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1 Abstract 

Direct and selective terminal oxidation of medium-chain n-alkanes is a major challenge in 

chemistry. Efforts to achieve this have so far resulted in low specificity and overoxidized 

products. Biocatalytic oxidation of medium-chain n-alkanes – with for example the alkane 

monooxygenase AlkB from P. putida GPo1- on the other hand is highly selective. However, it 

also results in overoxidation. Moreover, diterminal oxidation of medium-chain n-alkanes is 

inefficient. Hence, α,ω-bifunctional monomers are mostly produced from olefins using energy 

intensive, multi-step processes.  
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By combining biocatalytic oxidation with esterification we drastically increased diterminal 

oxidation upto 92 mol % and reduced overoxidation to 3 % for n-hexane. This methodology 

allowed us to convert medium-chain n-alkanes into α,ω-diacetoxyalkanes and esterified α,ω-

dicarboxylic acids. We achieved this in a one-pot reaction with resting-cell suspensions of 

genetically engineered Escherichia coli. 

The combination of terminal oxidation and esterification constitutes a versatile toolbox to 

produce α,ω-bifunctional monomers from n-alkanes.  

2 Introduction 

Diterminal oxidation of abundantly available, inexpensive medium-chain n-alkanes to 

valuable medium-chain α,ω-diols and α,ω-dicarboxylic acids (DCAs) is highly desirable. 

Many medium-chain α,ω-oxygenated products are important commodities, such as 1,4-

butanediol and adipic acid, with annual production volumes of nearly 2 and 3 million tons, 

respectively(1, 2). These α,ω-oxygenated compounds are used for the manufacture of many 

products, such as plastics, fibers and coatings. Currently, they are produced in multistep, 

energy intensive processes. Adipic acid for example, is produced from benzene. Benzene is 

first hydrogenated to cyclohexane, after which cyclohexane is oxidized to yield a mixture of 

cyclohexanone and cyclohexanol. This mixture is then further oxidized with nitric acid to 

yield adipic acid (3). Hydrogenation of adipic acid yields 1,6-hexanediol (4). For 1,4-

butanediol, acetylene is mostly used as precursor. Acetylene reacts with 2 equivalents of 

formaldehyde to yield 1,4-butynediol. The latter is hydrogenated to give 1,4-butanediol (5). 

Both adipic acid and 1,4-butanediol can also be produced from carbohydrates (6–8), only the 

1,4-butanediol process has been commercialized so far. Direct, diterminal oxidation of n-

alkanes could circumvent these multistep processes and create a paradigm shift, resulting in a 

more sustainable petrochemistry (9). There are several chemical means to terminally oxidize 
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alkanes, via organometallic C-H activation or by heterogeneous catalysis (10). However, due 

to the relative inertness of terminal C-H bonds, alkane oxidation results in subterminal 

oxidation (11, 12). Great improvements have been made on targeting the terminal C-H bonds, 

but this has not yet resulted in commercial applications (10). Diterminal oxidation of alkanes 

is even more complicated. Molecular sieves have been successfully applied for diterminal 

oxidation, but this strategy results in a large share of subterminally oxidized products (13). 

Synthesis of alkanols or alkanediols from alkanes poses another challenge, because the 

formed alcohols are easily overoxidized. ,ω-Diols were produced from medium-chain 

alkanes with low product titers (at most 0.2 g/L) by biocatalysis (14–16), whereas 

organometallic routes still seem restricted to ethane as substrate for selective production of 

(esterified) α,ω-diols (10, 17, 18). 

Monooxygenases such as CYP52 from Candida tropicalis have been applied for long-chain 

DCA and ω-hydroxy fatty acid production from long-chain alkanes with 100% selectivity and 

high conversion efficiencies (19–21). This has resulted in production of high titers of α,ω-

bifunctional monomers via whole-cell biocatalysis. CYP52 monooxygenases are however not 

active on medium-chain alkanes. Terminal oxidation of medium-chain n-alkanes is possible 

with the AlkB monooxygenase from Pseudomonas putida GPo1, but this results in 

overoxidation of the substrate to carboxylic acids (22, 23). Furthermore, diterminal oxidation 

of n-alkanes by AlkB has not been reported. Ω-oxidation of medium-chain fatty acids by 

monooxygenases is possible but only to a limited extent (8, 24–26). 

