel and livestock products. However, 

a livestock product firm can vertically differentiate its products by complying with the 

voluntary non-GMO labeling scheme. Consumers that are willing to pay a sufficiently high 

premium for the exclusion of GMOs in the production process may choose to buy the non-

GMO product whereas other consumers may choose the unlabeled counterpart. If farmers can 

use a more cost-efficient rapeseed variety that is based on NPBTs, then the decision whether 

NPBTs are categorized as a GMO or not has major implications for the market and welfare 

effects. A partial-equilibrium model can capture the different labeling systems to evaluate these 

effects. To consider the parallel existence of GMO and non-GMO supply chains, the model 

incorporates coexistence costs at the farm level and segregation and identity preservation costs 

at the downstream level of food and feed processors. 

 

Question 4:  How do different demand and cost variables influence the time to invest in high-

quality production? 

There is no simple answer to the question of whether GMOs or non-GMOs are of higher quality. 

Even though vertical product differentiation is a property of the supplied goods, it is the 

difference in the quality as perceived by consumers that drives differentiation. Non-GMO 

labeled products are usually considered to be weakly superior to GM products as suggested by 

many consumer studies. Downstream processors and retailers are often considered to be firms 

with market power. These firms can decide to use product differentiation by offering higher-

quality products than their competitors to increase profits. If market barriers to new entry exist, 

and the demand for the high-quality product increases over time, then all firms will offer the 

high-quality product if the demand is sufficiently large. An industrial organization model with 
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vertical product differentiation and increasing demand for the high-quality product allows the 

study of quality updating and the effects of different cost and demand factors on the investment 

decision. 

 

Each of the research questions is addressed in one of the chapters of the main body of the 

thesis (Chapters 3 to 6). Before the main body, the thesis contains a background chapter 

(Chapter 2). The background chapter provides further information about the cultivation of GM 

crops worldwide and in the European Union, in particular. It also lays down a brief history and 

the current state of the framework that regulates the authorization, cultivation, trade, and 

labeling of GMOs. Since the standard for non-GMO labeling is governed by a private voluntary 

production standard set by multiple stakeholders, the background section discusses the 

objectives of these stakeholders. After the main body of the thesis, Chapter 7 discusses policy 

implications that go beyond the discussions in the individual chapters by drawing on the 

findings presented in the thesis.  
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Background 
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2. BACKGROUND 

2.1 Cultivation of GM Crops Worldwide 

Since the first cultivation of GM crops, the area on which farmers cultivated them increased 

each year, except in 2015, in many countries worldwide, reaching 185 million hectares in 2016 

(James, 2016). The United States remained the biggest GM crop producer, followed by Brazil, 

Argentina, Canada, and India. Table 1 shows all countries that planted more than 0.1 million 

hectares of GM crops in 2016 as well as the respective genetically modified crops that farmers 

used in those countries. 

 

Table 1. Cultivation area and crops in countries that cultivated at least 0.1 million hectares 

Country  
Cultivation area 

(million hectares) 
Crops  

USA 70.9 
maize, soybean, cotton, rapeseed, sugar beet, alfalfa, 

papaya, squash, potato  

Brazil  44.2 soybean, maize, cotton  

Argentina  24.5 soybean, maize, cotton  

India  11.6 cotton  

Canada  11.0 canola, maize, soybean, sugar beet  

China  3.7 cotton, papaya, poplar  

Paraguay  3.6 soybean, maize, cotton  

Pakistan  2.9 cotton  

South Africa  2.3 maize, soybean, cotton  

Uruguay  1.4 soybean, maize  

Bolivia  1.1 soybean  

Philippines  0.7 maize  

Australia  0.7 cotton, rapeseed  

Burkina Faso  0.4 cotton  

Myanmar  0.3 cotton  

Mexico  0.1 cotton, soybean  

EU (4 countries)  0.1 maize  

Columbia  0.1 cotton, maize  

Sudan  0.1 cotton  

Source: Based on James (2016) 

 

The most widely planted GM crops (soybean, maize, and cotton) are mainly used as feed 

for livestock production or as feedstock for industry rather than as food. For example, 94 

percent of soybean and 92 percent of corn in the United States were genetically modified in 

2015, and approximately 98 percent of soybean meal goes to animal feed, and 88 percent of 
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corn is used either for animal feed or as industrial feedstock (mainly for ethanol production) 

(Herring and Paarlberg, 2016). Table 2 shows that the four principal GM crops worldwide are 

soybean, maize, cotton, and rapeseed. In the United States, the country with the largest GM 

crop area, the share of GM exceeds 90 percent for these crops. 

 

Table 2. Area and share of the most important GM crops worldwide, in the United States, and 

Europe 

 Worldwide United States Europe 

 Million ha Share Million ha Share Million ha Share 

Soybean 91.4 78% 31.8 94% -  

Maize 60.6 26% 35.0 92% 0.1 1.55% 

Cotton 22.3 64% 3.76 93%   

Rapeseed 8.6 24% 0.64 93%   

Source: Based on James (2016) 

 

While GM crop cultivation worldwide has steadily increased, cultivation in the European 

Union has remained very low. The only EU-authorized GM crop that farmers commercially 

cultivated in four EU Member States (Spain, Portugal, the Czech Republic, and Slovakia) in 

2016 is insect-resistant Bt maize MON810. Of the 137,000 hectares of GM cultivation in the 

European Union, 94.2 percent occur in Spain and another 5.1 percent in Portugal. However, the 

European Union imports approximately 65 percent of the consumed soybean meal mostly from 

Brazil and Argentina. Approximately 91 percent of Brazil’s soybean production is GMO, and 

the share amounts to 99 percent in Argentina (James, 2016). 

2.2 EU Regulation on GMOs 

After the European Commission had approved Bt maize for placement on the market, some 

Member States decided to restrict marketing of this crop on their territories. Several EU 

Member States opposed the Commission’s initial proposal to approve the GM crop with one of 

the concerns being that the marketed product would not need to be labeled (Begley, 2017). In 

1997, the Commission tried to solve the Member States’ concerns by amending the then 

Deliberate Release Directive with required labeling of GMOs. However, the amendment could 

not prevent a de facto moratorium as no new GMOs were authorized or placed on the market 

in the European Union until 2004, when the European Union reformed its GMO regulatory 

system (Begley, 2017). 

After the de facto moratorium on GMOs, the European Union reformed GMO regulation 

into a three-part system (Begley, 2017). The system consists of the 2001 Deliberate Release 
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Directive (Directive 2001/18/EC), the Genetically Modified Food and Feed Regulation 

(Regulation (EC) 1829/2003), and the Traceability and Labeling Regulation (Regulation (EC) 

1830/2003). According to the 2001 Deliberate Release Directive, each new GM trait submitted 

for marketing in the European Union requires a case-by-case environmental risk assessment. 

This assessment applies to the cultivation as well as imports of GM products. The Directive 

allowed Member States to apply the safeguard clause (Article 23 of Directive 2001/18/EC) to 

provisionally ban or restrict the use and sale of a GMO on their territory based on new or 

additional scientific knowledge regarding a risk to human health or the environment. By 2015, 

nine of the 28 EU Member States applied the safeguard clause (Boccaletti et al., 2017). After 

13 Member States had requested the Commission to also base their decisions on other reasons 

than food and environmental safety, the EU Commission adopted a new Directive in March 

2015 (USDA FAS, 2016). The Directive allows Member States to demand that part or all of its 

territory be exempt from the applications of GM crop cultivation without any justification prior 

to approval, or to opt out by restricting or banning GM cultivation based on duly justified 

grounds (e.g., land use, socio-economic reasons, and public policy) after approval. The 

Directive only applies to cultivation, not the import of GMOs. By October 2015, 19 EU Member 

States opted out of GM crop cultivation (Figure 1).  

The Genetically Modified Food and Feed Regulation concerns GMOs for food use, food 

containing or consisting of GMOs, and food produced from or containing ingredients produced 

from GMOs. The Regulation specifies the GMO authorization process for cultivation and 

import. The applicant submits the application to a national competent authority, which forwards 

the application to the European Food Safety Authority (EFSA). The EFSA publishes its opinion 

to the public and sends it to the Commission, which drafts and submits a proposal for granting 

or refusing an authorization to the Standing Committee. The Commission adopts the decision 

if the Standing Committee reaches a qualified majority in favor of EFSA’s opinion. If the 

Committee’s decision is different from the EFSA’s opinion, it must provide a detailed 

description of the differences. If the Committee does not reach a favorable opinion, then the 

Council of Ministers votes. If the Council does not reach a qualified majority, the Commission 

must adopt the decision within three months. A market authorization is valid for ten years 

(Begley, 2017). 
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Source: Castellari et al. (forthcoming) based on USDA FAS (2015a) 

Figure 1. Member States that opted out of GM crop cultivation  

 

The idea of the Traceability and Labeling Regulation is to facilitate the withdrawal of 

products once unforeseen adverse effects on human health, the environment, or animal health 

become apparent (European Union, 2004). It should also ensure accurate information to 

operators and consumers to enable them to use their freedom of choice. The Regulation 

specifies a 0.9 percent “de minimis” threshold of adventitious presence of EU-approved GMOs 

(by weight of the individual ingredient). Products beyond this threshold need to be treated as 

GMOs. 

The EU Genetically Modified Food and Feed Regulation does not require GMO labeling 

of livestock food products when animals are fed with GM feed. The reason for the exemption 

is that the livestock products were derived with GM feed; the product is derived with a GMO, 

but it is neither derived from a GM crop nor does it contain GMOs. The use of GM feed in 

livestock products can be considered a process attribute. Because consumers are unable to 

distinguish livestock products derived from GM and non-GM feed, several consumer and 
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environmental groups actively lobbied for labeling these products as well to give consumers 

the freedom of choice. Some EU Member States implemented national non-GMO production 

standards. Non-GMO labeling options allow producers to use a label to show that the product 

is neither derived from GM crops nor were GMOs used in the production process.  

In Europe, a harmonized legislation defining “non-GMO,” “GMO-free,” or similar 

labeling terms does not (yet) exist. Instead, several EU Member States and Switzerland have 

defined different rules and guidelines for labeling non-GM products (European Commission, 

2015). Furthermore, the non-profit organization “Donau Soja” created a non-GMO standard, 

which it handed over to the agricultural ministers of 15 countries along the Danube River in 

October 2016.5 The standard is based on the labeling guidelines established by the Austrian 

organization for non-GMO food products and only applies in the respective country once it is 

transposed into national law. The standard is meant as the first step toward harmonization of 

non-GMO labeling and can guide countries that do not have their own national approaches to 

non-GMO labeling. 

The current Member State schemes of countries that have national non-GMO standards 

range from legislations that facilitate non-GMO labeling to legislations that ban labeling 

altogether and everything in between (Table 3). Facilitating legislations in Austria, Germany, 

France, and recently Hungary define threshold values for the adventitious presence of GMOs 

for non-GMO labeling. These legislations also allow feeding of GMO feed for a period prior to 

deriving the livestock product. The periods differ by country and animal. Additional countries 

(Croatia, Greece, and Luxembourg) are preparing similar regulatory frameworks. 

By 2015, 18 EU Member States were not directly involved in non-GMO labeling schemes. 

For example, the Italian government does not have an official position on non-GMO labeling, 

leaving Italian regions free to develop their own positions. In Italy, the national accreditation 

body, Accredia, developed a technical document (RT-11) defining the minimum requirements 

for the certification of products commonly referred to as “non-GMO” (Boccaletti et al., 2012). 

According to this document, non-GMO food must not contain random traces of genetically 

modified DNA above 0.1 percent of an ingredient’s weight for food compared to the species-

specific total DNA; these values go down to 0.01 percent for seeds and up to 0.9 percent for 

feed use. 

 

                                                 
5 These countries are: Austria, Bosnia and Herzegovina, Bulgaria, Croatia, the Czech Republic, Germany (Bavaria, 

Baden Wuerttemberg), Hungary, Italy (Trentino Alto Adige, Friuli Venezia Giulia, Veneto, Emilia-Romana, 

Lombardia, Piemont, Vallée d'Aoste), Moldova, Poland (Dolnoslaskie, Opolskie, Slaskie, Swietokrzyskie, 

Podkarpackie, Malopolske), Romania, Serbia, the Slovak Republic, Slovenia, Switzerland, Ukraine (Uschgorod, 

Tschernowzy, Winniza, Odessa, Lwow, Ternopol, Chmelnizkij, Iwano-Frankovsm). 
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Table 3. Different non-GMO livestock product labeling legislation in Europe 

 Facilitating legislation 

Highly restrictive 

legislation 

Prohibitive 

legislation 

Countries Austria, Germany, France, 

Hungary, Croatia,* Greece,* 

Luxembourg,* 

The Netherlands, 

Finland, Switzerland 

Belgium, 

Sweden 

Threshold for feed 0.1 or 0.9 percent 

adventitious presence 

Zero threshold  

Threshold for food 0.1 percent or zero 

threshold 

Zero threshold  

Feeding Allows GM feed some 

period before milking, 

laying eggs, or slaughtering 

No GM feed during the 

whole animal lifetime 

 

Label Wording and/or labeling design is specified and must 

be used 

 

Note: * These countries are in the preparation process. 

Source: Castellari et al. (forthcoming) 

 

2.3 Stakeholders’ Objectives of Non-GMO Labeling and Optimal Stringency 

As Table 3 shows, government policies either facilitate GM-free labeling, allow non-GMO 

labeling under highly restrictive circumstances, or prohibit non-GMO labeling. The motivation 

in the first case is to provide a choice to consumers and producers, while in the other cases the 

motivation is to avoid consumers’ confusion or misleading information (European Commission, 

2015). In several countries, firms have set private standards for non-GMO labeling (e.g., COOP 

in Italia or Carrefour in France) (Ghozzi et al., 2016). 

The different stakeholders of the non-GMO supply chain have objectives that are partly 

agreeing and partly opposing each other (Figure 2). In Germany, a multi-stakeholder 

organization sets the non-GMO standard. This organization contains representatives of 

suppliers, consumers, and other groups, such as consumer and environmental NGOs. While the 

standard-setting organization, as a combined goal, might aim for a strict inspection standard to 

maintain a positive reputation (Jahn et al., 2005), individual objectives of the groups within the 

organization may differ. Suppliers, for example, may prefer to increase the probability of 

successful certification by employing a low inspection standard (Pierce and Sweeney, 2004). A 

zero tolerance of GMOs in the production process may not be optimal for any of the involved 

stakeholders. 
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Figure 2. Possible objectives of stakeholders of non-GMO labeling 

 

Consumers’ Objectives 

Consumers buy non-GMO products if their utility of these products exceeds the utility of GMO 

products. For example, the results of choice experiments reveal that some consumers are willing 

to pay more for some non-GMO-labeled products (Roosen et al., 2003). From an economic 

point of view, the predictions from a utility framework are not straightforward, as the non-GMO 

attribute may not only yield direct personal benefits but also indirect benefits to consumers. 

Indirect benefits may be altruistic reasons or a perceived contribution to some public good 

(Kirchhoff, 2000; Mason, 2013).  

Furthermore, there are several interacting effects between the information provision of the 

label and preferences of consumers that complicate the evaluation of utility derived from non-

GMO labeling. Consider, for example, a case in which consumers are perfectly informed about 

the use of GMOs in livestock feed production, and they also know that GM feed can be 

produced at a lower marginal cost. Then, in the absence of a signaling opportunity for firms, 

consumers can infer that firms default to the less expensive (GM) feed variety (in accordance 

with the Akerlof (1970)’s lemons problem). However, if GM-averse consumers are unaware of 

the use of GMOs in food production, then those consumers prefer the GM products over the 

same physical product when it is offered in cases in which they are aware that the product is 

derived from GMOs. However, due to the difference in preferences, consumer surpluses with 

and without information are incomparable (Bagwell, 2007; Braithwaite, 1928; Dixit and 

Norman, 1978; Teisl et al., 2002) if treated as the same good. Hence, to measure the effect of 

information, the awareness needs to be considered in the utility evaluation (Teisl et al., 2002). 

However, additional information about a product does not only create awareness; it can also 

Consumers 

Suppliers 
Anti-GMO 

activist groups 

Maximize utility 

- Improve information 

- Stringency-price trade-off 

Maximize profits 

- Product differentiation 

- Transaction cost and 

uncertainty reduction 

- Long-run reputation gain 

Minimize the amount of GMOs 

- Increase consumers’ GMO 

aversion 

- Pressure GMO-using firms 
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distract consumers from other (potentially more) important information (Teisl and Caswell, 

2003). 

Another challenge of measuring the consumer welfare of labeling is that awareness itself 

can be endogenously determined through labeling. This endogeneity has been shown in 

experiments where consumers’ willingness to pay to avoid an undesired attribute (e.g., GMOs) 

was significantly higher if the GM product is labeled (e.g., “contains GMOs”) than if the 

product without the undesired product is labeled (e.g., “does not contain GMOs”) (Costanigro 

and Lusk, 2014; Liaukonyte et al., 2013). Furthermore, the label itself may signal to consumers 

that GMOs are unsafe because if they were safe, a label would be irrelevant (Costanigro and 

Lusk, 2014). As discussed by Caswell (1998), consumers may consider the label to be an 

indicator of a safety concern regarding the GMO attribute, even though regulators evaluate it 

as safe. This endogeneity questions how far a non-GMO label can reduce imperfect information 

(i.e., informing consumers that products are GM or not) or can potentially cause new 

information imperfections (i.e., signaling safety concerns of GMOs). 

Not all consumers are equally averse to GMOs. Consumers who are indifferent between a 

GM and non-GM product are unaffected by the label if the price of the lower-priced GM 

product remains the same after labeling. These consumers are better off if the price of the GM 

product decreases (e.g., due to an inward shift in demand when some consumers switch to non-

GMO products). GM-averse consumers, however, are only better off and will buy the labeled 

product if the incremental utility from the non-GMO attribute minus the price premium that 

firms ask for non-GMO products exceeds the utility of consuming the GM product. In the 

absence of other imperfections, there exists an equilibrium stringency and a market clearing 

price (Caswell, 1998).6  

Suppliers’ Objectives 

For suppliers to maximize their profits, not only the direct effect on the labeled product, but 

also the indirect (external) effect on unlabeled products must be considered. The key variables 

are a firm’s reputation as well as non-GMO production and certification costs (e.g., incremental 

production costs for more expensive raw material or segregation from other GMO sources). 

Further costs arise for the implementation of the production standard (e.g., separating 

production lines) and transaction costs (e.g., loss of flexibility to source raw materials). 

                                                 
6 The equilibrium only exists if the marginal production costs of zero-tolerance are increasing and are initially 

below the consumers’ choke price. 
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Firms have several incentives to adopt policies for labeling attributes that are perceived by 

consumers as higher quality. These incentives are, for example, to soften price competition 

through vertical product differentiation (e.g., Arora and Gangopadhyay, 1995) or to increase 

bargaining power over upstream suppliers (von Schlippenbach and Teichmann, 2012). 

Additionally, historical factors, communication infrastructure, or sectoral conditions play a role 

such that not all firms equally benefit from labeling (Vigani and Olper, 2014). However, 

Fulponi (2006) finds that reputation is the largest incentive for the implementation of private 

standards by the majority of OECD food retailers. Reputation also plays a major role for dairy 

companies to switch to non-GMO production (Punt et al., 2016). 

Non-GMO suppliers benefit from an increased attribute awareness of consumers due to 

labeling. However, the non-GMO attribute may have both a negative and positive information 

externality. The negative externality is that the label not only increases awareness that a product 

is non-GMO, but also increases awareness that the unlabeled products do not comply with the 

non-GMO standard, which signals a product’s GM attribute. Firms that offer both labeled and 

unlabeled products may face a trade-off between the direct benefits of non-GMO product 

supply and the indirect effects of making consumers aware that unlabeled products may not 

comply with the non-GMO standard. 

The positive externality relates to the halo (positive spill-over) effect of a non-GMO label 

on a firm’s reputation. Consumers may prefer the unlabeled products of a firm that offers non-

GMO labeled products to other unlabeled products of firms that do not offer any non-GMO 

products in their assortment. For example, most retailers communicate their non-GMO supply 

as part of their sustainability strategy (Vigani and Olper, 2014; Wesseler, 2014). This strategy 

extends the positive effect of a few non-GMO labeled products as a quality attribute to the 

overall brand or whole firm image (Gruère and Sengupta, 2009). It is not clear a priori which 

externality is stronger. 

Furthermore, while consumer activist groups advocate transparency of the production 

standard, it may not be in the firms’ interest to provide full information to consumers if 

consumers perceive the non-GMO label to be stricter than it is. As Henseleit and Kubitzki (2009) 

show in their survey, consumers’ expectations of the non-GMO label are higher than the current 

non-GMO standard requirements. Hence, most processors (17 out of 18) and some of the other 

stakeholders (e.g., consumers associations, food industry associations, NGOs, retailers) in a 

survey on non-GMO labeling agreed that the non-GMO label potentially misleads consumers 

(European Commission, 2015, , p.60). 
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Anti-GMO Activist Groups 

The main concern of anti-GMO activist groups refers to the usage of GMOs in agriculture, 

aquaculture, and forestry. Because GM animals are not approved for consumption or production 

in the European Union, in the view of anti-GMO activist groups, the non-GMO label may be 

considered mainly as a tool to minimize the total area of GM plant cultivation. Through the 

promotion of non-GMO labeling and pressure against GMO-using firms, these groups try to 

minimize the total amount of the GMO content (mainly GM crops) used in food production. 

Fulponi (2006) found in her survey that the strength of NGOs is to determine retailers’ adoption 

of a higher private production standard for animal welfare. 

Activist groups have different strategies to achieve their goals. The greater the consumers’ 

aversion towards GMOs, combined with the consumers’ awareness of GMO use by firms, the 

more successful the activist groups are in achieving their goals. These groups use consumer and 

public pressure to cause financial and reputational harm to firms that use GM crops in their 

food production (Winston, 2002). Targeted firms are firms that are highly visible, well-

recognized and highly susceptible to public pressure (Spar and La Mure, 2003). Examples are 

Greenpeace’s protests at the dairy companies Landliebe (a subsidiary of FrieslandCampina) 

and Weihenstephan (a subsidiary of Müller), or protests at Wiesenhof (a subsidiary of the 

largest German poultry producer, PHW Group). Landliebe became the first (large) dairy 

company to use non-GMO labeling. Greenpeace also claims that Wiesenhof switched to non-

GMO production because of Greenpeace’s pressure (Greenpeace, 2014). Similar cases were 

reported in France, where Greenpeace groups placed large posters in front of supermarkets 

calling them “contaminated with GM food,” because these supermarkets listed some products 

with GM-labeled ingredients (Gruère, 2006). In addition, the NGO publishes shopping guides 

to help consumers distinguish between firms that adopt non-GMO strategies and other firms.  

Regarding the optimal standard stringency from the activist groups’ viewpoint, we need to 

distinguish between options that concern the GMO attribute and options that concern the non-

GMO attribute. In the first case, activist groups’ optimal stringency is stricter than the social 

planner’s or the firm’s optimum (Bonroy and Constantatos, 2015). For example, the activist 

group’s preferred option is a ban on GM food. However, in terms of labeling the non-GMO 

attribute, the activist groups’ optimal stringency may be even weaker than a social planner’s or 

a firm’s optimal stringency. This order reversion occurs, because a stricter non-GMO labeling 

standard increases the firms’ compliance costs, deterring some firms from adopting the standard 

(Bernstein and Cashore, 2007). A non-GMO standard stringency that is optimal for anti-GMO 

activist groups minimizes the total usage of GM crops in food production. 
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2.4 Coexistence Measures in the European Union 

The provision of non-GM products in the presence of GM cultivation requires coexistence of 

the systems. In the European Union, the national authorities of individual Member States set 

coexistence rules for GM crops to guarantee coexistence with conventional and organic crops. 

The European Commission published Recommendation 2003/556/EC on 23 July 2003 on 

guidelines for the development of national strategies and best practices to ensure coexistence 

(European Commission, 2003). In 2010, the Commission replaced the recommendations with 

the recommendation on guidelines for the development of national measures to avoid the 

unintended presence of GMOs in conventional and organic crops (European Commission, 

2010). 

This recommendation to set up coexistence measures also holds for the EU Member States 

without GM crop cultivation, because these countries need to be prepared if they allow GM 

cultivation. At the EU level, the European Coexistence Bureau organizes the exchange of 

technical and scientific information on the best agricultural management practices for 

coexistence. On this basis, it develops crop-specific guidelines for coexistence measures. 

Most EU Member States have adopted coexistence rules or are preparing them. All 

countries that cultivate GM crops, except Spain, have enacted coexistence legislation. Spain 

manages coexistence based on the good agricultural practices defined by the National 

Association of Seed Breeders. Some EU Member States or regions (e.g., Southern Belgium and 

Hungary) enacted very restrictive coexistence rules that strongly limit the cultivation of GM 

crops (USDA FAS, 2016).  

Germany is one of the Member States with well-defined coexistence measures; however, 

these measures are restrictive and according to the U.S. Department of Agriculture (USDA), 

they are biased against the use of GM crops (USDA FAS, 2016). Commercial GM crop 

cultivation was allowed from 2005 to 2008, until Germany applied the safeguard clause. Several 

of the coexistence measures that the European Commission recommends, are discussed in 

Chapter 3 of this thesis. 
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3. THE COSTS OF COEXISTENCE MEASURES FOR GENETICALLY 

MODIFIED MAIZE IN GERMANY7 

 

ABSTRACT: We estimate the perceived costs of legal requirements (‘coexistence measures’) 

for growing genetically modified Bt maize in Germany using a choice experiment. The costs 

of the evaluated ex-ante and ex-post coexistence measures range from zero to more than 300 

euros per measure and most of them are greater than the extra revenue the farmers in our survey 

expect from growing Bt maize or than estimates in the literature. The cost estimates for temporal 

separation, the highest in our evaluation, imply that the exclusion of this measure in Germany 

is justified. The costliest measures of the ones that are currently applied in Germany are joint 

and strict liability for all damages. Our results further show that neighbors do not cause a 

problem and opportunities for reducing costs through agreements with them exist. Finally, we 

find that farmers’ attitudes toward genetically modified crops affect the probability of adoption 

of Bt maize. Our results imply that strict liability will deter the cultivation of Bt maize in 

Germany unless liability issues can be addressed through other means, for example, through 

neighbors agreements.  

KEYWORDS:  Coexistence measure cost, genetically modified crops, Bt maize 

 

 

  

                                                 
7 This chapter is based on the article: Venus, T.J., Dillen, K., Punt, M.J., and Wesseler, J.H.H., 2017. The Costs of 

Coexistence Measures for Genetically Modified Maize in Germany. Journal of Agricultural Economics. pp. 407-

426. 
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3.1 Introduction 

The EU Commission has decided that both producers and consumers should be free to cultivate 

and consume the product of their choice: be it organic, conventional or genetically modified 

(GM) crops (European Commission, 2010). To ensure that GM crops can be separated from 

non-GM crops at the farm level, many EU countries have implemented coexistence measures 

(i.e., legal requirements to ensure coexistence)8 (see Beckmann et al., 2014 for an overview). 

Coexistence measures in the European Union include ex-ante regulation requirements that 

farmers must comply with when cultivating GM crops as well as ex-post liability rules that 

determine how legal cases of GM crop cultivation issues are handled. The success of 

coexistence measures is affected by different farming conditions in the EU Member States.  

Coexistence measures at the farm level are difficult to price and cost estimates are largely 

missing in the literature. Our main contribution is to analyze how farmers who have experience 

with coexistence measures value them. For the analysis, we conducted a survey among farmers 

in Germany who planted genetically modified Bt maize (denoted as Bt farmers) and their 

neighboring farmers (denoted as non-Bt or neighbor farmers).9 We surveyed farmers using a 

choice experiment and econometrically estimated the costs of different coexistence measures 

with a conditional logit model.  

Even though the cultivation of Bt maize in Germany has been prohibited since 2009, 

knowing the costs of coexistence measures is important for economic and political decisions. 

First, measures have been implemented in Germany, but their costs from a farmer’s viewpoint 

have never been assessed econometrically. Second, the cost estimates can be used for 

comparisons with other countries. Third, similar coexistence measures may be considered for 

crops derived from other controversial cropping technologies, either to satisfy standards 

initiated by the private sector or because they fall under the GM regulation. One example that 

illustrates this possibility is the case of so-called New Plant Breeding Techniques (NPBTs). 

The decision at the EU level of whether to regulate NPBTs as a GM or a conventional 

technology is still pending. Furthermore, the U.S. Department of Agriculture (USDA) has 

recently published a report (Greene et al., 2016) discussing the importance of coexistence issues 

within US agriculture. They find that the major strategy for coexistence at farm level is the use 

                                                 
8 Coexistence refers to the conditions under which GM and non-GM agricultural products can be grown in the 

same territory, transported and marketed side by side, preserving their identity in accordance with the relevant 

labeling rules and purity standards (Schenkelaars and Wesseler, 2016). 
9 Bt maize is a GM crop that contains a trait, inserted through genetic modification, that makes crops resistant to 

the European Corn Borer (Ostrinia nubilalis). 
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of buffer strips. Hence, the issue is not only of interest for the EU but also for other regions 

where GM crops are cultivated. 

Previous literature analyzing the cost of coexistence measures relies on small case studies 

with either direct assessments based on accounting principles (e.g., Consmüller et al., 2009b; 

Messean et al., 2006; Skevas et al., 2010; Venus et al., 2011) or on simulations (e.g., Messean 

et al., 2006). Using simulations based on expert opinions and a Geographic Information System 

simulation, Messean et al. (2006) find that the coexistence costs for the Poitou-Charentes region 

in France can vary widely, depending on the farming system. For instance, if farms share a 

combine harvester, the costs amount to 57 euros per cleaning. They estimate that shifting of the 

flowering time can add a cost of more than 201 euros per hectare. For buffer zones, cost 

estimates range between 17 euros and 78 euros per hectare. 

Case studies by Consmüller et al. (2009b) and Venus et al. (2011) show that farmers 

perceive many coexistence measures as acceptable. A possible reason for the high acceptance 

in those studies was the well above average farm size, which allowed the farmers to plant Bt 

maize in areas where conflicts with neighbors can be avoided. However, farmers with many 

fields adjoining neighbors or with relatively small field sizes perceived the minimum distance 

requirement as having a stronger negative impact. An agreement made with a grain trader to 

buy Bt maize containing the potentially Bt-contaminated maize of neighbors helped to reduce 

liability issues. Both case studies report mostly good relationships with neighboring farmers. 

