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Chapter 1 

1 Introduction 

  



2  Introduction 

1.1 Introduction 

In the past decades, optical remote sensing has become a well-established 
technology for qualitative and quantitative characterization of the Earth’s surface 
[1]. By providing spatial and temporal information in addition to spectral 
information, it allows for the study of surface parameters through space and time. 
In applications such as agriculture, it enables the monitoring of crop development 
during the growing season and allows, for example, the prediction of yield [2] or 
precision crop management [3]. Optical remote sensing techniques are particularly 
useful for providing timely, location-specific information on the biochemistry and 
structure of agricultural crops in order to help farmers optimize their management. 
However, this means that the provided information should be as accurate as 
possible. 
Using optical remote sensing, biophysical crop parameters can be estimated based 
on the reflected solar light either through empirical-statistical methods, or through 
inversion of radiative transfer models (RTMs). However, natural surfaces reflect 
light anisotropically, which means that the light reflected by a surface varies with 
viewing and illumination geometry. As a consequence, objects may appear brighter 
or darker when viewed from different directions, resulting in different reflectance 
intensities at different viewing angles (figure 1.1), which may result in inaccuracies 
of the estimated parameters. In its idealized form, reflectance anisotropy is 
described by the bidirectional reflectance distribution function (BRDF), a function 
that quantifies the surface reflectance into a specific direction when being 
illuminated from a particular direction [4]. Besides viewing and illumination 
geometry, the magnitude of reflectance anisotropy is controlled by the optical 
characteristics of surface elements, such as leaves and soil facets, and their spatial 
and geometric arrangements [5]. For example, for a homogeneous vegetation cover, 
leaf orientation has a strong contribution to reflectance anisotropy [6,7]. For 
discontinuous vegetation, such as canopies with gaps or row-planted vegetation, 
the reflectance anisotropy is mainly driven by the proportion of visible of shadowed 
and sunlit vegetation and soil background, which can both contribute to the 
observed reflectance at particular observation geometries. Moreover, reflectance 
anisotropy also varies with wavelength.  
For remote sensing purposes, the importance of reflectance anisotropy can be 
divided into two distinctive directions [8]. On the one hand, reflectance anisotropy 
can be seen as an unwanted effect that needs to be corrected for [9-12]. Correcting 
for anisotropy effects in remote sensing data, i.e., the transformation of data 
captured at a particular viewing and illumination geometry to a standardized 
viewing and illumination geometry, is necessary to make data collected at different 
times of the day (e.g., under different illumination angles due to movement of the 
sun) and/or data captured at different view angles (e.g., due to sensor orientation, 
differences in overpass etc.) comparable. On the other hand, reflectance anisotropy 
can be considered as an additional source of information to spectral data due to its 
unique response to surface structure [13,5,14]. Either way, knowledge on the 
magnitude of anisotropy effects is important. In this thesis, the main focus is on the 
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extraction of additional information from reflectance anisotropy, with special 
attention to the biophysical properties of agricultural crops. 

 
Figure 1.1. Spectral reflectance (top) and reflectance anisotropy (bottom), here 
depicted as the anisotropy factor, i.e., the nadir normalized reflectance, measured in 
the principal plane using a laboratory goniometer [15]. The illumination angle was 
set at -30° (i.e. the hotspot position), indicated by the vertical dashed-line. These 
measurements illustrate how reflectance factors change as a function of view zenith 
angle (VZA) in the principal plane at different wavelengths for a horizontally flat leaf 
(left), a moss sample (middle), and a soil sample (right). The flat leaf shows a clear 
increased reflectance in the forward scattering direction (positive VZAs) at 675 nm, 
due to the glossy layer of the leaf, which results in mirror-like reflectance. On the 
contrary, the moss sample showed stronger backward scattering (negative VZAs) at 
675 nm, since in this direction the sensor was viewing the illuminated side of the 
moss sample. In contrast, the lowest reflectance factors were observed at a 30° VZA, 
where the sensor was viewing the shaded side of the moss sample. At 800 nm, the 
anisotropy effects were less pronounced, since shadows are less pronounced at this 
wavelength. The soil sample also showed increased backward scattering with only 
small differences at the displayed wavelengths.  



4  Introduction 

1.2 Multi-angular measurements  

1.2.1 Space-borne multi-angular measurements 
Reflectance anisotropy can be studied by performing multi-angular reflectance 
measurements. Some satellite-borne sensors, such as the Multi-angle Imaging 
Spectrometer (MISR) [16] or the Compact High Resolution Imaging Spectrometer 
on-board the Project for On-Board Autonomy (CHRIS-PROBA) [17], have been 
specifically designed to perform multi-angular observations. These sensors are 
capable of viewing an area of interest from several different angles during their 
overpass. The MISR has, in addition to a nadir-viewing camera, four pairs of fore 
and backward looking cameras that are able to capture a scene from in total nine 
different view angles during its overpass. The PROBA platform carrying the CHRIS 
sensor can be tilted during its overpass and is thereby able to collect multi-angular 
views of a scene. Instruments with a wide field of view (FOV), such as the Moderate 
Resolution Imaging Spectroradiometer (MODIS), are able to make multi-angular 
measurements of a surface based on the overlap of swaths during several 
overpasses. Whereas the CHRIS and MISR take several minutes to collect multi-
angular views, MODIS collects different views of a specific surface on different days. 
In areas of rapid change, such as the case of agricultural crops which change daily 
due to crop growth and development, the variation in observed reflectance might 
therefore not be the result of a difference in view angle, but rather an actual physical 
change of the observed area.  
Space-borne multi-angular measurements typically lack either spatial, temporal, 
spectral, and/or angular resolution [18]. Especially, the relatively coarse spatial 
resolution of satellite data hinders detailed analysis for, e.g., application of precision 
agriculture, where a high spatial resolution is needed to capture within field 
variation of the grown crop [19]. 

1.2.2 Ground-based multi-angular measurements 
Multi-angular measurements at a very high spectral and angular resolution are 
typically performed with goniometer systems. Ground-based goniometer systems 
allow for views of a target area throughout a measurement series, by positioning a 
sensor at different angles towards this area. In figure 1.2a a schematic 
representation of the measurement principal is displayed. Over the past decades, 
various goniometers that apply this measurement principal have been developed 
to perform multi-angular measurements under controlled laboratory conditions 
[20,21,15,7] or under field conditions [22-27].  
As a different measurement principle, a sensor can be rotated at a stationary 
position above a surface while viewing in all directions away from this position 
(figure 1.2b). This measurement principal is applied at, for example, the Automated 
Multiangular Spectro-radiometer for Estimation of Canopy reflectance (AMSPEC) 
[28-30] or the Portable Apparatus for Rapid Acquisition of the Observation of the 
Land and Atmosphere III (PARABOLA III) [31]. Using such an approach it is 
assumed that the observed surface is homogeneous within the FOV of the sensor. 
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Figure 1.2.Schematic representation of two multi-angular measurements principals, 
based on [32].The sensor views the same spot from different directions (a); the 
sensor looks away from a stationary position and observes different parts of the 
surface (b), which are assumed to be homogeneous. 

Although high quality multi-angular measurements can be obtained with 
goniometers [33], measurements by goniometers are typically limited to small 
surface areas with a relatively low three-dimensional structure, such as soils [34] 
or low vegetation, like grass [7]. The relatively short distance between target and 
sensor makes it difficult to capture a large enough representative area of natural 
heterogeneous targets, thereby making most goniometer setups unsuitable for 
multi-angular measurements of crops.  

1.2.3 UAV-based multi-angular measurements 
During recent years, UAVs rapidly have evolved into a robust and commonly used 
tool for remote sensing research [35]. The relatively low flight height of UAVs 
enables the collection of imagery at a high spatial resolution, which is needed for 
applications such as in precision agriculture [19]. Recently, several studies have 
explored the use of UAVs to collect multi-angular reflectance measurement [36-38]. 
As opposed to measurements using traditional ground-based goniometers, UAV-
based multi-angular measurements do not have a ground base and do not depend 
on a moving arm to position a sensor at a specific view angle. This has several 
advantages:  

 The studied surface does not get disturbed. Field goniometers such as, e.g., 
the field goniometer system (FIGOS) [39], leave large footprints caused by 
a circular rail, which forms the ground base of this system.  

 Locations that are difficult to access can more easily be sampled with a 
UAV-based system, since the operator of the UAV does not need to 
physically enter the area of investigation. For example, when 
measurements are performed over an agricultural field, the operator can 
control (take off, fly, and land) the UAV from outside the field. Moreover, 
since UAV platforms are easily manoeuvrable, it is easier to sample several 
locations in a field during one, or multiple flights. On the other hand, 
ground-based goniometers typically only sample a single point.  
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 The biggest limiting factor of ground-based goniometers for multi-angular 
measurements of crops is the limited distance between the observed target 
and the sensor, which makes it difficult, or even impossible to capture a 
surface covered by objects with a strong three-dimensional structure in the 
field of view (FOV) of the used sensor. The distance between the sensor 
and the target for UAVs can theoretically be as large as the technical 
specifications and the local legislation allow the UAV to fly.  

Advantages of UAV-based multi-angular measurements over satellite-based 
measurements are the flexibility to perform the measurements when, and 
whenever needed (that is, if weather conditions and local legislations allow it). 
Moreover, the fine spatial resolution of UAV-based multi-angular measurements 
allows for analysis at a fine spatial scale, which is useful to study the relation 
between vegetation and reflectance anisotropy for applications such a precision 
agriculture. Until now, however, only a limited number of attempts to collect multi-
angular measurements using UAVs exist. On the one hand technical aspects of using 
UAVs for obtaining spectral measurements over a large range of different view 
angles still needs considerable research. An important issue is combining multiple 
views into a multi-angular signature at the pixel level. The second major problem is 
the translation of such UAV-based multi-angular observations into agricultural crop 
properties. 

1.3 Objectives 

The main objective of this thesis is to study the information content of multi-
angular measurements for deriving properties of natural surfaces, such as soil and 
vegetation, with a main focus on agricultural crops. In order to study the 
information content contained in the reflectance anisotropy signal, it is important 
to understand how reflectance anisotropy is influenced by characteristics of the 
observed target, which can be done by multi-angular measurements.  
An important parameter for agricultural applications is soil moisture content 
(SMC), since it is an indicator of the water availability for crops. SMC is highly 
variable in space and time, making remote sensing an important tool to monitor 
SMC [40]. Traditional optical remote sensing methods for monitoring soil moisture 
are built upon the relation between reflectance and soil moisture based on 
empirically or physically based models and have been widely studied. The effects 
of SMC on the anisotropic reflectance behaviour of soils, however, did not receive 
much attention so far and are not well known [41-43]. Therefore, this results in the 
following research question: 

1. What is the effect of soil moisture content on reflectance anisotropy? 

Whereas satellites and goniometers have been typically used to perform multi-
angular measurements, satellites do not provide the spatial resolution needed for 
precision agricultural applications and goniometers are not suitable to perform 
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measurements of surfaces with a strong three-dimensional structure, such as crops. 
The relatively low flight height of UAVs allows for the collection of imagery at a high 
spatial resolution, which is needed for applications such as precision agriculture 
[19], making them an interesting alternative for satellite-based measurements. 
Moreover, compared to ground-based goniometers, UAVs allow to take 
measurements with a larger sensor-target distance, thereby enabling to take 
directional measurements of crops. Therefore, a second objective was to explore 
the use of UAVs to perform multi-angular measurements. To explore the 
possibilities of UAVs for the study of reflectance anisotropy from a technical 
perspective, this results in the following research question: 

2. How can UAVs be used to study reflectance anisotropy? 

Agricultural management practices, such as irrigation and fertilization, are typically 
applied during specific development stages of crops. Spectral changes due to crop 
development have been widely studied. The effects of crop development on 
reflectance anisotropy, however, have not received much attention so far. This is 
addressed by the following research question: 

3. What is the effect of canopy development on reflectance anisotropy? 

Reflectance anisotropy can either be considered as a source of error, or as a source 
of additional information [8]. In this thesis, the main focus was to explore the 
reflectance anisotropy signal as a source of information, with a specific focus on 
crop parameters. This results in the following research question: 

4. How can reflectance anisotropy be used to improve crop parameter 
retrieval? 

1.4 Thesis outline 

The chapters of this thesis are based on four peer-reviewed publications, each 
addressing one or more research questions as provided in section 1.3. Table 1.1 
shows in which chapter each research question is addressed. 

Table 1.1. Research questions and chapters. 
Research question Chapter 

1 2 
2 3, 4 
3 3, 4 
4 5 

Chapter 2 examines the effects of SMC on reflectance anisotropy. In this chapter, 
we used a laboratory goniometer setup to perform multi-angular reflectance 
measurements of several soil samples in with different SMC levels. The effects of 
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changes in the SMC level on the anisotropic reflectance behaviour of the soil 
samples were parameterized and quantified using a BRDF model. 
Chapter 3 explores the possibility of performing multi-angular reflectance 
measurements with a hyperspectral pushbroom sensor mounted on a UAV. For this 
chapter, we took measurements of barley, potato and winter wheat at different 
growing stages and investigated the effects of canopy development of these crops 
on reflectance anisotropy. 
Chapter 4 describes the use of a UAV to perform multi-angular measurements with 
a snapshot camera. Measurements were taken over an experimental potato field, 
where the potato plants in different zones in the field showed variation in 
development due to different applied fertilization regimes. In addition to capturing 
reflectance anisotropy with this system, we studied the variation of reflectance 
anisotropy due to differences in canopy development within the field.  
Chapter 5 investigates the added value of multi-angular observations for improved 
crop parameter retrieval. The multi-angular measurements taken in chapter 4 were 
used to numerically invert the PROSAIL model to estimate leaf area index and leaf 
chlorophyll content. Moreover, we tested the performance of datasets simulated by 
the PROSAIL model at several multi-angular observation geometries for improved 
estimation of these parameters. 
Chapter 6 summarizes the main outcomes of this this thesis in relation to the 
research questions. Furthermore, this chapter discusses the implications of the 
results and provides an outlook for future research avenues. 
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Chapter 2 

2 Effects of soil moisture content on reflectance 
anisotropy—Laboratory goniometer 
measurements and RPV model inversions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter is based on: 
Roosjen, P.P.J.; Bartholomeus, H.M.; Clevers, J.G.P.W. (2015). Effects of soil moisture 
content on reflectance anisotropy—Laboratory goniometer measurements and 
RPV model inversions. Remote Sensing of Environment, 170, 229-238. 
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Abstract  
Optical methods to study soil moisture content (SMC) are often based on 
empirically or physically based models that relate changes in reflectance intensity 
to SMC. The effects of SMC on the reflectance anisotropy, however, have not 
received much attention. In this paper the effects of SMC on the anisotropic 
reflectance behavior of soils were studied. Biconical reflectance factors (BCRFs) of 
five different soil samples were acquired at 60 positions covering the full 
hemisphere in the optical domain at different SMC levels using Wageningen 
University's laboratory goniometer facility. In addition, we inverted the Rahman–
Pinty–Verstraete (RPV) model against the measured BCRFs in the principal plane. 
The results show that the anisotropic reflectance behavior of soils is strongly 
influenced by the SMC. Dry soils displayed strong backward scattering behavior, 
with a maximum reflectance close to the hotspot position. An increase of the SMC 
level up to the soil's saturation point caused the soils to scatter more in the forward 
direction and induced a weakening of the hotspot effect. Oversaturated soils 
displayed a strong sun-glint-like reflectance peak in the anti-solar direction. The 
RPV model fitted the measured BCRFs in the principal plane up to saturated SMC 
levels in general with an R2 > 0.9. It was not possible to fit the model through 
observations of oversaturated soils, since the RPV model is not capable of 
simulating specular reflectance. The asymmetry parameter (𝛩𝛩) of the RPV model, 
which controls the proportion of forward and backward scattering, showed a 
strong correlation to SMC for individual samples. This correlation remained 
significant when we considered all samples together with a maximum R2 of 0.797 
at 2123 nm, indicating that reflectance anisotropy contained information on the 
water content of soils. The amplitude parameter (𝜌𝜌0), which is closely related to the 
reflectance intensity, only had a maximum R2 of 0.622 at 1921 nm. This indicated 
that reflectance anisotropy contained more information on SMC than the level of 
spectral reflectance as such.  
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2.1 Introduction 