Ω-oxidation by AlkB is however efficient with esterified fatty acids as substrates (27, 28). We 

realized that combining the ω-oxidation of medium-chain n-alkanes to acids with the 

subsequent in vivo esterification of the acids to ethyl esters could improve diterminal 

oxidation. In a similar fashion, esterifying fatty alcohols in vivo with acetate could be used to 
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enable their ω-oxidation. Moreover, esterified alcohols and alkanediols would be protected 

against overoxidation.  

In vivo esterification of alcohols and acids has especially been studied for the production of 

ethylated fatty acids for biodiesel applications(29, 30). It requires alcohol acetyltransferases 

(AATs) that transesterify acyl-CoAs with alcohols. AATs typically used are Atf1 and Eeb1 

from Saccharomyces cerevisiae and AtfA from Acinetobacter baylyi(31, 32). Atf1 can utilize 

endogenously produced acetyl-CoA, whereas AtfA and Eeb1 utilize longer-chain acyl-CoAs. 

Atf1 and AtfA can accept a wide range of alcohols, whereas Eeb1 seems restricted to short-

chain alcohols(33–35). 

We investigated whether combining terminal methyl group oxidation by AlkB with in vivo 

esterification using E. coli as chassis could enable diterminal oxidation of alkanes and reduce 

overoxidation. The final products we aimed for were acetoxy esters of α,ω-alkanediols and 

ethyl esters of DCAs.  

3 Materials and methods 

3.1 Strains and plasmids 

Plasmids and strains are listed in Table 1. The construction of the plasmids is described in the 

supplementary info.  

Table 1. Plasmids and strains used in this study 

Name Description Source 

Plasmids   

pUC57-atfAcodopt Codon optimized atfA in pUC57 This study 

pET-Duet-eeb1 eeb1 (Saccharomyces cerevisiae NCYC2926) in pET-

Duet 

This study 



5 

 

pGEc47 alkBFGHJKL and alkST in pLAFR1 (36) 

pCOM10-alkL Contains PalkB:alkL in pCOM10, a broad host range 

alkane responsive vector 

(37) 

pSTL alkT and PalkB:alkL in pCOM10 (28) 

pBGTL PalkB:alkBFGL and alkST in pCOM10 (28) 

pET9a:Atf1-opt Codon optimized atf1 in pET9a Provided by A. Kruis, 

dept. of Microbiology, 

Wageningen UR. Codon 

optimized atf1 according 

to (33) 

pSKL-atf1 PalkB:alkKL, PalkB:codon optimized atf1 in pCOM10 This study 

pBGTL-atf1 PalkB:alkBFGL, PalkB:codon optimized atf1 and alkST, 

in pCOM10 

This study 

pE PalkB:alkKL, PalkB:codon optimized atfA in pCOM10 This study 

pE-II PalkB:alkKL, PalkB:codon optimized atfA in pCOM10 

with pBR322 ori, Amp
R
 

This study 

pBGTHJL PalkB:alkBFGHJL and alkST in pCOM10 (38) 

pBGTHJKL-atfA PalkB:alkBFGHJKL; PalkB:atfA and alkST in pCOM10 This study 

pBGTHJKL-eeb1 PalkB:alkBFGHJKL; PalkB:eeb1 and alkST in pCOM10 This study 

 

E. coli strain 

  

NEBT7 fhuA2 lacZ::T7 gene1 [lon] ompT gal sulA11 R(mcr-

73::miniTn10--Tet
S
)2 [dcm] R(zgb-210::Tn10--Tet

S
) 

endA1 Δ(mcrC-mrr)114::IS10 

New England Biolabs
®

 

M NEBT7 pBGTL (28) 

ME1 NEBT7 pBGTL-atf1 This study 

MD NEBT7 pBGTHJL (38) 

MDE2 NEBT7 pBGTHJKL-atfA This study 

MDE2* NEBT7 pBGTHJL + pE-II This study 

MDE3 NEBT7 pBGTHJKL-eeb1 This study 
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3.2 Cultivation and gene expression 

E. coli NEBT7 (a BL21 derivative) was used for conversion studies. For strains containing a 

single plasmid 50 µg/mL kanamycin was added to the medium. For strains with two plasmids 

25 µg/mL kanamycin and 50 µg/mL ampicillin was added to the medium. Strains were 

inoculated from glycerol stocks stored at -80 °C in LB containing the appropriate antibiotic(s) 

and incubated overnight at 30 °C in a rotary shaker set to 250 rpm. The overnight culture was 

diluted 100 times in M9 medium containing 0.5 % glucose and 1 mL/L trace elements US
Fe

 

(39). This culture was again incubated overnight. The next day, this second preculture was 

used to inoculate M9 mineral medium to an OD600nm of 0.167. This culture was directly 

induced with 0.025 % v/v dicyclopropylketone to induce recombinant gene expression. After 

4 h induction at 30 °C, 250 rpm, the cells were harvested by centrifugation for 10 min. at 

4255 x g.  