However, Venus et al. (2011) report conflicts with representatives of the municipality and the 

church or landlords. 

Although coexistence measures are meant to guarantee freedom of choice between GM 

and non-GM crop cultivation, several papers have shown that minimum distance requirements 

discriminate against small farms (e.g., Beckmann et al., 2010; Consmüller et al., 2009a; Devos 

et al., 2009). This result may explain why research findings show a positive impact of farm size 

on the GM adoption probability (e.g., Breustedt et al., 2008). Beckmann et al. (2011) show that 

depending on the property right, in the presence of minimum distance requirements non-Bt 

farmers may pose a negative externality on the Bt farmers by increasing Bt farmers’ coexistence 

costs. Minimum distance can severely limit the economic benefits of GM growers in areas with 

non-GM farmers such that potential GM growers remain or convert back to non-GM cultivation 

(Demont et al., 2008; Groeneveld et al., 2013). Demont et al. (2009) and Devos et al. (2013) 

argue that flexible coexistence regulations (e.g., buffer zones) instead of rigid ones (e.g., 

minimum distance requirements) may reduce a possible domino effect that pressures potential 

Bt farmers to shift to non-GM maize cultivation. Studies in countries without the minimum 
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distance requirement, however, also document a size effect (i.e., that larger farms are more 

likely to adopt GM crops) (e.g., Fernandez-Cornejo et al., 2002; Hubbell et al., 2000) without 

explicitly identifying the reasons. 

For farmers to adopt Bt maize, coexistence costs have to be outweighed by the extra 

revenue of Bt maize compared to conventional maize. This profitability depends on several 

agronomic and economic factors such as the European Corn Borer infestation rate, farm 

structure, pest control management or maize acreage per farm (e.g., Breustedt et al., 2008; 

Consmüller et al., 2010). Areal et al. (2011) find that the major reasons for farmers to adopt 

herbicide-resistant maize and oilseed rape in six European countries are a guaranteed higher 

income and the reduction in weed control costs. However, the social environment, farmer’s 

knowledge about and attitudes towards GMOs, age and education have also been identified to 

affect potential adoption (e.g., Areal et al., 2011; Gyau et al., 2009; Skevas et al., 2012). Several 

studies have used choice experiments to analyze factors influencing farmers’ choice of adopting 

GM-crops (see Breustedt et al., 2008, , for an overview). However, these studies do not 

explicitly calculate the costs of coexistence measures. 

As shown earlier, arguments on the choice and impact of coexistence measures are often 

based on theoretical models, simulations, or narratives. To judge the importance of the impact 

on farmers, econometric cost estimates are missing in the literature. We provide these estimates 

derived from choice experiments with former Bt maize farmers and their neighbors in 

Germany—one of the few countries besides the Czech Republic, Portugal and Slovakia, where 

farmers have experience in complying with a complete national coexistence regulation regime. 

The estimates form a basis for further discussion on this issue for researchers and policymakers 

and constitute a validation of previous theoretical work. 

 

3.2 Material and Methods 

3.2.1. Coexistence Measures in Germany 

Germany is one of the EU Member States that allowed farmers to grow genetically modified 

Bt maize after the EU approved its cultivation. The German government approved Bt maize 

cultivation in 2005, but banned it again in early 2009. During the period of 2005 to 2008, 91 

farmers from 12 out of 16 German federal states registered Bt maize cultivation areas. The total 

area increased each year and reached a total of 3,171 hectares (0.15 percent) of the total German 

maize production in the last year before the ban (BVL, 2013). More than 92 percent of the Bt 
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maize area was located in three federal states: Brandenburg (39 percent), Saxony (30 percent), 

and Mecklenburg-Western Pomerania (24 percent).  

In 2008, coexistence measures for Germany were formulated in the German Genetic 

Engineering Act (GenTG), complemented by the Genetic Engineering Plant Act (GenTPflEV), 

and by the Regulation on the implementation of the EU regulation on labeling and application 

of genetically modified organisms (GMOs) (Federal Ministry of Germany, 1990, 2004, 2008). 

The ex-ante and ex-post coexistence measures for the cultivation of Bt maize include: 

(1) Compulsory registration. A farmer who plants a GM crop has to inform the Federal Office 

of Consumer Protection and Food Safety (BVL) 3 months before the intended GM plant 

seeding. 

(2) Spatial isolation minimum distance. Genetically modified maize must keep a distance of 

150 m from conventional and 300 m from organic maize fields. The Federal States have 

the right to implement additional minimum distance requirements to nature conservation 

areas. The Federal States of Brandenburg and Baden-Wuerttemberg, for example, require 

a minimum distance of 800 m and 3,000 m, respectively, between a Bt maize field and a 

nature conservation area.  

(3) Obligation to notify the BVL and neighbors about the intention to cultivate genetically 

modified plants. Neighbors are owners of a field within 300 m from the GM field. 

(4) Private arrangements. The Bt farmer can agree with the neighbor to reduce the obligatory 

minimum distance up to 3 months before seeding. The neighbor has to sign an admonition. 

If the neighbor does not answer the request within one month, it is considered as consent 

to the Bt farmer’s request. The Bt farmer has to inform the BVL about the agreement. 

(5) Obligation to inquire information from the lower nature conservation authority. The Bt 

farmer has to ask for information about nature protected areas three months before seeding 

if all conditions for the environmental protection are pertinent. 

(6) Obligation to document. The Bt farmer has to document the seed used and the location of 

the genetically modified plants. Additionally, the document must contain the cultivation 

technique and potential growth of unintended GM maize in the following year (i.e., 

volunteers). The farmer has to destroy volunteer GM plants. 

(7) Avoidance of commingling. The farmer has to prevent GM seeding and GM harvest 

material from commingling with the conventional material; the farmer must, for instance, 

clean all machinery that could potentially lead to an admixture. 

(8) Crop rotation. Farmers must wait for at least one year before cultivating conventional 

maize in a field if GM maize grew on that field before. 
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Prior to these regulations, a 20-meter pollen barrier was recommended as a best practice 

measure at the farm level (Consmüller et al., 2009a; Weber et al., 2007). 

3.2.2. Selection of Farms and Study Design 

A total of 91 farmers planted Bt maize in the period of 2005–2008 in Germany. We approached 

those farmers as they have experience with coexistence measures. We also included their 

neighbor farmers because Bt maize producers need to inform neighboring farmers about their 

intention to cultivate GM crops. Although the size of our sample does not allow inference about 

German farms in general, it does allow comparison of the estimated coexistence costs with the 

expected Bt maize benefits. Moreover, because the farmers in our sample cultivated Bt maize, 

our results are based on past experience rather than on expectations. 

In June 2012, the Federal Office of Consumer Protection and Food Safety sent out a letter 

to all 91 farmers. The letter asked them to provide their names and addresses to the project 

institution (Technische Universität München). Two out of the 91 letters were returned because 

the address was wrong or the recipient was unknown. Initially, 35 farmers replied to the letter. 

Of those who replied, 24 agreed to participate in the survey. The reasons of those who declined 

included: ‘… cultivation and coexistence are currently not relevant to agriculture,’ ‘… fed up 

with the ban by the politicians,’ ‘… had trouble in the first year. The yield was 20 percent extra, 

though,’ ‘… was criminalized by neighbors’ and ‘… was forbidden by the landowner to grow 

GM.’ The 24 farmers who agreed received a personal phone call, in which four changed their 

mind about participating.  

InnoPlanta e.V.,10 an organization at which all Bt farmers are registered, contacted five 

additional Bt farmers who had not replied to the BVL letter. Four of them agreed to participate 

in the survey.11 The surveyed Bt farmers identified seven additional Bt neighbor farmers who 

initially had not replied to the BVL letter. Three of the Bt neighbors agreed to participate, 

resulting in a sample size of 27 Bt-farmers. 

The 27 Bt farmers in the survey provided a contact for 53 non-Bt neighbors. All of the 

neighbors received a request by phone to participate in the survey. 20 non-Bt neighbor farmers 

agreed to participate. The main reasons for refusal were ‘… no time,’ ‘… no interest in the 

topic,’ ‘… do not plant maize,’ ‘…area is leased out,’ ‘… the responsible person is retired, sick, 

or passed away.’ In summary, 27 Bt and 20 non-Bt farmers participated in the survey.  

                                                 
10 InnoPlanta e.V. is an association whose objective is to promote agro-biotechnological and modern plant breeding 

activities of farmers, companies, scientific institutions, and others and to connect them in a network. 
11 The one who disagreed had problems with his landowners and did not want to be further connected with GMO 

activities. 
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Our sample farms are in six out of the 16 German federal states (Table 1). Most sample 

farms are in Brandenburg, which was the state with the largest Bt maize production. Farms in 

Saxony, the second largest Bt maize cultivating state in Germany, are also well-represented. 

Farmers were mostly evenly spread within the states except for Bavaria where all farmers were 

in the northern part that has the highest application of insecticides against the European Corn 

Borer (Zellner et al., 2009). 

All respondents are highly involved in the arable production decision of the farm either as 

farm owners or managers (39 cases) or as plant department managers (8 cases). They were all 

employed when Bt maize was planted and hence were well-informed; they were either involved 

in the decision in favor of or against Bt maize or, in the case of non-Bt farmers, knew about 

their Bt neighbors’ decision. 

 

Table 1. A summary of farmers’ characteristics 

  All Bt Non-Bt 

  n = 47 n = 27 n = 20 

Gender  Male 45 27 18 

Education 
University (of applied 

sciences) degree 
37 22 15 

Juristic person Yes 37 24 13 

Federal state Bavaria 10 3 7 

 Brandenburg 14 11 3 

 Mecklenburg-W. Pom. 5 1 4 

 Saxony-Anhalt 3 2 1 

 Saxony 14 9 5 

 Thuringia 1 1 0 

Source: Authors’ survey 

 

3.2.3. The Survey Questionnaire 

The questionnaire included general questions on farm and farmers’ characteristics. Farm 

characteristics included general farm type (arable, mixed, livestock, or other), specific farm 

type (e.g., cereal, dairy, or hog), farm-utilized agricultural area (UAA) (in hectares), and farm 

land leased. We also included questions on maize production, such as the cultivated maize; 

ranking of limits that prevented the farmer from receiving the maximum maize yield; as well 

as a 10-point scale ranking of the European Corn Borer damage and weed damage, if not or 

only insufficiently controled.  

The questionnaire also included socio-demographic characteristics such as the job position 

of the respondent within the farm, his or her farming experience, age, gender, and level of 

education. Questions on the private farm household addressed the number of employees and 
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farm income. Furthermore, we asked about the 2008 conventional and Bt grain and silage maize 

production. We gathered information on the planted area, number of fields, and yield of the 

crops. In most cases, the exact yield, especially for silage maize, was not available, so the 

information was rather farmers’ best estimate. Further information included the percentage of 

on-farm usage of maize, and if sold, the selling strategy and price per metric ton. To examine 

farmers’ attitudes, we used a Likert scale with 15 items about their perception of GM foods, 

food health and environmental issues, and the role of the government. 

To examine the costs of coexistence, the survey included a discrete choice experiment 

requiring farmers to make a trade-off between a set of four coexistence measures and one 

monetary attribute—the extra gross margin from planting GM crops. The coexistence measures 

were some of those recommended by the European Commission (European Commission, 

2003). We chose measures for which we expected a low correlation with one another. We 

excluded, for example, buffer zones because of a large correlation with minimum distance. 

Table 2 presents the five attributes.  

Each attribute varies within three available levels. A full factorial design comprises 35 = 

243 possible combinations of attributes. Statistical design methods were then used to structure 

the presentation of the attribute levels within the choice sets. A D-optimal experimental design 

was constructed with only the main effects (Johnson et al., 2006). A fraction of the full factorial 

design was employed to construct an efficient design with 12 choice sets, in which each level 

occurred once in each attribute and choice set. During the survey, each farmer was presented 

with those 12 choice sets, each containing two options to grow Bt maize and an option to ‘opt 

out’ by planting conventional maize with the information that this option could not lead to an 

additional gross margin but also does not require coexistence measures. This design results in 

a total of 47 x 12 = 564 responses. 

 

Table 2. Attributes and levels of the choice experiment 

 Attributes Level 0 Level 1 Level 2 

(1) Liability Not liable 
Only if non-compliant with 

coexistence rules (negligence) 

Joint and 

strict 

(2) Minimum distance None 50 m 100 m 

(3) Information provision None Neighbor Location 

register 

(4) Temporal isolation None 2 weeks 4 weeks 

(5) Extra gross margin €25 €75 €150 
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Before the choice sets were presented, the respondents had to read a short text explaining 

that their decision in the choice set will have an effect on their economic outcome. Table 3 

shows one of the 12 choice sets presented to the farmer.  

 

Table 3. A sample choice set 

 
Alternative 1 

Bt 

Alternative 2 

Bt 

Alternative 3 

Conventional 

Liability 
Liable only in case 

of non-compliance 
Joint and strict  

Minimum distance 50 m 50 m  

Information provision 
to the public 

register 
to neighbors  

Temporal isolation not needed not needed  

Additional gross margin €25/ha €25/ha  

Option choice ☐ ☐ ☐ 

 

3.2.4. Evaluation of Coexistence Costs 

The coexistence value as defined by Beckmann and Wesseler (2007) represents a basic concept 

for the calculation of the coexistence cost. The coexistence value is computed by subtracting 

ex-ante and expected ex-post costs of coexistence from the additional gross margin derived 

from Bt maize compared to conventional maize. In the choice experiment, the coexistence 

measures are considered as attributes that a profit-maximizing farmer only accepts if the 

coexistence value of Bt maize planting is positive, following Lancaster’s (1966) attribute 

concept. Since coexistence measures are negative characteristics (i.e., reduce utility), the farmer 

will only accept these measures if Bt maize yields extra value on top of the reference: 

conventional maize without coexistence measures.  

Two types of predictor variables are distinguished: alternative-invariant and alternative-

variant predictors. Alternative-invariant variables iw  such as farmers’ education or attitudes 

vary only over the farmer i, but do not vary over the alternative j. Alternative-variant variables 

are the attributes 
ijx , that is, the coexistence measures as well as the gross margin that vary over 

the farmer 𝑖 and also differ in each choice set with each of the two GM alternatives j.  

The suitability of a conditional logit model (CLM) for the evaluation of the data can be 

tested by checking for the independence of irrelevant alternatives (IIA), that is, whether the 

exclusion of one of the alternatives is truly irrelevant. We test for IIA using the Hausman 

specification test to compare a full CLM with two CLMs, each excluding one of the two Bt 

alternatives (Hausman and McFadden, 1984). In both cases, we find that the constrained and 
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unconstrained estimated coefficients on the remaining categories are not significantly different, 

implying no rejection of the IIA, thus indicating the suitability of the CLM model. 

The three alternatives a farmer can choose are  1, 2,Bt Bt conv , where Bt1 and Bt2 are the 

first two Bt choice options and 𝑐𝑜𝑛𝑣 is the third conventional option. Based on McFadden’s 

(1974) random utility theory, the utility, 
ijU , for the ith farmer to choose the jth maize 

alternative that maximizes his or her utility is  

(1)  ' 'ij ij i j ijU x w      

The coefficient 𝛾𝑐𝑜𝑛𝑣  of the conventional alternative, which serves as the reference, is 

normalised to zero. There are two sets of coefficients, 
j , however. Following Breustedt et al. 

(2008), we restrict the alternative-invariant coefficients not to vary between the two Bt 

alternatives, that is, 𝛾𝐵𝑡1 = 𝛾𝐵𝑡2 = 𝛾. For the alternative-variant coefficient, the conventional 

alternative serves as the reference, such that the predictor 
* *

ij ij iconvx x x     and the error terms 

become 
* *

ij ij iconv     . The probability that the observed outcome, 
jy j , that is, that the ith 

farmer chooses alternative  1, 2Btj Bt  is  

(2)   
 

 
3

1

exp

exp

j

ij i

kij ik

ij ix w
p Prob y j

x w

 

 


 
  

 
. 

Interaction terms between some of the alternative-variant and alternative-invariant 

variables depend on i and j and are considered in
ijx . Taking the derivative of the probability 

with respect to the alternative-variant variables yields the marginal effect of an increase in a 

regressor on the probability of selecting alternative j, that is  

(3)  Indij ik ij ikp x p j k p        , 

where Ind (.) is an indicator function, equalling one if j = k, and zero otherwise. 

The alternative-variant variable coefficients resulting from the CLM are used to estimate 

the coexistence costs, that is, the marginal rate of substitution of the coexistence measure 

attribute and the monetary gross margin attribute, which is given by  

(4) coexistence measure

gross margin

W



  . 

In this study, the interpretation of the non-monetary and monetary attribute parameter ratio 

is the willingness-to-accept rather than willingness-to-pay as farmers only accept coexistence 

measures if they get additional gross margin. Independently of this interpretation, however, W 

represents the cost of an attribute and hence the cost of coexistence measures. 
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3.2.5. Principal Component Analysis 

Farmers were asked to rank several items on a Likert scale to measure their attitudes towards 

GMOs. To include the attitudes in the choice experiment, we use a Principal Component 

Analysis (PCA).12 The PCA explores if the variance of responses to an item overlaps with the 

variance of other items to form some common construct (component) (Costello and Osborne, 

2005). 

Even though explanatory factor analysis is more reliable in explaining an underlying 

construct, we use PCA as it is more robust because it assumes that all variance—the variance 

shared with other items and a part that is unique to the item—can be analyzed compared to 

factor analysis, which explains the shared variance only (Costello and Osborne, 2005).13  

The Kaiser-Meyer-Okin (KMO) (Kaiser, 1970) measure of sampling adequacy is used to 

test whether the sample is large enough and the Cronbach’s alpha analysis to test the reliability 

of the component (see Appendix 3.6.2). Finally, the farmers’ perception is measured by their 

score on each construct. This score is the weighted average of all item values that comprise a 

component.  

 

3.3 Results 

3.3.1. Statistics of Sample Farms 

Our sample farms cover 0.03 percent of UAA in Germany and produce 9,174 hectares of maize 

(see online Appendix S1).14 The sample covers 30 percent of the Bt maize farms that planted 

37 percent of the 2008 Bt maize area. The sample contains farms that planted a somewhat larger 

area than the average Bt maize producer. The size of Bt maize parcels, however, is similar to 

the average of the 2008 registered parcels, as the share of the number of parcels to the total 

number of parcels (63/200 = 31.5 percent) almost equals the share of Bt maize farmers to the 

total number of Bt maize farmers (30 percent). Of the 1,182 hectares, 77 percent specialized in 

silage maize and 23 percent in grain maize. 

Table 4 reports the mean socio-demographic and farm descriptive variables of all sample 

farms. For comparison, the fourth column represents data from Germany. The farms can be 

considered average maize producers at least in relative terms where maize occupies about 19.8 

percent of their area, compared to 16 percent on average for Germany. 

                                                 
12 A more detailed explanation of the procedure is outlined in Appendix 3.6.2. 
13 We use Varimax rotation—an ‘orthogonal rotation’ that forces the factors to be uncorrelated with each other. 
14 Note that we asked farmers about their farm size in the year before the survey, that is, in 2012.  
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Table 4. Socio-demographic and farm characteristics of the farm sample and Germany 

  Sample  Germany1 

 
Unit Mean 

Standard 

deviation 
Min-Max 

 
Mean 

Age years 51.0 (11.2) 23-75  > 45.0 

Farm employees N 21.6 (21.0) 1.5-96   

Neighbors N 14.0 (18.1) 2-100   

UAA per farm  hectares 1,147.3 (897.4) 4-3,300  63.02 

UAA per farm (juristic)3 hectares 1,418.4 (818.8) 35-360  630.7 

UAA per farm (single)4 hectares 144.2 (116.4) 4-3,300  43.9 

Share of rented area % 65 (11.2) 0-95  60.0 

Maize field size 2008 hectares 17.0 (11.7) 0.04-55.7   

Total maize area 2008 hectares 222.2 (202.5) 6-800   

Bt maize area 2008 hectares 43.8 (47.2) 0.04-200  34.8 

Bt grain maize area 2008 hectares 20.5 (15.6) 2-50   

Bt silage maize area 2008 hectares 50.8 (52.7) 0.04-200   

Observations N 47  299,1005 

Note: 1 as of 2010, 2 only ‘main livelihood’ farms, 3 n(Bt) = 24, n(non-Bt) = 13, 4 n(Bt) = 3, 

n(non-Bt) = 7; 5 Total number of farms. 

Source: Own calculations based on sample data; DEStatis (2012) data for Germany 

 

The standard deviations and the ranges for all variables imply that the data are very 

heterogeneous. However, parametric as well as non-parametric statistical tests for differences 

indicate that the heterogeneity is independent from differences between sample Bt and non-Bt 

farms’ and farmers’ characteristics. The sample mean and mean for German data imply that the 

sample includes relatively large farms.  

The average maize area per farm in the sample is 222 hectares. None of the 2008 maize 

variables (e.g., total maize area, average maize field size) differed significantly between Bt and 

non-Bt farmers. Although grain maize yield did not differ between Bt and non-Bt farmers, 11 

farmers reported it was higher by 0.8 tonnes per hectare for Bt maize (yield of 9.7 tonnes per 

hectare) compared to the yield of their own conventional maize. The reported yield of Bt and 

conventional silage maize did not differ within farms. Four Bt maize farms planted Bt maize in 

2008 for the first time. Except for one farm, all other Bt maize farms increased their Bt maize 

area from their first year of production until 2008 with reasons including higher quality (n = 

18); reduced pest damage (n = 14); and a higher profit (n = 11). Crop rotation was also a reason 

why the area allocated to Bt maize changed between years (either increased or decreased) (n = 

5).  

Out of the 17 farmers who stated that their revenue increased, only 13 were able to assess 

the increase. The mean of the increases was 115 euros per hectare. 
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Most non-Bt maize farmers expected no price difference between Bt and non-Bt maize, 

probably (as indicated by some interviewees) due to the use of maize as feed. However, on 

average they expected a yield increase of 9.3 percent (about 0.9 tonnes) and additional gross 

margin of 34.4 euros (median value of 5 euros) per hectare. The expected yield increase does 

not differ much from the one tonne yield increase found in the meta-analysis by Areal et al. 

(2013). 

3.3.2. Farmers’ Attitudes toward Bt Maize Cultivation 

A Likert scale consisting of 15 items was included in the questionnaire to survey farmers’ 

attitudes towards GM crops and their perception of related benefits and risks of GM 

technologies and the role of the government. 

Figure 1 shows the mean results of Bt and non-Bt farmers. We tested whether the 

distribution of given answers differs significantly using Fisher’s exact test. Eight of 15 item 

response distributions differed significantly between Bt and non-Bt farmers. Bt and non-Bt 

sample farmers agreed on average that GM crops should be approved if the majority of 

consumers is in favor of them (question 1). They also agree that GM crops should be approved 

if farmers find them useful (question 2). This result confirms the results by Skevas et al. (2012) 

who asked similar questions in their survey of Greek farmers.  

Our results, however, differ from Skevas et al. (2012) for question 11, 12, and 13 on the 

potential environmental and health risks and the unnaturalness of GM crops, where our farmers 

disagree on average. On the other hand, farmers tended to agree that food safety risks are among 

the most important ones (question 8); that GM crops can eradicate diseases and pests (question 

10); and that the rejection of GM crops makes EU farmers less competitive. Farmers were rather 

neutral about trust in food labels (question 3), harmfulness of food additives, and the ability of 

the government to manage potential health and environmental damages (questions 4 and 5). Bt 

farmers disagreed more strongly than non-Bt farmers that human interference in nature would 

have disastrous consequences. 
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Note: Items for which Fisher’s exact test for differences between the distribution of Bt and non-

Bt farmers is statistically significant are: 1,4,7,10,11,12,13,14,15. 

Figure 1. Mean values of Likert scale values for Bt and non-Bt farmers (n = 47). The scale 

rages from strongly disagree (1) to strongly agree (5) 

 

3.3.3 Estimation of Coexistence Costs 

Costs of coexistence measures were estimated from the choice experiment data. Each farmer’s 

principal component score (PCS) on a single construct derived from the PCA (Table S1 in the 

online Appendix) was used as an alternative-invariant variable in the conditional logit model. 

The higher the score of farmers on the component, the more they agree with items opposing 

GM crops. 

1. If the majority of European consumers are in
favour of GM crops they should be approved

2. If farmers think that a GM crop is useful to
them they should be allowed to grow it

3. Food labels can be trusted

4. I think additives in food are not harmful to my
health

5. The health risks surrounding GM crops can
be managed by the government

6. The environmental risks surrounding GM
crops can be managed by the government

7. When humans interfere with nature
disastrous consequences result

8. Among the risks we face in our lives, those
impacting food safety are very important

9. Pesticides and fertilizers are dangerous to
the environment

10. We can eradicate the diseases and pests
that attack crops by using GM crops

11. GM crops are against nature

12. Harmful environmental effects of GM foods
are likely to appear in the future

13. Harmful human health effects of GM foods
are likely to appear in the future

14. GM crops are the future of agriculture

15. Rejecting GM crops will make EU farmers
uncompetitive on the world market

1 2 3 4 5

non-Bt Bt

Increasing agreement
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We estimated two variations of the conditional logit model of 47 farmers who filled out 12 

choice sets each (Table 5). The first estimation is unrestricted while the second estimation is 

the parsimonious model excluding all insignificant variables that do not improve the model’s 

goodness of fit when compared with a likelihood ratio test. 

The reference level for the coefficient estimates of the alternative-invariant variables is 

conventional production. Therefore, a positive value implies that a larger value of the respective 

variable relates to a higher likelihood of choosing Bt maize. The reference level for the 

alternative variant variables (i.e., the coexistence measures) is the zero level of each attribute 

(i.e., not liable, no isolation distance, no information provision, and no temporal isolation 

distance). On average, 56.2 percent farmers chose the conventional alternative (i.e., the 

reference category), 22.3 percent the first Bt alternative (Bt1), and 21.5 percent the second Bt 

alternative (Bt2).  

Only two alternative-invariant coefficient estimates were significant: the principal 

component score (PCS) and the number of neighbors. Unlike previous studies, which found a 

positive impact of farm size measured by UAA on the adoption (Breustedt et al., 2008; Hubbell 

et al., 2000; Qaim and de Janvry, 2003), we found no effect. It is, however, important to stress 

that the Bt maize farms in our sample were much larger than the average German farm. This 

size effect is probably due to self-selection of larger farms cultivating Bt maize. If this is the 

case, farm size positively affects the adoption, and we cannot identify a size-effect due to a self-

selection bias. Two further insignificant coefficients were found for farmer’s age and education. 

Previous studies show either a positive or a negative impact of education on the adoption of 

GM crops (Breustedt et al., 2008). We also did not find any effect of the dummy for arable 

farming, which is one if the farm is a pure arable farm and zero if the farm also has livestock. 

We expected a negative effect assuming that Bt maize can be used as feed without affecting the 

outcome of animal production, whereas marketing Bt maize could be more problematic. 

However, agreements of grain traders to buy Bt and conventional maize at equal prices may 

weaken or refute the marketing problem argument. 

All statistically significant non-monetary attribute coefficients (i.e., coexistence measure) 

are negative, meaning that when the respective attribute is present, the Bt alternative containing 

this attribute is less likely to be chosen. For example, the 4-week temporal isolation coefficient 

of -3.43 in the parsimonious model indicates that if farmers had to implement this measure, 

they would be less likely to adopt Bt maize. Furthermore, farmers value the lower level of each 

attribute as less demanding. For example, the absolute value of the 2-week temporal isolation 

distance of -0.98 is lower than the value for 4-week isolation. 



40 

 

Table 5. Determinants of Bt maize adoption of Bt and non-Bt farmers 

Variable/Attribute Attribute level Unrestricted model Parsimonious model 

Constant  1.87** (0.86) 1.64*** (0.44) 

PCS  0.74*** (0.15) 0.71*** (0.14) 

Number of neighbors -0.02*** (0.01) -0.02*** (0.01) 

Education -0.03 (0.09)  

Farmer’s age -0.01 (0.01)  

Farm size -0.00 (0.00)  

Arable farm -0.28 (0.45)  

Liability 
Negligence -1.06*** (0.31) -0.63*** (0.19) 

Joint and strict -1.86*** (0.39) -1.98*** (0.25) 

Isolation distance 
50 m -1.26 (0.34) -0.80** (0.31) 

100 m -2.22*** (0.61) -1.82*** (0.42) 

Information provision Neighbor 0.02 (0.35)  

Public register 0.39 (0.44)  

Temporal isolation 
2 weeks -1.10*** (0.36) -0.98*** (0.23) 

4 weeks -3.93*** (0.56) -3.43*** (0.33) 

Negligence x Bt 0.53 (0.34)  

Joint and strict x Bt -0.29 (0.46)  

50 meter x Bt 1.36** (0.52) 0.76** (0.32) 

100 meter x Bt 1.44* (0.80) 0.75** (0.35) 

Neighbor x Bt -0.30 (0.37)  

Public register x Bt -0.65 (0.52)  

2 weeks x Bt) -0.26 (0.40)  

4 weeks x Bt 0.60 (0.63)  

Gross Margin x Bt -0.004 (0.005)  

Gross Margin 0.012*** (0.003) 0.010*** (0.002) 

Log-likelihood -420 -428 

Akaike Information Criterion (AIC) 905 885 

Notes: *** 0.01, ** 0.05, * 0.1 significance level. Standard errors in parentheses. Dependent 

variable = ‘Probability of choosing Bt maize instead of conventional maize’. x: interaction; 

PCS: Principal Component Score on farmer’s attitudes towards GMOs. 

 

The sign of the coefficient of the monetary attribute, that is, the extra gross margin from 

growing Bt maize is, as expected, positive.15 The only insignificant coexistence measure is 

information provision for both attribute levels: the neighbors and the public register. The model 

also includes the alternative-invariant Bt variable as an interaction term to the alternative-

variant coexistence measures. This variable equals one when the individual is a Bt farmer, and 

zero otherwise, and is used to check whether cost estimates differ between Bt and non-Bt 

farmers. Significant differences are only observed for isolation distances. 