Soil moisture is an important parameter for environmental, ecological and 
agricultural processes. Knowledge about the distribution of soil moisture at high 
temporal and spatial scales is therefore of interest for many applications. Optical, 
thermal infrared and microwave remote sensing methods can provide this 
information about soil moisture [40]. Although thermal and microwave remote 
sensing offer well established methods for soil moisture estimation, the greater 
temporal availability and generally higher spatial resolution of optical remote 
sensing data make optical methods interesting for this purpose [44,40]. Optical 
methods are built upon the relation between reflectance and soil moisture and have 
been studied intensively. One of the earliest studies on this topic was carried out by 
Ångström [45], who investigated the fact that soils appear darker when they are 
wet. Ångström [45] assigned this darkening of soils upon wetting to an increase of 
internal reflections within the water layer that covers the soil particles. Internal 
reflections within this layer increase the amount of interactions between light and 
soil particles, which in turn increases the probability of light to be absorbed. 
Twomey et al. [46] and Lekner and Dorf [47] expanded on this theory by taking the 
different refractive indices (n) of air (n ≈ 1), soil (n ≈ 1.5) and water (n ≈ 1.33) into 
account. The decrease of the relative refractive index when light transfers from air 
to soil when soils are dry, and from air to water when soils are wetted increases the 
probability of light to penetrate the soil and thereby increases the probability of 
light to be absorbed by the soil particles. In addition to this, the absorption of light 
by free water within the soil matrix or water bound to soil particles plays an 
important role in changes in soil reflectance due to moisture [48]. Besides soil 
moisture, soil reflectance is influenced by intrinsic soil characteristics like soil 
composition (e.g. organic matter content, mineral composition), soil surface 
roughness (e.g. particle size distribution, aggregation, crusting) and soil color 
[49,50]. In general, an increase in soil surface roughness, soil organic matter 
content, soil moisture or interactions between them, results in a decrease of 
reflectance [51,41], which makes for example deriving SMC based on reflectance 
values alone a difficult task [52]. 
Several experimental studies into the effects of soil moisture on reflectance have 
been carried out. Lobell and Asner [42] measured the reflectance of several soil 
samples in the 350-2500 nm region at different SMC levels under laboratory 
conditions and found an exponential decrease in reflectance when SMC increased. 
Lobell and Asner [42] also found that reflectance in the visible and near-infrared 
(VNIR) saturated at lower SMC levels compared to reflectance in the shortwave 
infrared (SWIR). Weidong et al. [53] performed a similar experiment and found that 
the decrease in reflectance is only valid up to a soil specific SMC level, which they 
referred to as the critical point. After the critical point, which was correlated with 
the point of near-saturation (−0.01 MPa water potential) of a soil, the soil 
reflectance increases with increasing soil moisture. 
A lot of effort has been invested into understanding, measuring [42,53] and 
modelling [52,54,55,43,56] the effects of SMC on soil reflectance and predicting 
SMC based on reflectance data [57,58]. Although there is a clear overview on the 
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effects of SMC on spectral changes in reflectance, the effects of SMC on the 
anisotropic reflectance behavior of soils did not receive much attention so far [41-
43]. Multi-angular reflectance measurements are able to provide a more complete 
insight on the soil surface composition and structure [59,60], and possibly also in 
SMC. Recently, Rosendahl et al. [61] and Croft et al. [41] studied changes in 
reflectance of soils at different SMC levels, observed from different observation 
positions. Rosendahl et al. [61] measured the reflectance of sand grains and glass 
spheres at different SMC levels from several positions in the principal plane and 
observed for both materials a relatively higher reflectance intensity in the forward 
scattering direction. Croft et al. [41] also studied the changes in reflectance due to 
soil moisture in the principal plane and found a stronger relation between the 
reflectance measured from forward scattering positions and soil moisture, 
compared to other observation positions. However, the soil samples used in the 
study of Croft et al. not only varied in SMC level, but also in soil surface roughness 
and soil organic carbon, which made it impossible to assign changes in observed 
reflectance at different viewing angles solely to soil moisture. 
This study aims to further explore the multi-angular reflective domain in relation 
to SMC by measuring and modelling the effects of SMC on reflectance anisotropy 
under controlled conditions. The number of attempts in quantitatively modelling 
the reflectance anisotropy of soils is limited. Physical approaches are based on the 
soil model developed by Hapke [62] for describing the radiometric properties of 
planetary surfaces. This was validated by Pinty et al. [63] for terrestrial soil 
surfaces. Subsequently, Jacquemoud et al. [64] extended the model to include both 
backward and forward scattering for smooth soils. However, such a physically 
based model requires a rather large number of parameters, which may inhibit an 
accurate model inversion against real measurements. Therefore, a semi-empirical 
approach is followed in this study. Multi-angular reflectance measurements in the 
optical domain of five different soil samples with varying SMC levels were acquired 
with a laboratory goniometer setup [15]. The semi-empirical Rahman–Pinty–
Verstraete (RPV) model [63] was inverted against these measurements to 
parameterize the measured anisotropy patterns at different SMC levels. The RPV 
model is of particular interest since it simulates surface anisotropy on the basis of 
only four parameters. The parameters obtained by the inversion of the RPV model 
were used to study the relation between reflectance anisotropy patterns and SMC. 

2.2 Methods 

2.2.1 Soil samples 
Five soil samples, collected at different locations in the Dutch provinces of Friesland 
(53.13° N, 5.82° E) and Noord-Brabant (51.67° N, 5.00° E) in 2009 and 2010, 
respectively, were used in this experiment (table 2.1). For the experiments, the 
samples were placed in a mat-black coated cylindrical sample holder made of PVC, 
with a 20 cm diameter and a 0.1 cm depth. The sample holders were filled to the 
brim with soil and flattened. Deionized water was added to the soil until an 
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oversaturated state was reached. The samples were left to rest for 30 min so that 
the water could distribute uniformly along the sample. Subsequently, any excess 
water after this point was drained from the surface. 
The volumetric soil moisture content (𝜃𝜃), hereafter referred to as SMC, of the 
samples was calculated based on the oven-dry (24 h at 105 °C) weight of the 
samples (𝑚𝑚0) and the weights of the sample collected during the drying process 
(𝑚𝑚), using equation 2.1. 

 𝜃𝜃 =  
(𝑚𝑚 − 𝑚𝑚0)/ 𝜌𝜌𝑤𝑤

𝑚𝑚0 / 𝜌𝜌𝑏𝑏
 (2.1) 

where 𝜌𝜌𝑤𝑤 is the water density (0.998 g·cm−3 at 23 °C) and 𝜌𝜌𝑏𝑏 is the bulk density of 
the soil sample (table 2.1). The weights of the samples were recorded during the 
experiment at a one minute time interval with a logged digital balance with one 
milligram accuracy. Each soil was measured until stable weight was reached and 
thus all the water was evaporated. The weights of the samples were synchronized 
to the time point of the spectral measurements (see section 2.2.2) by linear 
interpolation. The soils were visually checked for changes in roughness after adding 
the water and after the drying process. We did not observe any changes in 
roughness in the samples, aside from sample s10-081-12 which slightly swelled up 
after adding water. However, the sample did not shrink during the drying process. 
Therefore, we made the assumption that the soil roughness remained unchanged 
during the experiment and all observed effects were caused by changes in SMC 
level. 
In addition to SMC, we also expressed the amount of water in the soil as the relative 
water content (RWC) [65], since each soil type can only hold a specific absolute 
amount of water. The RWC can be considered as the fraction of saturation of a soil 
and is calculated by equation 2.2. 

 𝑅𝑅𝑅𝑅𝑅𝑅 =  𝜃𝜃
𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆

 (2.2) 

where 𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 is the soil specific saturation point (table 2.1). RWC = 0 corresponds to 
an oven-dry soil and RWC = 1 corresponds to a saturated soil. 

2.2.2 Multi-angular reflectance measurements 
The anisotropic reflectance behavior of the samples was measured with 
Wageningen University's laboratory goniometer setup [15]. The system is 
schematically illustrated in figure 2.1. The soil samples were illuminated by a 
Quartz Tungsten Halogen (QTH) lamp, set at 900W, which was placed 70 cm from 
the sample at a 30° zenith angle. Multi-angular reflectance measurements of the 
samples were taken in the 350–2500 nm region with an ASD FieldSpec 3 
spectrometer (Analytical Spectral Devices, Boulder, CO), while they were left to dry 
out. The spectrometer was equipped with a diffuser (ASD Scrambler) and a 1° fore 
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optic, which resulted in a measured area on the ground of 3.8 cm2 at nadir position 
and of 9.1 cm2 at a view zenith angle (VZA) of 65°, which was the largest angle used 
in this study. A white Spectralon panel (LabSphere Inc., North Sutton, NH) was used 
to calibrate the spectrometer. The goniometer setup was built in a climate cell that 
was covered with highly absorbent black materials to exclude diffuse illumination. 
Anisotropic reflectance characteristics of a surface are often referred to as the 
bidirectional reflectance distribution function (BRDF), which can be approximated 
by bidirectional reflectance factors (BRFs) covering the full hemisphere. The BRF is 
a quantity defined as the ratio of radiance reflected from a surface to the radiance 
reflected from an ideal Lambertian surface for a given view and illumination 
geometry and wavelength. Due to the conical field of view and illumination of the 
spectrometer and lamp used in our measurements setup, the correct terminology 
for reflectance factors that were measured for this study is conical–conical 
reflectance factors (CCRFs) or biconical reflectance factors (BCRFs), following the 
nomenclature of Schaepman-Strub et al. [4]. Hereafter, we will refer to the 
measured reflectance factors as BCRFs. The BCRFs measured for this study are a 
good approximation of BRFs due to the narrow field of view (1°) of the 
spectrometer.  

 
Figure 2.1. Schematic representation of the measurement setup. The robot arm is 
used to position the spectrometer at different positions around the soil sample. A 
fiber optic cable (not drawn) connects the fore optic to the spectrometer. 

During the measurements, the temperature in the climate cell was maintained at 23 
°C and the humidity at 50%. The robot arm, which forms the core of the goniometer, 
was programmed to position the spectrometer at 60 different positions around the 
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During the measurements, the temperature in the climate cell was maintained at 23 
°C and the humidity at 50%. The robot arm, which forms the core of the goniometer, 
was programmed to position the spectrometer at 60 different positions around the 
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samples. Measurements were taken at an angular resolution of 30° in the azimuth 
plane and at a resolution of 15° in the zenith plane from −60° to +60°. In the 
principal plane, where most of the variation in reflectance is expected, 
measurements were taken every 5° zenith from −65° to +65°. VZAs close to the 
hotspot (−35° to −25°) were programmed at a 15° azimuth angle off the principal 
plane to avoid shadows of the robot arm or sensor on the target. A complete 
measurement cycle of 60 positions covering the full hemisphere took 
approximately 23 min. The 60 positions were repetitively measured (9–18 times, 
depending on the sample, see table 2.1) until the soil reached a stable (air-dry) 
weight. Water was continuously evaporating from the samples during the dry-out 
experiment, which had as a consequence that the SMC level of each reflectance 
measurement in a measurement cycle was slightly different. To correct for the loss 
in soil moisture we applied a linear interpolation between the BCRFs at each 
measurement position of two consecutive SMC levels. In addition to correct for the 
loss in soil moisture, this interpolation enabled us to assign a single SMC level to all 
spectral measurements within a measurement cycle. 

Table 2.1. Properties of the soil samples used in this study. The texture classes are 
within a 1% detection limit. Field capacity and wilting point were measured at pF=2.0 
and pF=4.2, respectively. 
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s09-131-34 loam 1.26 23.9 59.7 28.5 8.16 64 59 22 12 
s10-050-30 sand 1.68 2.4 3.0 95.3 1.53 52 27 2 9 
s10-081-12 sandy 

loam 
1.14 2.2 6.7 72.9 23.0 63 26 13 18 

s10-081-13 sand 1.77 1.9 1.3 97.6 1.2 47 18 3 9 
s10-081-17 loam 1.29 9.4 14.6 52.8 2.87 59 50 11 16 

*Organic matter and calcium content based on Loss on Ignition (LOI) calculated as 
100 ∗ (weight sample at 105 °C− weight sample at 550 °C) / weight sample at 105 °C. 

2.2.3 Rahman–Pinty–Verstraete model 
The Rahman–Pinty–Verstraete (RPV) model [66] was inverted against the 
goniometer measurements based on a lookup table (LUT) approach. The RPV 
model is an empirical model which gives a parametric representation of reflectance 
anisotropy based on (i) intensity of reflectance, (ii) bowl and bell-shaped 
anisotropy curvature, (iii) forward and backward scattering intensity, and (iv) 
hotspot effects. The RPV model simulates the directional reflectance of a surface 
into direction (𝜃𝜃𝑟𝑟 , 𝜑𝜑𝑟𝑟) illuminated from direction (𝜃𝜃𝑖𝑖 , 𝜑𝜑𝑖𝑖) using four parameters. The 
model splits the reflectance into a scalar component 𝜌𝜌0, which is an arbitrary 
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parameter that characterizes the surface reflectance intensity and a directional 
component (equation 2.3). 

 𝜌𝜌𝑠𝑠(𝜃𝜃𝑖𝑖, 𝜑𝜑𝑖𝑖; 𝜃𝜃𝑟𝑟, 𝜑𝜑𝑟𝑟) =  𝜌𝜌0  𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘−1 𝜃𝜃𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘−1 𝜃𝜃𝑟𝑟
 (𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑟𝑟) 1−𝑘𝑘 𝐹𝐹(𝑔𝑔)[𝑅𝑅(𝐺𝐺)] (2.3) 

The Minnaert parameter (𝑘𝑘) controls the bell-shape (𝑘𝑘 > 1) and bowl-shape (𝑘𝑘 < 1) 
of the anisotropy curve. The Henyey–Greenstein phase function 𝐹𝐹(𝑔𝑔), [67] which is 
driven by the asymmetry parameter (𝛩𝛩), controls the amount of forward (𝛩𝛩 > 0) 
and backward scattering (𝛩𝛩 < 0), as given in equation 2.4. 

 𝐹𝐹(𝑔𝑔) =  1 −  𝛩𝛩2

[1 + 𝛩𝛩2 − 2𝛩𝛩 𝑐𝑐𝑐𝑐𝑐𝑐(𝜋𝜋 − 𝑔𝑔)]1.5 (2.4) 

where the phase angle 𝑔𝑔 is given by equation 2.5. 

 𝑔𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑟𝑟 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑟𝑟 cos(𝜑𝜑𝑖𝑖 −  𝜑𝜑𝑟𝑟) (2.5) 

The hotspot function 𝑅𝑅(𝐺𝐺), driven by the hotspot parameter (𝜌𝜌𝑐𝑐), is approximated 
by equation 2.6. 