3.3 Conversions  

The cell pellet was resuspended in resting cell buffer (1 gcdw/L), which contained 1 % glucose, 

2 mM MgSO4, and 50 mM KPi pH 7.4. Of this resting cell suspension, 0.5 mL was 

transferred to a pyrex tube. After addition of substrate or organic phase containing substrate, 

tubes were tightly capped with a PTFE cap and transferred to a rotary shaker, set to 30 °C, 

250 rpm. Reactions were stopped by addition of 1 % v/v of concentrated phosphoric acid and 

immediate transfer of the reaction to ice. 

3.4 Analytical methods 

All compounds were analyzed with GC, except butyrate and valerate, which were analyzed 

with HPLC. Reactions were extracted with CHCl3 containing 0.2 mM tetradecane or 0.2 mM 

dodecane as internal standard. The extraction was done for ~5 min. with a rotator (Labinco, 
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The Netherlands, maximum speed). For conversions containing a carrier solvent or bulk n-

alkane phase, the organic phase was sampled directly and diluted 20-40 times in CHCl3 + 

internal standard. The samples were derivatized with 10% v/v of a 0.2 M 

trimethylsulfoniumhydroxide solution in MeOH. Qualitative analysis was done with GC-MS, 

quantitative analysis with GC-FID.  

GC-MS 

GC-MS analysis was done with a Trace GC Ultra coupled to a DSQII mass spectrometer. 1 

µL sample was injected in splitless mode, with the inlet set at 350 °C. The temperature 

program was as follows: 50 °C hold 3 min.,7.5 °C/min ramp to 350 °C, hold for 10 min.  

GC-FID  

GC-FID analysis was done with a 7890A (Agilent). 1 µL sample was injected in splitless 

mode, with the following temperature program: 50 °C hold 1 min., 15 °C/min to 180 °C, 7 

°C/min to 230 °C, 30 °C/min to 350 °C hold 3 min. Quantification was done by using 

available standards. If standards were not commercially available, quantification was done on 

basis of structurally related compounds with similar numbers of carbon/oxygen atoms. For 

example, mono-hexyl adipate was quantified on the basis of mono-ethyl sebacate.  

HPLC 

HPLC analysis was done with an Agilent 1260 Infinity UPLC, equipped with a 30 cm Rezex 

ROA column (Phenomenex), operated at a flowrate of 0.5 mL/min with 5 mM H2SO4 as 

running buffer. The RI detector was used for quantification of  analytes.  

4 Results 
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Testing overoxidation and diterminal oxidation by AlkB 

E. coli strain M was used to assess the level of overoxidation and diterminal oxidation of n-

alkanes by AlkB. It possesses the monooxygenation module, consisting of AlkBGTL from 

Pseudomonas putida GPo1 (Figure 1). AlkB is a non-heme di-iron monooxygenase, 

responsible for the hydroxylation of terminal methyl groups (36). AlkB overoxidizes this 

alcohol to the aldehyde and acid. AlkG and AlkT are involved in the transfer of electrons 

from NADH to AlkB. AlkL, an outer membrane protein, improves uptake of n-alkanes 

(Figure 1a) (23).  

 

Figure 1. Function of the different modules applied in this study. The monooxygenation module (abbreviated M), 

consists of AlkBGTL. AlkL is an outer membrane protein that improves transport of hydrophobic molecules. The 
dehydrogenation module (D), consists of AlkJ and AlkH. The esterification module 1 (E1) consists of Atf1, 
esterification module E2/E2* of AlkK and AtfA, esterification module E3 of AlkK and Eeb1.  

For the structures of the chemicals involved, see Figure 2. The fate of alkanes converted by 

monooxygenation module M is depicted in Figure 3a.  

Tests were done in tightly capped tubes, with 1 gcdw/L resting, induced E. coli M cells fed 

with 1 % v/v of n-alkanes of different chain lengths, corresponding to a range of 51.3 mM for 

n-decane to 76.0 mM for n-hexane. This experimental set-up did not allow the addition of 

smaller alkanes due to their low boiling points. Therefore, we added 0.30 % v/v 1-butanol 

(32.8 mM) and 1-pentanol (27.7 mM) instead. Glucose served as an energy source. Samples 

were taken after 19 hours incubation. At that time glucose was still present and the absence of 

fermentation products indicated that no oxygen limitation occurred (data not shown). 
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Overoxidized products - fatty acids and ω-hydroxy fatty acids - formed at least 95 % of the 

total products (Figure 3c). Diterminal oxidation efficiency was below 16 % for the C4 to C8 

alkanes. It increased to 64 % for n-decane but at very low concentrations (Figure 3e). 