The PCS estimate is positive, indicating that farmers with a high PCS (i.e., with positive 

responses toward GMOs) are more likely to choose one of the Bt options. The more positive 

                                                 
15 Note that we tested also for non-linearity of the gross margin as was suggested by an anonymous referee. The 

coefficient for the squared gross margin was insignificant. 
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perception relationship with higher adoption likelihood is consistent with a survey on Bt maize 

adoption in Spain (Gómez-Barbero et al., 2008). 

Table 6 presents the marginal effects in the third column and the coexistence costs in the 

fourth column. Both estimates are derived from the parsimonious model. The marginal effects, 

calculated at the mean, refer in percentage points to the effect of an increase in the respective 

variable by one unit on the probability of choosing Bt maize instead of conventional maize. The 

interpretation of the marginal effects of the coexistence measures—those are included as 

dummy variables in the choice set—is that if the respective coexistence measure is present, the 

probability of choosing Bt maize changes by the marginal effect’s percentage points. The 

coexistence costs are computed by dividing coexistence measure coefficients (e.g., -3.43 in the 

case of 4-week isolation) by the gross margin coefficient (e.g., 0.010). The ordering of 

magnitudes of coexistence costs follows the ordering of magnitudes of the estimated 

coefficients. 

If a farmer has one additional neighbor, the farmer’s probability of choosing Bt maize 

decreases by 0.2 percentage points. This may have several reasons. The more neighbors a 

farmer has, the more coordination is necessary. Even though the estimated costs are zero for 

informing the neighbors about Bt maize cultivation, Breustedt et al. (2008) show a GM-hostile 

neighbor can negatively affect the adoption probability, while a GM-friendly neighbor can 

positively affect adoption. 

 

Table 6. Marginal effects and coexistence costs of coexistence attributes 

Attribute Attribute level 

Marginal effect 

(percentage points) 

Coexistence costs 

(euros per hectare) 

Liability Negligence -9.5 60.6 

 Joint and strict -29.8 189.1 

Isolation distance 50 m (non-Bt) -5.4 76.1 

 50 m (Bt) -0.2 4.0 

 100 m (non-Bt) -20.9 174.1 

 100 m (Bt) -16.2 100.4 

Information provision Neighbor  0.0 

 Public register  0.0 

Temporal isolation 2 weeks -14.8 93.9 

 4 weeks -51.6 328.0 

PCS  8.6  

Number of neighbors  -0.2  

 

Our results show that the highest coexistence costs of about 328 euros for farmers are 

related to the temporal isolation distance of 4 weeks. This result is consistent with estimates of 

about 201 euros for France showing that temporal isolation can be one of the most expensive 
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measures (Messean et al., 2006). The high cost reflects the need to switch between very late 

and late varieties.16 Our results also support the arguments of Devos et al. (2009), Messeguer 

et al. (2006) and Weber et al. (2007) that temporal scheduling to isolate Bt maize flowering 

from non-Bt maize flowering is not an effective measure if the seeding window is very short as 

in non-Mediterranean regions like Germany. This may explain the exclusion of temporal 

isolation distance from the obligatory coexistence measures in Germany, as is the case at 

present.  

Of the obligatory measures, joint and strict liability has the highest cost of 189 euros per 

hectare. If liability is restricted to negligence, the cost is lower at 61 euros per hectare. Isolation 

distance of 100 m is the third costliest measure at 174 euros for non-Bt farmers, and 100 euros 

for Bt farmers. Similarly, Bt farmers valued the 50-meter isolation distance lower than their 

non-Bt neighbors. Since we control for attitudes towards Bt (with the PCS variable), and since 

the Bt versus non-Bt differences exhibit solely on the costs of isolation, this implies that the 

actual costs of isolation are lower than those expected ex-ante. Alternatively, Bt farmers have 

other unobserved differences which account for these lower costs. 

 

3.4 Discussion 

Coexistence measures such as joint and strict liability rules and the public register were put in 

place in Germany for Bt maize between 2005 and 2008. Isolation distance and information 

provision to neighbors were introduced in 2008. Our high cost estimates of joint and strict 

liability (189 euros per hectare) appear to contradict the idea of profit-maximizing farmers since 

the average additional revenue for Bt farmers was estimated at only 115 euros per hectare and 

the additional gross margin found by Areal et al. (2013) was 65 euros. However, farmers may 

have planted Bt maize in the presence of joint and strict liability because, as some farmers 

mentioned, one of the grain traders paid the same price for conventional and Bt maize while the 

GM seed supplying company safeguarded potential economic damage given farmer compliance 

with the laws. In the absence of such private insurance by grain traders and seed suppliers, 

compensation funds are a potential way to reduce liability costs. These funds cover accidental 

cross pollination as long as the farmer follows ex-ante regulations. Since the fund would only 

be paid if farmers complied with the ex-ante measures, it would reduce the coexistence costs 

from 189 euros to 61 euros in our estimates. The funds can be financed through a small tariff, 

for example, on the price of the GM seed bag by private stakeholders, as is the case for measures 

                                                 
16 These costs are smaller if farmers have to switch from a late to a mid-early variety, and larger if they must switch 

from a very late to a mid-early variety (Messean et al., 2006). 



43 

 

in The Netherlands, Portugal, and Ireland or paid by the GM farmer and the government as in 

Denmark (Beckmann et al., 2006).  

An alternative solution to compensation funds is the grouping of Bt maize farmers in clubs 

as implemented for Bt maize in Portugal (Skevas et al., 2009) but also reported for identity 

preservation of organic mustard in Canada (Furtan et al., 2007). Punt and Wesseler (2015) show 

that farmers form clubs depending on the property rights as well as the liability regime. The 

perceived high costs related to liability in our study supports the results of Punt and Wesseler 

(2015) that clubs will be large and stable but may not always completely solve the problem. 

The presence of minimum distance requirements might have been one of the reasons why 

Bt farmers decided to plant Bt maize while their neighbors did not, as Bt farmers valued 

minimum distance as less costly. However, we cannot exclude potential reverse causation: 

farmers valued the distance requirement attribute less because they already had a positive 

experience from Bt maize cultivation and found it unproblematic to keep the minimum distance. 

Nevertheless, minimum distance costs for 100-meter distance may restrict Bt maize adoption 

as those costs are greater than the average gross margin. The 50-meter isolation distance, 

however, was estimated to be much lower. This lower distance would be sufficient to maintain 

cross-fertilization levels below 0.5 percent at the border of the recipient maize field (Sanvido 

et al., 2008). A further reduction in coexistence costs to more efficiently reduce the extent of 

cross-fertilization might be achieved through a negotiability or replacement of isolation 

distance by pollen barriers (Demont et al., 2009). A 10- to 20-m pollen barrier may be 

comparable to a 50-m isolation distance of bare ground (Devos et al., 2005).  

Our estimates for information provision to the neighbor and the public register were 

insignificant, implying zero ex-ante coexistence costs of information provision. An explanation 

for the insignificant result might be that the information provision process per se is inexpensive. 

However, information provision may have some potential negative externalities ignored by 

farmers. Negative externalities can be field destruction by anti-GMO activists, since the 

information enables or facilitates finding out the exact place of the Bt maize fields. For example, 

environmental non-governmental organizations ‘… linked the location register with [their] own 

geographical maps and internet information on how to reach GM fields’ (Vaasen et al., 2006). 

Field destruction was of concern to Bt maize farmers in our sample as well as in previous case 

studies. However, this externality may be of less concern to farmers when the GM seed provider 

agrees to compensate farmers for damage due to vandalism as is, for example, the case in 

Portugal (Skevas et al., 2009). Furthermore, the primary aim of the register is to monitor adverse 



44 

 

environmental effects. This monitoring would be possible without public access. The register 

is only publicly available to increase transparency. 

That informing neighbors has been assessed by farmers as inexpensive is further supported 

by the low negative affect of an additional neighbor on the decision to adopt Bt maize. This is 

an important result. Even so, GM crops are controversial, perhaps also among farmers, though 

they do not appear to increase conflicts between farmers in our sample. 

 

3.5 Conclusions 

Former Bt farmers and their non-Bt neighbors in Germany present a unique case for evaluating 

the practicality and cost of coexistence measures. Our sample contains about 30 percent of the 

former Bt maize farmers and some of their neighbors. Descriptive statistics of Bt farm 

characteristics reveal that mainly above average size farms chose to plant Bt maize.  

Farm size as well as other farm characteristics of the sample Bt farmers were not found to 

differ statistically significantly from their non-Bt neighbors, but their attitudes toward GM crop 

cultivation do. On the one hand, the above average farm size character due to a self-selection 

bias allows us to draw only limited conclusions for a larger population with different 

characteristics. On the other hand, the similarity between Bt farms and non-Bt neighbor farms 

in our sample indicate that farmers’ attitudes play a key role in the Bt maize adoption decision 

in common with other studies. 

We find that farmers value temporal isolation as the costliest coexistence measure, 

confirming its unsuitability in non-Mediterranean countries and explaining its exclusion from 

the set of coexistence measures in Germany. Strict liability is the costliest obligatory 

coexistence measure in Germany followed by large minimum distance requirements. 

Compensation funds may help reduce liability costs. The effect of information provision to 

neighbors or the public register on the adoption probability was insignificant. Further, an 

increase in the number of neighbors had only a negligible negative effect on the adoption 

decision. Hence, we conclude, agreements between neighbors can be a suitable and cost-

efficient strategy to reduce the costs of minimum distance requirements. In this sense, voluntary 

solutions by farmers seem to be very suitable for achieving coexistence. This should come as 

no surprise since cooperation between neighboring farmers for many different reasons is more 

common than conflict.  
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3.6 Appendix 

3.6.1 Utilized Agricultural Area (UUA), Bt Silage and Bt Maize Grain Area 

Table A.3.6.1 shows the UAA and maize area of the total sample farms in comparison to the 

UAA and maize area in Germany of the year 2012. Also shown is the cumulative Bt maize area 

split up into the grain and silage maize, and the number of Bt maize parcels in 2008.  

 

Table A.3.6.1. Descriptive statistics of the total sample and Germany 

 Unit Sample Germany 

UAA 2012 hectares 53,923 16,427,868 

Maize area 2012 hectares 9,174 2,600,000 

Bt maize area 2008 hectares 1,182 3,171 

Bt maize parcels 2008  63 200 

Bt grain maize 2008 hectares 267 - 

Bt silage maize 2008 hectares 915 - 

Source: Own calculations based on sample data; DEStatis (2012) and BVL (2013) data 

estimates for Germany 

Note: “-“ Data not available. 

 

3.6.2 Principal Component Analysis Results 

For using the principal component analysis (PCA), the construct of the Likert scale itself is 

assumed to be reliable, as the Cronbach’s alpha is 0.8517 and the Kaiser-Meyer-Olkin (KMO) 

measure of Sampling Adequacy is 0.74.18 Using Horn (1965)’s parallel analysis, we obtain that 

five variable constructs can explain more than one unit of variance and the first construct has 

an eigenvalue above the expected eigenvalue from Monte-Carlo simulation.19 Based on the 

parallel analysis, we use a single component. Table A.3.2 shows the component loadings on 

this component. 

For robust results, many authors (e.g., Comrey and Lee, 1992; Field, 2012; Guadagnoli and 

Velicer, 1988) suggest choosing cut-off values dependent on the sample size, higher ones for 

small samples. Hence, we included only the items with loadings with an absolute value of 0.6 

and above as suggested by Stevens (2009) for PCA with less than 150 observations.  

                                                 
17  Field (2012, 799f) argues that, even though a Cronbach’s alpha value between 0.7 and 0.8 is by many 

publications considered to be acceptable for reliable scales, the value depends on the number of items and on the 

scale (i.e., the more items, the larger the alpha). For the calculation of Cronbach’s alpha, reversed phrased questions 

were re-reversed. 
18 The closer the KMO measure is to one, the more “compact” are the patterns of correlations and hence, the more 

reliable it is to extract reliable factors, whereby Hutcheson and Sofroniou (1999) consider values between 0.7 and 

0.8 as “good” and between the range of “mediocre” values (ranging from 0.5 and 0.7), “great” (ranging between 

0.8 and 0.9), or “superb” values (above 0.9). 
19 The ‘expected’ values are obtained from “…simulating [uncorrelated] normal random samples that parallel the 

observed data in terms of sample size and number of variables’ (Ledesma and Valero-Mora, 2007). 
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Table A.3.6.2. Component loadings of Principal components analysis (PCA) with orthogonal 

“varimax” rotation. 

Item 

No. 

Principal 

component 

h² u²  Item 

No. 

Principal 

component 

h² u² 

1 0.60 0.36 0.64  9 (-0.39) 0.15 0.85 

2 0.49 0.24 0.76  10 0.60 0.35 0.65 

3 0.22 0.05 0.95  11 (-0.81) 0.66 0.34 

4 0.46 0.21 0.79  12 (-0.77) 0.59 0.41 

5 0.48 0.23 0.77  13 (-0.80) 0.64 0.36 

6 0.65 0.43 0.57  14 0.66 0.43 0.57 

7 (-0.68) 0.46 0.54  15 0.60 0.37 0.63 

8 (-0.33) 0.11 0.89      

Note: h² = proportion of total variance explained by the component, u² = remaining variance, 

which is not common to other items; it is unique. Bolt font means component loading above 

±0.6. 

 

Farmers who score higher on the component agreed more with the items that are in favor 

of GM crops and vice versa. We obtain one component that has factor loadings of 0.6 and higher 

for ten variables. 
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4. NON-GMO FOOD LABELING IN GERMANY – FROM A NICHE TO 

MAINSTREAM?20 

 

ABSTRACT: We discuss and illustrate the complexity of product labeling whereby 

manufacturers and retailers show that genetically modified organisms (GMO), were not used 

in the production process. We show how a multi-stakeholder organization that sets a voluntary 

private production and certification standard can combine the opposing and agreeing interests 

of its members. This cohesion reduces the fears of retailers to come under fire of non-

governmental organizations in the case of mislabeling. While non-GMO labeling started as a 

niche for farmer-to-consumer direct marketing and small processors, it was further driven by 

anti-GMO organizations. Today, retail chains label some of their store brands and are now the 

drivers. We also discuss how informing consumers through non-GMO labeling regulates 

externalities of imperfect information, but at the same time can create new information 

imperfections if consumers are not well informed about the labeling system itself.  

 

KEYWORDS: Labeling, credence good, voluntary private standards, certification, process 

attribute 

  

                                                 
20 This chapter is based on the article: Venus, T.J., Drabik, D., and Wesseler, J.H.H., Non-GMO Food Labeling in 

Germany – From a Niche to Mainstream?, submitted to Food Policy. 



50 

 

4.1 Introduction 

The use of genetically modified organisms (GMOs) in agriculture is controversial. The public 

discordance about genetically modified (GM) food has increased consumers’ anxiety over food 

safety and quality, even though product safety has increased over time (Goodman and DuPuis, 

2002; Trienekens and Zuurbier, 2008). In the European Union, the GMO regulation, in place 

since the early 2000s, requires suppliers to label a product as GMO if the food or feed contains 

ingredients with a GM content above some threshold (mandatory labeling). GM-labeled food 

products are, with a few exceptions, absent in the EU Member States. In Germany, for example, 

retailers have decided to exclude all GM-labeled products from their assortment (transGEN 

online, 2017). However, retailers offer products, for which GMOs were used in the production 

process (e.g., livestock products that are derived from animals fed with GM feed). These 

products are not within the scope of the EU GMO regulation and hence, are excluded from the 

mandatory labeling. To allow consumers to choose products for which GMOs were not directly 

used in the production process (e.g., cheese from milk from cows fed without GM feed), some 

EU Member States have developed rules and guidelines for labeling these products as non-

GMO (voluntary labeling).  

Labeling the absence of a specific product attribute (such as genetic modification) is termed 

“clean labeling” in marketing. This practice usually concerns attributes that consumers judge 

as unhealthy or reject for other reasons (e.g., preservatives, color additives, genetically modified 

organisms). However, the concerns are often about credence attributes, which consumers 

cannot objectively verify through inspection or consumption of the good (Darby and Karni, 

1973). To allow consumers to choose or avoid a credence attribute, products are labeled. Hence, 

the label’s objective is to regulate the externality of imperfect information caused by this 

specific attribute (Mason, 2013). Some of these labels are controversial because by trying to 

resolve imperfect information on one dimension, they can create other market imperfections 

that may even cause a negative net effect on social welfare (Bonroy and Constantatos, 2015). 

In this article, we discuss and illustrate the complexity of GMO product labeling in 

Germany and point to potential consequences for stakeholders in the supply chain. We embed 

our discussion in the recent literature on product labeling and private voluntary certification 

standards. We show how non-GMO labeling initially developed as a niche market for small 

producers and in farmer-to-consumer direct marketing, and how retailers have become the 

drivers of the non-GMO production.  

We focus on Germany for at least three reasons. First, Germany is one of two countries 
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(together with France) with a national legislation that facilitates non-GMO labeling.21 Second, 

Germany has become one of the largest non-GM feed importing EU Member States. Third, all 

major retail chains in Germany that operate in a highly-concentrated market have started or 

announced to use non-GMO labeling for their store brands. 

In Germany, a national production standard specifies the minimum requirements for non-

GMO labeling of food products since 2008. This standard is voluntary in that firms are not 

obliged to produce non-GMO products; however, firms must comply with the standard if they 

want to label their products as non-GMO. To operationalize the national production standard, 

a multi-stakeholder non-governmental organization (NGO) sets a private voluntary standard.  

Although products labeled as non-GMO were estimated to constitute only 0.4 percent of 

the total food revenue in Germany in 2015, the impact of non-GMO labeling on feed imports 

and domestic production can be significant. For example, two-thirds of dairy cows in the biggest 

German federal state, Bavaria, consumed only non-GM feed in 2015 (Peter and Krug, 2016). 

Imports of protein sources (mainly from South America) for livestock in Germany are double 

of the domestic production (transGEN online, 2017). Soybean meal constitutes around one-

quarter of the total protein source for livestock production and around three-quarters of the total 

raw protein imports. In 2014-2015, 20 to 22 percent of consumed soybean meal was non-GMO 

(Peter and Krug, 2016). 

Because more than 95 percent of soybeans produced in South and North America are 

genetically modified, and because the use of GM feed is prohibited in non-GMO livestock 

products (at least for most of the animals’ lifetime), non-GMO labeling necessarily affects 

production and trade in protein sources. The coexisting GM and non-GM production processes 

require segregation and identity preservation systems for feed handling and quality assurance 

systems for the supply chain between feed traders and final consumers. 

In this paper, we describe how the EU GMO regulation and a national non-GMO labeling 

legislation build the basis for a private voluntary non-GMO standard. We next explain the 

private voluntary standard and how it creates a new form of cooperation, and how the non-

GMO market developed since the introduction of the national standard. We discuss the 

implications of non-GMO labeling for different stakeholders and conclude with an outlook on 

the future development of the market. 

                                                 
21 Austria developed guidelines that facilitate non-GMO labeling as well. Other countries have either very strict 

legislation that makes labeling very expensive or prohibits non-GMO labeling altogether. In some countries 

without national legislation, private firms developed private non-GMO standards.    



52 

 

4.2 The EU Regulation on GMOs and the German Legislation on Non-GMO Labeling 

Since April 2004, the EU GMO regulation requires that food and feed products containing 

GMO ingredients be labeled with the words “This product contains genetically modified 

organisms” or “This product contains genetically modified [name of organism(s)]” (European 

Commission, 2003a).  

Traceability is required at all stages that concern products that fall under the mandatory 

labeling regulation (e.g., GM feed and other GM raw materials). The EU regulation on 

traceability requires each supplier of GM products to inform his customers about the GM 

quality, and the supplier has to keep a list of the customers for identification purposes (European 

Union, 2004). Risk-oriented third-party certification for the GM credence attributes to test 

whether products are correctly labeled according to the EU labeling law takes place at the 

respective stage of the supply chain without being requested by the concerned party (Crespi, 

2001; Roe and Sheldon, 2007; Schlicht and Felsner, 2015). In Germany, the federal states are 

responsible for performing random GMO monitoring of the final food and feed products. 

Table 1 provides a list of products with examples and a note whether the products fall 

within the scope of the EU GMO regulation and mandatory labeling. 

 

Table 1. Examples of products that fall within the scope of the EU regulation on mandatory 

labeling 

Product Example 

Mandatory 

GM label 

GM plants, seeds, food Maize, cotton seed, tomato Yes 

Food produced from GM crops Maize flour, soybean oil, rapeseed oil Yes 

Food additive/flavoring from GMOs Lecithin from GM soybean Yes 

Feed produced from GM crops Soybean meal Yes 

Feed additives from GMOs Vitamin B2 Yes 

Livestock products from animals fed 

with GM feed 

Eggs, meat, milk No 

Food produced with the help of GM 

enzymes 

Bakery products produced with amylase No 

Source: Based on European Commission (2003a,b) 

 

Table 1 contains examples of some products that do not have to be labeled; the Regulation 

1829/2003 (recital 16) states: 

“This Regulation should cover food and feed produced ‘from’ a GMO but not food and 

feed ‘with’ a GMO. […] Thus, products obtained from animals fed with genetically 
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modified feed or treated with genetically modified medicinal products will be subject 

neither to the authorisation requirements nor to the labelling requirements referred to in 

this Regulation.” (European Commission, 2003b) 

 Hence, using GMO feed does not lead to the requirement of labeling the derived livestock 

product. In Germany, the German EG Genetic Engineering Act (GGEA)22 builds the basis for 

labeling food produced without the “use of genetic engineering processes,” including livestock 

products derived from non-GMO feed. The GGEA describes a voluntary public production 

standard that goes beyond the mandatory EU labeling regulation. Even though products that 

comply with the GGEA can be labeled as non-GMO, products that do not comply with the 

GGEA are not necessarily considered GMO products according to the EU GMO regulation.  

The current GMO labeling regulation in Germany results in three possible product 

categories (Venus et al., 2016): products labeled as GM following the EU mandatory labeling 

regulation; products labeled as non-GMO, following the national or private voluntary labeling 

standard; and non-labeled food products. Table 2 illustrates varieties of labeling of a yogurt 

produced from only two ingredients: GM or non-GM sugar and raw milk derived from GM or 

non-GMO-fed cows. If the yogurt is derived from GM sugar, then it needs to be labeled as 

GMO independently of the feed. If the yogurt contains non-GMO sugar but is derived from GM 

feed, then it does not require a GMO label but can also not be labeled as non-GMO. Only if it 

is derived from non-GM feed and non-GM sugar, it can be labeled as a non-GM product. 

 

Table 2. Mandatory (EU GMO) and voluntary (national non-GMO) labeling of a yogurt 

containing GMO or non-GMO sugar and milk from cows fed with either GM or non-GM feed 

 EU GMO regulation GGEA 

GM-fed cow           &   GM sugar GMO label - 

Non-GM-fed cow   &   GM sugar GMO label - 

GM-fed cow           &   Non-GM sugar - - 

Non-GM-fed cow   &   Non-GM sugar - Non-GMO label 

Note: GMO feed and GMO sugar are products with a GMO declaration label according to the 

rules of Regulations (EC) No. 1829/2003 and No. 1830/2003; GGEA = German EC Genetic 

Engineering Implementation Act; at present, no food products that fall within the EU GMO 

regulation are sold in Germany. 

 

The GGEA specifies the minimum requirements to label products as non-GMO in 

Germany. An example of the minimum requirements is that animals must be fed exclusively 

                                                 
22 The official German abbreviation of the EC Genetic Engineering Implementation Act is EGGenTDurchfG. 



54 

 

non-GM feed for a defined period before milking, laying eggs, or slaughtering. The GGEA 

specifies that companies that want to place non-GMO products on the market must use the 

wording “ohne Gentechnik” (i.e., without GMO). In August 2009, the former Minister of Food, 

Agriculture, and Consumer Production, Ilse Aigner, introduced a uniform non-GMO label, 

which firms can adopt. A firm can also use its own label, but it must comply with the GGEA. 

 

4.3 The Private Voluntary Non-GMO Production Standard 

In March 2010, the German Association of Food without Genetic Engineering (VLOG) was 

founded. 23  It is a multi-stakeholder association whose members are retailers, processors, 

farmers, traders, consumers, and consumer and environmental NGOs. The Ministry of 

Agriculture exclusively commissioned the VLOG to issue and administer licenses for the use 

of the uniform non-GMO label. The VLOG operationalizes the GGEA. In March 2013, VLOG 

set the first version of its non-GMO production and certification standard.  

Figure 1 shows how the EU regulations on GMOs and labeling and traceability build the 

basis for the GGEA, which further sets minimum requirements for a private non-GMO 

production and certification standard. The challenge for non-GMO certification is that the GMO 

attribute that falls under the mandatory labeling scheme can mostly be detected through 

objective inspection tests24  whereas the attribute cannot typically be detected in livestock 

products derived from GM feed.25 To distinguish the detectable and undetectable attribute, Jahn 

et al. (2005) refer to the first one as a credence attribute and the latter as a Potemkin attribute. 

Labeling a Potemkin attribute requires moving from an end-of-line inspection to a quality 

assurance systems (QAS) of the whole supply chain (e.g., to distinguish livestock products 

derived from GM feed from products derived from non-GMO feed). QAS rely on 

documentation of production processes and practices at all stages of the supply chain, and often 

on third-party auditing and certification (Holleran et al., 1999). 

Figure 2 shows how the credence attribute can be transformed into a Potemkin attribute 

along the supply chain. The transformation takes place at the farm level, where GM or non-GM 

feed is used. Other raw materials used by processors can either be credence or Potemkin 

                                                 
23 www.ohnegentechnik.org 
24 Exceptions are, for example, sugar and oil, which fall under the mandatory labeling regulation if they are derived 

from GM sugar beet or GM soybean, respectively, even though the derived product does not contain GMOs. 
25 The European Food Safety Authority stated in 2007 that “… no technique is currently available to enable a valid 

and reliable tracing of animals products (meat, milk, eggs) when the producer animals have been fed a diet 

incorporating GM plants.” (EFSA, 2007).   
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attributes. For example, the GM attribute in maize flour is detectable and hence a credence 

attribute, but it is undetectable in sugar and hence a Potemkin attribute.  

 

 
Figure 1. Different levels of the GMO/non-GMO production standards (based on 

Trienekens and Zuurbier (2008)); VLOG = multi-stakeholder non-governmental 

organization 

 

In addition to the licenses for the final product suppliers (here: food processors), the VLOG 

licenses feed suppliers (e.g., feed traders, feed processors). Through the certification of feed 

suppliers, food processors can get direct information about farmers’ feed purchases, which 

lowers processors’ search, negotiation, and monitoring costs as compared to evaluating the 

purchase information of many farmers. Farmers, too, benefit from the direct certification of 

feed suppliers as a means of reliable feed monitoring without interference with their 

entrepreneurial autonomy. This interference, farmers stated in a survey, would be one of their 

main reasons to restraining them from non-GMO production (Schreiner and Latacz-Lohmann, 

2015). Like other private standards (e.g., for vegetable markets in Kenya as described by Jaffee 

(2003)), the non-GMO private standard creates new forms of cooperation vertically (e.g., feed 

suppliers and food processors) and horizontally (e.g., competing retailers cooperate in standard 

setting). 
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Figure 2. Transformation of a credence attribute into a Potemkin attribute in the livestock 

product supply chain 

 

The dashed lines in figure 3 show the linkages among members of the VLOG: stakeholders 

in the supply chain, third-party certifiers, and consumer and environmental NGOs. VLOG 

grants licenses to producers of the final product (e.g., processors) and to feed suppliers, and 

monitors third-party certifiers. Third-party certifiers must sign a contract with the VLOG (e.g., 

to regularly participate in training courses) for obtaining the allowance to audit and certify the 

label licensees. 

 

 
Figure 3. VLOG membership of various stakeholders, licensing of non-GMO label, and 

third-party auditing and certification (Note: some members are not licensees, and some 

licensees are not members) 
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In the presence of a public regulation (such as the GGEA), the private non-GMO standard 

is not required for labeling but reduces producers’ uncertainty through clarification of aspects 

of monitoring, control, and certification. To guarantee, that the quality of the non-GMO 

Potemkin attribute (i.e., an attribute that cannot be detected through tracing) has been met, the 

use of the non-GMO label is permitted only after prior prima facie evidence to the VLOG that 

all legal requirements are fulfilled. 

 

Prima facie evidence is based on documentation. In addition, third-party certification is 

mandatory for prima facie evidence, depending on: 

(1) the complexity of the production process (e.g., are GM varieties approved for cultivation 

in the country of origin of the raw materials? Do the animal raw materials originate from 

contract farmers or not? Does the company also buy raw material from the spot market?) 

(2) the raw materials used that could cause commingling with GMO material (e.g., does the 

raw material producer also produce similar food that is not suitable for non-GMO 

production? Does the product contain more than five ingredients?) 

(3) the size of the licensee’s company (e.g., if the total turnover is more than 50 million euros 

per year) 

The non-GMO standard requires lower certification costs for smaller firms (e.g., measured 

by turnover), because these firms are not required to use third-party certification, unless some 

of the other criteria mentioned above apply.  

 

4.4 Market Structure and Non-GMO Labeling Evolution in Germany 

The non-GMO market evolved very differently to the organic market in Germany. The organic 

market development was initially (in the 1920s) driven by farmers. Only later it was induced 

by consumers (in the 1970s) and agricultural policies (the late 1980s) (Latacz-Lohmann and 

Foster, 1997). Well-established organic producer organizations and their private standards with 

a high reputation remained in place after the implementation of the EU Eco-regulation in 1992, 

even though these private standards go beyond the minimum requirements of the EU Eco-

regulation. Together with the EU regulation, an EU-wide label was introduced that has been 

mandatory for labeling organic products in the European Union since 2012. 