 𝑅𝑅(𝐺𝐺) = 1 + 1 −  𝜌𝜌𝑐𝑐
1 + 𝐺𝐺  (2.6) 

where the geometrical factor 𝐺𝐺 is defined by equation 2.7. 

 𝐺𝐺 = [𝑡𝑡𝑡𝑡𝑡𝑡2 𝜃𝜃𝑖𝑖 +  𝑡𝑡𝑡𝑡𝑡𝑡2 𝜃𝜃𝑟𝑟 − 2 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃𝑖𝑖  𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃𝑟𝑟 cos(𝜑𝜑𝑖𝑖 −  𝜑𝜑𝑟𝑟)] 1 2⁄  (2.7) 

For the inversion of the RPV model, a lookup table was created for the reflectance 
factors at all measurement positions in the principal plane using the 𝜌𝜌0, 𝑘𝑘, 𝛩𝛩 and 𝜌𝜌𝑐𝑐  
parameters as given in table 2.2. 

Table 2.2. Range and the step size of the RPV parameters as used to create the lookup 
table. 

Parameter Minimum Maximum Step size 
𝜌𝜌0 0.0 1.0 0.01 
𝑘𝑘 0.0 2.0 0.01 
𝛩𝛩 -1.0 1.0 0.01 
𝜌𝜌𝑐𝑐  0.0 1.0 0.01 

Reflectance simulations of the RPV model based on all combinations of the 
parameters in table 2.2 were fitted through the BCRFs that were measured in the 
principal plane with the goniometer. The combination of parameters that produced 
the best fit with the measurements was determined based on the lowest root mean 
square error (RMSE) between the measured (𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) and modelled reflectance 
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) at all positions in the principal plane (equation 2.8). 
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of the anisotropy curve. The Henyey–Greenstein phase function 𝐹𝐹(𝑔𝑔), [67] which is 
driven by the asymmetry parameter (𝛩𝛩), controls the amount of forward (𝛩𝛩 > 0) 
and backward scattering (𝛩𝛩 < 0), as given in equation 2.4. 

 𝐹𝐹(𝑔𝑔) =  1 −  𝛩𝛩2

[1 + 𝛩𝛩2 − 2𝛩𝛩 𝑐𝑐𝑐𝑐𝑐𝑐(𝜋𝜋 − 𝑔𝑔)]1.5 (2.4) 

where the phase angle 𝑔𝑔 is given by equation 2.5. 

 𝑔𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑟𝑟 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑟𝑟 cos(𝜑𝜑𝑖𝑖 −  𝜑𝜑𝑟𝑟) (2.5) 

The hotspot function 𝑅𝑅(𝐺𝐺), driven by the hotspot parameter (𝜌𝜌𝑐𝑐), is approximated 
by equation 2.6. 

 𝑅𝑅(𝐺𝐺) = 1 + 1 −  𝜌𝜌𝑐𝑐
1 + 𝐺𝐺  (2.6) 

where the geometrical factor 𝐺𝐺 is defined by equation 2.7. 

 𝐺𝐺 = [𝑡𝑡𝑡𝑡𝑡𝑡2 𝜃𝜃𝑖𝑖 +  𝑡𝑡𝑡𝑡𝑡𝑡2 𝜃𝜃𝑟𝑟 − 2 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃𝑖𝑖  𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃𝑟𝑟 cos(𝜑𝜑𝑖𝑖 −  𝜑𝜑𝑟𝑟)] 1 2⁄  (2.7) 

For the inversion of the RPV model, a lookup table was created for the reflectance 
factors at all measurement positions in the principal plane using the 𝜌𝜌0, 𝑘𝑘, 𝛩𝛩 and 𝜌𝜌𝑐𝑐  
parameters as given in table 2.2. 

Table 2.2. Range and the step size of the RPV parameters as used to create the lookup 
table. 

Parameter Minimum Maximum Step size 
𝜌𝜌0 0.0 1.0 0.01 
𝑘𝑘 0.0 2.0 0.01 
𝛩𝛩 -1.0 1.0 0.01 
𝜌𝜌𝑐𝑐  0.0 1.0 0.01 

Reflectance simulations of the RPV model based on all combinations of the 
parameters in table 2.2 were fitted through the BCRFs that were measured in the 
principal plane with the goniometer. The combination of parameters that produced 
the best fit with the measurements was determined based on the lowest root mean 
square error (RMSE) between the measured (𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) and modelled reflectance 
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) at all positions in the principal plane (equation 2.8). 
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 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  √∑ (𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛  (2.8) 

where 𝑛𝑛 is the number of measurement positions in the principal plane. 

2.3 Results 

In this section, we present the effects of SMC on reflectance anisotropy that were 
measured with the goniometer and simulated with the RPV model. Sample s09-
131-34 (table 2.1) is used for illustration purposes, because all investigated 
samples showed similar responses to changes in SMC level. 

2.3.1 Dry-out experiment 
The complete time line of the complete dry-out experiment of the sample s09-131-
34 is shown in figure 2.2. The SMC level gradually dropped from 88.41% in the 
beginning of the experiment until it reached a stable SMC level of 7.45% in the end. 
The robot was programmed to repetitively measure the reflectance of the sample 
from 60 positions, covering the full hemisphere. In the case of sample s09-131-34, 
these measurements were repeated 12 times during the timespan of the dry-out 
experiment. For the other samples it took between 9 and 18 repetitions of the 
reflectance measurements at all programmed positions until a stable SMC level was 
reached (table 2.1, SMC levels measured). 
The SMC level constantly decreased during the time span of the dry-out experiment. 
The decrease in SMC level during the time that it took to measure a complete 
hemisphere of 60 measurements was in some cases over 8%. The maximum 
decrease in SMC level during the time that it took to measure all 24 positions in the 
principal plane was just over 2% (figure 2.3). All BCRFs within a measurement cycle 
were transformed to the estimated BCRFs at the moment of the nadir measurement 
(section 2.3.3). 

2.3.2 Effects of SMC on reflectance 
Figure 2.4a shows the effect of SMC level on the spectra observed from nadir 
position. Over the measured spectral domain, the spectrum of the air-dry sample 
(7.45%) had the highest reflectance values. Reflectance decreased with increasing 
SMC, except for oversaturated SMC levels (>64%) in the VNIR region of the 
spectrum. Here, the reflectance values went up again. The strongest spectral 
variations were found in the SWIR region of the spectrum with emphasis on the 
water absorption bands centered at 1450 and 1900 nm. In these regions, a change 
of the shape of the spectral curve was observed. Upon wetting, the shape of the 
spectral curve hardly changed in the visible region of the spectrum, which is related 
to darkening of the soil without any change in the color. 
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Figure 2.2. BCRFs (coloured lines) of sample s09-131-34 observed at all 
measurement positions covering the full hemisphere and SMC level (black line) over 
the time of the dry-out experiment. The percentages (87.08%–7.45%) indicate the 
SMC level at the time that the nadir reflectance was measured (white dotted lines). 
The dark-grey bars indicate the measurements in the principal plane, where the 
BCRFs on the left-side of the nadir-line correspond to the backward scattering 
positions and the BCRFs on the right-side of the nadir-line correspond to the forward 
scattering positions. Per measured hemisphere there are several dips where the 
BCRFs dropped close to 0. This is where the robot was at a position between the lamp 
and the sample and thus casting a shadow over the sample, resulting in a low 
measured signal. 

 

Figure 2.3. The absolute decrease in SMC level between the start and end of each 
measurement cycle over the full hemisphere (black bars) and the principal plane 
(grey bars) for sample s09-131-34. The SMC level stabilized at the end of the 11th 
measurement cycle (figure 2.2, at t = 250 min), resulting in no more changes in SMC 
level between the start and the end of the last (12th) measurement cycle. 

An increasing SMC level caused a non-linear and wavelength dependent decrease 
of the BCRFs (figure 2.4b). Wavelengths in the visible region were only sensitive to 
an increase of SMC level from air-dry up to 30%. After this point, the BCRFs did not 
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decrease any further. Wavelengths in the NIR and SWIR region were sensitive to 
changes of SMC level within The whole range from air-dry to oversaturation. The 
BCRFs decreased the strongest between an air-dry state and an SMC level of 30%. 
The reflectance decreased at a lower rate with increasing SMC levels between 30% 
and the saturation point. A slightly faster rate of decrease in reflectance occurred 
with increasing SMC levels after the saturation point for wavelengths in the NIR and 
SWIR regions. The BCRFs at 450 nm and 574 nm increased again at SMC levels 
beyond the saturation point. 

 
Figure 2.4. (a) Spectra of sample s09-131-34 observed from nadir position at SMC 
levels ranging from air-dry to oversaturation. (b) BCRFs at several wavelengths as 
function of SMC. WP = wilting point (22%), FC = field capacity (59%) and Sat = 
saturation point (64%). 

2.3.3 Effects of SMC on reflectance anisotropy 
Due to the constant decrease in SMC level during the time span of the dry-out 
experiment (figure 2.2) it was not possible to link one SMC level to the measured 
reflectance values at all measurement positions of each cycle over the full 
hemisphere. To overcome this problem, we linearly interpolated the BCRFs per 
measurement position between two consecutive SMC levels. figure 2.5a shows the 
result of the interpolation for the BRCF measurements in the principal plane. Here, 
the BCRFs measured at all positions in the principal plane were interpolated to the 
SMC level at the time that the nadir position was measured. The differences in SMC 
of around 2% during the time of a principal plane scan (figure 2.3) showed to have 
an impact on the differences between measured and interpolated BRCFs (figure 
2.5b). Overall, these differences were small (<1% in the 71.56%–7.45% SMC range). 
At oversaturated SMC levels, a specular reflectance peak appeared. Here, the 
differences between measured and interpolated BCRFs were larger (up to 4%) due 
to the fast emergence of this specular peak as the SMC level increased beyond the 
saturation point of the soil. 
Figure 2.6 shows interpolated polar contour plots of the effects of SMC on the 
changes in BCRFs over the full hemisphere, illustrated for three different 
wavelengths. The highest BCRFs were observed in the backward scattering 
direction, with a maximum close to the angle of incidence at an air-dry state of the 
soil sample (7.45%). A clear hotspot was visible at 450 nm. We observed the lowest 
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BCRFs in the forward scattering direction, where mostly the shaded sides of the soil 
particles were viewed by the spectrometer. A decreased proportion of backward 
scattering and an increased proportion of forward scattering were observed at an 
intermediate SMC level (37.69%). Here, the hotspot of the air-dry sample was no 
longer visible. At an SMC level of 87.08%, a sun-glint-like reflectance peak appeared 
with maximum BCRFs around the angle of specular reflectance (θ = 30°, φ = 0°). 

 
Figure 2.5. (a) Measured BCRFs at several different wavelengths (coloured dots) and 
their corresponding interpolated BCRFs (black dots). (b) Difference between 
measured and interpolated BCRFs. 
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Figure 2.6. Changes in reflectance anisotropy due to SMC shown at 450, 986 and 
1998 nm at an air-dry (7.45%), intermediate (37.69%) and oversaturated (87.08%) 
state. The ‘H’ indicates the hotspot position (𝜃𝜃 = 30°, 𝜑𝜑 = 180°) and the black dots 
indicate the measurement positions. The BCRFs at 87.08% are plotted on a 
logarithmic scale to capture the sun glint effect. 

2.3.4 Modelling the effects of SMC on reflectance anisotropy 
The RPV model was used to create a LUT for the reflectance at all measurement 
positions in the principal plane based on all different combinations of the 𝜌𝜌0, 𝑘𝑘, 𝛩𝛩 
and 𝜌𝜌𝑐𝑐  parameters (table 2.2). Each modelled reflectance value was compared to 
the BCRF measurements obtained with the goniometer. The combination of 
parameters that produced the lowest RMSE between measured and modelled 
reflectance factors in the principal plane between a VZA of −65° and 65° was 
considered the parameter combination that best fitted the measurements. Figure 
2.7a displays for the 400–2200 nm region the R2 between measured and modelled 
reflectance factors in the principal plane at all SMC levels based on the parameters 
obtained by inversion of the RPV model. The 350–400 nm and 2200–2500 nm 
regions were not inverted, due to the presence of noise at these wavelengths. The 
fit of the RPV model overall was accurate with R2 >0.9. However, the model fit was 
less accurate in the 400–420 nm region. The reflectance measurements at these 
wavelengths were still slightly noisy which resulted in “bumpy” anisotropy curves 
through which it was not possible to fit the RPV model smoothly and therefore 
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resulting in relatively lower R2's. Simulation of the reflectance factors over the full 
hemisphere based on the parameters obtained by inversion of the reflectance 
factors in the principal plane resulted in a less good fit as shown in figure 2.7b. 

 
Figure 2.7. The R2 of fit of the RPV model based on the parameters obtained by 
inversion of the RPV model though the measurements in the principal plane (a) and 
all measurements covering the full hemisphere (b). 

A regression analysis indicated that there was a strong relationship between the 
RPV parameters and the SMC level. In figure 2.8a this relationship is shown at 1998 
nm. The R2 value between the parameters and the SMC level decreased when all 
samples were considered together (figure 2.8b). However, the R2 for the 
relationship between the 𝛩𝛩-parameter and the SMC level was still high with a value 
of 0.759. The R2 increased to 0.817 when the RWC was considered instead of the 
SMC level (figure 2.8c). 
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Figure 2.8. Relationship between the RPV parameters and the SMC level at 1998 nm. 
(a) Sample s09-131-34 and (b) all samples used in this study (c) the relationship 
between the RWC and the RPV parameters for all samples. 
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An overview of the R2 values between the RPV parameters and the corresponding 
RWC and SMC level per wavelength in the 400–2200 nm region is given in figure 
2.9. The amplitude parameter (𝜌𝜌0), the parameter that is closely related to the 
surface reflectance intensity, had an R2 around 0.1 in the VNIR region of the 
spectrum. The R2 increased in the SWIR region with peaks in correlation between 
the 𝜌𝜌0 parameter and SMC level around the water absorption bands at 1450 nm and 
1900 nm, indicating that most information based on reflectance intensity is located 
in these regions. The Minnaert parameter (𝑘𝑘), which controls the bowl- or bell-
shape of the anisotropy curve, showed a noisy pattern in R2 in the 400–1800 nm 
region. Around the water absorption band at 1900 nm there was an increase in R2. 
The asymmetry parameter (𝛩𝛩), which controls the proportion of forward and 
backward scattering, had an overall high R2 with RWC and SMC level in the NIR and 
SWIR, with a slightly higher R2 around the water absorption bands. Here, we 
observed a maximum R2 of 0.840 and 0.823 at 1987 nm for the RWC and SMC level, 
respectively. The hotspot parameter (𝜌𝜌𝑐𝑐), which controls the intensity of the 
hotspot, had an overall low correlation with the RWC and SMC level. In the 400–
2200 nm region the hotspot parameter showed a noisy pattern with R2 values 
ranging from 0.43 to close to 0. 

 
Figure 2.9. R2 between the RPV parameters and RWC or SMC level in the 400–2200 
nm region for all soil samples combined. 