 

Figure 2. Chemical structures of substrates used and products formed in the experiments. (a) oxidation of 
alkanes to dicarboxylic acids. (b) Conversion of alkanes into α,ω-diacetoxyalkanes. (c) Conversion of alkanes into 

di-ethyl dicarboxylic acids. C6 compounds were used as example for the chemical structures. The color codes of 
the names of the chemicals are the same as used in the rest of the document. 
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Figure 3. n-Alkane conversions by resting cells of E. coli strains M and ME1 (1 gcdw/L). The colors of the products 
correspond to Figure 2. (a) Fate of n-alkane conversion by the monooxygenation module M only. (b) Fate of n-
alkane conversion with both monooxygenation module M and esterification module E1. (c) Products of 19 h 
conversions of 1 % pure n-alkane of C6-C10 chain lengths or 0.3% n-butanol/n-pentanol by E. coli M. (d) 

Products of 19 h conversions of 1 % pure n-alkane of C6-C10 chain lengths or 0.3% n-butanol/n-pentanol by E. 
coli ME1. (e) Percentage of total product that was overoxidized (black lines), percentage of total product that was 
diterminally oxidized (red lines). Filled symbols correspond to strain M, open symbols to strain ME1. (f) 

Conversion of n-hexane added as 10 % v/v solution in bis(2-ethylhexyl) phthalate. The ratio of organic phase to 
aqueous phase was 1:10, conversions lasted 31 h.  

 

Converting n-alkanes into acetate esters of α,ω-diols 
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For production of acetate esters of α,ω-diols, we added esterification module E1(Figure 1). 

This module consisted of the alcohol acetyltransferase (AAT) Atf1, which can convert the 

formed 1-alcohol together with acetyl-CoA, derived from central carbon metabolism, to an 

acetoxyalkane. 

In the resulting strain ME1, alkanes can be converted via the monooxygenation module M 

only (Figure 3a), and via the combination of the monooxygenation module M and the 

esterification module E1 (Figure 3b).  

Strain ME1 produced mainly acetoxyalkanes from 1-butanol, and n-heptane to n-decane. 

These alkyl acetates were products of transesterification of the 1-alcohols - generated by AlkB 

- and acetyl-CoA. All alkyl acetates produced from the different alkane chain lengths were ω-

oxidized, as in most samples ω-hydroxy acetoxyalkanes were detected. Although it is known 

that AlkB accepts a wide range of aliphatic substrates (40), no reports have been made that it 

can ω-hydroxylate alkyl acetates. Surprisingly, these ω-hydroxy alkyl acetates were again 

transesterified with acetyl-CoA to yield α,ω-diacetoxyalkanes, ensuring that overoxidation 

was prevented at both ends. Both ω-hydroxy acetoxyalkanes and α,ω-diacetoxyalkanes can 

serve as precursor for α,ω-diols.  

Overoxidation only occurred to a limited extent, due to the presence of the esterification 

module (Figure 3e); 1-alcohols were overoxidized to fatty acids, and also ω-hydroxy 

acetoxyalkanes were overoxidized to ω-acetoxy acids (maximally 0.51 mM for n-decane, data 

not shown). The highest percentage of overoxidized products was 26 mol % in reactions using 

n-decane, while experiments performed with n-hexane resulted in only 3 mol % overoxidized 

products. Thus, converting the products into acetate esters efficiently protects the molecule 

from overoxidation. The observed levels of overoxidation are higher in 1-butanol and 1-

pentanol conversions. The reason for this is probably that there were no alkanes competing 
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with the alcohol for the active site of AlkB. This causes AlkB to further oxidize the alcohols 

to acids. For n-alkanes <C9, also more diterminal oxidation occurred, with up to 92 mol % of 

diterminally oxidized product in case of n-hexane. 

Diacetoxyalkanes were detected for all chain lengths investigated. With n-hexane as substrate, 

1,6-diacetoxyhexane was the major product after 19 h incubation, with a concentration of 9.20 

mM. Furthermore, 2.23 mM 6-hydroxy hexyl acetate accumulated. So in total, 91 mol % 

contained two terminal hydroxy groups. 