Unlike organic production, the GGEA has been in force only since 2008. Before that time, 

non-GMO labeling was regulated under the novel food regulation, which did not specify any 

thresholds for feeding (see table 3).  
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Table 3. Comparison of non-GMO labeling regulated under the novel food regulation and under 

the German Genetic Engineering Implementation Act (GGEA) 

 Novel Food Regulation 

(before 2008) 

GGEA 

(after 2008) 

GM enzymes and 

additives in feed 

No Yes 

GM medical products for 

animals 

No* Yes 

Periods in which GM 

feed is allowed 

No Egg: 6 weeks 

Poultry: 10 weeks 

Dairy: 3 months 

Pork: 4 months 

Beef: 12 months (and at least 

¾ of animal life) 

GM threshold for 

adventitious presence 

No thresholds defined 0.9% for feed 

0.1% for food 

GM enzymes and 

additives in food product 

No No 

Source: Based on Federal Ministry of Germany (1998, , 2004; 2004) 

Note: GM medicine for animals was allowed if no alternative non-GM version was available. 

 

The absence of a threshold implied a zero tolerance GMO policy (i.e., neither GM medicine 

nor GM enzymes were allowed), which made labeling very expensive and legally uncertain. 

This uncertainty was confirmed in an interview with the CEO of the first dairy company in 

Germany, the Upländer dairy, that offered non-GMO labeled dairy products under the novel 

food regulation (Gen-ethisches-Netzwerk, 2006). The dairy stated that the major challenge was 

to find suppliers of feed (mainly soybean, rapeseed, and maize) that complies with the zero-

tolerance requirement. Since the specification of minimum requirements in the GGEA, the 

compliance to label products as non-GMO has become less costly and less legally uncertain. 

The GM threshold in feed and the periods in which GM feed is allowed are based on the organic 

regulation. 

In the initial phase after non-GMO labeling became part of the GGEA, non-GMO products 

were supplied in a niche market by farmer-to-consumer direct marketing and other smaller 

producers (Venus et al., 2016). Greenpeace claims that the first (large) dairy company 

(Landliebe) after the GGEA came into force switched to non-GMO production and labeling 

because of Greenpeace’s pressure (Greenpeace, 2008). Anti-GMO groups have also been 

demonstrated to play a significant role in other cases of adopting voluntary standards. For 
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example, Fulponi (2006) finds in her survey that the strength of NGOs is determining retailers’ 

adoption of a higher private production standard for animal welfare. 

After the introduction of the uniform label in 2009 and the establishment of the VLOG, the 

number of non-GMO labeled products and firms steadily increased (Figure 4). At the end of 

2016, the VLOG had 328 members and 290 licensees (266 food label licensees and 24 

feedstuffs label licensees). 

 

Figure 4. Development of members and licensees of the German Association of Food 

without Genetic Engineering (VLOG) (Note: The total does not correspond to the sum of 

members and licensees, because some members are not licensees and some licensees are 

not members) 

 

In 2014, the number of new licensees was very low (as compared to other years). The low 

growth rate was due to the public announcement of the German Association of Poultry 

Producers not to relinquish GM feed anymore (ZDG, 2014). The association had relinquished 

GM feed since the year 2000 without labeling. The announcement created uncertainty in the 

non-GMO market and was followed by heavy debates among retailers, poultry producers, and 

the VLOG for several months, and by a judicial advisory opinion letter as well as NGO-pressure 

on the German brand leader for chicken and poultry (Wiesenhof). Within this period, very few 

new firms entered the non-GMO market. At the end of 2014, Wiesenhof decided to enter the 

non-GMO market, and many other poultry and egg producers followed suit in 2015. This switch 
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was a tipping point and basis for the announcement of the major German retailer chains to use 

non-GMO labeling for some of their store brands.26 

Before 2015, retailers’ decisions to implement the non-GMO labeling standard were 

tentative. This initial restraint had several reasons. According to the public statement of the 

VLOG (2011), the major fears of retailers to label their retail brands as non-GMO were: (1) 

potential product recalls due to violation of the standard in the upstream production; (2) fear of 

coming under fire of environmental and consumer associations in case of small mistakes; and 

(3) discrimination against other products without a non-GMO label. 

Potential causes of mislabeling exist at several stages along the supply chain. The key 

determinants that affect the probability of detection are the amount of monitoring and the 

recognition value of the company brand to generate interest to newspaper reports (Jahn et al., 

2005). Both points put more pressure on larger and highly-visible firms. Food monitoring 

frequently detects traces of GMOs. However, these are usually below the labeling threshold. 

For example, in 2014, five percent of non-GMO products in Bavaria (23 percent in Baden-

Württemberg), contained some GMO traces below 0.1 percent by weight. In very few cases, 

monitoring agencies found non-approved GMOs, for which zero tolerance applies, or EU-

approved GMOs above the legal advantageous presence threshold of 0.9 percent. However, 

mislabeling of feed products is often found in risk-oriented sampling where samples are taken 

due to suspicion (Table 4).27  

 

Table 4. Number of risk-oriented feed samples taken due to objections in Bavaria 

Year 
Number of 

feed samples 
Violations (%) 

2007 58 3.0 

2008 114 6.1 

2009 75 28.0* 

2010 52 3.9 

2011 41 2.4 

2012 59 3.4 

2013 55 5.5 

2014 41 7.0 

Note: *High violation rate due to samples after rapid alert notification for traces of EU 

non-approved maize event MON88017 and flaxseed event FP-9678. 

Source: Schlicht and Felsner (2015) 

                                                 
26 Alexander Hissing, CEO of the VLOG (personal communication, April 6, 2017) 
27 See Wree and Wesseler (2016) for a discussion of two cases, where unapproved GM crops (a potato and a maize 

variety) accidentally entered the German market. 
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In 2010, the German discounter LIDL signed agreements with their store brand suppliers 

to only use non-GMO feed for raw milk production without labeling the final product (Spiegel 

Online, 2010). Similar cases to this supply chain initiative have been observed for some retailers 

that have adopted production methods that go beyond minimum requirement specifications of 

safety or quality regulations without mentioning it explicitly through labeling (Codron et al., 

2005). Through this non-labeling strategy, retailers can reduce expenses on monitoring, avoid 

reputation losses in case of standard violations, and prevent progressive escalation of 

competitive advertising (Codron et al., 2005). Venus and Wesseler (2015) argue that the non-

labeling non-GMO production can be viewed as a two-stage investment, where the supplier 

agreement reduces the vulnerability to anti-GMO group pressure and the risk of liability issues, 

but allows firms to implement the label quickly if uncertainty decreases or demand for labeled 

products increases. Furthermore, a LIDL representative stated the fear of a negative externality 

of labeled products on the unlabeled products (European Commission, 2015). By the end of 

2015, LIDL decided to implement the non-GMO label for some of their store brand dairy 

products in combination with a large marketing initiative. 

 Since the major retailers in Germany have decided to enter the non-GMO market, they 

have been taking the role of the “driving” sector and moving non-GMO production from a niche 

to a mainstream market. The four biggest retailing groups in Germany (Edeka, Rewe, Schwarz-

Gruppe, and Aldi) have a total market share of more than 80 percent. Their market power allows 

them to determine the production decisions of the less powerful firms that produce store brands 

for the big four (Klooster, 2005). Store brands play a particularly vital role for the products (e.g., 

livestock products) most amenable to non-GMO labeling. In 2014, around 38 percent of food 

retailers’ revenue in Germany was generated with retail brands, and the share was more than 

70 percent for fresh milk.28 Retailers demand from their suppliers to comply with the non-GMO 

standard and exclude suppliers who do not comply. As often argued, regulatory systems or 

private standards can become de facto mandatory for suppliers, even if these standards are not 

legally binding (Trienekens and Zuurbier, 2008). One cannot rule out a situation in which 

retailers not only exclude all mandatorily GM-labeled products from their assortment (as is the 

case at presence) but also livestock products derived from GM feed. 

In April 2017, the food label licensees offered a total number of 6,170 non-GMO labeled 

products and the VLOG estimated a revenue of 4,415 million euros generated with non-GMO 

labeled products for 2017. Figure 5(A) shows that 76 percent are livestock products and each 

                                                 
28 www.moproweb.de 
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of the three main non-GMO labeled livestock products (dairy, poultry, eggs) takes about one-

fourth of the share of total non-GMO labeled products. Other products (also about one-fourth 

of the total products) are pasta and cereal products, beverages, honey, and others. Figure 5(B) 

shows that dairy products generate with 55 percent the largest revenue of non-GMO products. 

This percentage corresponds to 2,440 million euros. To put this value into perspective, we 

mention that in 2013-2014, around 9,586 million euros were generated with basic dairy 

products (e.g., fresh milk, butter, yogurt, cream). The second largest revenue is generated with 

poultry (24 percent) followed by eggs (16 percent).  

To ensure the availability of protein feed supply, European retailers signed the Brussels 

soybean declaration. This declaration should make soybean producers in South American 

countries—with Brazil being the only non-GM soybean exporter—aware of the growing 

relevance to European retailers to allow the establishment of non-GM soybean supply chains. 

The German retail organization complements the declaration with a position paper. National 

non-GMO protein feed supply is furthered by a national protein strategy together with legume 

breeding support as well as an agreement to foster soybean production along the Danube River 

in several European countries. In expert interviews, Peter and Krug (2016) see no technical 

limitations to increasing non-GM soybean production in Brazil. A growing demand for non-

GM soybean can increase prices, but it may also lower segregation costs due to economies of 

scales. This demand also depends on other EU Member States. 

 

     

 (A) Number of non-GMO products           (B) Revenue from non-GMO products 

Figure 5. Number (A) and revenue (B) of non-GMO labeled products certified by the 

VLOG 

Source: Based on VLOG (2017) 
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Because Brazil is the main non-GM soybean supplier, there is little flexibility for protein feed 

substitution, and so supply shortage can create strong price fluctuations. Currently, 4.5 million 

metric tons of soybean meal is used in German livestock production (Peter and Krug, 2016). 

Given a price premium of approximately 100 euros per metric ton, livestock producers would, 

under current conditions, need to generate an additional 450 million euros of revenue to cover 

the incremental soybean costs. Further costs arise for quality assurance from the farmers until 

the final product. 

4.5 Discussion 

Complying with the national GGEA standard would be sufficient for non-GMO labeling. 

However, firms have several incentives to comply with the VLOG standard. Private voluntary 

standards reduce uncertainty through providing assurance that rules and regulations are adhered 

to (Henson and Humphrey, 2010). Internal motives such as cost and uncertainty reductions play 

a greater role for larger firms for the adoption of the voluntary private standard, whereas smaller 

firms tend to adopt quality assurance for external, customer-driven reasons (e.g., see Holleran 

et al. (1999) for the ISO 9000 quality assurance system). Furthermore, the exemption of smaller 

firms from third-party auditing facilitates smaller firms to participate in the certification scheme 

instead of forcing them out. Avoiding the exit of small- and medium-sized suppliers is a 

common challenge when implementing third-party certification schemes (Hatanaka et al., 

2005). 

Another incentive for firms to comply with the voluntary private standard is that consumers 

can easily recognize the uniform label that signals compliance with the VLOG standard due to 

its familiarity if widely used by many firms. In the long run, this familiarity and recognition 

value, as well as the transparency of the certification process, may increase consumers’ trust in 

the certification and the label and change their long-term preferences for non-GMO products 

(Roe and Teisl, 2007; Teisl and Roe, 2005). 

Regarding the strictness of the labeling standard, the interests of firms can be very different 

to the ones by anti-GMO groups or consumers. However, the multi-stakeholder organization 

VLOG combines the interests of consumers, firms, and anti-GMO groups. Their combined 

interest is to create and maintain a positive reputation of the non-GMO label. This collective 

interest limits the potential scope of action of anti-GMO activist groups. All relevant 

environmental and consumer associations in Germany indicated in a public statement29  to 

support non-GMO labeling (VLOG, 2011). Non-compliance with the non-GMO labeling 

                                                 
29 http://bit.ly/Verbaendeposition 
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standard would deceive consumers, and if consumers become aware of misleading labeling, the 

effects for the acceptance of genuinely certified products can be strong (Giannakas, 2002). 

Hence, it is not in the interest of a non-GMO labeling supporter to increase the awareness of 

consumers of potential deceptions through mislabeling. Hence, anti-GMO groups may actually 

prefer a standard that is not too strict, because a stricter non-GMO labeling standard increases 

firms’ compliance costs, deterring some firms from adopting the standard (Bernstein and 

Cashore, 2007). A non-GMO standard stringency that is optimal for anti-GMO activist groups 

minimizes the total usage of GM crops in food production. 

One of the retailer’s concerns was the negative externality of non-GMO labeled products 

on the unlabeled products. This concern is problematic if consumers are poorly informed about 

which products can be labeled and which not. If a consumer has full knowledge about which 

products can be produced with GMOs, and they also know that GM products can be produced 

at a lower marginal cost, then, in the absence of a signaling opportunity for firms, a consumer 

can infer that a firm defaults to the less expensive (GM) feed variety (in accordance with 

Akerlof’s (1970) lemons problem). If, however, consumers know that some products—but not 

which products—are potentially produced with GMOs, they may hold prior expectations about 

the probability of receiving GMOs. And because non-GMO labeling is a dichotomous choice, 

it signals its non-GMO quality, and at the same time, it signals that a non-labeled product may 

not comply with the non-GMO standard. Hence, consumers can update their prior (i.e., initial 

probability of buying a GM product) and hence attribute a higher probability to receive a GM 

product when buying the unlabeled products (Roe et al., 2014). 

The update of the prior works well if consumers are well informed about the specifications 

on which products can or cannot be labeled. However, consumers are not always well informed 

about these specifications (Henseleit and Kubitzki, 2009; Weinrich et al., 2015). As Henseleit 

and Kubitzki (2009) show in their survey, consumers’ expectations of the non-GMO label are 

higher than the current non-GMO standard requirements. Furthermore, products for which there 

exists no GM version (e.g., cucumbers) cannot be labeled as non-GMO, even though these 

products are not genetically modified. The reason why these products cannot be labeled is that 

labeling must comply with the regulation on self-evident advertising (European Commission, 

2011). Error-free updating of the prior works only if consumers are informed, which products 

are “naturally” non-GMO. If, however, consumers are unaware of the rule on self-evident 

advertising and which products it concerns, then they may expect unlabeled products to be 

derived with GMOs.  
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 Another reason why only some of the products but not all are labeled is that labeling of 

products made of various raw materials (e.g., fruit yogurt) exhibit large production and 

transaction, and hence labeling costs. The reason for these higher costs is that the national 

regulation requires processors to use also, for example, non-GMO certified sugar or enzymes 

produced without the help of GMOs. These costs may exceed consumers’ incremental 

willingness to pay. Hence, most non-GMO labeled products are the ones with few raw materials 

only, such as fresh milk, plain yogurt, some cheeses, eggs, and poultry, for which production 

and certification are relatively inexpensive. Labeling of these products may send the correct 

signal to consumers, but it is not in the interest of firms to make them aware that unlabeled 

products may not comply with the non-GMO standard. 

Because of imperfect information of consumers about the labeling system itself, most 

processors (17 out of 18) and also some of other stakeholders (e.g., consumers associations, 

food industry associations, NGOs, retailers) in a survey on non-GMO labeling agreed that the 

non-GMO label potentially misleads consumers (European Commission, 2015, , p.60). The 

potential consumer confusion may also arise from the parallel existence of a voluntary and a 

mandatory labeling scheme, which can result in uncertainties for consumers that are similar to 

the absence of labeling (Dannenberg et al., 2011). 

Besides the negative externality of labeling on unlabeled products, there also exists a 

positive externality. This positive externality relates to the halo (positive spill-over) effect of a 

non-GMO label on a firm’s reputation. Consumers may prefer unlabeled products of a firm that 

offers non-GMO labeled products to other unlabeled products of firms that do not offer any 

non-GMO products in their assortment. For example, most retailers communicate their non-

GMO supply as part of their sustainability strategy (Vigani and Olper, 2014; Wesseler, 2014). 

This strategy extends the positive effect of a few non-GMO labeled products as a quality 

attribute to the overall brand or whole firm image (Gruère and Sengupta, 2009).  

A general issue of non-GMO labeling is that the label itself may signal to consumers that 

GMOs are unsafe (Costanigro and Lusk, 2014). As discussed by Caswell (1998), consumers 

may take the label as an indicator of a safety concern of the GMO attribute, even though 

regulators evaluate it a safe. This endogeneity questions how far a non-GMO label can reduce 

imperfect information (i.e., informing consumers that products are GM or not) or potentially 

cause new information imperfections (i.e., signaling safety concerns of GMOs). 

4.6 Conclusions 

In this article, we showed how the different interests of non-GMO labeling stakeholders are 

combined in the VLOG, a multi-stakeholder organization that developed a private production 
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and certification standard in Germany. Through the combination of the organization members’ 

interests, the probability of one of the main fears of retailers to being pressured by NGOs in the 

case of mislabeling could be substantially lowered. We show how a non-GMO label that is 

supposed to solve the externality of imperfect information can create new information 

imperfections if consumers are not well informed about the labeling system itself. Even with 

perfect information, some consumers gain from choosing non-GM products whereas others 

may lose from increased prices through firms’ product differentiation.  

 The government may achieve a reduction in the externalities and therefore a more aligned 

freedom of choice through science-based information campaigns. It is the Ministry of 

Agriculture that commissioned the VLOG for the issuance and administration of the non-GMO 

label licenses. However, the VLOG’s interest is to increase its market impact and hence, the 

organization may benefit from providing one-sided information to consumers. The VLOG 

website (www.ohnegentechnik.org) mentions the existence of evidence of negative 

environmental effects of GMOs, farmers’ dependence on a few global seed companies due to 

GM seed usage, and the non-excludability of negative human health effects of GM food. The 

website neglects all positive effects of GMOs. If the government’s aim is to provide consumers 

with a true freedom of choice, it might be necessary, but it is not sufficient, to facilitate non-

GMO labeling if it does not ensure that consumers have more unbiased information. 

 Finally, within the European Union, there are many differences regarding the non-GMO 

legislations. So far, producers who comply with the non-GMO rules of Austria and Switzerland 

can also use the German label. For other countries, trade may be more complicated. 

Harmonization of non-GMO labeling would reduce these problems within the European Union. 

For all other countries that export to the European Union, the non-GMO requirements of 

retailers may have similar effects as other private standards. These effects have been extensively 

discussed, in particular, for developing countries (see Henson and Humphrey, 2010, for an 

overview). Whether an increase in non-GMO labeling to reduce GMO crop production is useful 

from an economic, social, and environmental perspective is another question. 
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5. THE INTERACTIONS AMONG THE REGULATION OF NEW PLANT 

BREEDING TECHNIQUES, GMO LABELING, AND COEXISTENCE 

AND SEGREGATION COSTS: THE CASE OF RAPESEED IN THE EU30 

ABSTRACT: We analyze the market and welfare effects of regulating crops derived by New 

Plant Breeding Techniques (NPBTs) as genetically modified (GM) or conventional products. 

We consider the EU mandatory scheme for labeling GM products and a voluntary non-GM 

scheme for labeling livestock products derived from non-GM feed. We develop a partial 

equilibrium model that explicitly takes into account both the coexistence costs at the farm level 

and the segregation and identity preservation costs at downstream level. By applying the model 

to EU rapeseed, we find that regulating NPBTs as GM (as compared to non-GM) in 

combination with mandatory and voluntary labeling increases prices and makes producers 

better off. We also show that higher coexistence costs make the price increasing effect even 

stronger. Voluntary non-GM labeling applied to feed makes consumers in this sector overall 

worse off, but benefits farmers and rapeseed oil consumers overall as long as segregation costs 

are low. Consumers of biodiesel and industrial products such as lubricants produced from GM 

rapeseed benefit from high segregation costs. We show that the effects of farm-level 

coexistence costs largely differ from the effects of downstream market segregation costs.  

 

KEYWORDS: New plant breeding techniques, GMO, labeling, coexistence, identity 

preservation, regulation, vertical product differentiation 

  

                                                 
30 This chapter is based on the article: Venus, T.J., Drabik, D., and Wesseler, J.H.H., 2017. The Interaction among 

the Regulation of New Plant Breeding Techniques, GMO Labeling, and Coexistence and Segregation Costs: The 

Case of Rapeseed in the EU. LICOS Discussion Paper 389/2017, submitted to a peer-reviewed journal. 
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5.1 Introduction 

Since the adoption of the official definition of genetically modified organisms (GMOs) in the 

European Union in 1990, a number of new techniques have been developed to genetically 

modify plants.31 Currently, regulators in different countries, including the European Union and 

the United States, assess whether these biotechnology-driven “New Plant Breeding Techniques” 

(NPBTs) should fall within the scope of the GMO regulation (Lusser and Davies, 2013).32 

Because plants derived by NPBTs do not necessarily contain an inserted transgene, they are 

often indistinguishable from crops derived through conventional breeding (Lusser et al., 2011). 

Therefore, one of the main questions in determining how NPBTs should be regulated in the 

European Union is whether the technique itself or the organism produced by such a technique 

must be regulated by the current GMO legislation (Hartung and Schiemann, 2014). A similar 

debate may arise in the United States in the context of labeling food products. 

The decision on whether crops derived by NPBTs are classified as GM or non-GM has 

important economic implications for the product registration, research and development, trade, 

cultivation, and marketing of NPBTs. The registration costs are low for non-GM crops, while 

the cost of the approval procedure for GMOs in the European Union ranges between 7-15 

million euros and is very time-consuming (Kalaitzandonakes et al., 2007; McDougall, 2011; 

Smart et al., 2017; Tait and Barker, 2011). High approval costs may disincentivize firms to 

invest in the innovation of NPBTs. Furthermore, if an NPBT-derived crop is considered a GMO 

in one country, but not in another, asynchronous approval and low-level presence can lead to 

trade disruptions (Stein and Rodríguez-Cerezo, 2010). GM products must be labeled as such, 

and if GM and non-GM products are marketed side-by-side, segregation and identity 

preservation of the non-GM product are required (European Commission, 2003b). 

In this chapter, we analyze the market and welfare effects of alternative NPBT regulations 

and focus on herbicide-resistant rapeseed to study these effects. There are at least three reasons 

why we focus on rapeseed. First, rapeseed accounts for more than 50 percent of both the total 

supply and use of oilseeds in the European Union (European Commission, 2016). Second, in a 

survey conducted by the Joint Research Center of the European Commission, plant breeding 

companies identified herbicide-resistant rapeseed as one of the first potential commercial 

                                                 
31 The Directive 2001/18/EC on the deliberate release into the environment of GMOs defines GMOs as an 

“organism, with the exception of human beings, in which the genetic material has been altered in a way that does 

not occur naturally by mating and/or natural recombination” (European Commission, 2001). 
32 In 2007, the EU Commission and different National Component Authorities named eight NPBTs for which the 

regulation is unclear: zinc finger nuclease (ZFN) technology; oligonucleotide-directed mutagenesis; cisgenesis and 

intragenesis; RNA-dependent DNA methylation; grafting on GM rootstock; reverse breeding; agro-infiltration; 

and synthetic genomics (Hartung and Schiemann, 2014).  
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products derived by NPBTs (Lusser et al., 2011).33 Third, rapeseed oil and its joint product 

meal are used in the food supply chain as food (e.g., cooking oil) and feed (e.g., protein source 

in compound feed for cattle, pigs, and poultry) as well as in the industrial supply chain, for 

example, as a feedstock for lubricants and biodiesel. Whereas GM labeling applies to food and 

feed products, it usually does not apply to industrial products. Hence, the segmentation of 

markets implies that regulation and labeling do not affect all consumers and producers equally. 

We look at how different labeling schemes affect the welfare of different market agents. In 

addition, we analyze the effects of farm-level coexistence and processing/marketing 

segregation and identity preservation costs. We show that regulating NPBT-derived crops like 

GMOs, in combination with GMO labeling regulation, increases market prices and decreases 

consumer welfare but increases producer welfare relative to regulating NPBT as non-GM. We 

also show that higher coexistence costs make the price increase effect even stronger. When 

coexistence costs are high enough, no NPBTs are used. Downstream market segregation costs 

affect the market differently than coexistence costs by increasing the price of non-GM oil and 

meal but reducing the price of non-GM rapeseed. 

We find that voluntary non-GM labeling, whereby producers can label livestock products 

derived from non-GM meal, benefits all farmers and oil consumers but makes meal consumers 

overall worse off (as compared to a situation in which voluntary labeling is not allowed). If, 

however, segregation costs are high, only industrial and biodiesel consumer gain from voluntary 

non-GM labeling. 

 

5.2 Background: Labeling and Coexistence 

The discussion of regulating NPBTs brings back much of the debate of the last two decades on 

the economic effects of introducing GMOs in general, and GM labeling and coexistence in 

particular. Labeling in the European Union is mandatory for food and feed that contains GMOs 

(e.g., oil derived from GM rapeseed). However, the mandatory labeling scheme does not require 

livestock products derived from animals fed by GM feed (e.g., fed by GM rapeseed meal) to be 

labeled, although a voluntary labeling scheme for these products has emerged. 

In the case of rapeseed, the mandatory labeling scheme directly affects only the oil market, 

whereas the voluntary non-GM labeling scheme directly affects only the meal market. In 

particular, oil can be used as food or can be converted into biodiesel and other industrial goods. 

                                                 
33 In their survey of plant breeding companies, Lusser et al. (2011) identified the following products as likely to 

be among the first commercial products derived from NPBTs: herbicide-resistant rapeseed and maize; fungal-

resistant potatoes; drought-tolerant maize; and scab-resistant apples and potatoes with reduced amylose content. 
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Food, and hence oil for human consumption, must be labeled if it is derived from GM crops but 

industrial products do not require labeling. Retailers in Europe removed or announced the 

removal of all GM products in 1998, shortly after the first commercial cultivation of GM crops 

(Kalaitzandonakes and Bijman, 2003). This exclusion of GM-labeled products has been 

adopted by almost all EU retailers and food manufacturers and is still in place today. Therefore, 

human consumption of oil is covered by non-GM oil, whereas both GM and non-GM oils can 

be used industrially. 

Rapeseed meal, the joint product of oil production, is mainly used as protein feed for milk, 

egg, and meat production. If firms want to offer products derived from non-GM feed, they have 

to comply with a voluntary non-GM labeling standard. 34  Some countries (e.g., Austria, 

Germany, and France) have implemented national non-GM labeling standards that vary in their 

requirements across countries (European Commission, 2015). In Germany, for example, the 

non-GMO standard allows farmers to use GM feed over some period. All major retail chains in 

Germany have started to offer or have announced offering of some of their retail brand livestock 

products (e.g., dairy products and eggs) with a non-GM label. Other voluntary labeling schemes, 

such as the scheme in The Netherlands, allow non-GM labeling only under highly restrictive 

circumstances, while the schemes in Belgium and Sweden prohibit non-GM labeling altogether 

(European Commission, 2015).  

Retailers’ and industries’ removal of GM food products has led to the absence of 

mandatorily labeled GM food oil whereas the voluntary labeling scheme has led to product 

differentiation of meal-derived products. Providing non-GM oil and meal in the presence of 

GM cultivation requires the coexistence of GM and non-GM supply chains. Coexistence at the 

farm level mainly concerns the avoidance of potential economic losses that non-GM farmers 

can face, such as losses through admixture due to cross-pollination if the adventitious (i.e., 

accidental or technically unavoidable) presence greater than the 0.9-percent threshold if a 

separate market exists for GM and non-GM products. To ensure coexistence, several EU 

Member States have implemented coexistence measures (see Beckmann et al., 2014, for an 

overview of coexistence measures in different EU Member States).35 

In the European Union, GM farmers have to implement the coexistence measures and bear 

the costs of implementation (i.e., coexistence costs). These coexistence measures often result 

                                                 
34 The non-GM labeling standard considers feed without a mandatory GM label as non-GM feed. Most non-GM 

labeling standards tolerate some adventitious (i.e., unintended or technically unavoidable) presence of GMOs. 

Most standards also define some time before slaughtering, milking, or laying eggs in which GM feed is tolerated. 
35  Following the subsidiarity-based approach to coexistence, each EU Member State shall specify national 

measures. 



73 

 

in costs that are greater than the benefits of GM cultivation, potentially preventing some farmers 

from adopting GM crops (Venus et al., 2017). Moschini (2015) shows that putting the burden 

of mandatory minimum distance requirements to achieve coexistence at the farm level entirely 

on GM producers, creates a bias against GM crop adoption, and to restore efficient allocation, 

coexistence costs must be shared equally between adjacent GM and non-GM farmers. Moschini 

(2015) does not, however, explicitly consider the effects of segregation and identity 

preservation costs (henceforth referred to as segregation costs) on downstream markets. 

Downstream market participants, such as agricultural traders, grain processors, and food 

producers, have to avoid commingling of GM and non-GM commodities if they want to 

preserve the non-GM identity. Therefore, in the downstream market, the non-GM firms are 

usually assumed to bear the direct costs of segregation and identity preservation (Fulton and 

Giannakas, 2004; Lapan and Moschini, 2007; Lapan and Moschini, 2004; Lence and Hayes, 

2005; Mayer and Furtan, 1999; Moschini et al., 2005; Saak and Hennessy, 2002; Sobolevsky 

et al., 2005).36 For example, dairy companies that voluntarily offer non-GM labeled products 

must ensure through contracting, testing, documentation, third-party auditing, and certification 

that farmers feed only non-GM feed to their cows (Punt et al., 2016).  

Several authors model the effects of segregation costs on product prices, consumer and 

producer welfare, but do not separately consider the coexistence costs of GM farmers (e.g., 

Fulton and Giannakas, 2004; Lapan and Moschini, 2007; Lapan and Moschini, 2004; Moschini 

et al., 2005; Sobolevsky et al., 2005). The effect of positive segregation costs on downstream 

markets in combination with farm-level ex-ante and ex-post regulation is discussed by 

Desquilbet and Poret (2014). They argue that segregation costs increase the non-GM price and 

hence, decrease non-GM consumers’ utility, making a welfare increase through coexistence 

costs less likely. However, they do not explicitly incorporate segregation costs in their model.  

The work by Sobolevsky et al. (2005) is closest to ours as they use a partial equilibrium 

model of differentiated consumers to analyze the market and welfare effects of segregation 

costs on GM soybean trade. Unlike Sobolevsky et al. (2005), however, our focus is on the 

distribution of market and welfare effects within an economy rather than on trade. We consider 

the different effects of coexistence and segregation costs and allow for different labeling 

schemes. 