2.4 Discussion 

We studied the effects of SMC on reflectance anisotropy based on laboratory 
goniometer measurements and RPV model inversions. The results of the 
measurements clearly indicated that changes in SMC affected the anisotropic 
reflectance of soils. An increased SMC level caused (i) an overall decrease in 
reflectance (up to the point where the soils saturated), (ii) a decrease in backward 
scattering intensity and the hotspot effect, and (iii) an increase in forward 
scattering intensity. 
The decrease in reflectance upon wetting that we observed in this study is in line 
with observations of previous studies [42,53]. Like these studies, we also observed 
that the reflectance in the VNIR was sensitive only to lower SMC levels, while the 
reflectance in the SWIR was sensitive to the whole measured range of SMC levels 
(figure 2.4b). The parameters obtained by the inversion of the RPV model were in 
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good agreement with these observations. The amplitude parameter (𝜌𝜌0),which has 
no physical meaning but is related to the intensity of the reflectance [66], had a poor 
correlation (R2 < 0.1) with SMC in the VNIR region of the spectrum, while stronger 
correlations (R2 up to 0.6) were observed at wavelengths in the SWIR region 
(figures 2.8 and 2.9). This finding is in line with Lobell and Asner [42], who 
concluded that the SWIR region is more suitable for the measurement of changes in 
SMC due to the response of reflectance up to high SMC levels in this region. 
We observed a decreased backward scattering intensity and hotspot effect and an 
increased forward scattering intensity in the principal plane when the SMC level 
increased. The increased proportion of forward scattering is in good agreement 
with observations of Rosendahl et al. [61]. Rosendahl et al. [61] studied the 
reflectance anisotropy of sand and glass granules in a laboratory experiment where 
they used a Sony XCL-5005 camera to capture the reflectance at different moisture 
levels at several positions in the principal plane and observed relatively stronger 
forward scattering at higher moisture levels. An explanation for this phenomenon 
is the decrease in relative refraction index when light travels from air to soil with 
the absence of water in the soil, and from air to water for conditions where water 
is present in the soil. The penetration of light into a medium increases when the 
relative refraction index between two media decreases [47,46]. This results in a 
decreased proportion of light that is directly reflected by the soil when water is 
present and in turn makes it more likely that the light that penetrated the soil 
reflects in the forward direction out of the soil [61]. This explains the higher 
observed proportion of forward scattering, the decreased proportion of backward 
scattering and the decreased hotspot effect at higher SMC levels. The RPV model 
could simulate the changes of the anisotropy curves in the principal plane for SMC 
levels ranging from air-dry to saturation point (figure 2.7). The asymmetry 
parameter (𝛩𝛩), which controls the forward and backward scattering intensity, 
showed a strong correlation with the SMC level (figures 2.8 and 2.9), especially in 
the NIR and SWIR regions. This indicated that the forward/backwards scattering 
proportion in these regions contained information on the SMC level. 
At oversaturated SMC levels, where Fresnel reflectance of water becomes a 
significant part of the reflectance signal [55,44], we observed a sun glint pattern 
with a maximum reflectance around the angle of specular reflectance (figure 2.6). 
Sun glint, the mirror-like reflectance of light at the air-water interface, occurs when 
the orientation of a water surface is such that light is directly reflected towards the 
sensor [68]. The intensity and pattern of sun glint depends on the roughness of the 
water surface and the illumination and viewing geometry [69,68]. Although no free 
water could be seen at the soil surface when the reflectance measurements were 
taken at oversaturated SMC levels, the soil particles may have been covered by a 
water layer that made the soil reflect like a water surface, which in turn caused the 
observed sun glint pattern. The RPV model does not take sun glint or specular 
reflectance into account and it was therefore not possible to fit the RPV model 
through the BCRF measurements in the principal plane at oversaturated SMC levels. 
In addition, at oversaturated SMC levels the observed reflectance signal is 
complicated, since it corresponds partly to light that is directly reflected by the 
water surface (Fresnel reflectance) and partly to light that penetrated and 
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interacted with the soil (volumetric reflectance) [44]. Obtained RPV parameters 
based on the reflectance of a soil after the saturation point would therefore not 
correspond to SMC, but to the relative contribution of Fresnel and volumetric 
reflectance to the observed reflectance signal. 
In literature, it was suggested that the model of Jacquemoud et al. [64] is capable of 
simulating the specular reflectance of soils. However, fitting this model to our data 
did not yield satisfactory results at oversaturated SMC levels (not shown in this 
paper), similar to the RPV model. Moreover, it has more empirical parameters to 
describe the hotspot and the forward–backward scattering ratio than the RPV 
model. Therefore, we focused on using the RPV model in this study. 
Besides the correlation between reflectance anisotropy and the absolute 
volumetric soil moisture content (SMC), we also investigated the correlation 
between reflectance anisotropy and the relative soil moisture content (RWC). RWC 
is a measure that describes the relative saturation of a soil. This can have a more 
robust correlation with reflectance, since different soil (types) have different 
hydrological properties (like wilting point, field capacity and saturation point), 
which means that the absolute amount of water that can be held by a soil varies per 
soil type. The normalization from SMC to RWC might therefore be necessary to 
create a universal relation between soil water and reflectance anisotropy. However, 
the correlation of SMC and RWC with the RPV parameters showed a similar pattern 
with similar R2 values (figure 2.9). 
For this study we corrected for the constantly decreasing SMC level during the 
timespan of the dry-out experiment by linearly interpolating the measured BCRFs 
for each measurement position between two consecutive SMC levels. This 
interpolation also enabled us to assign one SMC level to all measurements within a 
measurement cycle. The difference between the original reflectance factors and the 
interpolated reflectance factors appeared small (figures 2.5a and 2.5b). However, 
the best fit of parameters based on inversion of the RPV model was significantly 
affected by this difference (results not shown). This indicates that correcting for 
differences in SMC level is an important processing step for data collected in the 
way presented in this paper. 
The spectral measurements of this study were performed under controlled 
laboratory conditions with constant illumination and highly accurate positioning of 
the sensor. Different results might be obtained if a similar experiment would be 
done under field conditions due to the presence of diffuse light and the changing 
position of the sun over time [70]. The natural presence of surface roughness and 
soil aggregates, which have a strong influence on reflectance anisotropy [34], were 
destroyed during the preparation of the samples. It might be that the anisotropic 
reflectance effects caused by soil surface structure and roughness overrule the 
effects caused by soil moisture. In this study, we looked at the effect of SMC on 
surface anisotropy. Confounding effects of surface roughness as well as organic 
matter content requires further research. In addition, the presence of vegetation, 
rocks etcetera was not considered in this study. This, in combination with the 
acquisition time of the large number of observation positions that were used in this 
study, limits the applicability for in situ measurements of SMC based on reflectance 
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based on the reflectance of a soil after the saturation point would therefore not 
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surface anisotropy. Confounding effects of surface roughness as well as organic 
matter content requires further research. In addition, the presence of vegetation, 
rocks etcetera was not considered in this study. This, in combination with the 
acquisition time of the large number of observation positions that were used in this 
study, limits the applicability for in situ measurements of SMC based on reflectance 
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anisotropy. Further research should indicate whether a few observation angles 
suffice to quantify the reflectance anisotropy of soils. 
The results of this study indicate a strong influence of SMC on reflectance 
anisotropy. Therefore, it is recommended that reflectance anisotropy is taken into 
account for optical remote sensing methods when analyzing data acquired under 
different viewing and illumination geometries. For future research we recommend 
to study the effects of soil moisture on the anisotropic reflectance behavior of soils 
while taking the natural soil texture into account. In addition, the influence of 
natural illumination conditions need to be studied to explore the opportunities for 
upscaling the presented research to an airborne or space borne level and applying 
it at larger spatial extents. Currently, first attempts have been made to perform 
multi-angular measurements from an unmanned aerial vehicle (UAV). These 
platforms are very agile and first results look promising for observing objects at 
multiple angles. In this way anisotropic reflectance information might be captured 
from an airborne platform. 

2.5 Conclusions 

The multi-angular reflectance measurements that were performed for this study 
showed that soil moisture had a strong influence on soil reflectance anisotropy. 
Increasing SMC levels caused a decreased proportion of backward scattering and 
hotspot effect, and an increased proportion of forward scattering. At oversaturated 
SMC levels, a sun glint reflectance pattern was observed. The RPV model was 
inverted against BCRF measurements that were taken in the principal plane, to 
obtain the RPV model parameters that best described the measured anisotropy 
curves at different SMC levels. Especially the asymmetry parameter (𝛩𝛩), which 
controls the proportion of forward and backward scattering, had a strong 
correlation with the SMC level (maximum R2 of 0.797 at 2123 nm with SMC and 
maximum R2 of 0.840 at 1993 nm with RWC). The correlation between the 
amplitude parameter (𝜌𝜌0), which is closely related to the reflectance intensity, and 
the SMC and RWC was less (maximum R2 of 0.622 at 1921 nm for SMC and 
maximum R2 of 0.604 at also at 1921 nm for RWC). This indicated that reflectance 
anisotropy contained more information on SMC than reflectance intensity. 
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Abstract 
Reflectance anisotropy is a signal that contains information on the optical and 
structural properties of a surface and can be studied by performing multi-angular 
reflectance measurements that are often done using cumbersome goniometric 
measurements. In this paper we describe an innovative and fast method where we 
use a hyperspectral pushbroom spectrometer mounted on a multirotor unmanned 
aerial vehicle (UAV) to perform such multi angular measurements. By hovering the 
UAV above a surface while rotating it around its vertical axis, we were able to 
sample the reflectance anisotropy within the field of view of the spectrometer, 
covering all view azimuth directions up to a 30° view zenith angle. We used this 
method to study the reflectance anisotropy of barley, potato, and winter wheat at 
different growth stages. The reflectance anisotropy patterns of the crops were 
interpreted by analysis of the parameters obtained by fitting of the Rahman-Pinty-
Verstraete (RPV) model at a 5-nm interval in the 450–915 nm range. To 
demonstrate the results of our method, we firstly present measurements of barley 
and winter wheat at two different growth stages. On the first measuring day, barley 
and winter wheat had structurally comparable canopies and displayed similar 
anisotropic reflectance patterns. On the second measuring day the anisotropy of 
crops differed significantly due to the crop-specific development of grain heads in 
the top layer of their canopies. Secondly, we show how the anisotropy is reduced 
for a potato canopy when it grows from an open row structure to a closed canopy. 
In this case, especially the backward scattering intensity was strongly diminished 
due to the decrease in shadowing effects that were caused by the potato rows that 
were still present on the first measuring day. The results of this study indicate that 
the presented method is capable of retrieving anisotropic reflectance 
characteristics of vegetation canopies and that it is a feasible alternative for field 
goniometer measurements.  
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3.1 Introduction 

Natural surfaces reflect light anisotropically, which means that the reflected 
radiance varies with viewing and illumination geometry. Reflectance anisotropy is 
described by the bidirectional reflectance distribution function (BRDF), which is a 
function that quantifies the surface reflectance into a specific direction when being 
illuminated from a particular direction [4]. For remote sensing purposes, 
information on the BRDF is important, for example, for the correction of viewing 
and illumination effects [71] or for the calculation of albedo [72,11]. In addition to 
this, the BRDF has been shown to contain additional information on vegetation 
parameters, such as canopy density, foliar water content, nitrogen content and leaf 
area index [73], canopy height [74], canopy clumping [75,76] and soil properties, 
such as soil surface roughness [34] and soil moisture content [77]. Moreover, BRDF 
information can be used to improve classification accuracies [78]. 
Reflectance anisotropy is commonly studied by performing multi-angular 
reflectance measurements using goniometers in laboratories under controlled 
conditions e.g., [20,21,15,7] or in the field under natural conditions e.g., 
[79,24,25,39,27]. Both laboratory and field goniometer measurements have their 
advantages and disadvantages [80]. A drawback of using laboratory goniometry is 
that the observed target has to be taken out of its natural environment and that an 
artificial light source has to be used, which typically results in a non-parallel light 
beam as opposed to the natural illumination of the sun [81]. A positive aspect, on 
the other hand, is the full control over the position and stability of the light source 
during measurement acquisition. An advantage of field goniometry is that the target 
can be observed in its natural environment and under natural illumination 
conditions. However, this also has as a consequence that measurements are 
affected by influences of atmospheric conditions, wind, and changes in illumination 
conditions due to the movement of the sun and clouds [82]. A drawback of both 
laboratory and field goniometer measurements is that they are cumbersome and 
time consuming. 
Unmanned aerial vehicles (UAVs) might provide more elegant opportunities for 
performing multi-angular reflectance measurements. The fast emergence and 
development of unmanned aerial platforms and lightweight optical sensors has 
recently boosted the availability of new techniques for acquiring spectral data [83]. 
The relatively low operation height of UAVs results in derived products with a small 
spatial pixel size [84], which are typically interesting for small scale precision 
agriculture applications [85,86,19]. UAVs have already become common platforms 
for use in remote sensing [35], but the number of studies that use UAVs to perform 
multi angular measurements for investigation of reflectance anisotropy is still 
small. 
Until now, only a few approaches of using a UAV to capture reflectance anisotropy 
have been explored. Hakala et al. [38] used a consumer camera mounted on a UAV 
to acquire reflectance anisotropy of snow-covered land surfaces and compared 
these with simultaneous ground measurements. Grenzdörffer and Niemeyer [37] 
also used a consumer-grade camera mounted on a UAV to study the anisotropic 
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reflectance behavior of winter wheat fields by capturing images at different view 
zenith and azimuth angles covering the full hemisphere. Burkart et al. [36] used a 
hyperspectral UAV-based pointable spectrometer to collect multi-angular data of 
several vegetated areas and compared the measurements with the SCOPE model. 
Honkavaara et al. [87] have demonstrated a method for extracting the reflectance 
anisotropy from multi/hyperspectral frame images in the georectification process. 
Duan et al. [88] collected hyperspectral images of several crop types during two 
consecutive flights performed in different directions using a UAV, which resulted in 
pixels that were observed from two directions in the overlapping part of the two 
flight lines. Based on this dual angle dataset Duan et al. showed an improvement in 
the estimation of the leaf area index (LAI). Reflectance anisotropy is also reported 
as an unwanted effect: Rasmussen et al. [89] investigated the performance of 
different vegetation indices using a consumer-grade camera mounted on a UAV and 
observed strong angular variation in reflectance images acquired in sunny 
conditions. To avoid these anisotropic effects, they advised to acquire data during 
clouded days. Not only viewing geometry, but also illumination geometry, can have 
an influence on anisotropic reflectance effects. Brede et al. [90] studied the effect of 
solar zenith angle on the enhanced vegetation index (EVI) and found a linear trend 
in the decrease of the EVI with an increasing illumination zenith angle. 
In this paper we present an innovative method to rapidly measure reflectance 
anisotropy using a UAV and a hyperspectral pushbroom spectrometer system. We 
demonstrate the method by two showcases: (1) we compare anisotropy 
measurements of barley and winter wheat, two different crops that are structurally 
comparable due to their vertically-oriented canopies. In addition, we show how 
differences in grain head development of both crops result in different anisotropy 
patterns; and (2) we show the effect of canopy development on reflectance 
anisotropy for potato crops by measurements before and after the potato canopy 
closed. 

3.2 Materials and methods 

3.2.1 Study area and flight pattern 
The study area consisted of three fields with different crops located north of 
Wageningen, the Netherlands (51°59’34.8”N, 5°39’4.6”E). The study area was 
characterized as an open and flat agricultural area without any vertical elements 
nearby. The target crops were barley (Hordeum vulgare L., sowing date: 18 March 
2015), potato (Solanum tuberosum L., sowing date: 14 April 2015), and winter 
wheat (Triticum aestivum L., sowing date: 21 October 2014), which were growing 
in three adjacent fields (figure 3.1). 
Several UAV flights were performed over the study area at two different growth 
stages of the crops during the summer of 2015 (table 3.1). All measurements were 
taken under clear sky conditions to minimize the variance in diffuse illumination 
and to ensure the strongest directional effects. 
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Figure 3.1. Photographs taken from the UAV of the barley, potato, and winter wheat 
targets during the two measurement days. 