From 1-butanol, butyl acetate was produced successfully (23.2 mM). Butyl acetate served as 

substrate for 4-hydroxy butyl acetate (0.74 mM) and diacetoxybutane production, which 

accumulated to 2.7 mM. 1-pentanol was very efficiently converted into 1,5-diacetoxypentane 

(Figure 3d), which accumulated to 26.0 mM. Thus, with this platform also precursors for 

short-chain α,ω-diols can be produced. The titers of 1,5-diacetoxypentane were much higher 

than titers of other diacetoxyalkanes. This was probably caused by the higher solubility of the 

substrate 1-pentanol. Furthermore, one alcohol group is already present, which means that the 

monooxygenation module only has to function once. Titers of 1,4-diacetoxybutane were much 

lower than 1,5-diacetoxypentane titers. The intermediate butyl acetate was present in high 

concentrations (facilitated by the high concentration of dissolved 1-butanol), which implies 

that the activity of AlkB towards this substrate is low.  

Among the tested n-alkanes, n-hexane yielded most diacetoxyalkane. To increase product 

titers we added n-hexane dissolved to 10 % in bis(2-ethylhexyl) phthalate (BEHP) as carrier 

solvent. BEHP has been shown before to be a solvent that is compatible with E. coli whole-

cell conversions(41–43). The organic phase served as substrate reservoir, which reduced 

evaporation of the volatile n-hexane. The apolar BEHP also acted as product sink, since the 

products are relatively apolar. BEHP containing n-hexane was added with an organic:aqueous 
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phase ratio of 1:10 (Figure 3f). The overall product titers increased; 429 mM product 

accumulated in the organic phase. Thus, 56 % of the added n-hexane was converted into 

product. In conversions where n-hexane was added directly, only 16 % was converted into 

product. The amount of product with two alcohol moieties was 218 mM (43 g/L in the organic 

phase), 51 % of the total product. The selectivity of 1,6-diacetoxyhexane production was 47 

% (defined as [product]/[total product]). 

Converting n-alkanes into ethyl esters of diacids 

For the production of esterified diacids, we added dehydrogenation module D and 

esterification module E2 (Figure 1). The dehydrogenation module consisted of the alcohol 

dehydrogenase AlkJ and the aldehyde dehydrogenase AlkH, both from Pseudomonas putida 

GPo1. Like AlkB from module M, it oxidizes alcohols to acids, but is more efficient with 

respect to cofactor utilization and oxygen consumption (38). We designed E2 based on acyl-

CoA ligase AlkK (P. putida GPo1) and the AAT AtfA (from Acinetobacter baylyi). AlkK 

activates the carboxy groups with CoA, and the AATs transesterify acyl-CoAs with externally 

supplied ethanol. 

We tested MD and MDE2 strains with 5 mM n-alkane or n-alcohols as substrate, and added 

2.5 % ethanol for the esterification reaction (Figure 4). Strain MD converts alkanes via only 

the M module (Figure 3a), or via a combination of the M and D modules (Figure 4a). Strain 

MDE2 converts alkanes via module M only (Figure 3a), via a combination of the M and D 

modules (Figure 4a), or via all three modules (Figure 4b). Strain MD produced fatty acids 

from all n-alkanes. Diterminal oxidation occurred to a limited extent for C7-C10 n-alkanes, 

since ω-hydroxy fatty acids accumulated. In C8-C10 n-alkane conversions, only traces of 

DCAs (≤ 0.04 mM) were formed. 
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Figure 4. Conversion of 5 mM n-alkanes or 5 mM 1-alcohols by MD(E) strains (1 gcdw/L), in presence of 2.5 % 
ethanol. The colors of the products correspond to Figure 2. (a) Fate of n-alkane conversion with the 
monooxygenation module M and the dehydrogenation module D. (b) Fate of n-alkane conversion with the 
monooxygenation module M, the dehydrogenation module D and esterification module E2, E2* or E3. (c-e) 

Products of 19 h conversions of pure n-alkane of C6 to C10 chain lengths or n-butanol/n-pentanol by E. coli MD 
(c), MDE2 (d), MDE2* (e).  