Whereas most theoretical approaches in the previous literature assume that both GM and 

non-GM products are supplied and demanded once the technology is approved, we show that 

                                                 
36 Desquilbet and Bullock (2009) argue that non-GM production results in a loss of flexibility and therefore also 

creates indirect costs for the GM producers. 
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the market outcome depends on labeling as well as coexistence and segregation schemes. Our 

model serves as a means to analyze the market and welfare effects of regulating rapeseed 

derived from NPBTs under mandatory and/or voluntary labeling schemes compared to 

regulating NPBTs as a conventional technique. Furthermore, we analyze the effects of 

coexistence costs at the farm level and segregation costs at the level of downstream processors.  

5.3 The Model 

We model different regulatory systems for oilseed crops derived from NPBTs in the European 

Union. The model is used for an ex-ante analysis since NPBT oilseed crops have not been 

commercially cultivated in the European Union yet. We assume that GM and non-GM food 

products are vertically differentiated. Consumers perceive a GM product as a (weakly) inferior 

substitute for a non-GM product, that is, consumers are indifferent to or prefer non-GM 

products to GM products if offered at equal prices. 

Although we do not model net trade of the included commodities explicitly, we consider 

its possible effects on market prices in a sensitivity analysis by varying the domestic 

supply/demand elasticities. For commodities in which the European Union is a net exporter, a 

modeled demand curve can be thought of as the horizontal sum of the domestic demand and 

the EU export demand curve. So by construction, the aggregated curve is more elastic (a similar 

argument holds for the supply curve and a commodity for which the country is a net importer). 

By varying the elasticities in the sensitivity analysis (in a later section), we can then test how 

sensitive our results are with respect to the inclusion of trade in commodities. The sensitivity 

analysis shows robust results. 

We assume that the total rapeseed quantity that farmers supply is processed into oil and 

meal, such that rapeseed is only indirectly demanded through its processed products. Rapeseed 

derived from NPBTs as well as its products, oil and meal, can either be of non-GM quality  N  

or of GM quality  G . The quality type depends on how an NPBT is regulated (i.e., GM vs non-

GM) as well as on the relevant labeling scheme (i.e., mandatory vs voluntary labeling). 

Processors crush rapeseed, indexed by R, to obtain oil and meal, indexed by O and M, 

respectively. Oil is used for human consumption, industrial use (e.g., lubricants), or biodiesel 

production. 

We assume that consumers judge the technology used for rapeseed production only by its 

characterization (i.e., consumers consider only how NPBTs are categorized and regulated). 

Hence, consumers are indifferent between crops derived by NPBTs and crops derived by 

conventional breeding techniques, as long as NPBT-derived crops are officially categorized and 
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regulated as non-GM. This assumption together with vertical product differentiation imply that 

if NPBTs are regulated as a GM technique, NPBT-derived products must be labeled as GM and 

therefore some consumers are willing to pay a premium for food products produced without the 

GM-categorized NPBTs.37  

5.3.1 The Meal Demand 

Rapeseed meal is a crucial component of livestock feed. It is, therefore, closely related to most 

livestock food products. In what follows, we assume that the demand for meal by livestock feed 

processors reflects consumers’ preferences over the GM/non-GM characteristic. This 

assumption makes it possible to focus on a representative consumer’s demand for meal.  

The representative consumer has a quasi-linear utility ( , , )G N

M MU q q y , where G

Mq  and N

Mq  

denote quantities of GM and non-GM products, respectively, and y denotes the consumption of 

the numeraire good. The quasi-linear form allows to add up the utilities for a continuum of 

consumers of the same type without altering the properties of preferences for the GM or non-

GM good. The consumption of GM and non-GM products depends on the relative price and the 

degree of substitutability, [0,1]  . The closer   is to zero, the more the products are 

differentiated.  

The consumer seeks to maximize the total surplus from consuming G

Mq  and N

Mq  

(1)  
,

max , ,
G N
M M

G N G G N N

M M M M M M
q q

U q q y P q P q   , 

and the utility function takes the form as in Singh and Vives (1984) 

      2 21
, , 2

2

G N G N G N N

M M G M N M G M N M M

G

MU q q y q q q q q yq         , 

where G

MP  and N

MP  denote the price of GM and non-GM meal, respectively, and the quality 

parameters satisfy 0N G    and 2 0G N    . The parameters N and G represent the 

intrinsic quality of each product that increases the marginal utility of consuming that product. 

The parameters N  and 
G  measure the rate at which the marginal utility of consumption for a 

product declines with higher consumption of that product (Choi and Coughlan, 2006). 

Solving the consumer maximization problem (1), we obtain linear GM and non-GM 

demand functions 

(2)  ,G G N G G G

M M M M M M M

N

MD P P a b P c P    

                                                 
37 A reason why consumers treat NPBTs as a genetic modification if they fall within the scope of the EU regulation 

of GMOs is that consumers cannot distinguish GM-classified crops derived by NPBTs from other GM crops (e.g., 

transgenic crops). 
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and 

(3)  ,N G N N N G

M M M M M

N

M M MD P cP P a b P   

with parameters
2
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. Since both products are substitutes, the GM meal demand depends on its own 

price and on the non-GM meal price. Likewise for the non-GM demand. 

If NPBTs are considered GM but no voluntary non-GM labeling option exists, consumers 

cannot distinguish (NPBT-derived) GM from non-GM products. So if GM and non-GM 

products are indistinguishable, we assume that consumers perceive all meal products to be of 

GM quality independently of the share of GM and non-GM content. As in Sobolevsky et al. 

(2005), we model the situation in which only GM(-perceived) meal is available by setting the 

non-GM price above its “choke” price,  N N G N

M M M M MP a c P b  , making the non-GM meal price 

prohibitively high (i.e., non-GM meal demand is zero). After substituting the choke price into 

equation (2) and denoting the single meal price as MP , the demand for GM meal (in the absence 

of non-GM meal) becomes 

(4)  
2

| 0
N

G N G GM M
M M M M M MN N

M

M M

a c
D P q a b P

b

c

b

 
    

 
  . 

For future reference, we also quantify the total demand for meal when all consumers 

perceive the meal to be of non-GM quality. This situation can have two causes: (i) NPBTs are 

regulated as non-GM, and (ii) NPBTs are unavailable to consumers either because the technique 

is prohibitively expensive to use (e.g., if the approval process is too expensive) or because 

NPBT-derived crops are banned. We provide details when this can happen in a later section 

describing different scenarios. The total meal demand curve in this case is obtained by summing 

the right-hand sides of equations (2) and (3), and recognizing that in this situation G N

M M MP P P  , 

because there is only a single meal market price. As a result, the demand of non-GM meal (in 

the absence of GM meal) is  

(5)      | 0 2N G G N G N

M M M M M M M M MD P q a a b b c P      . 

5.3.2 The Oil Demand 

Due to retailers’ and food manufacturers’ removal of GM food products, oil demand for human 

consumption can only be derived from non-GM rapeseed. We assume that retailers’ and food 

manufacturers’ GM food exclusion stays in place (e.g., by assuming that the costs of changing 
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their policy is infinitely high). The mandatorily labeled and less expensive GM oil can thus only 

be used for industrial and biodiesel purposes; this does, however, not preclude industrial and 

biodiesel users from demanding non-GM oil if it is less or equally expensive than the GM 

counterpart. The prices of GM and non-GM oil, denoted by G

OP  and N

OP , respectively, are 

determined in two separate markets as long as in the equilibrium G N

O OP P . On the one hand, 

food oil consumers can only consume non-GM oil and hence their demand  H N

O OD P , where H 

denotes human consumption, depends only on the price of non-GM oil. On the other hand, 

industrial and biodiesel users always demand the less expensive alternative, which in most cases 

is the GM oil. 38  This implies that the industrial (I) demand function I

OD  depends on

 min ,G N

O OP P . To be consistent with the functional form of the demand functions for meal 

given by equations (2)-(5), we also use linear demands for food and industrial use of oil39,40 

(6)  H N H H N

O O O O OD P a b P    

and  

(7)      min , min ,I G N I I G N

O O O O O O OD P P a b P P  .  

The quantity of biodiesel (B) to be produced is assumed to be fixed. Because one metric 

ton of oil yields B liters of biodiesel, the oil demand for biodiesel is given by 
BB  and is 

therefore perfectly price-inelastic. 

 

5.4 Rapeseed Supply 

There are Z homogeneous competitive farmers in our model, similar to Sobolevsky et al. (2005), 

who can choose from two production technologies: GM and non-GM. Because consumers 

demand both GM and non-GM products in our baseline, a farmer can decide whether to produce 

GM or non-GM rapeseed. However, we assume a farmer does not produce both at the same 

time because of on-farm costs related to dual production. These costs relate, for example, to the 

time and money spent cleaning machinery after seeding, harvesting, transporting; or potential 

hurdles a farmer might face when selling non-GM rapeseed to a non-GM processor because of 

                                                 
38 Under certain conditions and under two separate oil demands it is possible that the hypothetical price of GM oil 

exceeds the price of non-GM oil. However, because industrial and biodiesel users are flexible in their choice of 

oil and decide solely based on its price, the GM oil price has to equal the non-GM price. 
39 One can think of equations (6) and (7) as linear approximations of the optimal demand functions derived from 

profit maximization for a production technology and given prices of the output and other inputs. 
40 It should be noted that the effective GM food removal of retailers leaves food oil consumers with only one 

choice, that is, non-GM oil, which means that oil demand only depends on its own price. 
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a higher probability of commingling of seeds. Punt and Wesseler (2015) also argue that farmers 

have incentives to form GM and non-GM clubs, 41  which supports our full specialization 

assumption. Moreover, many voluntary labels prohibit the use of any GM feed on mixed farms 

that are registered as non-GM producers for parts of their animal products. 

If both types of rapeseed are produced, then k farmers produce GM and the rest, (Z – k), 

produce non-GM rapeseed. The distribution of farmers (i.e., k) is endogenous and depends on 

the relative price of GM and non-GM rapeseed in equilibrium. Each farmer using the GM 

technology produces according to the supply function  G G

R RS P , where G

RP denotes the market 

price of GM rapeseed. Likewise, supply of each farmer producing non-GM rapeseed is 

 N N

R RS P , where N

RP is the market price of non-GM rapeseed. 

We assume lower marginal costs for GM rapeseed production, which is the main feature 

of first-generation GM crops (e.g., Klümper and Qaim, 2014; Smyth et al., 2011b). Associated 

with GM production, however, are coexistence costs (e.g., isolation distance, crop rotation, 

potential liability costs) that the GM farmer has to bear (Venus et al., 2017). Additional costs 

to GM farmers are technology fees that a seed company charges to (partially) recoup the costs 

of the costly approval process. For reference convenience, we subsume the technological fees 

under the coexistence costs, noting that this aggregation does not have any qualitative 

implications for our results.  

The coexistence costs affect the farm input prices and hence pivot the GM seed supply 

curve.42  We, therefore, model the coexistence costs as a percentage (  ) of the potential 

producer surplus (at a given GM rapeseed market price) that GM farmers forgo because of the 

presence of these costs. Given the functional form of the rapeseed supply we use, the 

coexistence costs can be implemented in our model via impacting the production of rapeseed 

of each GM farmer:    1 G G

R RS P . Therefore,   can alternatively be thought of as a 

reduction in the potential GM rapeseed production (at a given price).  

The technology a farmer adopts depends on the producer surplus earned per crop. In an 

equilibrium in which both GM and non-GM crops are adopted, each farmer must be indifferent 

                                                 
41 Although the formation of a GM club would reduce the coexistence costs (e.g., keeping a minimum distance 

from a non-GM farmer), the costs would not be eliminated completely because the formation of a club leads to 

other coexistence costs, for instance, the costs the incumbent GM farmers would need to spend to convince non-

GM farmers to switch to GM production. 

 
42 One can also think of coexistence costs as an additional input cost to GM rapeseed production. 
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between the two technologies; this requires that the producer surplus be equal for each crop and 

farmer 

(8)      
0 0

1

G N
R RP P

G N

R RS P dP S P dP   . 

Finally, the total supply of GM rapeseed is    1 G G

R Rk S P  and the total supply of non-

GM rapeseed is    N N

R RZ k S P . 

 

5.5 Scenarios Description and Market Equilibriums 

We consider four scenarios summarized in table 1. Scenario 1 is the baseline scenario reflecting 

the current labeling policies and practices in the EU. In both scenario 1 and scenario 2, NPBTs 

are regulated as a GM technique and mandatory labeling of food oil applies. The two scenarios 

differ in the treatment of meal. In scenario 1, a voluntary non-GM labeling scheme is available, 

which gives rise to separate GM and non-GM meal markets. In scenario 2, a voluntary labeling 

option is absent and hence only a single market for GM meal exists. In scenario 3, NPBTs are 

regulated as a non-GM technique and hence all farmers default to this less costly technology 

whereas consumers perceive all products as non-GM. Scenario 4 assumes that NPBTs are 

banned (or coexistence costs are prohibitively high), so that all farmers use the conventional 

technology, which consumers, of course, perceive as non-GM. 

 

Table 1. Overview of the Four Scenarios of NPBT Regulation and Labeling 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Categorization of NPBTs G G N banned 

Food oil labeling mandatory mandatory - - 

Meal-derived product labeling voluntary - - - 

Technology used by farmers NPBT & conv NPBT & conv NPBT conv 

Coexistence costs   - - 

Oil segregation cost   - - 

Meal segregation cost  - - - 

Consumers perceive … as     

…Food oil N N N N 

…Industrial oil G G N N 

…Meal-derived food G & N G N N 

Note: “G” = GM, “N” = non-GM, “conv” = conventional, ““ = applies, “-“ = does not apply. 
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5.5.1 Scenario 1: NPBTs Regulated as GM & Mandatory Oil Labeling & Voluntary Meal 

Labeling 

The processor buys GM or non-GM rapeseed at price G

RP  or N

RP , respectively. After the 

crushing, one metric ton of rapeseed yields O  metric tons of oil and 
M  metric tons of meal  

( 1M O   ). We assume no differences in the oil and meal content per ton between GM and 

non-GM rapeseed. We also assume constant processing cost per ton of rapeseed (other than the 

feedstock price) and denote it by Rc ; the processing cost is the same for both types of rapeseed. 

The GM (or non-GM) rapeseed processing yields revenues from selling oil and meal at market 

prices G

OP  (or N

OP ) and G

MP  (or N

MP ), respectively. The constant returns to scale technology 

implies zero marginal profits for the crusher and enables to express the GM rapeseed price as  

(9) G G

R R

G

O O MMP P P c    . 

The price relationship for the non-GM branch of the supply chain is very similar, but 

includes additional segregation costs for oil ( Os ) and meal ( Ms )  

(10)    M

N N N

R O O O M M RP P s P s c      . 

The segregation costs represent, for example, non-GM processors’ increased collection and 

transport costs as well as auditing, inspection, and certification costs to guarantee the non-GM 

quality (e.g., Gabriel and Menrad, 2015). We model the segregation costs as a production tax 

in a given final product market, and therefore subtract them from the market price of oil and 

meal the crusher receives. 

The GM market clearing condition equilibrates the total supply of GM oil with its total 

demand. The GM oil supply is given by the total GM rapeseed supply multiplied by the share 

of oil, O , in rapeseed. The demand consists of the oil needed to produce B liters of biodiesel 

(where one ton of oil yields B liters of biodiesel) and the industrial use of oil (e.g., oil used for 

lubricants), yielding 

(11)       1 min ,
B

G G I G N

O R R O O O

B
k S P D P P 


   . 

Because for industrial users, GM and non-GM oils are perfect substitutes, it is possible that 

some non-GM oil is used in the industry if non-GM oil prices happen to equal the GM oil prices. 

Due to retailers’ exclusion of GM food products, only non-GM oil is used for human 

consumption. The non-GM oil market clearing condition is 

(12)      N N H N

O R R O OZ k S P D P   . 
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The market clearing conditions for GM and non-GM meal are represented by  

(13)      1 ,G G G G N

M R R M M Mk S P D P P    

and  

(14)      ,N N N G N

M R R M M MZ k S P D P P   , 

respectively. It should be noted that the farm-level coexistence costs are included in the GM 

rapeseed supply function, whereas the segregation costs are part of the zero-profit condition of 

the non-GM rapeseed processor. Hence, the segregation costs are not explicit in the market 

equilibrium conditions. The market equilibrium for scenario 1 is determined by solving the 

system of equations (8)-(14) for prices , , , , ,G N G N G N

R R O O M MP P P P P P , and the number of GM farmers 

k.   

5.5.2 Scenario 2: NPBT Regulated as GM & Mandatory Oil Labeling & No Voluntary 

Meal Labeling 

In the second scenario, we model the effects of regulating NPBTs as GM in the absence of a 

voluntary non-GM labeling option for meal-derived livestock products. Without non-GM 

labeling, consumers cannot distinguish GM or non-GM meal-derived products and so we 

assume that consumers perceive meal-derived products as GM regardless of the share of GM 

and non-GM meal the products contain. Therefore, there is only one market price of meal 

denoted by MP . The meal market clearing condition in this case is 

(15)          1 | 0G G N N G N

M R M R M M Mk S P Z k S P D P q       , 

where the left-hand side represents the sum of GM and non-GM meal supply, and the right-

hand side represents the total meal demand (for which in the empirical part of the article we use 

equation (4)). The absence of the voluntary labeling option further affects the zero-profit 

condition of the processors since meal needs not be segregated, such that sM = 0, and there is 

only a single meal price; hence we have 

(16) G G

R M RO O MP P P c    

and  

(17)  N N

R O MO MO RP P s cP    . 

The market-clearing condition for oil is unaffected by the absence of the non-GM labeling 

scheme, and hence the system of equations (8), (11), and (15)-(17) in unknowns

, , , ,G N G N

R R O O MP P P P P , and k constitutes the equilibrium for scenario 2. 
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5.5.3 Scenario 3: NPBTs Regulated as Non-GM 

In this scenario, there is no differentiation between GM and non-GM, and hence, no labeling or 

coexistence costs. Therefore, the single zero-profit condition of processors is 

(18) 
R O O M M RP P P c    . 

Since there is no GM/non-GM quality distinction of oil and meal, all Z farmers produce 

only the rapeseed derived by NPBTs, as this can be produced at lower marginal costs. Since all 

suppliers use NPBTs, there are neither segregation nor coexistence costs. Similar to the meal 

market in scenario 2, processors offer only a single oil type at price,
OP . This oil price is charged 

to food as well as industrial consumers. The oil market clearing condition is 

(19)      G H I

O R R O O O O

B

B
ZS P D P D P


    , 

where the left-hand side represents the total oil supply and the right-hand side the pooled 

demand for human oil consumption, biodiesel production, and industrial oil consumption. Also, 

the meal equilibrium of scenario 3 differs from scenario 2 in that consumers perceive NPBTs 

according to the regulation as non-GM and so they also perceive the meal-derived product as 

non-GM. Hence, the demand function in scenario 3 is N

MD  instead of G

MD . The market clearing 

condition is 

(20)    | 0G N G

M R R M M MZS P D P q   . 

Notice that the rapeseed supply function in equations (19) and (20) is denoted G

RS . Even though 

NPBTs are considered as non-GM in this scenario, we use the index G in the supply function 

to be consistent with the notation in the previous scenarios to mean that farmers are using the 

less costly biotechnology-based NPBT. In scenario 3, we solve equation system (18)-(20) for 

prices ,R OP P , and MP . 

5.5.4 Scenario 4: NPBTs Are Banned 

In this scenario, we consider the case in which NPBTs are banned and so all farmers default to 

the non-GM technology. This scenario is very similar to scenario 3. The similarities are: all 

farmers use the same technology; there are no segregation and coexistence costs; there is only 

a single rapeseed, meal, and oil price; and all consumers perceive the products as non-GM. 

Scenario 4 differs from scenario 3 in that farmers use the costlier non-GM technology, and 

hence, their supply function is N

RS  instead of G

RS . The market-clearing condition for oil is 

(21)      N H I

O R R O O O O

B

B
ZS P D P D P


    , 
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and the market-clearing condition for meal is 

(22)    | 0N N G

M R R M M MZS P D P q   . 

The system of equations (21) and (22), together with the zero-profit condition, equation (18), 

in unknowns ,R OP P , and MP  constitutes the equilibrium for scenario 4.  

5.6 Calibration of the Baseline 

We calibrate our model to scenario 1 in the absence of segregation and coexistence costs, which 

then constitutes the model baseline. We use the observed and derived prices and quantities for 

the European Union in the year 2013. We calibrate to scenario 1 as this is the most general 

scenario, in which NPBTs are regulated as GM and both mandatory GM and voluntary non-

GM labeling schemes are in place. The calibration to the most general scenario makes it 

possible to use the calibrated parameters later in simulating the other scenarios.  

In scenario 1, NPBT-derived crops are categorized GM and conventionally produced crops 

are considered non-GM. But since up to now, all rapeseed in Europe is conventional (and 

therefore non-GM), we assume for the calibration that the observed prices are non-GM 

commodity prices ( N

RP , N

OP , and N

MP ) but that the observed quantities are GM and non-GM 

quantities. From this assumption, we calculate the equilibrium GM-categorized NPBT prices

G

RP , G

OP , and N

OP .   

We assume that the price for rapeseed derived by NPBTs is lower than the conventional 

rapeseed price, because NPBT crops are produced at lower marginal costs. Estimates of the 

variable cost differences, for example, for GM and non-GM canola in Canada show mixed 

results; benefits, such as easier weed control and better time management, are often difficult to 

quantify (Qaim, 2009; Smyth et al., 2011a). Yield increases and cost reductions through 

reduced expenditures on herbicides, fuel, and labor have been reported for herbicide-resistant 

canola in Canada, the United States, and Australia to be higher for the more recent years as 

compared to the early years after the introduction (Brookes and Barfoot, 2016). We assume a 

10-percent cost advantage for GM rapeseed, which represents an average estimate for GM 

canola for the years 2004 to 2014 as reported by Brookes and Barfoot (2016). The cost 

advantage implies /1.10G N

R RP P  and is assumed to be a result of differences in production 

costs for competitive farmers, whereas coexistence and segregation costs are assumed to be 

zero in the calibration.  

We assume an equal percentage price advantage for GM oil and meal as compared to their 

non-GM counterparts. The estimated price advantage must be such, that the crushing costs of 
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GM and non-GM crops are equal. Denoting the relative price premium by x, GM oil and meal 

prices in the absence of segregation costs (i.e., 0O Ms s  ) satisfy / (1 )G N

O OP P x   and 

/ (1 )G N

M MP P x  , respectively. To meet the non-GM zero-profit condition of rapeseed 

processors in equation (10), the premium is found by rewriting the GM zero-profit condition in 

equation (9) into    / 1G N N

R O O M M RP P P x c     . Using the observed prices N

OP  and N

MP  

and recalling that /1.10G N

R RP P , we obtain, 8.8x   percent. We assume that the price a 

processor pays for rapeseed equals the price a farmer receives.  

 

Table 2. Values of Technical Coefficients, Prices, Crushing Costs, and Number of Farmers for 

the Model Calibration 

Description Symbol Value Source/explanation 

Oil yield from crushing one metric ton of 

rapeseed (metric tons) 
O   0.38a Ferchau (2000) and 

FEDIOL (2013) 

Meal yield from crushing one metric ton of 

rapeseed (metric tons) 
M   0.62a 1 O  

Liters of biodiesel from a metric ton of 

rapeseed oil 
B   1,098.08 CARD (2016) 

Price of GM rapeseed (€/metric ton) G

RP  386.59 /1.10G N

R RP P  

Price of non-GM rapeseed (€/metric ton) N

RP  425.25 Average price for 

2013, UFOP 

(2013) 

Price of GM oil (€/metric ton) G

OP  755.46 /1.088G N

O OP P  

Price of non-GM oil (€/metric ton) N

OP  822.17 Average price for 

2013, UFOP 

(2013) 

Price of GM meal (€/metric ton) G

MP  243.12 /1.088G N

M MP P  

Price of non-GM meal (€/metric ton) N

MP  264.58 Average price for 

2013, UFOP 

(2013) 

Crushing cost (€/metric ton) 
Rc   51.20 

N N N

R O O MM Rc P P P     

Total number of farmers Z   100.00 Assumed 

Number of GM farmers  k   67.80 Calculated 

Note: a The amount of oil and meal from crushing rapeseed can vary, depending on the type of 

rapeseed crushing/pressing. 

 

Table 2 summarizes the values of technical coefficients, prices, crushing costs, and the 

number of GM farmers used to calibrate the model to scenario 1. The number of GM farmers, 

k, can be thought of as a percentage of the total number of rapeseed farmers, Z, when 100Z  . 
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The number of GM farmers is endogenously determined in the calibration (Appendix 5.10.1). 

Changing the total number of farmers would affect k but not the share of GM farmers, /k Z . 

Rapeseed contains about 43 to 46 percent oil. However, not all oil is extracted during 

crushing. The extracted oil amount varies between 30 and 43 percent, depending on the type of 

crushing and pressing of the rapeseed (Ferchau, 2000; Grau et al., 2010). We set the technical 

oil and meal coefficients to 0.38O   and 1 0.38 0.62M    , respectively. Using the 

observed non-GM prices as well as the technical oil and meal coefficients, we derive the 

crushing costs from the zero-profit condition in equation (10). These derived crushing costs are 

51.20 euros per metric ton, which is in line with estimates by Ferchau (2000). 

The total rapeseed net-supply in 2013 was 25.09 million metric tons (European 

Commission, 2014). After rapeseed crushing, 2.80 million tons of oil were demanded as food 

for human consumption. The oil used for biodiesel consumption is calculated by multiplying 

the share of rapeseed oil in total biodiesel feedstock of 55.67 percent (USDA FAS, 2015b) by 

the total amount of vegetable oil, 8.51 million tons (FEDIOL, 2013) that was used as feedstock 

for biodiesel. This calculation yields a biodiesel quantity of 5,202 million liters derived from 

4.74 million tons of rapeseed oil. To meet the total rapeseed net-supply we categorize the 

remaining rapeseed oil of 1.99 million tons as demand for industrial use.  

 

Table 3. Supply and Demand Quantities for Equilibrium Model Calibration 
Description Symbol Value Source/explanation a 

Total supply of GM rapeseed (metric tons) G

RkS  17.72 Calculated b 

Total supply of non-GM rapeseed (metric tons)   N

RZ k S  7.37 Calculated b 

Demand for oil for human consumption 

(metric tons) 

H

OD  2.80 FEDIOL (2013) 

Demand for oil for industrial consumption 

(metric tons) 

I

OD  1.99 Calculated  

Oil for biodiesel demand (metric tons) / BB    4.74 USDA FAS 

(2015b) and 

FEDIOL (2013) 

Demand for meal GM (metric tons) G

MD  10.98 Calculated 

Demand for meal non-GM (metric tons) N

MD  4.57 Calculated 

Note: a See text for further explanation on the calculations, b The sum of calculated GM and 

non-GM rapeseed supply equals 2013 rapeseed supply (USDA FAS, 2015b). 

 

By applying the technical coefficients, crushing and pressing of the total rapeseed net-

supply yields 15.55 million tons of meal of which 10.98 million tons are calculated (using the 

model equations) to be GM and the remainder, 4.57 million tons, is non-GM meal. Given the 
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different demands, the division of rapeseed into GM and non-GM can be derived from the 

baseline (scenario 1) equation system to be 17.52 and 7.57 million tons, respectively. Table 3 

summarizes the supply and demand quantities used in the calibration. 

Supply and demand elasticities are taken from the FAPRI elasticity database.43 We use 

constant price elasticity supply curves for GM and non-GM rapeseed. For a sensitivity analysis, 

we take these elasticities as the mean values of a beta distribution (Davis, 2008) from which 

random values are drawn in 10,000 simulations.Table 4 shows the supply and demand elasticity 

parameters as well as the mean, minimum, and maximum value of the beta distribution. One of 

the restrictions in our sensitivity analysis is that the own-price elasticity of GM rapeseed supply 

must be greater than the own-price elasticity of non-GM rapeseed supply. This requirement 

reflects the effect of the NPBT in lowering the marginal production costs. Furthermore, own- 

and cross-price elasticities for meal demand are chosen to satisfy the restrictions imposed on 

the parameters of the underlying utility function. 

 

Table 4. Parameters and Baseline Elasticity Values for Model Calibration 

Description Parameter Mean Min Max 

Own-price elasticity of GM rapeseed supply G

R  0.35b 0.10 0.80 

Own-price elasticity of non-GM rapeseed supply N

R  0.30a 0.10 0.80 

Own-price elasticity of GM oil demand for 

industrial use 

I

O  -0.38a -1.00 -0.10 

Own-price elasticity non-GM rapeseed oil demand 

for human consumption 

H

O  -0.25a -1.00 -0.10 

Own-price elasticity of GM meal demand G

M  -4.50b -5.00 -0.80 

Own-price elasticity of non-GM meal demand N

M  -4.50b -5.00 -0.80 

Cross-price elasticity of demand crossNG

M  0.35b 0.01 1.00 

Source: a FAPRI (2013), b assumed to satisfy the conditions of the quasi-linear utility function 

for vertical product differentiation. 

 

5.7 Simulation and Results 

We start by investigating the welfare implications of individual scenarios (1 to 4) in the absence 

of segregation and coexistence cost effects as presented in block A of tables 5 and 6. To that 

end, we first simulate the market and welfare effects of removing the voluntary non-GM 

labeling option for meal in case NPBT-derived rapeseed is regulated as GM; that is, we compare 

scenario 2a with the calibrated scenario 1a (=baseline). Second, we analyze the effect of 

regulating NPBTs as a non-GM technique by comparing scenario 3a with the baseline. Finally, 

                                                 
43 http://www.fapri.iastate.edu/tools/elasticity.aspx 
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we analyze the effects of banning NPBTs by comparing scenario 4a with the baseline. Table 1 

above summarizes the details of individual scenarios. Blocks B, C, and D of tables 5 and 6 show 

the effects of oil segregation costs, meal segregation costs, and coexistence costs, respectively.  