The UAV measurements were performed using the Wageningen UR Hyperspectral 
Mapping System (HYMSY) on board an Altura AT8 octocopter [91], figure 3.2. The 
HYMSY at its current configuration consists of a pushbroom spectrometer (450–
915 nm, 9 nm full-width-at-half maximum (FWHM), 25 lines/s, 328 pixels/line), a 
photogrammetric camera, and a miniature GPS-inertial navigation system (INS). 
The system and processing chain are specifically designed for agricultural mapping 
and monitoring applications of small areas (2–10 ha) in fine spatial detail. 

Table 3.1. Solar position at the time of data acquisition. The times are local time (UTC 
+2 h) 

Day 1: 10 June 2015  Day 2: 2 July 2015 
Flight # Time Azimuth Zenith  Flight # Time Azimuth Zenith 

1 10:00 104° 50°  3 10:00 103° 51° 
2 10:30 111° 46°  4 10:30 110° 47° 

The HYMSY is typically flown with the scanline of the spectrometer perpendicular 
to the flight direction and it produces a digital surface model (DSM) and a 
hyperspectral geocoded datacube, using orientations fused from the INS data and 
the photogrammetric orientation of the camera images. For the measurements of 
this study we took a different approach. Instead of performing the flight while 
maintaining the scanline of the spectrometer perpendicular to the flight direction, 
we flew the UAV while rotating it around its vertical axis at a constant rotation 
speed of approximately one revolution in 10 s. In this way, the azimuth orientation 
of each collected scanline was in a different azimuth plane. Based on the INS data 
and the photogrammetric orientation of the aerial images we derived the 
observation azimuth and zenith angles for each pixel. Collecting scanlines while 
completing full rotations with the UAV resulted in datasets covering the full 360° 
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azimuth sampling range. While most goniometers sample the same area from 
multiple observation directions, the method presented in this paper takes multiple 
pixels in a sampling area from multiple observation directions. The rationale 
behind this is that, if the sampling area contains only a single crop or vegetation 
type and a large amount of pixels are measured, the measurements of the individual 
pixels will represent the reflectance anisotropy of the sampling area. The 
measurement principle can be compared to tower-based multi-angular 
measurements where different azimuth and zenith angles are sampled by rotating 
a sensor at a fixed position above a surface, such as the case of the Automated 
Multiangular Spectro-radiometer for Estimation of Canopy reflectance (AMSPEC) 
series [28-30] or the Portable Apparatus for Rapid Acquisition of Bidirectional 
Observation of the Land and Atmosphere III (PARABOLA III) [31]. 

 
Figure 3.2. The Aerialtronics Altura AT8 UAV and the sensor system. 

The field of view (FOV) of the spectrometer’s scanline that was used for the 
measurements Was 42.4°. When rotating the UAV while the center of the FOV is 
aimed towards the nadir position, the maximum zenith sampling angle would be 
21.2° To increase the maximum zenith sampling angle, we mounted the 
spectrometer tilted under the UAV to capture pixels at greater zenith angles (figure 
3.3a). The actual maximum zenith angle sampling range depends on the roll, pitch 
and yaw of the UAV during the flights and is, therefore, slightly different for each 
scanline. 
For the data collection, the UAV was programmed to hover for one minute at a 
height of approximately 10 meters above ground level at waypoint that was 
selected in the center of each of the fields. Operating at this height resulted in a 
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ground sampling distance of about 6 cm. Once the UAV completed a 360° rotation 
around its vertical axis, a theoretically circular sampling area of approximately 100 
m2 was covered. However, the rotational instability of the UAV resulted in a rotation 
around the waypoint, forming a ring-shaped sampling area (figure 3.3b). 
Transforming the measurement scheme of figure 3.3a to a polar coordinate system 
results in an angular sampling range up to around 30° zenith covering all azimuth 
directions (figure 3.3c). The scanlines of figure 3.3b result in a coverage of azimuth 
and zenith angles as shown in figure 3.3d.  

 
Figure 3.3. Illustration of the measurement principle shown by the zenith angle 
sampling range when rotating the UAV with the tilted spectrometer (a) and the actual 
view zenith angles of the scanlines collected during one full rotation over the winter 
wheat canopy on 2 July 2015 10:00 a.m. in a WGS84 UTM 31N projection (b). For 
clarity, only every tenth collected scanline is displayed. A goniometric representation 
of the sampling range (c) and the azimuth and zenith angles of the scanlines of figure 
3.3b (d) are also depicted. The dotted line in figure 3.3d indicates the solar principal 
plane 

The final collected datasets per crop consisted of 230,000–350,000 pixels within 
each sampling area at 94 spectral bands, ranging from 450 to 915 nm. In the fields 
there were some tractor tracks (figure 3.3b), which for some targets and view 
directions formed a significant part of the sampled area. These tracks were 
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manually filtered out before processing of the data. For the barley and winter wheat 
targets the observed anisotropy patterns could, therefore, be assigned solely to the 
crops. For the potato crops on the first measuring day, the anisotropy pattern is a 
combination of the signal of the potato plant and the soil background due to the 
open row structure of the potato canopy at this time (figure 3.1). 

3.2.2 Data processing 
The radiometric and geometric processing of the UAV data was done using the 
standard HYMSY processing chain described in detail in [91]. In this processing 
chain, the radiances measured by the spectrometer were converted to reflectance 
factors using the empirical line method with a measurement of a 25 cm  25 cm 
25% grey Spectralon panel (LabSphere Inc., North Sutton, NH, USA) and a dark 
current measurement taken just prior to the flight. To improve the signal-to noise 
ratio, we applied Gaussian smoothing with a FWHM of 5 bands (25 nm) to the 
spectra. 
For the geometric alignment of the HYMSY, aerial photos collected during the flights 
were aligned in Agisoft PhotoScan software (v1.1.2, AgiSoft LLC, St. Petersburg, 
Russia). The photogrammetric alignment of the photos was then fused with the data 
from HYMSY GPS INS to calculate view zenith and azimuth angles of each pixel. In 
the standard HYMSY processing these geometric metadata would have been used 
for the georectification of the hyperspectral data but, for the reflectance anisotropy 
measurements presented here, this step was omitted. 
Due to the low accuracy of the magnetic compass in the HYMSY system and the lack 
of horizontal movement during the flights to exploit GPS data for sensor headings, 
the accuracy of azimuth angles retrieved from the standard HYMSY processing was 
found to be inadequate. Therefore, it was still mandatory to manually define the 
solar principal plane in the reflectance anisotropy data and use that to define the 
view azimuth angles. The accuracy of the final azimuth and zenith angles was 
estimated to be better than 2°. Usage of ground control points in the experiment 
would have resulted in better angular accuracy and removed the need for manual 
correction. 

3.2.3 Data analysis 
The reflectance anisotropy was quantified using the anisotropy factor (ANIF). The 
ANIF is a ratio that describes the reflectance factor relative to the nadir reflectance 
factor [7]: 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜆𝜆, 𝜃𝜃𝑖𝑖, 𝜑𝜑𝑖𝑖, 𝜃𝜃𝑟𝑟, 𝜑𝜑𝑟𝑟) =  𝑅𝑅(𝜆𝜆, 𝜃𝜃𝑖𝑖, 𝜑𝜑𝑖𝑖, 𝜃𝜃𝑟𝑟, 𝜑𝜑𝑟𝑟)
𝑅𝑅0(𝜆𝜆, 𝜃𝜃𝑖𝑖, 𝜑𝜑𝑖𝑖, 0°, 0°)  (3.1) 

where 𝑅𝑅 is the reflectance factor at wavelength 𝜆𝜆 observed from direction [𝜃𝜃𝑟𝑟 ,  𝜑𝜑𝑟𝑟] 
and illuminated from direction [𝜃𝜃𝑖𝑖 , 𝜑𝜑𝑖𝑖]. 𝑅𝑅0 is the reflectance factor at the nadir view. 
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The reflectance anisotropy was quantified using the anisotropy factor (ANIF). The 
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 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜆𝜆, 𝜃𝜃𝑖𝑖, 𝜑𝜑𝑖𝑖, 𝜃𝜃𝑟𝑟, 𝜑𝜑𝑟𝑟) =  𝑅𝑅(𝜆𝜆, 𝜃𝜃𝑖𝑖, 𝜑𝜑𝑖𝑖, 𝜃𝜃𝑟𝑟, 𝜑𝜑𝑟𝑟)
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where 𝑅𝑅 is the reflectance factor at wavelength 𝜆𝜆 observed from direction [𝜃𝜃𝑟𝑟 ,  𝜑𝜑𝑟𝑟] 
and illuminated from direction [𝜃𝜃𝑖𝑖 , 𝜑𝜑𝑖𝑖]. 𝑅𝑅0 is the reflectance factor at the nadir view. 
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To smoothen and filter the measurements, the data were resampled to a discrete 
grid of 1° azimuth and zenith view angles. We applied an angular smoothing of an 
area of 5° radius around each discrete azimuth and zenith observation angle to be 
able to assign a single reflectance factor to an observation position. A discrete 
azimuth and zenith observation angle was only considered if there were at least 
1,000 pixels within this 5° radius. 
To interpret the measurements and parameterize the anisotropy patterns, we fitted 
the Rahman-Pinty-Verstraete model (RPV) [66] through each dataset. The RPV 
model is a semi empirical model that uses four parameters to simulate the BRDF of 
any arbitrary surface. It has been used in anisotropy studies of a wide variety of 
targets like forests [92], grasslands and cultivated fields [93], snow [38], and soil 
[77,94] at different scales ranging from the centimeter scale in laboratory studies 
[95,77], to the decimeter scale in UAV- and airborne-based studies [38,78], up to a 
scale of several hundreds of meters to a kilometer scale in space-borne studies. The 
model splits the reflectance anisotropy in an amplitude component (𝜌𝜌0) and a 
directional component: 

 𝜌𝜌𝑠𝑠(𝜃𝜃𝑖𝑖, 𝜑𝜑𝑖𝑖; 𝜃𝜃𝑟𝑟, 𝜑𝜑𝑟𝑟) =  𝜌𝜌0  𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘−1 𝜃𝜃𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘−1 𝜃𝜃𝑟𝑟
 (𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑟𝑟)1−𝑘𝑘 𝐹𝐹(𝑔𝑔)[1 +  𝑅𝑅(𝐺𝐺)] (3.2) 

where the 𝑘𝑘 parameter controls the bowl/bell shape of the anisotropy curve. The 
relative amount of forward/backward scattering, controlled by the 𝛩𝛩 parameter, is 
defined as: 

 𝐹𝐹(𝑔𝑔) =  1 −  𝛩𝛩2

[1 + 𝛩𝛩2 − 2𝛩𝛩 𝑐𝑐𝑐𝑐𝑐𝑐(𝜋𝜋 − 𝑔𝑔)]1.5 (3.3) 

where 

 𝑔𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑟𝑟 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑟𝑟 cos(𝜑𝜑𝑖𝑖 −  𝜑𝜑𝑟𝑟) (3.4) 

The hotspot is approximated by: 

 1 +  𝑅𝑅(𝐺𝐺) = 1 + 1 −  𝜌𝜌𝑐𝑐
1 + 𝐺𝐺  (3.5) 

where 

 𝐺𝐺 = [𝑡𝑡𝑡𝑡𝑡𝑡2 𝜃𝜃𝑖𝑖 +  𝑡𝑡𝑡𝑡𝑡𝑡2 𝜃𝜃𝑟𝑟 − 2 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃𝑖𝑖  𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃𝑟𝑟 cos(𝜑𝜑𝑖𝑖 −  𝜑𝜑𝑟𝑟)] 1 2⁄  (3.6) 

To estimate the parameters that best describe the anisotropy, the RPV model was 
fitted through the multi-angle reflectance measurements by a non-linear least 
squared regression method that uses the Levenberg-Marquardt algorithm, 
implemented in R (version 3.3.1) [96]. The range of possible solutions for the fitting 
of the RPV model for the 𝛩𝛩 parameter was restricted between -1 and 1, where 𝛩𝛩 <0 
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indicates predominant backward scattering and 𝛩𝛩 >0 indicates predominant 
forward scattering anisotropy. Since no measurements were taken close to the 
hotspot (table 3.1), the 𝜌𝜌𝑐𝑐  parameter was fixed at 1, which indicates no additional 
fitting around the hotspot position. The range of the 𝑘𝑘 parameter was left free, 
where 𝑘𝑘 <1 resembles a bowl shaped anisotropy curve and 𝑘𝑘 >1 resembles a bell-
shaped anisotropy curve. 

3.3 Results and discussion 

3.3.1 Barley and winter wheat 
On the first measuring day, when the top layer of the barley and winter wheat 
canopies were still formed by leaves, both the barley and winter wheat displayed 
typical anisotropy characteristics, as are commonly seen for vertically-oriented 
canopies. In the red band (650 nm), where shadows are darkest due to absorption 
of radiance by chlorophyll, the lowest ANIFs were observed in the forward 
scattering direction and the highest ANIFs in the backward scattering direction 
(figure 3.4b,e). 

 
Figure 3.4. Barley (top) and winter wheat (bottom) measurements collected during 
flight 1 (10 June 2015 at 10:00 a.m., table 3.1). Spectra in the forward and backward 
scattering direction and at nadir (a, d). Interpolated polar plots at 650 nm (b, e) and 
800 nm (c, f). The dotted lines indicate the solar principal plane at the time of data 
acquisition. 



40 Reflectance anisotropy measurements using a pushbroom spectrometer 

indicates predominant backward scattering and 𝛩𝛩 >0 indicates predominant 
forward scattering anisotropy. Since no measurements were taken close to the 
hotspot (table 3.1), the 𝜌𝜌𝑐𝑐  parameter was fixed at 1, which indicates no additional 
fitting around the hotspot position. The range of the 𝑘𝑘 parameter was left free, 
where 𝑘𝑘 <1 resembles a bowl shaped anisotropy curve and 𝑘𝑘 >1 resembles a bell-
shaped anisotropy curve. 

3.3 Results and discussion 

3.3.1 Barley and winter wheat 
On the first measuring day, when the top layer of the barley and winter wheat 
canopies were still formed by leaves, both the barley and winter wheat displayed 
typical anisotropy characteristics, as are commonly seen for vertically-oriented 
canopies. In the red band (650 nm), where shadows are darkest due to absorption 
of radiance by chlorophyll, the lowest ANIFs were observed in the forward 
scattering direction and the highest ANIFs in the backward scattering direction 
(figure 3.4b,e). 

 
Figure 3.4. Barley (top) and winter wheat (bottom) measurements collected during 
flight 1 (10 June 2015 at 10:00 a.m., table 3.1). Spectra in the forward and backward 
scattering direction and at nadir (a, d). Interpolated polar plots at 650 nm (b, e) and 
800 nm (c, f). The dotted lines indicate the solar principal plane at the time of data 
acquisition. 