Strain MDE2 produced mono-ethyl DCAs (Figure 3d), showing that esterification was 

successful. No fatty acid ethyl esters accumulated, indicating that they were efficiently 

converted to mono-ethyl dicarboxylic acids. This strain produced up to 0.39 mM mono-ethyl 

DCA. Strain MD produced at most 0.04 mM dicarboxylic acid. Hence, complete oxidation to 

the ω-acid was more efficient in presence of an esterification module. AtfA also coupled 1-

alcohols, that accumulated from n-alkane hydroxylation, to acyl-CoA. This resulted in alkyl 

alkanoate production. See Figure 5 for the chemical structures of the alkyl alkanoates. 

Furthermore, ω-hydroxy fatty acids accumulated, indicating that the esterification module was 

bypassed. Ester formation from hexanoate was poor, probably caused by the low specificity of 

AtfA for shorter chain fatty acids. Therefore, we did not test 1-butanol and 1-pentanol with 

these strains. 
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Strain MDE2 produced mostly acid, indicating that the esterification module was not very 

effective. Therefore strain MDE2* was constructed (Figure 1b), aimed at higher expression 

levels of AlkK, to increase the activity of the esterification module. MDE2* produced mostly 

esters (Figure 3e), but it was less efficient regarding terminal oxidation. This resulted in lower 

product titers, and a high concentration of alkyl alkanoates. This shows that tuning the activity 

of the enzymes is important for module performance. 

Converting n-alkanes to alkyl esters of diacids 

Apparently, ethyl alkanoate production competes with alkyl alkanoate production. The 

availability of ethanol could be a determining factor. To investigate alkyl alkanoate 

production in more detail we added n-alkanes without addition of ethanol (Figure 5&6). 

 

Figure 5. Chemical structures of substrates used and products formed in experiments with E. coli MDE2/MDE2* 

without added ethanol. On the left side, the scenario is depicted wherein the alkyl chain is oxidized by AlkB, on 
the right side the scenario wherein the acyl chain is oxidized by AlkB. C6 compounds were used as example for 
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the chemical structures. The color codes of the names of the chemicals is the same as used in the rest of the 
document. 

More alkyl alkanoates were formed, maximally 1.61 mM from n-heptane. Strains MDE2 and 

MDE2* could terminally oxidize hexyl hexanoate. Both strains produced a mixture of hexyl 

6-(hexanoyloxy)hexanoate and di-hexyl adipate (see Figure 5 & 6a,b). AlkB is thus able to 

oxidize both ends of hexyl hexanoate. Strain MDE2 also accumulated a mixture of mono-

hexyl adipate and 6-(hexanoyloxy)hexanoic acid. These mixtures were quantified as the sum 

as gas chromatography did not allow sufficient separation of these compounds. However, it 

was possible to identify the different compounds with GC-MS. Hence, also without external 

alcohol addition, it is possible to di-functionalize n-hexane, yielding precursors for α,ω-

dicarboxylic acids and ω-hydroxy fatty acids directly from n-hexane.  

 

Figure 6. Conversion of n-alkanes, in absence of ethanol. The colors of the products correspond to Figure 5. (a) 

Fate of n-alkane conversion with the monooxygenation module M, the dehydrogenation module D and the 
esterification module E2 or E2*, when AlkB oxidizes the terminal position of the alkyl chain. (b) Fate of n-alkane 

conversion by monooxygenation module M, the dehydrogenation module D and the esterification module E2 or 
E2*, when AlkB oxidizes the terminal position of the acyl chain. (c) Products of 19 h conversion with 1 % n-
alkanes or 0.26% n-butanol/n-pentanol by E. coli MD (see Figure 4a for pathway). (d) Products of 19 h conversion 
with 1 % n-alkanes by E. coli MDE2. (e) Products of 19 h conversion with 1 % n-alkanes by E. coli MDE2*.  
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To avoid alkyl alkanoate formation, we created strain MDE3. This strain expresses Eeb1 

(from Saccharomyces cerevisiae), an AAT specific for short alcohols (33, 34). As a result 

MDE3 did not produce alkyl alkanoates (Figure 7a). Ethyl ester synthesis was more efficient, 

and as a consequence more mono-ethyl DCA accumulated, up to 0.87 mM from n-octane. 

Titers of products that contain two carboxylate moieties thus improved ~22-fold. This strain 

also produced 0.36 mM mono-ethyl adipate from n-hexane, a product which was not 

produced by MDE2/2*. We also tested MD and MDE3 with 1-pentanol and 1-butanol as 

substrate. MD only produced fatty acids. MDE3 produced 0.65 mM mono-ethyl glutarate 

from 1-pentanol, and trace amounts of mono-ethyl succinate (0.08 mM). This indicates that 

ethyl butyrate and ethyl valerate were formed and subsequently ω-oxidized to add another 

carboxyl group.  