Following the estimates by Tillie and Rodriguez-Cerezo (2015) for soybean meal, we set 

the segregation costs of meal to 20 percent of the non-GM meal price. For oil, we assume 

segregation costs of 10 percent. In a study of the German rapeseed oil industry, these costs were 

found to vary widely, depending on factors like storage, elevation systems, processing strategies, 

and monitoring arrangements (Gabriel and Menrad, 2015). We set the coexistence costs 

(including the technology fee) to 5 percent (θ = 0.05) to show their qualitative effects. The 5 

percent coexistence costs correspond to 50.5 euros per ha assuming an average rapeseed yield 

of 3.1 metric tons per ha.44  However, the coexistence costs (incl. the technology fee) for 

rapeseed under current coexistence policies are likely to be higher (e.g., Gabriel and Menrad, 

2015), and may even outweigh farmers’ marginal cost benefits of growing NPBT rapeseed; this 

case would enforce scenario 4a, in which farmers do not grow NPBTs. Since there are no 

qualitative insights into the effects of coexistence costs if we set them too high, we show the 

effects of 5 percent in block D of tables 5 and 6 and analyze the effects of increasing these costs 

to find the maximum coexistence costs in a sensitivity analysis. 

Table 5 shows the market effects of different scenarios and table 6 shows the changes in 

the welfare components. The changes are in comparison to baseline scenario 1a.  

  

                                                 
44The average rapeseed yield in the European Union in 2012 

(http://ec.europa.eu/agriculture/statistics/agricultural/2013/pdf/d04-1-44_en.pdf). We show the details of 

calculating the coexistence costs per metric ton of rapeseed in the section on the welfare effects of coexistence 

costs. 
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Table 5. Market Effects of NPBT Regulation under Various Scenarios 

 

A.  

Labeling effects w/o segregation and 

coexistence costs  

B.  

With 10% oil 

segregation cost  

C.  

With 20% meal  

segregation cost  

D.  

With 5% 

coexistence cost 

 S.1a S.2a S.3a S.4a  S.1b S.2b  S.1c  S.1d S.2d 

Meal segregation cost (€/ton) 0 - - -  0 -  52.9  0 - 

Oil segregation cost (€/ton) 0 0 - -  82.2 82.2  0  0 0 

Coexistence cost for rapeseed  0 0 - -  0 0  0  0.05 0.05 

Number of farmers             

Number of NPBT farmers 67.8 68.2 100.0 0.0  68.4 68.9  68.5  68.9 69.3 

Prices (€/ton)             

Price of GM rapeseed 386.6 378.9 365.7 -  378.7 370.9  378.3  418.1 410.0 

Price of non-GM rapeseed 425.3 416.5 - 493.9  416.2 407.4  415.8  443.5 434.5 

Price of GM oil 755.5 764.6 693.8 -  734.7 742.9  733.6  837.6 845.0 

Price of non-GM oil 822.2 863.5 - 1,024.5  878.2 921.0  881.0  868.0 909.6 

Price of GM meal 243.1 225.1 247.2 -  244.1 225.6  243.1  243.6 226.0 

Price of non-GM meal 264.6 - - 251.3  266.1 -  266.2  265.9 - 

Quantity supplied (Mtons)             

Rapeseed GM per farm 0.26 0.26 0.26 -  0.26 0.26  0.26  0.26 0.25 

Rapeseed non-GM per farm 0.23 0.23 - 0.24  0.23 0.23  0.23  0.23 0.23 

Rapeseed GM total 17.72 17.70 25.63 -  17.75 17.74  17.75  17.57 17.56 

Rapeseed non-GM total 7.37 7.23 - 23.93  7.18 7.03  7.17  7.21 7.07 

Quantity demanded (Mtons)             

Oil for human cons. 2.80 2.75 2.97 2.54  2.73 2.67  2.72  2.74 2.69 

Oil for industrial cons. 1.99 1.99 2.04 1.82  2.01 2.00  2.01  1.94 1.94 

Meal GM 10.98 15.46 - -  11.01 15.36  11.01  10.90 15.27 

Meal non-GM 4.57 - 15.89 14.84  4.45 -  4.44  4.47 - 

Note: S.1a = baseline, S.1 = mandatory oil and voluntary meal labeling; S.2 = mandatory oil labeling only, S.3 = NPBT regulated as non-

GM, S.4 = NPBT banned. 
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Table 6. Welfare Effects of NPBT Regulation in Comparison to Baseline (S.1a) in Million Euros 

 

A. 

Labeling effects w/o segregation 

and coexistence costs  

B.  

With 10% oil  

segregation cost  

C.  

With 20% meal 

segregation cost  

D.  

With 5% 

coexistence cost 

 S.1a S.2a S.3a S.4a  S.1b S.2b  S.1c  S.1d S.2d 

Change in Producer Surplus              

ΔPS total 0 -200 -542 1,608  -206 -406  -216  420 213 

…for GM farmers 0 -105    -94 -200  -98  370 260 

…of non-GM farmers 0 -95    -112 -207  -118  50 -47 

Consumer Surplus Change             

ΔCS total 0 -25 883 -2,413  -33 -54  -34  -682 -697 

…for human oil cons. 0 -115 370 -540  -155 -270  -162  -127 -240 

…for industrial oil cons. 0 -18 124 -513  42 25  44  -162 -176 

…for biodiesel oil cons. 0 -44 292 -1,274  99 60  103  -389 -424 

…for overall meal 0 164 70 6  -6 157  -6  -10 150 

Total Welfare Change             

ΔW Total 0 -212 315 -714  -226 -435  -232  -305 -477 

Note: S.1a = baseline, S.1 = mandatory oil and voluntary meal labeling; S.2 = mandatory oil labeling only, S.3 = NPBT regulated as non-

GM, S.4 = NPBT banned, PS = producer surplus, CS = consumer surplus, W = welfare. 
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5.7.1 The Effects of No Voluntary Non-GM Labeling Scheme 

A comparison of scenario 2a to 1a in table 6 shows that abolishing the voluntary non-GM 

labeling option for meal-derived livestock products makes all producers and consumers worse 

off, except the overall meal consumers, who are better off by 164 million euros. This is a 

surprising result as one would expect that non-GM meal consumers lose from not having access 

to the products of their preference. Figure 1 below shows that the consumer surplus gain is 

mainly driven by the decreased meal price. 

 

 

Figure 1. Vertically differentiated GM and non-GM demand and pooled demand for meal 

 

The GM (non-GM) demand curve in figure 1 is conditional on the equilibrium prices of 

the non-GM (GM) product. Using the calibrated intercepts and slopes for equations (2) and (3) 

as well as the equilibrium GM and non-GM prices, we obtain  

   56.57 0.015 0.203 60.414 0.203G N N G G

M M M M MD P P P P     , and  
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   21.594 0.015 0.078 25.126 0.078N G G N N

M M M M MD P P P P     .  

The equation for the pooled meal demand curve (corresponding to equation (4)) turns out to be

60.607 0.201G

M MD P  . Notice that, because the substitution parameter [0,1]  , the intercept 

of the inverse pooled demand curve is between the GM and non-GM inverse demand intercepts. 

The prices G

MP , N

MP , and MP  correspond to equilibriums related to the three demand curves 

above.  

The total meal consumer surplus in scenario 2a is represented by area ghi, which is greater 

than the sum of areas abc and def, corresponding to the consumer surpluses of non-GM and 

GM meal in scenario 1a.  

Everything else held constant, the immediate effect of a lower meal price is to reduce the 

rapeseed price and hence the rapeseed supply. A reduced rapeseed supply yields a lower oil 

supply, which drives oil prices up. The decreased rapeseed price and increased oil price cause 

a loss in producer and oil consumer welfare in comparison to scenario 1a. The sum of these 

losses outweighs the meal consumer surplus gain, so that the abolition of a voluntary non-GM 

label reduces overall welfare by 212 million euros (Table 6).  

5.7.2 The Effects of Regulating NPBTs as Non-GM 

Regulating NPBT-derived crops as non-GM is the only scenario that increases total welfare as 

compared to baseline. In scenario 3a (third column in block A of tables 5 and 6) all farmers use 

NPBTs for two reasons: first, rapeseed derived by NPBTs is treated as non-GM, and, second, 

the marginal cost of production is lower for NPBTs. This implies that farmers have no incentive 

to use the costlier conventional technology for which they would get no price premium. Since 

all farmers are using the marginal cost-reducing technology, the rapeseed supply increases, 

driving down rapeseed, oil, and meal prices. Producers lose and consumers gain from the lower 

prices as compared to scenario 1a. The gain in oil and meal consumer surplus outweighs the 

loss in producer surplus, such that regulating NPBTs as non-GM leads to an overall welfare 

gain of 315 million euros. 

5.7.3 The Effects of Oil Segregation Costs 

Scenarios 1b and 2b in table 5, show that oil segregation costs increase the non-GM oil 

consumer price, which reduces the quantity of oil demanded for human consumption. A lower 

non-GM oil consumption drives down the non-GM rapeseed price and hence also the supplied 

non-GM rapeseed quantity. Furthermore, a lower supply of non-GM rapeseed reduces the non-

GM meal supply, leading to an increase in the non-GM meal price. This result is in line with 
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Sobolevsky et al. (2005) who show that food consumers and producers benefit from low 

segregation costs. However, our results (1b and 2b) show that not all consumers benefit from 

low segregation costs. 

When segregation costs increase, more farmers produce GM rapeseed. A larger GM 

rapeseed supply drives down GM rapeseed prices, which leads to a lower GM oil price and 

hence more oil for industrial and biodiesel use. Because the GM oil price with segregation costs 

(734.7 euros per metric ton) in scenario 1b in table 5 is lower than the GM oil prices without 

segregation costs in the baseline (755.5 euros per metric ton), GM oil consumers benefit from 

segregation costs. But the total welfare change with segregation costs in scenarios 1b and 2b is 

negative. 

By further comparing scenario 1b with 1a and scenario 2b with 2a, we see that the market 

and welfare effects of oil segregation costs are similar for partial labeling (no non-GM labeling) 

and full labeling (with non-GM labeling), respectively. Producers and non-GM consumers lose 

and GM consumers gain. In scenario 2b, the producer and non-GM oil consumer losses due to 

segregation costs are added to the losses due to the non-GM label abolishment. The GM 

consumers’ gains due to oil segregation costs, on the other hand, outweigh their losses due to 

the non-GM label abolishment. Finally, the gain meal consumers get due to the abolishment of 

the non-GM label (scenario 2a) is slightly lower with oil segregation costs (scenario 2b). 

5.7.4 The Effects of Meal Segregation Costs 

Table 5 and 6 show that in scenario 1, meal segregation costs of 20 percent of the non-GM meal 

price have very similar effects than oil segregation costs of 10 percent of the non-GM oil price. 

This similarity is due to the similarity between the levels of the segregation costs for oil and 

meal: 0.1 31.2O

N

OP     and 0.2 32.8M

N

MP    . The welfare effects of segregation costs 

are that non-GM consumers and producers lose and GM oil and meal consumers gain. However, 

meal segregation costs apply only in scenario 1 because in scenario 2 the total meal supply is 

pooled. This pooling effect when abolishing the non-GM meal labeling option has important 

implications. 

Comparing scenario 1c with 1a and 2a in table 5, we find that if meal segregation costs are 

sufficiently high, producers and some consumers would benefit from the abolishment of the 

non-GM label (i.e., their surplus in 1c exceeds their surplus in 1a). For example, oil consumers’ 

surplus loss from not having the voluntary labeling scheme (i.e., scenario 2a) is 115 million 

euros. But their surplus loss from having the scheme in the presence of meal segregation costs 

(i.e., scenario 1c) is even higher, that is, 162 million euros. Similarly, producers’ loss from not 
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having the label is 200 million euros whereas their loss from having the label in the presence 

of meal segregation costs is 216 million euros. As shown above, meal consumers clearly gain 

(164 million euros in scenario 2a) from not having the voluntary label. This effect is even 

stronger with meal segregation costs.  

In summary, our comparison implies that producers and non-GM oil consumers benefit 

from a voluntary non-GM label, as long as meal segregation costs are sufficiently small. This 

result is consistent with the one by Fulton and Giannakas (2004). However, when high 

segregation costs are added to the baseline, these consumers and producer are better off without 

voluntary labeling. GM oil consumers (i.e., industrial use and biodiesel) are worse off (by 18 

and 44 million euros, respectively) from not having the voluntary label so they benefit from the 

label. Their benefit is even higher, when meal segregation costs are high.  

5.7.5 The Effects of Coexistence Costs 

Coexistence costs decrease GM rapeseed, oil, and meal supply, which leads to price increases 

in the GM commodities (cf. scenarios 1d and 2d in table 5). The increase in the GM rapeseed 

price drives up the non-GM rapeseed price because each farmer is assumed to be indifferent 

between producing the GM or non-GM rapeseed variety. The increased non-GM rapeseed 

prices increase non-GM oil and meal prices, which decreases non-GM quantities demanded.  

All consumers in scenario 1d and 2d are worse off due to the increased prices caused by 

coexistence costs as compared to the situation without coexistence costs. Comparing scenario 

1d with the baseline, GM rapeseed farmers benefit from coexistence costs because the GM price 

increase of 31.5 euros (from 386.6 to 418.1) causes a surplus gain that exceeds the surplus loss 

due to coexistence costs. Since a farmer is indifferent between GM and non-GM rapeseed 

production, the non-GM rapeseed price also increases by 18.2 euros (from 425.3 to 443.3) such 

that the non-GM surplus gain equals the GM net-surplus gain (i.e., the difference between the 

GM surplus and the coexistence cost). 

Notice that the GM price increase is greater than the non-GM price increase. Similarly, the 

GM oil price also increases faster than the non-GM oil price with higher coexistence costs. This 

effect is shown in figure 2, where the percentage coexistence costs are translated into costs per 

hectare. This can be done by first computing GM farmers total surplus and multiplying by  . 

The 5 percent, as used in tables 5 and 6, correspond to total coexistence costs of 287 million 

euros (not presented in the tables). Dividing the coexistence costs by the total GM rapeseed 

quantity of 17.57 million tons (cf. column 1d in table 6), we get 16.30 euros per ton or 50.53 

euros per hectare (assuming a rapeseed yield of 3.1 ton per hectare). Similarly, we can translate, 



94 

 

for example, an 1-percent coexistence cost into 9.11 euros per hectare and an 10 percent cost 

into 115.79 euros per hectare. 

 

 

Figure 2. Effects of increasing coexistence costs (in percent of farmers’ surplus and in euros 

per hectare) on GM and non-GM commodity prices 

 

The GM oil price approaches the non-GM oil price faster than does the GM rapeseed price 

the non-GM rapeseed price. Once the coexistence costs reach 8.6 percent (95.80 euros per 

hectare) in the absence of segregation costs, the GM and non-GM oil prices would intersect, 

which cannot happen because the condition, G N

O OP P , of vertical product differentiation must 

hold. This condition is always satisfied, since the value of our industrial oil demand function is
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  min ,I G N

O O OD P P . Whenever the GM oil price would exceed the non-GM oil price, biofuel 

and industrial oil consumers would buy non-GM oil until its price equalizes with the GM price. 

Hence, for the case in which coexistence costs exceed 8.6 percent, we have G N

O OP P .  

Once coexistence costs reach a threshold of 12.6 percent (157.01 euros per ton), also the 

rapeseed prices equalize. This point constitutes the maximum coexistence costs (for our 

baseline values) under which both GM and non-GM crops are cultivated. Increasing the 

coexistence costs beyond this maximum would cause GM rapeseed and meal prices to exceed 

non-GM prices—a price relation that would contradict the conditions of vertical production 

differentiation. Hence all farmers switch to non-GM crops, that is, they switch to scenario 4a. 

This switch explains the discontinuity in figure 2 at the 12.6 percent coexistence cost. 

Scenario 4a is identical to scenario 3a, except now farmers are only using the conventional 

technology instead of NPBT. The conventional technology yields a lower total rapeseed supply, 

which increases commodity prices. Farmers benefit from these higher prices while all 

consumers lose. This is in line with Fulton and Giannakas (2004) who show that consumers 

benefit from a situation without labeling (i.e., regulating NPBTs as conventional in our case) 

when consumer aversion is low. 

 

5.8 Sensitivity Analysis and Discussion 

The simulation shows that increased productivity through NPBTs has a price decreasing effect 

that makes farmers worse off and consumers better off. For testing the robustness of our results, 

we ran a Monte Carlo simulation with 10,000 random draws of elasticities from a beta 

distribution. The mean, minimum, and maximum values of the distribution are reported in table 

4. In each simulation, we calculate the market and welfare changes. Table A5.2 in the Appendix 

5.10.2 shows the 10 and 90 percent range of the resulting welfare changes distribution. None 

of the signs change within the ranges. This sign consistency indicates robust results. 

A decrease in the producer surplus from technological improvement may seem counter-

intuitive. However, for inelastic demands, the surplus loss due to a price decrease when 

switching from non-GM to GM production (e.g., switching from scenario 4a to scenario 3a) 

outweighs the surplus gain due to lower marginal costs. On the other hand, elastic demand leads 

to a greater surplus gain due to reduced marginal costs (from the GM technology) than the 

surplus loss due to a price decrease. Hence, an elastic demand can reverse the producer surplus 

effect (e.g., Duncan and Tisdell, 1971; Martin and Alston, 1997). This reverse effect is shown 
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in table A.3 in the Appendix, where we report welfare changes of table 6 for a price elasticity 

of demand for human oil consumption of -3.0. 

An elastic demand also reduces the positive effect of coexistence costs. Whereas under the 

elastic oil demand the producer welfare effect of coexistence costs is lower but still positive in 

scenario 1, it is negative is scenario 2. Segregation costs, on the other hand, have a much 

stronger negative effect on producer welfare under an elastic oil demand. This negative effect, 

caused by segregation costs, is compensated for by higher consumer surpluses as compared to 

inelastic oil demand. 

Finally, it may also seem counter-intuitive that a voluntary non-GM label for meal-derived 

products reduces overall surplus of meal consumers. However, the model only allows to make 

a point about the overall meal consumers and does not allow to distinguish by how much GM 

and non-GM meal consumers benefit or lose separately. What we can say with the model is that 

all consumers who consume GM meal in the baseline are better off in without the non-GM 

labeling option (scenario 2a) due to the lower meal price. Furthermore, some of the initial non-

GM consumers also benefit in scenario 2a from the reduced price, so that they do not mind 

consuming GM instead of non-GM meal. However, some of the initial non-GM consumers may 

leave the rapeseed meal market and switch to a substitute market. These consumers are the ones 

that are worse off by abolishing the voluntary labeling scheme. We estimate only the overall 

meal consumer surplus change, which is positive when abolishing voluntary labeling. 

5.9 Conclusions 

We develop a partial equilibrium model to analyze the market and welfare effects of regulating 

new plant breeding techniques (NPBTs) as GM or non-GM technologies. We apply the model 

to the EU market of rapeseed and commodities derived thereof: meal and oil. The market and 

welfare effects are analyzed under a mandatory label for GM food products and a voluntary 

label for meal-derived livestock products. Both labels apply in the baseline. A key feature of 

our model is that it allows us to separate the effects of farm-level coexistence cost and 

marketing-level segregation and identity preservation costs.  

In general, the model shows that regulating NPBTs as GM generates an overall welfare 

loss as compared to regulating them as non-GM. This is because when NPBT crops are 

regulated as GM (as compared to non-GM), prices are higher and consumers’ welfare loss 

outweighs producers’ gains. Increasing coexistence costs intensifies this effect and may even 

lead to the absence of NPBTs if the costs pass a certain threshold. Unlike coexistence costs, 

segregation costs, do not increase all prices but actually lower the price of GM rapeseed oil 
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(benefiting industrial and biodiesel consumers) as well as the rapeseed prices received by 

farmers. The prices of food oil and meal increase due to segregation costs, however.  

We show that vertical product differentiation of meal-derived livestock products through a 

voluntary non-GM labeling scheme, which some EU Member States have developed, 

substantially increases the meal price and hence makes overall meal consumers worse off. But 

industrial oil and biodiesel consumers benefit from voluntary meal labeling. Also, farmers and 

food oil consumers benefit from the voluntary labeling scheme. However, we show that these 

farmers and food oil consumers are only better off if meal segregation costs do not exceed a 

threshold level. When meal segregation costs exceed that threshold, only industrial and 

biodiesel consumers benefit from voluntary meal labeling. 

Coexistence costs have an overall welfare decreasing effect. We show that even if the use 

of NPBTs lowers farmers’ marginal rapeseed production costs by 10 percent, they would not 

cultivate these crops if the coexistence costs (including the technology fees in the form of higher 

seed costs for the NPBT seeds) exceed a threshold of around 157 euros per hectare. Under 

current coexistence policies in most EU Member States, coexistence costs are likely to exceed 

this level (Venus et al., 2017). These results imply that if NPBTs are regulated as GM in the 

European Union, the cultivation of such crops is likely to be unprofitable under the current 

labeling and coexistence policies. 

An important assumption of our model is that consumers only care about the regulation of 

NPBTs but not about NPBTs per se. However, very little is known about how consumers would 

behave if NPBTs were actually marketed. If consumers do care about NPBTs per se, they might 

be willing to pay a premium to avoid NPBT-derived products even if these products are 

regulated as non-GM. If this is the case, the industry may develop voluntary labeling schemes 

to avoid NPBTs (similar to the non-GM labeling schemes for livestock products). This, 

however, requires to set up a segregation system including coexistence measures at the farm 

level. Our model actually covers this case in the scenario 1 except that food oil, in this case, 

may also be vertically differentiated into an NPBT and a non-NPBT food oil market. While 

segregation and coexistence costs would still be necessary to segregate NPBT from non-NPBT 

products, the approval costs would be much lower than if NPBT-derived rapeseed is categorized 

as GM product.  

Overall, the results show that a ban on NPBTs is the most costly strategy in which 

consumers lose and farmers gain the most. This illustrates that farmers may not lobby for 

NPBTs. On the consumer side, the biodiesel industry complex would be the one losing most 

and have a strong incentive to lobby for NPBTs (even in the presence of labeling policies). 
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Looking at the gains and losses, regulating the NPBTs as a non-GM technology generates the 

largest welfare benefits and would be in line with the requests by many scientists. 

5.10 Appendix 

5.10.1 Equations System for the Baseline 

For the supply of rapeseed, we assume a constant elasticity of supply form,    
G
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 . Applying the specific functional forms for the baseline, we obtain the 

following system of equations 
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 Given these equations and observed values of prices, quantities, and elasticities, the 

unknown constants/variables in the baseline can be calibrated using the following equations 
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5.10.2 Sensitivity Analysis 

 

Table A.5.2. 10 and 90 Percent Range of Welfare Changes through a Sensitivity Analysis of Supply and Demand Elasticities 

 

A. 

Labeling effects w/o segregation and coexistence 

costs  

B.  

With 10% oil  

segregation cost  

C.  

With 20% 

meal seg. c.  

D.  

With 5%  

coexistence cost 

 S.1a S.2a S.3a S.4a  S.1b S.2b  S.1c  S.1d S.2d 

Change in Producer Surplus              

ΔPS total 0 [-211,-185] [-640,-441] [1329,1905]  [-218,-194] [-426,-381]  [-237,-203]  [398,443] [189,243] 

…for GM farmers 0 [-112,-97]    [-100,-97] [-210,-186]  [-112,-99]  [351,390] [243,281] 

…of non-GM farm. 0 [-100,-88]    [-118,-106] [-217,-194]  [-125,-106]  [45,56] [-56,-35] 

Consumer Surplus Change             

ΔCS total 0 [-31,3] [754,948] [-2648,-2027]  [-32,-8] [-56,-6]  [-34,-9]  [-715,-663] [-724,-662] 

…for human oil c. 0 [-119,-109] [342,399] [-628,-458]  [-159,-151] [-278,-262]  [-161,-153]  [-134,-121] [-248,-230] 

…for industrial oil 0 [-21,-14] [105,144] [-576,-454]  [39,44] [20,31]  [40,45]  [-168,-156] [-183,-169] 

…for biodiesel oil 0 [-51,-33] [246,339] [-1440,-1123]  [93,104] [48,74]  [94,106]  [-403,-376] [-440,-407] 

…for overall meal 0 [135,188] [56,73] [-6,10]  [-6,-5] [128,181]  [-6,-5]  [-11,-9] [122,-174] 

Total Welfare Change             

ΔW Total 0 [-222,-204] [296,326] [-747,-694]  [-226,-226] [-444,-426]  [-232,-232]  [-272,-265] [-487,-467] 

Note: S.1a = baseline, S.1 = mandatory oil and voluntary meal labeling; S.2 = mandatory oil labeling only, S.3 = NPBT regulated as non-

GM, S.4 = NPBT banned, PS = producer surplus, CS = consumer surplus, W = welfare. 
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Table A.5.3. Welfare Changes with Elastic Oil Demand ( H

O = -3.0) 

 

A. 

Labeling effects w/o segregation 

and coexistence costs  

B.  

With 10% oil  

segregation cost  

C.  

With 20% meal 

segregation cost  

D.  

With 5%  

coexistence cost 

 S.1a S.2a S.3a S.4a  S.1b S.2b  S.1c  S.1d S.2d 

Change in Producer Surplus              

ΔPS total 0 -433 226 394  -504 -951  -529  169 -282 

…for GM farmers 0 -212    -231 -454  -243  255 30 

…of non-GM farmers 0 -221    -273 -497  -286  -86 -313 

Consumer Surplus Change             

ΔCS total 0 223 116 -1,051  284 531  298  -39 -75 

…for human oil cons. 0 -36 145 -157  -48 -86  -50    

…for industrial oil cons. 0 31 -38 -254  103 143  108  -111 -71 

…for biodiesel oil cons. 0 73 -90 -617  243 337  255  -266 -169 

…for overall meal 0 156 98 -22  -14 136  -14  -17 133 

Total Welfare Change             

ΔW Total 0 -210 342 -657  -220 -421  -231  -264 -465 

Note: S.1a = baseline, S.1 = mandatory oil and voluntary meal labeling; S.2 = mandatory oil labeling only, S.3 = NPBT regulated as non-

GM, S.4 = NPBT banned, PS = producer surplus, CS = consumer surplus, W = welfare. 
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6. INVESTING IN EMERGING VERTICALLY DIFFERENTIATED 

PRODUCTS45 

ABSTRACT: We model a decision of a duopoly that initially offers a low-quality product to 

invest in an emerging high-quality product. We investigate whether the smaller or the larger 

firm invests first. Preemption or a war of attrition can result, depending on demand and cost 

factors. For each case, we derive the unique Nash equilibrium. If both firms have a second-

mover advantage, the larger firm invests first independently of demand-side factors. Only 

higher costs for the larger firm can reverse this result. If both firms have a first-mover advantage, 

one firm invests before its optimal leader time to preempt its rival. 

 

KEYWORDS: Entry, exit, emerging market, firm size, investment analysis, preemption, 

vertical product differentiation 

  

                                                 
45 This chapter is based on the article: Venus, T.J., Drabik, D., and Wesseler, J.H.H. Investing in Emerging 

Vertically Differentiated Products. Paper submitted to a peer-reviewed journal. 
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6.1 Introduction 

Firms can follow different strategies to differentiate themselves from competition. They can 

invest in quality-improving technologies (e.g., a waterproof mobile phone), make products safer 

(e.g., by complying with a certain hygienic standard in food production), produce more 

environmentally friendly (e.g., by using renewable energy sources), or exclude genetically 

modified organisms (GMOs) from the food production process (e.g., by complying with a non-

GMO standard in food production). If all consumers choose a product with some of these 

attributes (perceived as higher quality) over a product lacking them (viewed as lower quality) 

when both qualities are offered at the same prices, the products are said to be vertically 

differentiated (Shaked and Sutton, 1982). This preference, of course, requires that firms can 

signal the higher quality. In this article, we consider investments in vertically differentiated, 

high-quality products in a duopoly when the choice is dichotomous (i.e., either low or high 

quality).  

Dichotomous choices are common, for example, for credence good labeling. In this case, 

consumers cannot distinguish between high- and low-quality products in the absence of any 

credible indication of the quality, even after lengthy inspection. In Germany, for instance, firms 

can adopt a non-GMO label by complying with the labeling standard specified by the 

government. This kind of labeling creates two quality levels because firms can either meet the 

standard and label the products to signal a high quality or not comply and signal low quality. 

The variable costs of producing the high quality usually exceed the variable costs of producing 

the low quality. In addition, the adoption of the label requires firms, among other things, to 

make sunk investments in new production technologies, certification systems, training of 

employees, and negotiations with suppliers.  

The set-up of our investment problem is as follows. Initially, both firms offer the low 

quality assuming that the demand and hence the incremental profits for the high-quality 

products are sufficiently low. As the demand for the high-quality product increases, one of the 

firms eventually invests, and the other firm follows. We assume that large product segregation 

costs make a firm switch completely. Therefore, once a firm invests, it becomes a monopoly 

supplier of high quality while its opponent becomes a monopoly supplier of low quality until 

the demand for a high-quality good is large enough to yield positive profits for both firms. We 

show that investment in high quality can result in a war of attrition or preemption. 

The model shows that due to vertical product differentiation (VPD), it is not clear a priori 

whether the smaller or the larger firm leads. This result is important as the order of investment 

through vertical product differentiation affects the welfare distribution of consumers differently. 

In addition, we show both demand-side and cost factors determine which firm enters the high-
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quality market first. A production standard, for example, that affects the level of product 

differentiation or the firms’ cost structure may affect the order of investment given other 

exogenous variables, such as firm size, interest and growth rate, investment costs, and the slope 

of the demand curves.  

The study of high-quality investments is closely related to the investigation of investments 

in new technology. Reinganum (1981) shows that if all firms have a first-mover advantage, 

then identical firms adopt the technology sequentially, earning different profits. Fudenberg and 

Tirole (1985) relax Reinganum’s (1981) assumption of pre-commitment and allow a firm to 

preempt their rival firm. Their revised setup using continuous-time mixed strategies allows 

determining firm rules endogenously instead of exogenously. If a first-mover advantage exists, 

a firm preempts its rival until the preempting firm is indifferent between following and leading. 

Fudenberg and Tirole (1985) refer to this phenomenon as “rent equalization.” In the case of 

firms of different size, mixed strategies are not necessary. Because we consider different firm 

sizes, rent equalization can be ruled out, and so the framework by Reinganum (1981) works 

without the pre-commitment assumption. 