3.3 Results and discussion   41 

This effect occurs because, in the backward scattering direction, the sensor was 
viewing the well-illuminated side of the canopies, which resulted in a higher 
reflectance, and in the forward scattering direction the shadowed side of the 
canopies, which resulted in a lower reflectance. In addition to this effect, view 
zenith angles (VZAs) close to nadir allow for a view of the lower shadowed layers 
of the canopy and with increasing off-nadir VZAs the relative proportion of higher, 
well-illuminated canopy layers that are observed by the sensor increases, resulting 
in an increase of reflectance [6,7]. 
In the near-infrared band (NIR, 800 nm), where shadow effects are weaker due to 
lower absorption of radiance by chlorophyll, the ANIFs increased with increasing 
view zenith angles, independent of the view azimuth direction. The small 
contribution of the shadow effect puts the position of the lowest observed ANIF 
close to nadir, slightly in the forward direction (figure 3.4c,f). 
The 𝑘𝑘 and 𝛩𝛩 -parameter spectra, obtained at a 5-nm interval between 450 nm and 
915 nm by fitting the RPV model through the measurements of flights 1 and 3 on 
day 1 and day 2 at 10:00 a.m. (table 3.1), illustrate the observed anisotropy patterns 
in terms of the reflectance bowl/bell shaped anisotropy and forward/backward 
scattering dominance, respectively (figure 3.5a–c). On the first measuring day, both 
crops were in a pre-heading stage and the top layers of their canopies were mainly 
formed by leaves. For both crops at this stage, the 𝑘𝑘 parameter spectrum followed 
a trend opposite to that of a vegetation reflectance factor spectrum (figure 3.5b). 
The blue and red wavelengths had 𝑘𝑘 >1, indicating a bell-shaped anisotropy curve. 
At these wavelengths the anisotropy was dominated by shadow effects due to the 
strong absorption of radiation by chlorophyll in the leaves that formed the top layer 
of the barley and winter wheat canopies. Accordingly, this resulted in the lowest 
values of 𝛩𝛩 in these wavelength regions (figure 3.5c). In the green part of the 
spectrum these shadow effects were weaker due to less absorption by chlorophyll 
in this region, resulting in slightly higher 𝛩𝛩 values and 𝑘𝑘 values just below 1. 𝑘𝑘 
values <1 were obtained by fitting the RPV model in the NIR wavelength region, 
indicating a bowl-shaped anisotropy pattern. Moreover, the backward scattering 
was weaker in this wavelength region, which resulted in 𝛩𝛩 values of roughly -0.13 
for barley and -0.09 for winter wheat between 750 and 915 nm (figure 3.5c). Even 
though barley and winter wheat are different crops, both of them displayed very 
similar anisotropy patterns over the measured spectral domain on the first 
measurement day due to their similar canopy structures. 
At the time of the second measuring day, both crops were in their grain 
development stage. This had as a result for barley that the top layer of the canopy 
was no longer formed by leaves, but by a layer of less photosynthetically active 
grain heads with large awns and the heads were clearly bending downwards (figure 
3.1). The anisotropy at this stage was characterized by an overall increased 𝑘𝑘 
parameter value at all measured wavelengths with 𝑘𝑘 >1 in the visible wavelength 
region (figure 3.5e). In addition, the backward scattering intensity decreased in the 
visible wavelengths with 𝛩𝛩 values of around -0.33 to approximately -0.12 (figure 
3.5c,f). 
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The winter wheat canopy on the second measuring day was formed by vertically-
oriented grain heads that were pointing out above the leaf layer, also resulting in 
less photosynthetically active material in the a top canopy layer. This resulted in a 
similar 𝑘𝑘 spectrum as for the barley canopy (figure 3.5e). The 𝛩𝛩 parameter followed 
the same trend as during the first day, but with a less emphasized peak at green 
wavelengths. In the NIR wavelength region, the 𝛩𝛩 parameter decreased from -0.09 
to -0.16, indicating stronger shadow effects due to the presence of opaque grain 
heads in the top canopy layer. 

 
Figure 3.5. Estimates of the 𝜌𝜌0 (a,d), 𝑘𝑘 (b,e), and 𝛩𝛩 (c,f) parameter values from 450 
to 915 nm, obtained by fitting the RPV model through the barley and winter wheat 
measurements of the flights at 10:00 a.m. on 10 June 2015 and 2 July 2015. The red 
areas indicate the estimated standard error of the estimated parameter values. 
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3.3.2 Potato Canopy Closure 
On measurement day 1, when the potato canopy was showing an open row 
structure, the soil formed a significant part of the signal when measured by the 
sensor in the nadir view. With increasing VZA, the proportional area of observed 
soil decreased and the proportional area of observed vegetation increased. In the 
red wavelength region, an increase in VZA resulted, therefore, in a decrease of the 
reflectance factor, since soil has a higher reflectance at this wavelength compared 
to vegetation. In addition, the row structure of the potato crops produced strong 
shadows, which caused a higher reflectance in the backward scattering direction 
and lower reflectance in the forward scattering direction. This resulted in a bell-
shaped curve with the highest ANIFs around the nadir and in the backward 
scattering direction (Figure 3.6b). Bell-shaped anisotropy curves are typically seen 
at bright surfaces that are partially covered by darker objects, such as sparse 
agricultural canopies [6] or snow-covered surfaces with snow-free trees [92]. In the 
NIR wavelength region an increase in VZA resulted in an increased ANIF, which is 
opposite to the red region, since vegetation has a higher reflectance in this 
wavelength region than soil.  
Between measurement days 1 and 2, the potato canopy grew from an open row 
structure to a continuous surface covering the soil almost completely (figure 3.1). 
In addition to a strong increase of the amplitude parameter in the NIR due to the 
increased vegetation cover (figure 3.7a), this resulted in a significantly decreased 
reflectance anisotropy over the full measured wavelength region on day 2. 
Especially, we observed a strong decrease in backward scattering, which is clearly 
indicated by the increase of the 𝛩𝛩 parameter to values close to 0 between day 1 and 
day 2 (figure 3.7c).  
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Figure 3.6. Open (top) and closed (bottom) potato canopy. Spectra in the forward 
and backward scattering direction and at nadir (a,d). Interpolated polar plots at 650 
nm (b,e) and 800 nm (c,f). The dotted line indicates the solar principal plane at the 
time of data acquisition. 

The decrease in backward scattering is likely due to the disappearance of the open 
row structure between day 1 and day 2 and, thus, the absence of strong row-
induced shadows. The general bowl/bell anisotropy pattern remained nearly the 
same between day 1 and 2, as can be seen by the similar k parameter spectra on 
both days (figure 3.7b). However, the bowl shape was less pronounced in the 750–
915 nm region as can be seen by the increase of the 𝑘𝑘 values from around 0 to 0.58 
on day 1 and 2, respectively. Likely, this happened because the less reflective soil in 
the NIR that was observed by the sensor on measurement day 1 at near nadir VZAs 
was no longer observed on day 2, resulting in a weaker increase of reflectance with 
increasing VZAs in this wavelength region. 
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Figure 3.7. Estimates of the 𝜌𝜌0 (a,d), 𝑘𝑘 (b,e), and 𝛩𝛩 (c,f) parameter values from 450 
to 915 nm, obtained by fitting the RPV model through the measurements of the potato 
canopy at day 1 and day 2 at 10:30 a.m. The red areas indicate the estimated standard 
error of the estimated parameter values. 

3.3.3 General discussion 
We presented an innovative and fast method in which we captured reflectance 
anisotropy by extracting the multi-angular views that are collected by the HYMSY 
system. By hovering a UAV with a hyperspectral pushbroom spectrometer above a 
surface while rotating it around its vertical axis, we were able to obtain the 
reflectance anisotropy of several crops. As demonstrated, the described method can 
be used to rapidly acquire the reflectance anisotropy. It might be an interesting 
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alternative to field goniometer measurements and is especially interesting for 
measurements of small canopies like those of agricultural crops. 
The barley and winter wheat canopies on both measuring days and the potato 
canopy on the second measuring day were nearly completely covering the complete 
surface and, therefore, the anisotropy patterns that we observed for these targets 
can be attributed solely to the crops. The potato canopy on the first measuring day 
was not completely covering the surface. The observed anisotropy signal on this 
day was, thus, composed by both the potato plants and the exposed soil. The 
measurements of the potato crop on the first measuring illustrated how the row 
structure of the potato plants resulted in strong differences between forward and 
backward scattering due to the presence of shadows. The closing of the potato 
canopy resulted in an overall decrease of reflectance anisotropy, and especially in 
a decrease of backward scattering intensity, something that has also been observed 
with canopy closure of soybeans [97]. The anisotropy patterns of barley and winter 
wheat were dominated by backward scattering over the full measured spectral 
domain, with emphasis on the visible wavelength region, combined with a strong 
bell-shaped anisotropy in the NIR. Similar patterns for barley and wheat were also 
found in several other studies e.g., [98-100] and are typical for vertically-oriented 
vegetation canopies, such as grasses e.g., [15,7]. 
With our sensor hardware and additional tilt of the spectrometer, the maximum 
VZA was limited to 25°–35°, which matches the VZAs of most satellite and airborne 
remote sensing sensors. Very likely, extending the VZA to larger angles would 
provide more information on the reflectance anisotropy and would make the fitting 
of the RPV model, or any other BRDF model, more stable. Tilting the spectrometer 
at an even greater angle would result in sampling of larger VZAs. However, it has to 
be taken into account that a larger target surface is needed to make sure that the 
FOV of the sensor will stay within the target boundaries. The fields in our study area 
were quite narrow (±50 m) and to ensure that the sensor was only observing a 
single crop during the rotation of the UAV, we did not tilt the spectrometer any 
further, but we will experiment with extending the VZA in future measurements. 
The strength of the presented method is the very high density of samples that are 
collected in a short amount of time. Since each of the pixels in the scanline of the 
spectrometer can be considered as an individual sample, this means that, per 
second, 328  25 = 8,200 samples are collected at a 5-nm interval in the 450–915 
nm range. By performing an angular smoothing as described in the methods 
section, the average anisotropy of a surface can be obtained, whereas most 
goniometers only provide the anisotropy of a single point, which does not have to 
be representative for the investigated target surface. Another strength of the data 
collected with our method is that it contains reflectance anisotropy at canopy level 
over the full spectrum. From the fitting of the RPV model, we can see that the 
changes in bowl/bell (𝑘𝑘) and forward/backward (𝛩𝛩) spectra mostly follow the 
changes of the normal reflectance factor spectrum. However, the relation does not 
seem to be linear, as sometimes small changes in nadir reflectance factor, for 
example in the green wavelength region, seem to produce disproportionally large 
changes in RPV parameters. The results indicate that the reflectance anisotropy 
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signal contains information about the canopy beyond the extent of the basic (nadir) 
reflectance factor spectrum. Using our spectra it is also possible to evaluate the 
number of spectral bands necessary to generally describe the reflectance 
anisotropy of vegetation. Our RPV parameter spectra suggest that separate 
measurements in at least blue/UV, green, red, and a single NIR band should be 
sufficient to broadly describe the reflectance anisotropy of vegetation targets in the 
VIS-NIR range. Such a generic description of reflectance anisotropy should be 
sufficient for BRDF correction of imagery and generic algorithms extracting canopy 
structural parameters. For more advanced analysis of reflectance anisotropy, there 
still may be benefits in collecting full hyperspectral data. An interesting approach 
to reflectance anisotropy is to consider that from different view angles the observer 
detects different portions of the top-most and the deeper layers of the canopy [101]. 
In traditional remote sensing, it is possible to estimate leaf pigment concentrations 
in the canopy using hyperspectral data. Similarly, using hyperspectral anisotropy 
data, it might be possible to derive the distribution of pigments within the vertical 
structure of the canopy. 

3.4 Conclusions  

In this paper we presented a fast and innovative method to capture reflectance 
anisotropy using a pushbroom spectrometer mounted on a UAV as an alternative 
for cumbersome goniometer measurements. We used this method to collect the 
reflectance anisotropy of several agricultural crops at two different growth stages 
and fitted the RPV model to parameterize and interpret the measurements. 
Measurements of barley and winter wheat before heading showed very similar 
anisotropic reflectance patterns that were dominated by backward scattering (𝛩𝛩 < 
0) over the measured spectral domain (450–915 nm), with emphasis on the visible 
wavelengths, combined with a bowl-shaped anisotropy (𝑘𝑘 < 1) in the NIR band for 
both crops. The development of grain heads on the second measurement day 
resulted in different composition of the top layers of the barley and winter wheat 
canopies, which resulted in distinctively different RPV parameter spectra for both 
crops, indicating a potentially useful signal of grain head development in the multi-
angular reflectance observations. Measurements of potato showed a strong 
reduction of backscattering when the potato crops grew from an open row 
structure to a fully-developed canopy that was almost completely covering the 
surface. In our data the change in reflectance anisotropy was very distinct for all 
measured crops, suggesting that anisotropy effects could potentially be used as a 
signal in operational remote sensing. 
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Abstract 
Viewing and illumination geometry has a strong influence on optical measurements 
of natural surfaces due to their anisotropic reflectance properties. Typically, 
cameras on-board unmanned aerial vehicles (UAVs) are affected by this because of 
their relatively large field of view (FOV) and thus large range of viewing angles. In 
this study, we investigated the magnitude of reflectance anisotropy effects in the 
500–900 nm range, captured by a frame camera mounted on a UAV during a 
standard mapping flight. After orthorectification and georeferencing of the images 
collected by the camera, we calculated the viewing geometry of all observations of 
each georeferenced ground pixel, forming a dataset with multi-angular 
observations. We performed UAV flights on two days during the summer of 2016 
over an experimental potato field where different zones in the field received 
different nitrogen fertilization treatments. These fertilization levels caused 
variation in potato plant growth and thereby differences in structural properties 
such as leaf area index (LAI) and canopy cover. We fitted the Rahman–Pinty–
Verstraete (RPV) model through the multi-angular observations of each ground 
pixel to quantify, interpret, and visualize the anisotropy patterns in our study area. 
The 𝛩𝛩 parameter of the RPV model, which controls the proportion of forward and 
backwards scattering, showed strong correlation with canopy cover, where in 
general an increase in canopy cover resulted in a reduction of backward scattering 
intensity, indicating that reflectance anisotropy contains information on canopy 
structure. In this paper, we demonstrated that anisotropy data can be extracted 
from measurements using a frame camera, collected during a typical UAV mapping 
flight. Future research will focus on how to use the anisotropy signal as a source of 
information for estimation of physical vegetation properties.  
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4.1 Introduction 