 

Figure 7. (a) Conversion of 5 mM n-alkanes or 5 mM 1-alcohols by strain MDE3 (1 gcdw/L), in presence of 2.5 % 
ethanol. The colors of the products correspond to Figure 2, in Figure 4b is shown how the products are formed (b) 

Percentage of total product that was diterminally oxidized by MD(E) strains. Blue line: strain MD. Red line: MDE2. 
Green line: MDE2*. Black line: MDE3. (c) Percentage of total product that contained two terminal carboxylic 

functionalities. Blue line: strain MD. Red line: MDE2. Green line: MDE2*. Black line: MDE3. 

Strain MDE3 produced more diterminally functionalized product than strain MD for all tested 

chain lengths (Figure 7b). In most cases, MDE3 also performed better than MDE2 and 

MDE2* with respect to diterminal functionalization. MD produced small amounts of DCA, 

indicating that AlkJ and AlkH are poorly or not accepting ω-hydroxy fatty acids as substrate. 

Esterification improved the conversion towards two carboxylic acid functionalities, since the 
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mole percentage of (mono-ethyl) DCA increased from maximally 5 % with MD to 60 % with 

MDE3 (Figure 7c).  

Diterminal oxidation preferentially occurred after esterification, since 1-butanol, 1-pentanol 

and n-hexane were diterminally oxidized by MDE3, but not by MD. Furthermore, MDE3 

produced more diterminally oxidized product than MD. We did not detect any products that 

were shortened by β-oxidation. The β-oxidation system of E. coli is not induced by medium-

chain fatty acids (44). Moreover, we used resting cells grown on glucose, which are probably 

unable to perform β-oxidation.  

 

5 Discussion 

Mild, direct conversion of medium-chain n-alkanes into α,ω-diols and α,ω-dicarboxylic acids 

is of longstanding interest. Poor (di)terminal selectivity and overoxidation have impeded this 

type of conversions. The terminal selectivity can be overcome by using alkane 

monooxygenases, but application of these enzymes also results in overoxidation. Moreover, 

they are not or poorly able to oxidize both ends of the n-alkanes (14, 15, 23). In this paper we 

have shown that by combining the specific oxidation of alkane monooxygenase AlkB with an 

esterification reaction it is possible to control both the level of oxidation and to enable 

diterminal oxidation.  

Diterminal oxidation of longer n-alkanes (>C10) with whole cells has been shown before 

using alkane monooxygenases like CYP450 (19). With whole cells expressing AlkB,  

medium-chain n-alkanes were only monofunctionalized (45). It seems that the shorter 

distance between the first hydrophilic terminally oxidized group and the other terminus, 

prevents a proper docking of the latter in the catalytic site of the enzyme. We reasoned that 
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converting the oxidized end into a less hydrophilic ester group could enable diterminal 

oxidation. To realise this we combined the action of AlkB with the alcohol acetyltransferase 

Atf1. This enzyme is able to esterify C4-C14 alcohols with acetyl-CoA, forming 

acetoxyalkanes (33). The combined action of AlkB and Atf1 indeed resulted in the oxidation 

of the ω-end of these acetoxyalkanes, forming ω-hydroxy acetoxyalkanes and even α,ω-

diacetoxyalkanes. In this way diterminal oxidation of alkanes to (esters of) α,ω-alkanediols 

was established. The combination of terminal oxidation with esterification enhanced 

diterminal oxidation and enabled accumulation of up to 92 mol % diterminally oxidized 

product, under non-optimized conditions with a low biomass concentration. N-butanol and n-

pentanol were also converted into esters of diols and dicarboxylic acids, which highlights the 

versatility of this technology. Diterminal oxidation and esterification have been combined 

recently, starting from ethane to yield 1,2-diacetoxyethane based on organometallic C-H 

activation(17). This route was highly selective with the substrate ethane, but with propane 

mainly subterminal oxidation occurred. With our technology only terminal oxygenates were 

produced, which once more demonstrates the excellent terminal selectivity of AlkB. 