Investing in high-quality production implies entering the high-quality market and exiting 

the low-quality market if the segregation costs of producing both products simultaneously are 

sufficiently high. If one firm benefits more when its opponent leads than when it leads itself, 

then switching to high-quality represents a second-mover advantage because the opportunity 

costs of exit exceed the benefit of entry. Ghemawat and Nalebuff (1985, 1990) and Fudenberg 

and Tirole (1986) analyze exit of firms with asymmetric market shares from markets with 

shrinking demand in a deterministic framework. They show that a smaller firm can sustain 

losses of a decreasing product demand over a longer period and therefore the larger firm exits 

first. Only large scale economies for the large firm’s production costs can reverse this result. 

Whinston (1988) shows that the results stated by Ghemawat and Nalebuff (1985) do not 

generalize for the multi-plant setting; hence, firm size alone may not be a good predictor for 

determining firm exit when firms possess more than one production facility. Esteve-Pérez (2005) 

shows that also demand-side effects must be considered when analyzing market exit in the case 

of vertically differentiated products. Due to product differentiation, the larger firm may outlast 

the smaller firm, when the firms produce different qualities.  

Product differentiation, for example, through labeling, affects competition by creating two 

markets. Following the imperfect information framework by Gabszewicz and Thisse (1979) 

and Shaked and Sutton (1982), Bonroy and Constantatos (2015) apply this idea to a duopoly 

market with firms of different exogenously given qualities. Bonroy and Constantatos (2015) 

show that both firms benefit, whereas only consumers with high willingness to pay for the high-
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quality product gain and the remaining consumers lose compared to no product differentiation.  

In our model, both firms are already active in the low-quality market. As in Fudenberg et 

al. (1983) and Ghemawat and Nalebuff (1985, 1990), we assume that the demand structure, as 

well as capacities and production costs, are common knowledge and that each firm eventually 

earns a positive profit in a duopoly, which allows us to study a finite-horizon game. Firms 

decide only whether to invest in high-quality production and when to make this choice. Whereas 

the previous literature analyzes either investment in or exit from markets with a first-mover or 

second-mover advantage, we show that investment in exogenously determined, high-quality 

products requires a combination of entry and exit models. We model investment in high-quality 

production in a duopoly market where the demand for high-quality increases deterministically 

over time. Our model merges the theory of investment in new technology and exit from 

declining markets with the theory of product differentiation. 

 

6.2 The Model 

6.2.1 Static Demand for Vertically Differentiated Products and Fixed Capacities 

We assume two firms, indexed by i and j, where both indexes can denote either firm 1 or 2, that 

is,  , 1,2i j  with i j . We assume that each firm produces either low quality (l) or high 

quality (h), but not both. We study entry as in Gabszewicz and Thisse (1979), due to, for 

example, the credence good characteristic of the product, assuming that l and h are exogenously 

given.  

Vertical product differentiation (VPD) implies that the price of the low-quality product is 

smaller than the price of the high-quality product. Therefore, firms only choose the low-quality 

if they can produce it at a sufficiently lower marginal cost than the high-quality product or if 

the investment in the high-quality production exceeds the firm’s net present value.  

We assume that a firm’s capacity,
iK , is fixed and firm 1’s capacity is smaller than firm 

2’s, that is, 
1 2K K . The justification for the fixed capacity comes from the idea that firms 

maximize their profits by choosing multiple product characteristics and the high- and low-

quality dimension is only one of them. For example, before the government introduces a 

labeling standard, firms may set their capacities through Cournot competition, choosing various 

levels in different quality dimensions (e.g., taste, geographical indication, fat content, 

appearance). Consumers in our model are price and quality takers. 

We assume that both firms face a constant per-unit cost of capacity for low- and high-

quality products, denoted by 
lc  and hc , respectively. Beyond capacity, the costs are 
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prohibitively high. We normalize the low-quality production costs to zero, such that 0hc   

denotes a firm’s incremental per-unit costs of producing high instead of low quality. We further 

assume the input supply is perfectly elastic. We assume that the marginal profit is always 

positive and hence, firms always fully use their available capacity instead of making short-run 

adjustments (Ghemawat and Nalebuff, 1985). Once a firm offers high-quality products, it 

cannot return to low-quality. High set-up costs prevent entry of other firms. 

Given the capacity constraints, firms set the prices at each point in time corresponding to 

the demand schedules (e.g., Boccard and Wauthy, 2010). Let us denote firm i’s decision by
iD , 

where  

(1) i

l
D

h





      
if firm  has not invested in high-quality production,

if firm  has invested in high-quality production.      

i

i
 

Similarly, we denote firm j’s decision by { , }jD l h . Then we can write the downward-

sloping inverse demand function that firm i  faces by ,i j

i

D DP . For example, if firm 1 produces 

high quality (i.e., 1D h ) and firm 2 produces low quality (i.e., 
2D l ), then firm 1 sets price 

1

,h lP  and firm 2 sets price 
2

,l hP . We normalize the duopoly low-quality price to zero (
, 0 l lP  ). 

If firms produce different product types, each firm is a monopolist in its market.  

6.2.2 Utility Function and Demand Structure 

A representative consumer has a quasi-linear utility function, and consumes low- and high-

quality products in quantities, lq  and hq , respectively, and a numeraire good, y . Following 

Singh and Vives (1984), we assume the consumer maximizes ( , , )h l l h hlU q q y p q p q  , where 

(2) 
2 21

( , , ) ( ) ( 2 )
2

h h l ll h l l hhl hU q q y t q q q s q yq q         , 

where   0h lt   . The utility function depends on the degree of substitutability, [0,1]s , 

of the l and h quality, the intrinsic qualities ( l  and ( )h t ), and the rate of utility saturation ( l  

and 
h ). The intrinsic quality of the high-quality product,  h t , grows smoothly over time (t), 

whereas the intrinsic low quality is constant. Furthermore, for the total demand we assume that 

own-price effects dominate cross-price effects, that is, 0l s    and 0h s   .46  This set-up 

leads to time-dependent inverse demand functions (  , j

i

h DP t ) for high-quality products and 

                                                 
46  The condition that own-price effects exceed cross-price effects “maintains a notion of generalized 

substitutability among goods” (Lapan and Moschini, 2004) but is more restrictive than requiring a negative 

semidefinite Slutsky matrix (i.e., 2 0l h s    ). 
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time-invariant inverse demand functions ( , j

i

l DP ) for low-quality products (see Appendix for 

particular functional forms). 

Because the inverse demand curve in each market is downward-sloping and 
1 2K K , and 

own-price effects dominate cross-price effects, firm 1 sets a higher monopoly price than firm 2 

in the same market, 
1 2

, ,h l h lP P and
1 2

, ,l h l hP P . The downward-sloping demand curves imply that 

prices for producing the low-quality product type as a monopolist are always larger than prices 

from producing the same type in a duopoly , , 0 i

l h l lP P  . Furthermore, because VPD implies 

that all consumers would buy the high-quality product if offered at the same price as the low-

quality product, hence, , ,

i i

h l l hP P . 

Because capacities are fixed, we use unit profits (henceforth profits) to determine the order 

of firm’s entry in high-quality production. Firm i’s profits depend on firm j’s decision, 
jD , such 

that firm i’s monopoly low-quality profit is , ,j j

i

D

i

l Dl P  (recalling that the unit cost of low-

quality production is zero) and its monopoly and duopoly high-quality profit is 

   ,,

i

h l

i

h l hct P t    and    , ,hh hh ht P t c   , respectively. Note that duopoly profits for both 

firms are equal at each unit costs (therefore we omit the subscript). The demand structure and 

costs are common knowledge for the firms.  

At each 0t  , firm’s available actions are to remain in the low-quality market or invest in 

high-quality production. Firms are assumed not to reverse their investment decisions. Under 

growing high-quality demand and the assumption that monopoly profits of high-quality 

production at 0t   are negative (i.e., ,
0

0
j

i

h D
t



 ), there exist three stages: 1) both firms 

produce low-quality in a duopoly and earn zero profits; 2) one firm invests and becomes a high-

quality monopolist while the second firm becomes a low-quality monopolist; and 3) both firms 

produce high quality in a duopoly. For the second stage, we are interested in which firm invests 

first to become the high-quality leader. 

6.2.3 Leader’s and Follower’s Time 

To determine the leader and the follower, we first define the net-present value of leading (i.e., 

leader’s value) and the net present value of following (i.e., follower’s value). Denote firm i ’s 

leader value function as  ,i i j

L FL T T  when firm i invests as a leader at i

LT  and firm j  invests as 

a follower at j

FT . As soon as firm i leads, it becomes a monopoly supplier of the h product, and 

its profits increase from 
,l l  to , ( )i

h l t . Firm i will earn monopoly profits until the rival firm j 
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follows at j

FT . When firm j follows, firm i’s profits change to 
, ( )h h t . 

The leader values of firm 1 and 2 are 

(3)  
2

1

1 2 ,

1 1 2 1

,, ( ) ( )
F

L

L F

T
rTrt rt

L F h l
T T

h hL T T t e dt t e dt Ie 


      

and 

(4)  
1

2

2 1 ,

2 2 1 2

,, ( ) ( )
F

L

L F

T
rTrt rt

L F h l
T T

h hL T T t e dt t e dt Ie 


     , 

where r denotes the discount rate and I denotes the unit investment cost, which is assumed to 

be the same for both firms. 

Furthermore, denote  ,i j i

L FF T T  as firm i ’s follower value function,  when firm j  invests 

as the leader at j

LT  and firm i invests as the follower at i

FT . The follower values of firm 1 and 2 

are 

(5)  
1

1

2 1

1 2 1

, ,

1, ( )
F

F

L F

T
rTrt rt

L F l h
T T

h hF T T e dt t e dt Ie 


      

and 

(6)  
2

2

1 2

2 1 2

, ,

2, ( )
F

F

L F

T
rTrt rt

L F l h
T T

h hF T T e dt t e dt Ie 


     . 

The optimal investment time for the leader solves the first-order condition corresponding 

to equations (3) and (5), that is, *, 0( ) /i i j i

L F LL T T T   , which can also be expressed as  

(7) 

*

, ( )i i

h l L
r

T

I


 .  

Because , 0i

h l t    and 
1 2

, ,( ) ( )h l h lt t  , we have 1* 2*

L LT T . Equation (7) corresponds to 

the Jorgensonian rule, which states to invest when the profit level equals the Jorgensonian user 

cost of capital ( rI ) (Dixit and Pindyck, 1994, 148; Jorgenson, 1963). Similarly, the optimal 

follower time solves *( , ) / 0i j i i

L F FF T T T   , or  

(8) 

*

, ,( )i i

h h F l hT
r

I

 
 . 

Because 
, 0h h t    and 

1 2

, ,l h l h  , we have 2* 1*

F FT T . Firm i’s leader/follower value 

dependents on firm j’s choice but its optimal leader time is independent of firm j’s choice. In 

deciding whether to become a leader or a follower, the firm has to take into account the 

opportunity cost of its action. To that end, we define the net leader value ( iV ) as the difference 

between leading at *i

LT  and following at *,i

FT conditional on firm j’s optimal choice, that is, 
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   * * * *, ,i i i j i j i

L F L FV L T T F T T  . A firm with a positive net leader value has a first-mover 

advantage and a firm with a negative net-leader value has a second-mover advantage. 

 

6.3 Investment Decision when One or Both Firms Have a Second-Mover Advantage 

Given the leader and follower value functions, there exist two Nash equilibria in pure strategies 

if at least one of the firms has a second-mover advantage. These equilibria are  1* 2*,L FT T  and 

 2* 1*,L FT T , and can be determined as follows. There exists some time, 
#

jT , for which firm i is 

indifferent between leading and following, that is,    * * * *

# #, ,i j j i

L

i i

FL T T F T T . Hence, as shown 

by Reinganum (1981), firm i’s best response correspondence given firm j’s investment time jT  

is 

   

* *

#

* * *

#

* *

#

if  

, if    

if 

i j j

F

j i i j j

L F

i j j

L

i

T T T

R T T T T T

T T T

 


 




  

If firm i has a first-mover and firm j a second-mover advantage (i.e., 0i jV V  ), then 

there exists a Nash equilibrium in which firm i will lead by investing at its optimal leader time 

and firm j at its optimal follower time, because in this case, * *i j

L LT T . If, however, both firms 

have a second mover advantage (i.e., 1 0V   and 2 0V  ), then each firm is better-off if its rival 

invests first. However, if both firms invest at their follower time, each firm foregoes some 

profits that it could make when leading instead of following. 

In Proposition 1 we show, that the only subgame perfect equilibrium when both firms have 

a second-mover advantage is that the larger firm leads. This Proposition, as well as our proof, 

is similar to Proposition 1 stated by Ghemawat and Nalebuff (1985) for market exit and hence, 

we use a similar notation. The similarity is that if a firm invests in labeling, it exits one market 

and hence its opponent becomes a monopoly supplier in that market. Our proof differs from 

Ghemawat and Nalebuff (1985) because in the presence of VPD, exiting the low-quality market 

makes the firm that exits a monopolist in the high-quality market. 

 

Proposition 1. If both firms have a second-mover advantage, the unique perfect equilibrium is 

that the larger firm invests first at its optimal leader time. 

Proof. The proof is illustrated in Figure 1. For the case 2* 1*

F FT T , we prove that firm 2 invests 

at 2*

LT . Suppose that no firm has invested until 2*

FT . Then, at 2*

FT , firm 2 switches to h 
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independently of firm 1’s decision at this point. If firm 1 is of type h at 2*

FT , its profits fall from 

monopoly to duopoly h profits. It earns duopoly h profits over the period 2* 1*[ , )F FT T . However, 

if firm 1 is of type l at 2*

FT , it earns monopoly l profits over the period 2* 1*[ , )F FT T . Define area 

a  to be firm 1’s gain from producing l in monopoly instead of h in duopoly over the period 

2* 1*[ , )F FT T . 

Suppose Ax  is the first time such that firm 1 is willing to remain of type l and earn zero 

profits over the period 2*[ , )A Fx T  to avoid losing area a. Remaining of type l requires to give up 

monopoly h profits. Taking into account a positive interest rate as well as investment costs, Ax  

is implicitly defined by 

 
2* 1*

1*

2*

1 1

, , ,( ) ( ) 0
F F

A F

A F

T T
rx rTrt rt

h l l h h h
x T

t e dt I e e t e dt            , 

where the right-hand side corresponds to area a  and the left-hand side to area b c d  . This 

area takes into account the negative effects of investing earlier at a time Ax  instead of 1*

FT , as 

defined by the second term of the left-hand side.  

Regarding area, Ax  is the first time that firm 1 is willing to give up area b c d   to avoid 

losing area a. Hence, if firm 1 has not invested until Ax , it will remain of type l until 1*

FT  with 

probability one. Because the continued production of l in duopoly leads to zero profits, firm 2’s 

optimal decision at the time Ax  is to invest at this point with probability one. 

 

 

Figure 1. Backward induction when both firms have a second-mover advantage 
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The argument proceeds by recursion. Firm 1 is assured of monopoly l instead of duopoly 

h profits after time Ax . Let Bx  be the time such that firm 1 is willing to remain of type l and earn 

zero profits over the period [ , )B Ax x  to avoid losing area a c . Remaining of type l requires to 

give up area e f g  , the gains from producing high quality in monopoly instead of low 

quality in duopoly over the period [ , )B Ax x . Hence, if firm 1 has not invested until Bx , it will 

remain of type l until it invests at 1*

FT . Firm 2’s optimal decision at Bx  is to invest immediately, 

if it has not invested before, to receive monopoly h instead of zero duopoly l profits. 

When moving further back in time, 
Cx  defines the first time, firm 1 is willing to remain of 

type l and to give up area h i j  , to avoid losing area a c f  . By the same arguments as 

for Ax  and Bx , firm 2’s optimal decision is to invest at 
Cx . The process of backward induction 

continues until 2*

LT . Firm 2 has no incentive to invest before 2*

LT  because its optimal leader 

time maximizes its leader value, given that firm 1 follows at its optimal follower time. In 

conclusion, when both firms’ net-leader value is negative, then firm 2 invests at its optimal 

leader time, earning monopoly h profits and firm 1 invests at its optimal follower time earning 

monopoly l profits over the period 2* 1*[ , )L FT T . Q.E.D. 

 

We proved that the larger firm 2 leads, because 2* 1*

F FT T . We have assumed equal costs, 

hc , for both firms. However, if the costs of the large firm are sufficiently large, the result stated 

in Proposition 1 can reverse. Sufficiently larger means that there exists some threshold, 

2 1( )h hc c , implicitly defined by 
2 2

2* 1*

h h
F Fc c

T T


 . If 2 2

h hc c , and both firms still have a second-

mover advantage, then firm 1 leads because 1 2

F FT T  and as stated in Proposition 1, the firm 

with the smaller follower time leads. This reversion can happen under some circumstances, but 

it is unlikely, however, because increasing 2

hc  not only increases its follower time but also 

eventually results in a first-mover advantage of firm1, because 
2*1

2 2

1

* 2
0F

h F h

dTVdV

dc T dc






. Hence, 

increasing 2

hc  leads to a situation in which firm 1 leads either with a first- or second-mover 

advantage. Firm 1 leads with a second-mover advantage only if 2

hc  is below the threshold of 

causing a first-mover advantage of the small firm, that is, 
2 2

1 0
N Nc c

V


 . 
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6.4 Preemption 

Assume now that both firms have a first-mover advantage (i.e., 1 0V   and 2 0V  ). In that 

situation, one of the firms may preempt its rival. For example, firm 2 could invest just before 

1*

LT . However, investing just before 1*

LT means to deviate from investing at the own optimum 

leader time, 2*

LT . Deviating from the optimum creates opportunity costs, but as long as the 

opportunity costs preserve a non-negative net leader value, firms prefer to pay these costs to 

lead instead of to follow. We refer to the time to which firm i would maximally deviate to 

preempt its rival as the preemption time, *i

PT .  

The preemption time is defined as the point where firm i is indifferent between leading at 

i

PT  and following at *i

FT  with the precondition that firm j would invest at firm i’s preemption 

time if firm i does not invest at that point. Hence, the preemption time is implicitly defined by 

equalizing the leader and follower value, given that both firms would lead at the same time if 

they are the leader.  

We show that the preemption time can either be smaller, equal, or greater than the leader 

time. Table 1 shows the sign effect of the net leader value on the relation between the leader 

time and the preemption time.  

 

Table 1. Net-leader value effect on the relation between preemption and leader time. 

If 0iV  , then * *i i

L PT T   

If 0iV  , then * *i i

L PT T   

If 0iV  , then * *i i

L PT T  or * *i i

L PT T    

 

In Table 1, a positive net leader value has no unique effect on the preemption time. This 

ambiguous net leader value effect when 0iV   requires adjusting the computation of the 

preemption time to consider that firm i would rather invest at the optimal leader time if * *i i

L PT T  

to maximize profits. Therefore, firm i’s preemption time is defined as 

 * * ** inf 0 (min{ , }, ) ( , )i i j i i

LP F F

i t L Ft T tT TT    . 

 

Proposition 2. If the net-leader values of both firms are positive, then the firm with the smaller 

preemption time will invest first. 

Proof. Suppose * *i j

P PT T . We need to prove that firm j does not invest before *j

PT  and that firm 

i does not invest after *j

PT . The first part proves by contradiction that firm j does not invest 
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before *j

PT . Preemption time *j

PT  is defined as the first time at which firm j’s net leader value is 

zero. If firm j invests at the time *j

PT  , its leader value decreases to * *, ) ,( ( )j j j j

P PL T L T    

while its follower value increases to * *, ) ,( ( )j j j j

P PF T F T   . Hence, firm j’s net-leader value 

before its preemption time is negative, * *, ) , )( 0(j j j j

P PL T F T    , such that firm j has a 

second-mover advantage. With a second-mover advantage, firm j prefers to invest as a follower. 

Hence, if firm i invests at *j

PT   to become a leader, it contradicts maximization of the leader 

value. 

The second part proves by contradiction that firm i does not invest after *j

PT . Suppose firm 

i does not invest in the period *( , ]j

Pt T . Then firm j will invest at *j

PT  and firm i becomes a 

follower. Because firm i can decide to invest at any time in the period *( , ]j

Pt T  to lead without 

needing to fear preemption, deciding to be a follower contradicts profit-maximization. 

 Q.E.D. 

Proposition 2 leaves open the question when the firms invest. Proposition 3 shows that 

there is a unique time. 

 

Proposition 3. If the net leader values of both firms are positive, each firm invests either at its 

optimal leader time or at its opponent’s preemption time. In particular, firm 1 leads at 1

LT , where 

 

   

1* 1* 1* 2*

1

1* 2* 1* 1* 2*

                             if max ,

min ,             if min ,

L L P P

L

L P P L P

T T T T
T

T T T T T

 
 



, 

or firm 2 leads at 2

LT , where 

   2* 1* 1* 2* 2* 1*

2

1* 2* 1*

min ,             if min ,

                             if 

L P L P L P

L

P P P

T T T T T T
T

T T T

  
 



. 

Proof. Suppose that each firm leads either at its optimal leader time or at its opponent’s 

preemption time. Define the set iS   to be the period before firm i’s preemption time, that 

is, *( | 0 )i i

PS t t T   . From Proposition 3, firm i can make no credible threat to preempt firm 

j at any it S .  

First, suppose 1* 2*

P PT T . This situation is illustrated in Figure 2. Firm 1 invests first. Firm 

1 can choose to invest at any 2t S  without fear of preemption by firm 2. If 21*

LT S , firm 1 

chooses to invest at 1*

LT  to maximize its leader value. If 1* 2

LT S , then firm 1 will try to get as 
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close as possible to 1*

LT , to maximize its leader value, because the leader value function is 

strictly concave in 2S . 

 

Figure 2. Possible relations of preemption and optimal leader times, for which firm 1 

invests first at the shaded times 

 

The closest firm 1 can get to its optimal leader value is the least upper bound of 2S , that 

is, 2 2*sup PS T . This proves that firm 1 invests at 1*

LT  if 1* 1* 2*max{ , }L P PT T T  or 1* 1* 2*

P L PT T T   

and it invests at 2*

PT  if 1* 2* 1*

P P LT T T  . 

Now suppose that 2* 1*

P PT T . This second part is illustrated in Figure 3. Firm 2 invests first. 

Firm 2 can choose to invest at any 1t S  without fear of preemption by firm 1. 

 

Figure 3. Possible relations of preemption and optimal leader times, for which firm 2 

invests first at the shaded times 

 

If 12*

LT S , firm 2 chooses to invest at its optimal leader time to maximize its leader value. 

If 12*

LT S , then firm 2 will try to get as close as possible to its optimal leader value. The closest 

firm 2 can get to its optimal leader value is 1 1*sup PS T . This proves that firm 2 invests at 2*

LT  

if 2* 2* 1*

P L PT T T   and at 1*

PT  if 2* 1* 2*

P P LT T T  .  Q.E.D. 

 

If the small firm’s production costs are sufficiently higher than the ones of the large firm, 

such that 2* 1*

L LT T , then the results stated in the proof reverse. 
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6.5 Effects of Exogenous Parameters – An Illustration 

We have shown above that firms’ decision when to invest depends on several exogenous 

parameters. Varying these parameters can result into different situations: (A) one of the firms 

has a first-mover advantage; (B) both firms have a second-mover advantage; or (C) both firms 

have a first-mover advantage.  
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Table 2. Example Combinations of Variables and the Different Resulting Investment Cases 

 A. One firm has a first-

mover, one a second-

mover advantage 

B. Both firms have a 

second-mover 

advantage 

C. Both firms have a 

first-mover   

advantage 
 A.1 

Firm 1 leads 

A.2 
Firm 2 leads 

B.1 
Firm 1 leads 

B.2 
Firm 2 leads 

C.1 
Firm 1 leads 

C.2 
Firm 2 leads 

Market share of firm 1  1K  40 48 48 48 40 40 

Market share of firm 2  2K   60 52 52 52 60 60 

Substitutability parameter  s   0.50 0.50 0.50 0.50 0.50 0.30 

Growth rate  g  0.12 0.12 0.12 0.12 0.10 0.10 

Cost per unit of firm 1  1

hc  100 100 100 100 150 150 

Cost per unit of firm 2  2

hc  100 100 103 100 150 150 

High-quality saturation par.  h  0.60 0.70 0.60 0.60 1.20 1.20 

Opt. leader time of firm 1  1*

LT   4.51 4.58 4.58 4.58 12.81 11.61 

Opt. leader time of firm 2  2*

LT  4.68 5.03 4.86 4.61 14.21 13.41 

Opt. follower time of firm 1  1*

FT   8.84 8.44 8.44 8.44 38.22 36.91 

Opt. follower time of firm 2  2*

FT   7.84 8.74 8.54 8.24 35.82 33.71 

Opt. preemption time of firm 1  1*

PT  - - - - 7.60 7.95 

Opt. preemption time of firm 2  2*

PT   - - - - 7.73 7.91 

Net-leader value of firm 1  1V   -19.10 1.18 -3.22 -9.90 121.54 106.75 

Net-leader value of firm 2  2V  2.76 -15.03 -11.26 -5.53 115.60 96.68 
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Table 2 illustrates the three investment cases by assuming specific parameter values. For each 

case, we show how changes in some parameters result in leadership of the smaller firm 1 or the 

larger firm 2. In all examples, the values of the following parameters are held constant: 

investment cost, I = 1, low-quality saturation parameter, 1l  , low-quality inverse demand 

intercept, 100l  , high-quality inverse demand intercept, 100h  , and discount rate, 0.1r  .  

Using column A.1 as a reference (i.e., firm 1 is the only firm with a first-mover advantage), 

a higher market share of firm 1 (i.e., more similar firm sizes) results in case B.2, where both 

firms have a second-mover advantage and firm 2 leads. However, if at the same time 
h , or 

firm 2’s cost increase, then the result is A.2 or B.1, respectively. The latter case shows that firm 

1 leading with a second-mover advantage can be the result of only a small unit cost increase of 

firm 2. Examples of parameters for which both firms have a first-mover advantage are presented 

in column C.1 and C.2. Lowering the substitutability between low- and high-quality products 

can, for instance, change C.1 to C.2.  

 

6.6 Conclusions 

We show that firm’s investment in high-quality production with fixed capacity can be a strategic 

substitute or a strategic complement, depending on several factors such as the difference in firm 

size and the level of vertical differentiation, growth and discount rate, demand parameters, and 

per-unit production costs. The distinctive feature of our model of high-quality investment and 

vertical product differentiation is that it models entry in the high-quality and exit from the low-

quality market in a single framework. We state propositions that determine the unique 

equilibrium under various conditions for the small or the large firm to invest first and derive 

the respective optimal investment times. 

The model allows to show, for example, how the stringency of a private or public quality 

standard (e.g., the farm certification scheme GlobalGAP), which affects the production and 

compliance costs as well as the level of product differentiation, affects the market structure of 

differentiated products. Hence, our model implies that through the setting of these standards, 

private and governmental institutions can impact the market structre.  

A limitation of our study is that we consider only single-plant firms. If considering a 

multiplant setting, a complex model of multiple equilibria would result, where other factors that 

are difficult to assess, influence the order of investment (Whinston, 1988). Furhermore, because 

we asume fixed production quantities, our model does not consider capacity investment 

dynamics. For example, small firm’s growth is higher and more variable than large firm’s 
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growth (e.g., Chi and Choi, 2017). A combintion of capacity investment in a setting of vertically 

differentiated products is left for future research. 

 

6.7 Appendix 

A Specific Demand Function for Vertically Differentiated Products 

A representative consumer solves the following problem  

2 21
max ( , , ) max ( ) ( 2 )

2
hl h l l h h l l h l h l lh h hl l hU q q y p q p q t qq q q s q y p q p qq             .  

Parameters  h t , l , s , l , and 
h  are defined in the text. First-order conditions 

corresponding to the objective function above with respect to lq  and hq , yield the inverse 

demand functions 

 
, ( , )h lll hh l lP q sqq q     

, ( )( , , )h l l h h h h ltP t q qq sq   , 

where 
,l hP  denotes the inverse demand function for low-quality products for a given quantity 

of the high-quality product; similarly, 
,h lP  denotes the inverse demand function for the high-

quality product given the quantity of the low-quality product. Given the utility maximization 

problem and the respective assumptions about parameter, the inferiority of the low-quality 

product limits its price to be below the price of the high-quality product, that is, 

, ,( , ) ( , )h hh l ll h lP q q P q q . If only low-quality products are produced and the consumer does not 

have a choice, we obtain 

, ( )l l ll l lP q a q  . 

On the other hand, if duopoly high-quality profits are greater than either firm’s monopoly 

low-quality profits, firms will only offer high-quality products. Given the parameters of the 

utility function above, we solve for the duopoly price by adding up the low- and high-quality 

demand curves and then solving for the inverse demand to obtain 

 
     2

,
2 2

h l l h l h

l

h h

l

h h

h h

t s
P q

s s

s
q

s     

   

   
  

    


. 

If, for example, the intercept of the high-quality demand curve grows linearly at rate g, 

such that, (1( ))h ht gt   , the corresponding profits conditional on firm 1’s and 2’s capacities, 

are 

 , ( )
l i j

l l l l i jK K lq
q a K K 

 
   , 
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,, ,

l i h j
jq K q
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l h l h l l iK
sKq q K  

 
   , 

 
,, , ,

h i l j

i i

h l q K ql h h h h i j hK
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l l h il h
i j hq K K

l l l

h h li

h h h

h h h

s s
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s s
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Given the functional forms of the profit functions, the leader and follower times, implicitly 

defined by equations (7) and (8), are 

(9) 
 ,*

,i

h l l h

h

i

L

rI q
T

g

q





 

and 

(10) 
   

 
, ,*

2

,i i

l h l h h h hi

F

h

h

l

l

rI q q q

s

T
g s

 

 

 











. 

To test whether firm i has a first- or second-mover advantage, we substitute the optimal 

leader and follower times into the leader and follower value equations (3) to (6) to obtain 

(11)    
2* 1* 1*

1* 1*

1* 2* 2*

1 1* 2* 1

,

1 1

, ,, ( ) ( )
F F F

L F

L L F

T T T
rT rTrt rt rt

L F h l l h
T T T

h hV T T e t dt e dt e t dt I e e              

and 

(12)    
1* 2*

2
2

* 2*

2* 1*

*

1*

2 2* 1* 2 2

, ,,

2, ( ) ( )
F F

L F

L L F

FT T
rT rTrt rt rt

L F

T

h hh l l h
T T T

V T T e t dt e dt e t dt I e e             . 