In optical remote sensing, the sensors are mostly passive systems and their 
measured signal therefore depends on the position and orientation of the sensor 
and the position of the sun relative to the observed surface. Differences in the 
intensity of the measured signal of natural surfaces as a function of observation and 
viewing geometry are the result of their anisotropic reflectance behavior. In its 
idealized form, this is commonly referred to as the Bidirectional Reflectance 
Distribution Function (BRDF) [4]. Anisotropic reflectance effects are the result of 
optical and structural properties of the surface. In the case of vegetation these 
anisotropic reflectance effects can, for example, be the result of the different 
proportions of shadowed and sunlit parts of the canopy at different observation 
geometries [6,7], differences in proportion of the background visible at different 
observation geometries [102], canopy heterogeneity and architecture 
[103,104,93], and/or the orientation of leaves [105,106]. Knowledge of the 
anisotropic reflectance characteristics of a surface is important for correction and 
normalization of effects due to viewing and illumination geometry [21,107,11]. In 
addition, it can be considered an information source. Information on anisotropic 
reflectance effects has shown to improve classification results [108,109,78,110] or 
parameter retrieval such as leaf area index (LAI) [73,111], canopy height [74], and 
canopy clumping [75,76]. 
Traditionally, anisotropic reflectance characteristics are studied by performing 
multi-angular reflectance measurements using goniometer setups. Various 
goniometers have been developed over the past decades to perform these 
measurements under controlled laboratory conditions [20,21,15,7] or under field 
conditions [79,23-25,39,27]. Typically, goniometers are ground-based, static 
devices that allow for accurate control of the positioning of a sensor to measure the 
reflectance into predefined directions. Measurements by goniometers can sample 
only small surface areas due to the relatively short distance between target and 
sensor, making it difficult to capture a large enough representative area of natural 
heterogenic targets [82]. Moreover, in situ conditions often complicate the 
deployment of a goniometer setup, for example in poorly accessible terrain, or in 
snow [112,113], or above water [114]. 
Unmanned aerial vehicles (UAVs) provide an alternative platform to field 
goniometer systems for performing multi-angular reflectance measurements 
[36,37,115]. An advantage of UAV-based multi-angular reflectance measurements 
is that there is no ground-based device needed, which means that the studied 
surface does not get disturbed. In addition, the sensor-target distance can be larger 
because no moving arm is needed to position the sensor at a specific spot above the 
field, which means that surfaces made of larger objects, like forests, can also be 
studied [90]. Theoretically, the sensor-target distance can even be easily hundreds 
of meters if such UAV flight altitudes are allowed by local legislation [35].  
Recently, several methods and sensors for UAV-based multi-angular sampling have 
been explored. By using dedicated flight patterns to maneuver a UAV around a 
target while using a gimbal to point a spectrometer or camera towards the center 
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of the target, multi-angular measurements can be acquired [36,37]. By a different 
strategy, multi-angular observations were obtained by extracting the viewing 
geometry of measurements by a pushbroom spectrometer mounted on a UAV 
[115]. By hovering a UAV above fields covered with a single crop and rotating the 
UAV around its vertical axis, multi-angular measurements were collected within the 
FOV of the spectrometer. Several other studies have demonstrated how to use a 
frame camera on-board a UAV to acquire multi-angular measurements [38,87,116]. 
The angular coverage, i.e. the range of azimuth and zenith angles that are sampled, 
of multi-angular measurement methods relies on the position, orientation, and FOV 
of the sensor, as well as on the number of samples that are taken. Orthorectification 
and georeferencing by photogrammetric processing of frame-based camera 
imagery also relies on multiple views of the same pixel. Thus, by determining the 
observation geometry of pixels that are captured by multiple cameras, it is possible 
to collect multi-angular data and thereby location/pixel specific anisotropy 
information. 
In this paper, we used a frame camera to study pixel-wise anisotropy effects based 
on the overlapping pixels—and therefore multi-angular observations—that are 
collected during a typical UAV flight for mapping purposes. We define a mapping 
flight as a flight where several parallel flight lines are flown in a block pattern with 
sufficient forward and sideways overlap of the collected images for 
photogrammetric processing to construct a map of the covered area. We present 
the geometrical equations that allow for the calculation of the observation and 
illumination geometry of georeferenced ground pixels. In addition, we quantify, 
visualize, and interpret the anisotropy effects based on the parameters of the semi-
empirical Rahman–Pinty–Verstraete (RPV) model [66], obtained by fitting the 
model through our measurements. Moreover, we correlate the RPV parameters 
with LAI and canopy cover in a potato field where different nitrogen fertilization 
treatments were applied to sections in the field to study the effect of canopy 
development on reflectance anisotropy. 

4.2 Materials and methods 

4.2.1 Study area 
The study area was a field with consumer potatoes (Solanum tuberosum L., cultivar 
Fontane) of approximately 450 × 200 m, located south of the village Reusel 
(51°59’47.9”N, 5°9’34.5”E) on the Dutch–Belgian border, in the province of Noord-
Brabant (The Netherlands). The planting date was 16 April 2016. In this field, an 
experiment was performed to evaluate the effect of split-level fertilization on 
potato yield. Different initial fertilization levels (before planting) and sensor-based 
additional sensor-based fertilization (during crop growth) were applied to zones in 
the field (figure 4.1 and table 4.1). The sensor-based variable-rate fertilization was 
applied based on crop reflectance measurements performed by Fritzmeier ISARIA 
crop sensors (Fritzmeier Umwelttechnik, Germany) mounted in front of the tractor 
providing information on nitrogen need of the crop on a weekly basis. The variable 
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applied based on crop reflectance measurements performed by Fritzmeier ISARIA 
crop sensors (Fritzmeier Umwelttechnik, Germany) mounted in front of the tractor 
providing information on nitrogen need of the crop on a weekly basis. The variable 
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rates for nitrogen were based on measured indices from the crop sensor and 
decision rules derived from previous dedicated fertilization experiments between 
2010 and 2013 [117], and applied using a GNSS guided fertilizer spreader. Eight 30 
× 30 meter plots (figure 4.1: A–H) were created in the different fertilization zones 
where weekly measurements of leaf area index (LAI) and leaf chlorophyll content 
were performed to monitor the status of the potato plants. Sensor-based nitrogen 
fertilization was applied to half of the plots on 28 June 2016, 15 July 2016, and 9 
August 2016. In addition, on 7 July 2016, fertilization with potassium of 60 kg/ha 
was applied to all plots. 

 
Figure 4.1. The eight experimental plots (A–H) in the potato field with different 
initial nitrogen (N) fertilization levels (horizontal zones), and additional nitrogen 
fertilization levels (vertical zones). The red line indicates the flight path flown during 
Flight 1 on 9 June 2016 (table 4.2). The base map is an RGB composite (R = 674 nm, 
G = 559 nm, and B = 500 nm), produced with the data collected during the flight. 
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Table 4.1. Overview of the nitrogen (N) fertilization applied to the various plots 
within the potato experimental field in 2016. 

Plot 

Initial Fertilization Additional Fertilization 
before Planting 

(kg N/ha) 
28 June 2016 

(kg N/ha) 
15 July 2016 

(kg N/ha) 
A 40 0 0 
B 40 42 30 
C 0 0 0 
D 0 140 30 
E 70 0 0 
F 70 0 49 
G 25 0 0 
H 25 84 38 

The ground-based apparent LAI (hereafter referred to LAI) was estimated based on 
weekly measurements with a Cropscan Multispectral Radiometer that used the 
weighted difference vegetation index (WDVI) [118] for estimating LAI. Calibration 
curves between the WDVI and LAI were determined by performing both Cropscan 
measurements and LAI2000 Plant Canopy Analyser measurements in the field at 
the same farm for potatoes grown in the years 2010–2014 [119]. In 2016, limited 
measurements with the LAI2000 were available, but validation with these 
measurements showed estimating LAI with Cropscan data was accurate. The 
percentage of canopy cover was estimated by classification of the pixels in 
orthophotos of the study area at high spatial resolution (~8 cm ground sampling 
distance (GSD)) into a vegetation and non-vegetation class. For this, we calculated 
the normalized difference vegetation index (NDVI) (equation 4.1). 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑅𝑅848𝑛𝑛𝑛𝑛 −  0.5(𝑅𝑅658𝑛𝑛𝑛𝑛 +  𝑅𝑅674𝑛𝑛𝑛𝑛)
𝑅𝑅848𝑛𝑛𝑛𝑛 +  0.5(𝑅𝑅658𝑛𝑛𝑛𝑛 +  𝑅𝑅674𝑛𝑛𝑛𝑛) (4.1) 

where 𝑅𝑅658𝑛𝑛𝑛𝑛, 𝑅𝑅674𝑛𝑛𝑛𝑛, and 𝑅𝑅848𝑛𝑛𝑛𝑛 are the reflectance factors at the subscripted 
wavelengths. We chose these bands because they are closest to Red Band 4 (665 
nm) and NIR Band 8 (842 nm) of the Multi-Spectral Imager (MSI) onboard ESA’s 
Sentinel-2 satellite, that are used for NDVI calculation [120]. The average of Rikola 
bands at 658 and 674 nm was calculated to approximate the reflectance of MSI 
Band 4 at 665 nm. Pixels with an NDVI >0.7 were classified as vegetation. We chose 
this threshold value since it provided good results in separation of the vegetation 
and non-vegetation classes based on visual inspection. 

4.2.2 UAV flights 
Two UAV flights, with an Altura AT8 octocopter, were performed during the 
growing season in the summer of 2016 (table 4.2); one flight at an early growing 
phase (9 June 2016) and one flight at a late growing phase after the potato canopy 
was fully developed (19 July 2016). Between flights on the two dates, additional 
sensor-based fertilization was given to half of the plots (table 4.1). The flights were 
performed under clear-sky conditions to assure the strongest anisotropy effects 
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[89]. The UAV was programmed to fly at 120 m above ground level with a horizontal 
speed of 4 m/s from waypoint to waypoint, resulting in four flight-lines that were 
spaced 20 m apart (figure 4.1). Images were collected continuously at an interval of 
2.4 s. Flying at the aforementioned height and speed with the camera that we used 
in our study (Section 4.2.3) resulted in forward and sideways overlap of 
approximately 88% and 75%, respectively, with a GSD of approximately 8 cm. 

Table 4.2. Flights, times, and solar geometry (solar azimuth angle [SAA] and solar 
zenith angle [SZA]). Time is local time (UTC + 2h). The start time indicates the time 
at which the first used image was taken and the end time indicates the time at which 
the last used image was taken. 
Flight # Date Start time End time SAA [°] SZA [°] 

1 9 June 2016 12:18 12:25 144-147 32-32 
2 19 July 2016 12:29 12:37 147-150 34-33 

4.2.3 Spectral measurements 
The sensor used for our measurements was a frame-based hyperspectral camera 
(Rikola Ltd., Oulu, Finland), which has a horizontal and vertical FOV of 36.5° and 
collects images of 1010 × 1010 pixels. The camera uses the Fabry–Perot 
interferometer (FPI) technology to capture a series of snapshot images on 
programmatically selectable spectral bands in the visible-near infrared (VIS-NIR) 
wavelength range. An FPI system uses an optical filter with two semi-transparent 
mirror films facing each other. The wavelength of the transmitted light depends on 
the distance between these two films (the air gap). Thus, by taking a sequence of 
images while varying the distance between the films, a complete spectrum can be 
captured for each pixel. As the images on different wavelengths are collected at 
different times, each wavelength covers a slightly different extent and has a slightly 
different orientation due to the movement of the UAV during the collection of a full 
datacube. The number of spectral bands that can be sampled and the center 
wavelengths of those can be selected according to the user’s preference. For our 
measurements, we sampled 16 bands in the 500–900 nm range (table 4.3). A full 
datacube of 16 bands in raw format is 32.0 MB. The memory card that we used in 
our configuration, a 32.0 GB SanDisk CompactFlash memory card, has space for 
potentially storing 999 images of 16 bands. 
Prior to take-off for each flight, a dark current (image with lens cap on) 
measurement and image of a reflectance reference panel (gray 50% Spectralon 
panel [LabSphere Inc., North Sutton, NH, USA]) were taken. The 
HyperspectralImager 2.0 software by Rikola was used to convert the raw images to 
radiances. The radiance images were then transformed into reflectance factor 
images using the empirical line method and the measurement of the Spectralon 
panel. As the images were taken in clear atmospheric conditions from a relatively 
low altitude, performing advanced atmospheric correction to the images was not 
found to be necessary. 
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Table 4.3. Center wavelengths and Full-Width-at-Half-Maximum (FWHM) of the 16 
spectral Rikola bands used in this study. 

Band Centre Wavelength [nm] FWHM [nm] 
1 500.2 14.8 
2 547.0 13.2 
3 558.8 13.0 
4 568.8 12.9 
5 657.6 13.0 
6 673.6 13.2 
7 705.8 13.1 
8 739.0 19.4 
9 782.8 18.5 

10 791.6 18.4 
11 810.3 18.1 
12 829.0 17.8 
13 847.8 17.6 
14 864.7 17.4 
15 878.7 17.3 
16 894.7 17.1 

4.2.4 Orthorectification and measurement geometry 
The reflectance factor images were aligned and ortho- and georectified in 
PhotoScan Professional 1.2.6 (AgiSoft LLC, St. Petersburg, Russia). Each of the 16 
spectral bands had to be processed individually due to the movement of the UAV 
during the collection of a full datacube [121]. Per measured spectral band, the 
reflectance factor images were aligned (accuracy setting: highest) using the GPS 
data collected by the Rikola sensor during the flights as a reference. Thereafter, all 
bands were merged, and 12 natural ground control points (GCPs) (figure 4.1) were 
used for accurate georeferencing of the data. The GCPs were manually selected in 
each of the 16 spectral bands. Unfortunately, there were no dedicated Real Time 
Kinematic (RTK) or GPS/GNSS ground control markers available at the time of the 
flights. The imagery was used to calculate and export a Digital Surface Model (DSM) 
of the target area at a 5 m ground pixel size in WGS84 UTM 31N coordinate system. 
Each reflectance factor image was georectified and resampled separately to the 
same 5 m ground pixels and exported as separate GeoTIFFs. We specifically chose 
a 5 m ground pixel size, because a pixel of this size is large enough to capture a 
representative proportion of potato rows and exposed soil between the potato 
rows, while it is small enough to capture the spatial variation caused by the 
different fertilization treatments applied to the plots in the field. Finally, the 
photogrammetric positions of the camera (𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 ,  𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 ,  𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐) during each image 
acquisition were exported as an ASCII file. The PhotoScan processing was 
performed on a computer with a Windows 7 Enterprise (64 bit) operating system, 
with an Intel(R) Xeon(R) CPU E5-1650 0 processor at 3.20 GHz (12 CPUs), an AMD 
FirePro V5900 2 GB graphics card, and 8.00 GB of installed memory. The processing 
time of the aforementioned steps was approximately 3.5 h per flight. 
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After the PhotoScan processing, the location of the ground pixels (𝑥𝑥𝑝𝑝𝑥𝑥 ,  𝑦𝑦𝑝𝑝𝑝𝑝 ,  𝑧𝑧𝑝𝑝𝑝𝑝) 
were known. Based on the pixel and camera locations, we calculated the View 
Azimuth Angle (VAA) and View Zenith Angle (VZA) for each ground pixel and 
reflectance factor image combination. The solar illumination angle for each pixel, 
relative to the normal of the surface (𝛽𝛽(𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝𝑝𝑝)) was calculated using 

 cos 𝛽𝛽(𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝𝑝𝑝) 
= cos 𝜃𝜃𝑠𝑠 cos 𝜃𝜃𝑛𝑛(𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝𝑝𝑝) + sin 𝜃𝜃𝑠𝑠 sin 𝜃𝜃𝑛𝑛(𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝𝑝𝑝) cos [𝜑𝜑𝑠𝑠

− 𝜑𝜑𝑛𝑛(𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝𝑥𝑥)] 
(4.2) 

where 𝜃𝜃𝑠𝑠 and 𝜑𝜑𝑠𝑠 are the sun zenith and sun azimuth angle (table 4.2), respectively. 
𝜃𝜃𝑛𝑛 and 𝜑𝜑𝑛𝑛 are the slope and aspect of the pixel, respectively, which were calculated 
from the DSM. The VZA (𝜃𝜃𝑣𝑣) was calculated using 

 
𝜃𝜃𝑣𝑣(𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝𝑝𝑝) = arctan

(

 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑧𝑧𝑝𝑝𝑝𝑝

√(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑥𝑥𝑝𝑝𝑝𝑝)
2 + (𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑦𝑦𝑝𝑝𝑝𝑝)

2
)

 . (4.3) 

The VAA (𝜑𝜑𝑣𝑣) of each pixel was calculated using 

 𝜑𝜑𝑣𝑣(𝑥𝑥, 𝑦𝑦) = arctan (
𝑦𝑦𝑝𝑝𝑝𝑝 − 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐
𝑥𝑥𝑝𝑝𝑝𝑝 − 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐

). (4.4) 

Equation 4.3 assumes that the measured surface is flat. To correct for variations in 
slope due to height differences in the field, equations 4.3 and 4.4 were substituted 
in equation 4.2, resulting in 

 cos 𝜃𝜃𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝𝑝𝑝)
= 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑣𝑣(𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝𝑝𝑝)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑛𝑛(𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝𝑝𝑝)
+ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑣𝑣(𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝𝑝𝑝)𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑛𝑛(𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝𝑝𝑝) cos[𝜑𝜑𝑣𝑣(𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝𝑝𝑝)
− 𝜑𝜑𝑛𝑛(𝑥𝑥𝑝𝑝𝑝𝑝, 𝑦𝑦𝑝𝑝𝑝𝑝)]. 