We gained control over the oxidation level, by the application of Atf1 for the esterification 

module. Without this module, AlkB overoxidized nearly all the formed product towards fatty 

acids and/or ω-hydroxy fatty acids. With esterification by Atf1, only 3 % of the product was 

overoxidized with n-hexane as substrate, and at most 26 % with n-decane as substrate. The 

longer the n-alkane, the more overoxidation occurred. This is likely due to a lower specificity 

of Atf1 for longer 1-alcohols. Atf1 also esterified the formed ω-hydroxy alkyl acetates, which 

prevented overoxidation also on the second terminus. These results also show that AlkB 

apparently releases its product after every oxidation step. If it did not, the hydroxygroup 

would not have been available to form an ester with acetyl-CoA, but would have been 

overoxidized.  
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AlkB is clearly able to oxidize the omega methyl group of esters. We reasoned that 

esterification of fatty acids produced by AlkB with ethanol, using the AATs AtfA or Eeb1, 

may allow the formation (of ethyl esters) of dicarboxylic acids. Overoxidation is desired for 

the production of (esterified) dicarboxylic acids, and this was achieved with the incorporation 

of the dehydrogenation module. Esterification with module E2, harbouring AtfA, did not 

always result in more diterminal oxidation, but the oxidation of terminal alcohols towards 

acids was in general more efficient. ω-Hydroxy fatty acid ethyl esters barely accumulated. 

This implies that AlkJ and AlkH do not or poorly accept ω-hydroxy fatty acids as substrate, 

but do accept ω-hydroxy fatty acid ethyl esters.  

Module E2 also coupled the acyl-CoAs produced from the added n-alkanes to 1-alcohols 

formed from n-alkane oxidation by AlkB. Omitting ethanol as substrate increased this 

conversion. With n-hexane as substrate, this yielded hexyl hexanoate, which was again 

terminally oxidized by AlkB. AlkB acted on either the alkyl or acyl chain, resulting in a 

mixture of products. These products were again esterified with an alcohol, yielding di-esters. 

The longer alkyl alkanoates were too long to be accepted by AlkB. Alkyl alkanoate 

production could be reduced by using module E3, harbouring Eeb1, an AAT more specific for 

short chain alcohols. Esterification with module E3 improved diterminal oxidation roughly 2-

fold, and the majority of products were mono-ethyl DCAs. 

Mono-ethyl DCA titers were lower than diacetoxyalkane titers. This is probably caused by the 

low intrinsic activities of AtfA and Eeb1, which are in the range of 0.003 – 0.3 U/mg (34, 46). 

This is clearly less than the 190 U/mg reported for Atf1 (47). Before any process conditions 

are optimized, this issue has to be addressed, e.g. by protein engineering or screening 

enzymes with higher alcohol acyltransferase activity.  
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The results show as proof-of-principle that C4 to C10 n-alkanes or related molecules can be 

converted into (esters of ) diols and diacids. This required the concerted action of 5 to 8 

proteins in relation to the concentration of substrates, products and cofactors. Many 

permutations are possible to optimize the conversion. We have seen that increasing the 

expression of AlkK in module E2 had a drastic effect on product formation. It is also clear 

that using AATs with different specificities – AtfA and Eeb1 – has a significant effect on the 

efficiency of the conversion. Furthermore, AlkB displayed low activity on butyl acetate and 

ethyl butyrate. Hence, for diterminal oxyfunctionalization of shorter alkanes, engineered AlkB 

with a higher activity on short alkanes should be tested (48, 49). For diacetoxyalkane 

production from the n-alkanes with longer chain lengths, more overoxidation occurred. The 

esterification also has to be optimized here to prevent this.  

The conversion process involves gaseous or water-immiscible substrates and products. This 

opens possibilities to recover the products easily in a two-liquid phase setup. By adding the 

substrate n-hexane dissolved in carrier solvent BEHP, more n-hexane was converted into 

products. The products accumulated in the organic phase, showing that this is a promising 

strategy for in situ product removal. 

The final products made are diacetoxyalkanes and mono-ethyl dicarboxylic acids. These can 

be easily converted into the desired α,ω-diols and α,ω-DCAs by conventional chemical 

methods. The remaining ethanol and acetic acid can be recovered. They can be recycled in the 

process, or sold as by-products. 

This study shows that the combination of biocatalytic terminal oxidation and esterification 

holds great promise for the production of an array of functional chemicals, such as adipic acid 

and 1,4-butanediol, without the need for energy intensive processes such as cracking.  
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Highlights 

- N-alkanes were converted to esters of α,ω-diols and α,ω-dicarboxylic acids 

- Combining ω-oxidation and esterification limits overoxidation of n-alkanes 

- The combination also enables efficient diterminal oxidation of n-alkanes by AlkB 

- This toolbox provides a new route to commodities, such as adipic acid and 1,4-BDO 

- It provides a mild alternative to current energy-intensive and polluting processes 