In total, we get three cases and for each case two subcases. The subcases are that either 

firm 1 or firm 2 leads. If both firms have a first-mover advantage (i.e., right-hand sides of both 

(11) and (12) are positive), the lower preemption time  * *min ,i i i

L L PT T T  determines the leader. 

In this case, firm 1’s preemption time, 1*

PT , solves 

(13) 
 

 
2* 1* 1* 1* 1* 1*

1* 1* 1* 2*

min ,1 1

, , ,
min ,

( ) ( ) 0
F F F P L

F

P L P F

T T T r T T rTrt rt rt

h l l h h h
T T T T

e t dt e dt e t dt I e Ie  
           

    , 

 and firm 2’s preemption time, 2*

PT , solves 

(14) 
 

 
1* 2* 2* 2* 2* 2*

2* 2* 2* 1*

min ,2 2

, ,
m

2

,
in ,

( ) ( ) 0
F F F P L

F

P L P F

T T T r T T rTrt rt rt

h l l h
T T

h
T

h
T

e t dt e dt e t dt I e Ie  
           

    . 
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7. DISCUSSION AND CONCLUSIONS 

In this thesis, I address the overall question: “What does the system that regulates GMOs in the 

European Union imply for coexistence, product labeling, and firms’ strategic decision-making 

related to vertical product differentiation?” 

In the thesis, I present some of the wide-ranging implications of the EU GMO regulatory 

system for agricultural supply chains. Firms can use a GM crop for food production once the 

crop has been authorized for human consumption. If a food ingredient contains more than 0.9 

percent EU-authorized GMOs (by weight), suppliers of that product must label the product. 

Products that only use GMOs in the production process do not require labeling. Firms, 

particularly in concentrated markets, can use labeling for vertical product differentiation. 

Labeling leads to a separation into GM and non-GM supply chains if firms offer both product 

types. To guarantee the parallel existence of these supply chain systems, some EU Member 

States implemented specific farm-level coexistence measures. Furthermore, firms have 

developed systems to preserve the identity of non-GM products along the supply chain. The 

regulatory system, combined with labeling, coexistence, and identity preservation systems, 

affects the market and welfare effects of the introduction of several new plant breeding 

techniques, which may or may not fall within the scope of the GMO regulation. 

 

7.1 Synthesis of the Answers to the Research Questions 

In this thesis, I stated four research questions related to the system that regulates GMOs in the 

European Union. Each of these questions is addressed in a chapter of this thesis. To synthesize 

the thesis, a summary of the answers from the four chapters is presented in the following text. 

 

What are the costs of coexistence measures for genetically modified maize in Germany? 

Coexistence measures at the farm level are difficult to price and cost estimates are largely 

missing in the literature. The previous literature relies on small case studies with either direct 

assessments based on accounting principles (e.g., Consmüller et al., 2009b; Messean et al., 2006; 

Skevas et al., 2010; Venus et al., 2011) or on simulations (e.g., Messean et al., 2006). The 

evaluation of a choice experiment with farmers in Germany enables an estimation of the 

farmer’s perceived coexistence costs. Chapter 3 shows that these costs highly depend on the 

defined coexistence requirements, and that some of the strict measures can significantly 

increase the cost of cultivating GMO crops up to and beyond the point where GM crops are no 

longer profitable. In Germany, farmers rated temporal isolation as the costliest coexistence 

measure, confirming its unsuitability in non-Mediterranean countries and explaining its 
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exclusion from the set of coexistence measures in Germany. Our results support the arguments 

of Devos et al. (2009), Messeguer et al. (2006), and Weber et al. (2007), who state that temporal 

scheduling to isolate Bt maize flowering from non-Bt maize flowering is not an effective 

measure if the seeding window is very short. 

Strict liability is the costliest obligatory coexistence measure that is also used in Germany 

followed, by large minimum distance requirements. Even though strict liability costs exceed 

the expected benefit of Bt maize cultivation, farmers may have planted Bt maize in the presence 

of joint and strict liability because as some farmers mentioned, one of the grain traders paid the 

same price for conventional and Bt maize, while the GM seed supplying company safeguarded 

potential economic damage as long as farmers comply with the laws. 

As Bt farmers valued minimum distance as less costly, minimum distance requirements 

might have been one of the reasons why Bt farmers in our sample decided to plant Bt maize in 

2008 even though their neighbors did not. This finding confirms that minimum distance can 

severely limit the economic benefits of GM growers in areas with non-GM farmers (Demont et 

al., 2008; Groeneveld et al., 2013). The findings further indicate that an increase in the number 

of neighbors had a negligible negative effect on the adoption decision.  

 

What drivers and institutional set-up is leading the German non-GMO market from niche to 

mainstream? 

Complying with a public voluntary labeling standard would be sufficient for labeling a 

particular product attribute. However, firms have several incentives to adopt a private voluntary 

standard that operationalizes the public standard. In the case of Germany, the Ministry of 

Agriculture commissioned a multi-stakeholder organization to issue and administer the licenses 

of a national non-GMO label. The organization sets a private voluntary non-GMO production 

and certification standard with which firms must comply to use the label. In line with Henson 

and Humphrey (2010), Chapter 4 discusses how the private non-GMO standard reduces 

uncertainty by providing assurance that the rules and regulations are adhered to. Furthermore, 

the exemption of smaller firms from third-party auditing facilitates the participation of smaller 

firms in the certification scheme instead of forcing them out, which has been the case for other 

third-party certification schemes (Hatanaka et al., 2005). 

Chapter 4 shows that initially, only small producers used non-GMO labeling and formed a 

niche market. Around the same time, anti-GMO activist groups were pressuring larger firms to 

convert to non-GMO. The decision of large egg producers in 2015 to use non-GMO labeling 

created a tipping point, and this decision was the basis for the announcement of major German 

retailer chains to use non-GMO labeling for some of their store brands. The chapter discusses 



124 

 

how the initial concerns of retailers were resolved through the multi-stakeholder organization. 

The organization combines the interests of all its stakeholders, which lowers the probability of 

one of the main fears of retailers, which is being pressured by NGOs should mislabeling occur. 

Since the major retailers in Germany have decided to enter the non-GMO market, they have 

been taking the role of the “driving” sector and moving non-GMO production from a niche to 

a mainstream market. Their market power allows them to determine the production decisions 

of the less powerful firms that produce their store brands (Klooster, 2005). Store brands play a 

particularly vital role for the products (e.g., livestock products) that are most amenable to non-

GMO labeling. 

 

What are the market and welfare effects of regulating New Plant Breeding Techniques as a 

GMO technology under the present coexistence, segregation, and labeling regulations? 

The current EU GMO regulatory system is binary: GMO or not. The decision on how to regulate 

a number of new plant breeding techniques (NPBTs) is still open. The chapter presents a partial 

equilibrium model to analyze the market and welfare effects of regulating NPBT-derived crops 

as a GMO or not. The model is applied to the EU market of rapeseed and its derived 

commodities: meal and oil. The market and welfare effects are analyzed under a mandatory 

label for GM food products and a voluntary label for meal-derived livestock products. Both 

labels apply in the baseline. A key feature of the model is that it allows a separation of the 

effects of farm-level coexistence cost and marketing-level segregation and identity preservation 

costs.  

Several authors model the effects of segregation costs on product prices and consumer and 

producer welfare, but they do not separately consider the coexistence costs of GM farmers (e.g., 

Fulton and Giannakas, 2004; Lapan and Moschini, 2007; Lapan and Moschini, 2004; Moschini 

et al., 2005; Sobolevsky et al., 2005). The work by Sobolevsky et al. (2005) is the closest to 

Chapter 5, as they use a partial equilibrium model of differentiated consumers to analyze the 

market and welfare effects of costly segregation costs on GM soybean trade. Unlike Sobolevsky 

et al. (2005), however, the focus of Chapter 5 is on the distribution of market and welfare effects 

within an economy rather than on trade. We furthermore consider the different effects of 

coexistence and segregation costs and allow for different labeling schemes. 

As shown in Chapter 5, the vertical product differentiation of meal-derived livestock 

products substantially increases the meal price and hence makes the consumers of these 

products worse off overall. At the same time, Chapter 5 shows that industrial oil and biodiesel 

consumers benefit from voluntary labeling of meal-derived livestock products. Additionally, 

farmers and food oil consumers benefit from the voluntary labeling scheme. However, these 
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farmers and food oil consumers are only better off if meal segregation costs do not exceed a 

threshold level. When meal segregation costs exceed that threshold, only industrial and 

biodiesel consumers benefit from the voluntary non-GMO labeling of livestock products. 

In Chapter 5, farm-level coexistence costs in the case where NPBTs are characterized as 

GM technology are modeled as an increase of the marginal production costs of farmers; hence, 

high farm-level coexistence costs can lead to the absence of NPBTs if the costs pass a certain 

threshold. Unlike coexistence costs, segregation costs in downstream markets, do not increase 

all prices (i.e., rapeseed, meal, oil); instead, they actually lower the price of oil, a derived 

commodity from NPBT rapeseed (benefiting industrial and biodiesel consumers), and the 

rapeseed prices received by farmers. However, the prices of food oil and meal increase due to 

segregation costs, which is in line with the findings by Desquilbet and Poret (2014). 

Furthermore, coexistence costs have an overall welfare decreasing effect. Even if the use of 

GMOs lowers the farmers’ marginal rapeseed production costs by 10 percent, they would not 

cultivate these crops if the coexistence costs (including the technology fees in the form of higher 

seed costs for the NPBT seeds) exceed a threshold of approximately 157 euros per hectare. 

Under current coexistence policies in most EU Member States, coexistence costs are likely to 

exceed this level as shown for maize in Chapter 3. These results imply that the current GMO 

regulation in the European Union, is likely to make the cultivation of such crops unprofitable 

under the current labeling and coexistence policies in some EU Member States. 

 

How do different demand and cost variables influence the time to invest in high-quality 

production? 

The timing of the adoption of voluntary production standards can be a strategic choice of 

companies (e.g., retailers) in highly concentrated markets to vertically differentiate their 

products. In the case of GMOs, models presented in the literature consider GM and non-GM 

products as vertically differentiated such that all consumers would either buy the non-GMO 

product or are indifferent if both products are offered at equal prices (e.g., Fulton and Giannakas, 

2004; Giannakas, 2002; Lapan and Moschini, 2007; Lapan and Moschini, 2004). Product 

differentiation, for example, through labeling, affects competition by creating two markets. 

Following the imperfect information framework by Gabszewicz and Thisse (1979) and Shaked 

and Sutton (1982), Bonroy and Constantatos (2015) apply this idea to a duopoly market with 

firms of different exogenously given qualities. Bonroy and Constantatos (2015) show that both 

firms benefit, whereas only consumers with a high willingness to pay for the high-quality 

product gain and the remaining consumers lose. In the model presented in Chapter 6, both firms 

are already active in the low-quality market. As in Fudenberg et al. (1983) and Ghemawat and 
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Nalebuff (1985, 1990), the assumption in Chapter 6 is that the demand structure, as well as the 

capacities and production costs are common knowledge, and that each firm eventually earns a 

positive profit in a duopoly from quality-updating, which allows us to study a finite-horizon 

game. Firms decide only whether to invest in higher-quality production and when to make this 

choice. Whereas the previous literature analyzes either investment in or exit from markets with 

a first-mover or second-mover advantage, our results show that investment in exogenously 

determined, high-quality products requires a combination of entry and exit models. Quality-

updating in a duopoly market is modeled, where the demand for higher-quality increases 

deterministically over time. The model merges the theory of investment in new technology and 

exit from declining markets with the theory of product differentiation. 

 Chapter 6 shows that a firm’s timing to invest in high-quality production depends on 

several factors, such as the difference in firm size between competing firms and the level of 

vertical differentiation, growth and discount rate, demand parameters, and per-unit production 

costs. The results also imply that the stringency of a private or public quality standard affects 

the market structure of differentiated products, because stringency affects the production and 

compliance costs as well as the level of product differentiation. 

 

7.2 Limitations and Recommendations for Future Research 

Before I discuss several implications of the research presented in this thesis, I would like to 

note some limitations and point to challenges for future research.  

Limitations of Chapter 3 

The above-average farm size characteristics, due to a self-selection bias, allow us to draw only 

limited conclusions for a larger population with different characteristics. However, the 

similarity between Bt farms and non-Bt neighbor farms in our sample allows some comparison 

to explain why some farmers planted Bt maize while their neighbors with similar characteristics 

did not. Furthermore, since GM crops are not grown in Germany (or in many other EU Member 

States) and since there is not much reason to believe in substantial increases of GM crop 

cultivation in the European Union anytime soon, one may question the practical relevance of 

the results. However, the main contribution of Chapter 3 is the estimation of costs of several 

coexistence measures to inform the ongoing debate on coexistence measures in the literature 

and policy arena. Even though Germany and several other European Member States do 

currently not grow GM crops, additional GMOs can be approved any time in the future. The 

lack of available experience with coexistence measures in other EU Member States also 
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prevents assessments with farmers that have experience with such measures. Hence, if a country 

with a large GMO cultivation, such as Spain, adopts coexistence measues, the proposed 

evaluation methods can be used. In the case of further GM crop approvals, the study design of 

Chapter 3 can build a valuable basis for estimating coexistence costs on a larger scale. For 

future research, a random selection of farmers can yield more robust and representative results 

if the number of farmers is relatively large. 

Limitations of Chapter 4 

One of the main limitations of Chapter 4 is its focus on a single EU Member State, that is, 

Germany. The evolution of the institutional construct of the non-GMO labeling sector may take 

very different paths in other countries. A further comparison between the non-GMO labeling 

scheme of Germany with other countries could yield a further understanding of the non-GMO 

labeling and its drivers. Castellari et al. (forthcoming) make a start by comparing various EU 

Member States’ initiatives with one another and by comparing the EU labeling system as a 

whole with the US labeling system. In case voluntary labeling schemes in the European Union 

further harmonize, future research can address the convergence of several regulatory systems 

in the case of non-GMO voluntary certification schemes. 

Limitations of Chapter 5 

An important assumption of our partial equilibrium model in Chapter 5 is that consumers only 

care about the regulation of NPBTs but not about NPBTs per se. However, very little is known 

about how consumers would behave if NPBTs were marketed. If consumers do care about 

NPBTs per se, they might be willing to pay a premium to avoid NPBT-derived products even 

if these products are regulated as non-GM. If this is the case, the industry may develop voluntary 

labeling schemes to avoid NPBTs (similar to the non-GM labeling schemes for livestock 

products). This, however, requires the establishment of a segregation system that includes 

coexistence measures at the farm level. Our model covers a similar case, except that food oil 

would also be vertically differentiated into an NPBT and a non-NPBT food oil market if 

retailers do not systematically exclude NPBT products. Because the model is calibrated to a 

case where no supply of GMO oil exists, the parameters for such a scenario are not available 

for simulation. This lack of available data also requires several assumptions or the use of data 

for close enough substitutes, such as soybean. The values for coexistence and identity 

preservation costs are different in many ways for the substitute. For example, soybean, unlike 

rapeseed, is self-pollinating. Future development in the sector and potential data from field trials 

will bring more certainty and will allow us to recalibrate the model once some of the crops are 

cultivated. 
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Furthermore, the change in producer surplus is sensitive to the specification of the supply 

curve shift caused by the introduction of an innovation; economic theory is not informative 

about this specification, as discussed by Alston et al. (1995, pp. 63-64). In the paper, producers 

lose from the introduction of cost-reducing NBPTs because the modeling framework implies a 

pivotal supply shift; but as discussed in the chapter, producers would gain if a parallel supply 

shift was used instead. As described in Chapter 5, a pivotal shift was used because of the 

assumption that the new technology reduces the marginal production costs of conventional 

production. 

 

Limitations of Chapter 6 

A limitation of Chapter 6 is, as with most research in the field of industrial organization, the 

results’ dependence on several strong assumptions that are noted in the chapter. The 

exploitation of empirical predictions derived from the model with capacity constraints can yield 

valuable insights for future research. Another limitation is the consideration of single-plant 

firms only. If considering a multi-plant setting, a complex model of multiple equilibria would 

result, where other factors that are difficult to assess, influence the order of investment 

(Whinston, 1988). Furthermore, because we assume fixed production quantities, our model 

does not consider capacity investment dynamics. For example, small firms’ growth is higher 

and more variable than large firms’ growth (e.g., Chi and Choi, 2017). A combination of 

capacity investment in a setting of vertically differentiated products is left for future research. 

 

7.3 Policy Implications 

The EU regulatory framework on GMOs has implications for many parts of agriculture and its 

supply chains. The combination of a positive mandatory and a negative voluntary labeling 

scheme together with nationally defined coexistence measures is unique to the European Union. 

Nevertheless, lessons learned from the EU case can yield valuable insights for other regulatory 

systems. One example is the United States, which has already had a non-GMO labeling system 

in place since the early 2000s, and recently a bill was signed that will require the disclosure of 

GMO food in the United States. The bill was signed to avoid a patchwork system in which each 

state has its own labeling laws (Begley, 2017). In both the European Union and the United 

States, private standards for non-GMO labeling have emerged. From about the mid-2000s, food 

producers, retailers, and chain restaurants started to advertise non-GMO products. A 

recognizable market for these products emerged from approximately 2010 onward in both 

regions (European Commission, 2015). 
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The provision of non-GMO products is voluntary, and hence, it seems to be a market-based 

approach. However, governments of EU Member States decide whether or not to allow non-

GMO labeling, and if allowed, they decide on the minimum stringency to label a product as 

non-GMO. If the government intends to provide the freedom to choose products produced with 

or (to some extent) without GMOs to consumers, it might be necessary, but it is not sufficient, 

to facilitate non-GMO labeling. In Germany, the multi-stakeholder organization, commissioned 

by the Ministry of Agriculture, provides one-sided information to consumers. Hence, the non-

GMO label that is supposed to solve the externality of imperfect information can create new 

information imperfections. The government may achieve a reduction in the externalities and 

therefore a more aligned freedom of choice through science-based information campaigns. 

Because the stringency of labeling legislation affects production and compliance costs, it 

also affects the market structure of differentiated products. Hence, by setting these standards, 

private and governmental institutions can impact the market structure and the growth of the 

market, and through this impact, they can affect the distribution of welfare effects. Because of 

the impact on the timing of a firm’s adoption of voluntary production standards, standard-setters 

should be aware of the various influential factors. 

There are many producers that avoid GMOs in their production process or even comply 

with the non-GMO standards, but do not explicitly signal non-GMO quality through labeling. 

Examples in the European Union are products produced under three EU-wide quality logos: 

protected designation of origin, protected geographical indication, and traditional specialty 

guaranteed. The economic advantage of using non-GMO labeling for these products is that the 

production process is already well documented and certified, and hence, the additional costs for 

a non-GMO label are relatively low. Hence, the non-GMO market has the potential for further 

growth in the coming years. 

 Within the European Union, a harmonized legislation defining “non-GMO,” “GMO-free,” 

or similar labeling terms does not (yet) exist; hence, there are many differences regarding the 

non-GMO legislations ranging from facilitating legislations to bans. For the facilitating 

legislations, EU Member States started to harmonize their standards. So far, producers who 

comply with the non-GMO rules of Austria and Switzerland can also use the German label. 

Furthermore, the non-profit organization “Donau Soja” created a non-GMO standard, which it 

handed over to the agricultural ministers of 15 countries along the Danube River in October 

2016. The standard is based on the labeling guidelines established by the Austrian organization 

for non-GMO food products and only applies to adopters in a respective country, once it gets 

transposed into national law. The standard is meant to be a first step toward harmonizing non-
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GMO labeling and guiding countries that do not have their own national approaches to non-

GMO labeling. 

Harmonization of non-GMO labeling would reduce trade problems within the European 

Union. For all other countries that export to the European Union, the non-GMO requirements 

of retailers may have similar effects to other private standards. These effects have been 

extensively discussed, in particular, for developing countries (for an overview, see Henson and 

Humphrey, 2010). Aside from the impacts on the direct trade of labeled final products, 

harmonization and growing non-GMO production has potential impacts on international trade 

in agricultural commodities. If the market for non-GMO labeled products increases, the demand 

for non-GMO feed will also increase. A growing demand for non-GM soybean can increase 

prices, but it may also lower segregation costs due to economies of scale. Because Brazil is the 

main non-GM soybean supplier, there is little flexibility in protein feed substitution, and thus 

supply shortage can create strong price fluctuations. Currently, 4.5 million metric tons of 

soybean meal are used in German livestock production (Peter and Krug, 2016). Given a price 

premium of approximately 100 euros per metric ton, livestock producers would, under current 

conditions, need to generate an additional 450 million euros of revenue to cover the incremental 

soybean costs. Further costs arise for quality assurance from the farmers toward the final 

product. 

An increasing non-GMO market will also have implications for coexistence between GMO 

and non-GMO products. Because non-GMO livestock products do not allow the use of GM 

feed, a larger non-GMO market may increase the economies of scale of non-GMO supply 

chains and certification systems, and hence, it may lower the costs of segregating non-GMO 

from GMO products. Hence, identity preservation costs may decrease. Since the non-GMO 

attribute cannot be identified with tests based on the PCR-method (EFSA, 2007), a certification 

system must cover the whole supply chain and must be mainly based on documentation (cf. 

Chapter 4). However, a growing market may also lead to further challenges for coexistence at 

the farm level in the United States and the European Union, if the later authorizes further GMO 

crops for cultivation.  

The choice of coexistence measures can significantly impact farmers’ choice of adopting 

GM crops. The estimates in Chapter 3 suggest that coexistence costs can be significantly 

reduced through measures that reduce expected liability costs. In the absence of private 

insurance by grain traders and seed suppliers, compensation funds are a potential way to reduce 

liability costs. These funds cover accidental cross pollination as long as the farmer follows ex-

ante regulations (Skevas et al., 2009). Alternative private solutions include the formation of Bt 

maize production clubs (Punt and Wesseler, 2015). Also, minimum distance requirements can 
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significantly increase production costs. Demont et al. (2009) and Devos et al. (2013) argue that 

flexible coexistence regulations (e.g., buffer zones) instead of rigid ones (e.g., minimum 

distance requirements) may reduce a possible domino effect that pressures potential Bt farmers 

to shift to non-GM maize cultivation. Furthermore, agreements between neighbors can be a 

suitable and cost-efficient strategy to reduce the costs of minimum distance requirements. In 

this sense, voluntary solutions by farmers seem to be very suitable to achieve coexistence.  

The larger market implications will depend on the regulation of crops derived by various 

new genetic modification techniques. As discussed in Chapter 5, the market and welfare effects 

are very different if NPBTs fall within the scope of the GMO regulation compared to treating 

them as conventional products. Overall, the results in Chapter 5 indicate that a ban on NPBTs 

may benefit farmers. This effect illustrates that farmers may not lobby for NPBTs. On the 

consumer side, the biodiesel industry complex would be the one losing the most from an NPBT 

ban and therefore, it has a strong incentive to lobby for NPBTs (even in the presence of labeling 

policies). 

Because a range of NPBTs exists, one could think of several categories of regulation 

instead of the binary system. However, it is likely that there will be a whole continuum of 

NPBTs in the future, and many categories would make the regulatory system complex. 

Furthermore, if the United States regulated NPBTs differently than the European Union, then 

the trade implications could be substantial. Some environmental organizations claim that 

NPBTs are a strategy that the industry uses to avoid GMO regulation (Pollack, 2015). These 

organizations have positioned themselves against the use of NPBTs and favor regulating them 

as GMOs (Sprink et al., 2016). Hence, even if NPBTs will not fall within the scope of GMO 

regulation, it is possible that consumer and environmental organizations will advocate labeling 

of non-GMO products, including products derived from NPBTs. Such a labeling system would 

require careful documentation because the NPBT attribute (similar to the GMO attribute after 

GM feed is processed into a livestock product) is a Potemkin attribute that cannot be traced 

through identification tests (cf. Chapter 4). A growing number of NPBTs would make non-

GMO food production relatively more expensive. This imposes additional limits on the market 

size for non-GMO labeled foods. Furthermore, NPBTs will challenge the identity preservation 

systems, including coexistence issues at the farm level, because some NPBTs only introduce 

minimal changes to the genome of the plant, and currently available tests cannot distinguish 

these changes from naturally occurring mutations. Identification would require the use of 

specific markers and would require costly monitoring of firms’ application of these markers. 

Nevertheless, experiences with other credence goods, such as organic food products, seem to 
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make the supply of non-GMO products under these growing challenges possible only if the 

demand is sufficiently high to cover the potentially increasing costs of non-GMO certification. 

Finally, besides the possibility of regulating NPBTs as a GMO or not, regulators in the 

European Union can change the complete regulatory system from a process-based system to a 

strictly product-based system, such as in Canada.47 Under this alternative framework, which is 

often considered more scientifically-based and effective (Marchant and Stevens, 2015), a 

product trait needs approval only if it differs from what already exists on the market, that is, if 

it is novel. This evaluation is independent of the technique. Hence, if the new traits were 

achieved through conventional breeding, the authorization process would be the same as if the 

trait were achieved through, for example, mutagenesis, transgenesis, or cross-breeding 

(Marchant and Stevens, 2015). In the presence of product-based GMO regulation, traceability 

measures would not be required, and hence, it would probably not be possible for firms to 

exclude crops derived by NPBTs at reasonable costs if the technology could not be identified 

through product testing. In that case, mandatory GMO labeling and private, voluntary non-

GMO labeling for product differentiation with respect to the GMO attribute and the related 

coexistence, segregation, and identity preservation requirements would become a part of the 

past.  

                                                 
47 Note that even though the EU regulatory system for GMOs has often been considered a purely process-based 

system (Marchant and Stevens, 2015), several research institutions have recently taken a stand for interpreting the 

2001 Deliberate Release Directive as process- as well as product-based (Sprink et al., 2016). 
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SUMMARY  

This dissertation analyzes the market effects of the coexistence of genetically modified 

organism (GMO) and conventional production, labeling policies, and strategic firm interactions 

through vertical product differentiation. Although we focus on GMOs, the applied frameworks 

can be adopted and extended to other differentiated products where similar concepts apply.  

The main body of the dissertation consists of four chapters. In the first chapter, we 

estimate the perceived costs of legal requirements (‘coexistence measures’) for growing 

genetically modified (GM) Bt maize in Germany using a choice experiment. The costs of the 

evaluated ex-ante and ex-post coexistence measures range from zero to more than 300 euros 

per hectare per measure, and most of them are greater than the extra revenue the farmers in our 

survey expect from growing Bt maize or than the estimates in the literature. The cost estimates 

for temporal separation, which were the highest in our evaluation, imply that the exclusion of 

this measure in Germany is justified. The costliest measures that are currently applied in 

Germany are joint and strict liability for all damages. Our results further show that neighbors 

do not cause a problem and that opportunities for reducing costs through agreements with them 

exist. Finally, we find that farmers’ attitudes toward genetically modified crops affect the 

probability of adoption of Bt maize. Our results imply that strict liability will deter the 

cultivation of Bt maize in Germany unless liability issues can be addressed through other means, 

for example, through neighbor agreements. 

The coexistence costs have implications for the supply of products in which GMOs are 

excluded from the production process (i.e., non-GM labeling). This is the topic of the second 

chapter. In that chapter, we discuss and illustrate the complexity of non-GM food labeling in 

Germany. We show how a multi-stakeholder organization that sets a voluntary private 

production and certification standard can combine the opposing and agreeing interests of its 

members. This cohesion reduces the fears of retailers of NGO pressure in the case of 

mislabeling. Whereas non-GM labeling in Germany started as a niche for farmer-to-consumer 

direct marketing and small processors, it was further driven by anti-GMO organizations. Today, 

retail chains label some of their store brands and are now the drivers. We also discuss how 

informing consumers through non-GM labeling addresses imperfect information, but at the 

same time, can create new information imperfections if consumers are not well informed about 

the labeling system itself.  

Non-GM labeling, together with the EU-wide mandatory labeling of GMOs and their 

requirements on coexistence, have implications for the potential regulation of crops derived by 

new plant breeding techniques (NPBTs). In the third chapter, we analyze the market and welfare 

effects of regulating crops derived by NPBTs as genetically modified or conventional products. 
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We consider the mandatory scheme for labeling GM products and a voluntary non-GM scheme 

for labeling livestock products derived from non-GM feed. We develop a partial equilibrium 

model that explicitly takes into account both the coexistence costs at the farm level and the 

segregation and identity preservation costs at the downstream level. By applying the model to 

EU rapeseed, we find that regulating NPBTs as GM (as compared to non-GM) in combination 

with mandatory and voluntary labeling increases prices and therefore makes producers better 

off. We also show that higher coexistence costs make the price increasing effect even stronger. 

Voluntary non-GM labeling applied to feed makes consumers in this sector overall worse off, 

but it benefits farmers and rapeseed oil consumers overall as long as segregation costs are low. 

Consumers of biodiesel and industrial products, such as lubricants produced from GM rapeseed, 

benefit from high segregation costs. We show that the effects of farm-level coexistence costs 

largely differ from the effects of downstream market segregation costs.  

In the last of the four chapters, we consider the effects of market power and analyze the 

decision of investing in quality updating when high-quality product demand is growing. We 

model a decision of a duopoly that initially offers a product perceived as lower quality (e.g., 

GM product) to invest in an emerging high-quality (e.g., labeled non-GM) product. We 

investigate whether the smaller or the larger firm invests first. Either preemption or a war of 

attrition can result, depending on demand and cost factors. For each case, we derive the unique 

Nash equilibrium. We show that a firm’s timing to invest in high-quality production (e.g., 

implement a voluntary production standard) depends on several factors, such as the difference 

in firm size between competing firms and the level of vertical differentiation, growth and 

discount rate, demand parameters, and per-unit production costs. We show that institutions, 

which set private or public certification standards, can affect firms’ investment in differentiated 

products because the standard stringency affects the production and compliance costs as well 

as the level of product differentiation. Hence, through the setting of these standards, private and 

governmental institutions can impact the market structure as well as the growth of an emerging 

market. Finally, we discuss policy implications and how an adjustment of the EU-regulatory 

framework from a process- to a product-based system can make several issues discussed in this 

thesis problems of the past.
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