(4.5) 

Throughout the rest of this article, cos 𝜃𝜃𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is referred to as VZA. By applying 
the equations 4.2-4.5, we were able to obtain the observation and illumination 
geometry of each individual pixel of each image at each spectral band (figure 4.2). 
Besides a spatial location and reflectance factor (figure 4.2b), each pixel now has a 
VAA and VZA (figures 4.2c,d). Pixels that were captured by multiple cameras thus 
have multiple observation angles as well. 
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Figure 4.2. An example of the observation geometry of the pixels of one of the 
georeferenced images. (a) An RGB composite (R = 674 nm, G = 559 nm, and B = 500 
nm) of the study area, collected on 9 June 2016, showing the location of the current 
image (black line) and the position of the unmanned aerial vehicle (UAV) (sun-shaped 
symbol); (b) the reflectance factors at 864 nm of the current image; (c) the relative 
azimuth angles of the pixels of the current image, where 0° is the forward scattering 
direction and 180° is the backward scattering direction. The solar principal plane is 
indicated by the black line; (d) the view zenith angle of the pixels of the current image. 
Projection of a–d is WGS84 UTM 31N. 

4.2.5 Data analysis and visualization 
After determining the observation geometry for all ground pixels and aerial image 
combinations, we fitted the RPV model [66] to each ground pixel in the study area. 
The RPV parameters obtained for each pixel were used to create parameterized 
anisotropy maps of the study area and to analyze the anisotropy patterns that were 
observed in the different experimental plots. We choose the RPV model because it 
has been successfully used in a wide variety of anisotropy studies at different 
spatial scales, ranging from a centimeter scale in laboratory studies [95,77] to a 
kilometer scale in space-borne studies [122]. The RPV model defines the reflectance 



58  Mapping reflectance anisotropy 

 
Figure 4.2. An example of the observation geometry of the pixels of one of the 
georeferenced images. (a) An RGB composite (R = 674 nm, G = 559 nm, and B = 500 
nm) of the study area, collected on 9 June 2016, showing the location of the current 
image (black line) and the position of the unmanned aerial vehicle (UAV) (sun-shaped 
symbol); (b) the reflectance factors at 864 nm of the current image; (c) the relative 
azimuth angles of the pixels of the current image, where 0° is the forward scattering 
direction and 180° is the backward scattering direction. The solar principal plane is 
indicated by the black line; (d) the view zenith angle of the pixels of the current image. 
Projection of a–d is WGS84 UTM 31N. 

4.2.5 Data analysis and visualization 
After determining the observation geometry for all ground pixels and aerial image 
combinations, we fitted the RPV model [66] to each ground pixel in the study area. 
The RPV parameters obtained for each pixel were used to create parameterized 
anisotropy maps of the study area and to analyze the anisotropy patterns that were 
observed in the different experimental plots. We choose the RPV model because it 
has been successfully used in a wide variety of anisotropy studies at different 
spatial scales, ranging from a centimeter scale in laboratory studies [95,77] to a 
kilometer scale in space-borne studies [122]. The RPV model defines the reflectance 

4.3 Results   59 

anisotropy with four parameters where the 𝜌𝜌0 parameter controls the amplitude, 
the 𝑘𝑘 parameter controls the bowl (𝑘𝑘 <1) / bell (𝑘𝑘 >1) shape of the anisotropy curve, 
the 𝛩𝛩 parameter controls forward / backward scattering, and the 𝜌𝜌𝑐𝑐  parameter 
controls the hotspot effect around the direct backscattering angle. Mathematically 
the RPV model is defined as 

 𝜌𝜌𝑠𝑠(𝜃𝜃𝑖𝑖, 𝜑𝜑𝑖𝑖; 𝜃𝜃𝑟𝑟, 𝜑𝜑𝑟𝑟) =  𝜌𝜌0  𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘−1 𝜃𝜃𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘−1 𝜃𝜃𝑟𝑟
 (𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑟𝑟)1−𝑘𝑘 𝐹𝐹(𝑔𝑔)[1 +  𝑅𝑅(𝐺𝐺)] (4.6) 

where 

 𝐹𝐹(𝑔𝑔) =  1 −  𝛩𝛩2

[1 +  𝛩𝛩2 − 2𝛩𝛩 𝑐𝑐𝑐𝑐𝑐𝑐(𝜋𝜋 − 𝑔𝑔)]1.5 (4.7) 
 

 𝑔𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑟𝑟 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑟𝑟 cos(𝜑𝜑𝑖𝑖 −  𝜑𝜑𝑟𝑟) (4.8) 
 

 1 +  𝑅𝑅(𝐺𝐺) = 1 +  1 −  𝜌𝜌𝑐𝑐
1 + 𝐺𝐺  (4.9) 

 
 𝐺𝐺 = [𝑡𝑡𝑡𝑡𝑡𝑡2 𝜃𝜃𝑖𝑖 +  𝑡𝑡𝑡𝑡𝑡𝑡2 𝜃𝜃𝑟𝑟 − 2 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃𝑖𝑖  𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃𝑟𝑟 cos(𝜑𝜑𝑖𝑖 − 𝜑𝜑𝑟𝑟)] 1 2⁄

. (4.10) 

To fit the model to each ground pixel dataset, we applied an iterative optimization 
method that uses the Levenberg–Marquardt algorithm to minimize the sum of 
squared residuals (i.e., the difference between the measured reflectance factor at 
all observation angles and the reflectance factors modeled by the RPV model at the 
same observation angles) to estimate the parameters. During the fitting procedure, 
the range of possible solutions for the 𝛩𝛩 parameter was limited between -1 and 1, 
the ranges of the 𝜌𝜌0 and 𝑘𝑘 parameter were left free. The hotspot parameter 𝜌𝜌𝑐𝑐  was 
fixed at 1, which disables the hot spot parameter, since we acquired no observations 
close to the hotspot. 

4.3 Results 

4.3.1 Crop development 
In the data collected on 9 June 2016, the different initial fertilization levels were 
clearly visible as horizontal zones in NDVI map of the potato field (figure 4.3a). Plot 
C and Plot D, the plots in the zone that did not receive any initial fertilization, stood 
out with clearly lower NDVI values. During the period between the two 
measurement days, there were two moments at which the potato plants on Plots B, 
D, F, and H received additional sensor-based nitrogen fertilization. This resulted in 
higher NDVI values in the plots in this section compared to the plots in the section 
that did not receive any additional fertilization. The effect of the different additional 
fertilization levels on the NDVI is most clearly visible, as the difference between 
Plots C and D on 19 July (figure 4.3b), where Plot D has clearly higher NDVI values. 
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Figure 4.3c shows the development of the LAI based on Cropscan measurements 
throughout the growing season.  

 
Figure 4.3. Normalized difference vegetation index (NDVI) values of the study area 
on 9 June 2016 (a) and 19 July 2016 (b), both in WGS84 UTM 31N projection. 
Estimated leaf area index (LAI) in the experimental plots based on the weighted 
difference vegetation index (WDVI), calculated from Cropscan measurements (c). 
The dates at which the additional sensor-based nitrogen (N) fertilization was applied 
to Plots B, D, F, and H is indicated by the solid lines. The date at which all plots 
received potassium (K) fertilization is indicated by the dashed line. 

During Flight 1 on 9 June 2016, the potato crop was still at an early stage of growth 
with a haulm (leaves and stems) length of 0.4–0.6 m. The potato plants were 
standing upright above the ridges, showing a clear row structure. The LAI of all 
plots increased until the last week of June (figure 4.3c). During the first two weeks 
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of July, the LAI decreased, which can be explained by growth-reducing effects 
caused by a dry period with high temperatures in the area where the study site was 
located. The insufficient water availability due to the lack of rain, combined with 
the high temperatures can affect the stomatal capacity of leaves, which in turn can 
cause a reduction biomass, and thus LAI [123]. Flight 2 on 19 July 2016 occurred 
after the potato plants were flowered, and the haulm length increased to 0.6–0.9 m. 
Due to the drought and high temperatures, stems had fallen over and started filling 
up the space between the potato rows. This resulted in an increase in canopy cover 
at the date of the second flight, while the LAI remained more or less equal, or for 
some plots became even lower (table 4.4). After the second flight, the improved 
water availability due to rainfall and combined with the fertilizer addition of July 
15 (table 4.1) resulted in an increase in LAI with the largest long-term effect for the 
Plots B, D, F and H (figure 4.3c). 

Table 4.4. Leaf area index based on Cropscan measurements and the canopy cover 
during the two measurement days. 
 9 June 2016 19 July 2016 

Plot Cropscan [LAI] Canopy cover [%] Cropscan [LAI] Canopy cover 
[%] 

A 3.35 61.8 3.43 91.9 
B 4.31 67.7 4.08 93.8 
C 2.45 31.5 2.19 62.1 
D 3.20 46.5 3.49 91.0 
E 4.20 62.5 3.73 92.8 
F 4.48 69.3 3.79 92.8 
G 3.62 61.5 2.99 88.5 
H 3.79 58.7 3.19 89.8 

4.3.2 View angle coverage 
Based on equations 4.2-4.5, we determined the VAAs and VZAs of each pixel that 
was georeferenced during the Agisoft PhotoScan processing. Pixels that were 
captured from multiple camera positions were thus also viewed from multiple 
observation geometries. As an example, figure 4.4a shows from how many camera 
positions each pixel in the study area was captured at 658 nm during the flight on 
9 June 2016. An example pixel (the white square in between Plot C and Plot D) was 
captured from 32 different camera positions in all four flight lines (figure 4.4b). 
The nadir normalized reflectance (anisotropy factors (ANIFs) [7]) observed from 
the different camera positions at 658 nm for the example pixel indicated a strong 
anisotropy effect, where the highest ANIFs were observed in the backward 
scattering direction in the solar principal plane (figure 4.5a). This backward 
scattering anisotropy was weaker for the same pixel at 848 nm (figure 4.5b). Due 
to the movement of the UAV during collection of a full datacube, the camera 
positions were slightly different for both bands. In addition, the example pixel was 
not captured from all the same camera positions at both wavelengths. For example, 
the example pixel was not captured from Camera Positions 12 and 147 at 848 nm. 
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On the contrary, the example pixel was not captured from Camera Position 58 at 
658 nm, while it was at 848 nm (compare figures 4.5a and 4.5b). 

 
Figure 4.4. The number of observations per pixel, captured during the flight on 9 
June 2016, at 658 nm (a). The camera positions (numbers in white circles) from 
which an example pixel (white square between Plot C and D) was captured (b). The 
red lines indicate the flight path of the UAV and the black dots indicate the camera 
positions that did not capture the example pixel. Both (a) and (b) are in WGS84 UTM 
31N projection. 

 
Figure 4.5. Linearly interpolated polar plots of the (anisotropy factors (ANIFs) 
observed for the example pixel in figure 4.4 at 658 nm (a) and 848 nm (b), 
respectively. The numbers indicate the camera positions and correspond to the 
numbers in figure 4.4b. The azimuth angles are relative azimuth angles, where 0° is 
the forward scattering direction and 180° is the backward scattering direction. The 
vertical dashed line indicates the solar principal plane. 
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4.3.3 Anisotropy maps 
For every georeferenced ground pixel in the study area at each measured 
wavelength, multi-angular observations as displayed in figure 4.5 were available. 
By fitting the RPV model through these multi-angular observations at every pixel, 
we created anisotropy maps that show the spatial distribution of the model 
parameters.  

 
Figure 4.6. 𝜌𝜌0, 𝑘𝑘, and 𝛩𝛩 parameters obtained by fitting the Rahman–Pinty–Verstraete 
(RPV) model through the measurements of Flight 1 (9 June 2016) at 658 nm (a–c) 
and at 848 nm (d–f). All figures are in WGS84 UTM 31N projection. 

Figure 4.6 shows the parameter maps of the 𝜌𝜌0, 𝑘𝑘, and 𝛩𝛩 parameters at 658 nm and 
at 848 nm on 9 June 2016. The 𝜌𝜌0 parameter, which is closely related to the nadir 
reflectance, follows a typical vegetation trend, with low values at 658 nm (figure 
4.6a) and higher values at 848 nm (figure 4.6d). Plots C and D, which did not receive 
any initial fertilization and therefore had a lower canopy cover, showed clearly 



64  Mapping reflectance anisotropy 

lower 𝜌𝜌0 values at 848 nm. In general, pixels in both bands had 𝑘𝑘 <1, indicating a 
bowl-shaped anisotropy pattern (Figures 6c,e). Both wavelengths showed clear 
backward scattering anisotropy (𝛩𝛩 <0) over the full study area. This backward 
scattering was particularly strong at 658 nm (figure 4.6c) and less pronounced at 
848 nm (figure 4.6f). 

 
Figure 4.7. 𝜌𝜌0, 𝑘𝑘, and 𝛩𝛩 parameters obtained by fitting the RPV model through the 
measurements of Flight 2 (19 July 2016) at 658 nm (a–c) and at 848 nm (d–f). All 
figures are in WGS84 UTM 31N projection. 

On 19 July 2016, the potato canopy was fully developed, resulting in general in 
higher 𝜌𝜌0 values at 848 nm (figure 4.7d). The pixels of Plot C, which was the plot in 
the zone that did not receive any initial fertilization nor additional sensor-based 
fertilization, had clearly lower 𝜌𝜌0 values at 848 nm than the other plots. The 𝑘𝑘 
parameter remained more or less the same as on the first measuring day. The 𝛩𝛩 
parameter, on the contrary, showed a strong increase at both wavelengths (i.e., the 
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values became less negative), indicating a reduction of backward scattering 
intensity (compare figure 4.6c,f and figure 4.7c,f). 

4.3.4 Plot statistics 
Figure 4.8 shows the interpolated polar plots of the ANIFs at 658 nm and 848 nm 
for all pixels within Plot C and Plot E, two plots that varied strongly in LAI and 
canopy cover. Pixels within a 3 m distance of tractor tracks, which were running 
through the center of the plots (figure 4.1), were excluded from this analysis.  

 
Figure 4.8. .The reflectance anisotropy derived from of all pixels within experimental 
Plot C (top) and Plot E (bottom) shown as linearly inter- and extrapolated polar 
graphs at 658 nm and 848 nm, collected on 9 June 2016 (left) and 19 July 2016 (right), 
respectively. The white stars indicate the position of the sun during data collection 
and the black dots indicate the measurement positions. 

At both wavelengths, there was a clear backward scattering anisotropy in the plots, 
which was most pronounced at 658 nm. During the flight on 9 June 2016, we 
observed a weaker backward scattering anisotropy in Plot C at 658 nm compared 
to Plot E, as can be observed by the higher density of isolines. This was likely due to 
the fact that the potato plant rows in Plot C were not continuous due to gaps in the 
potato rows, either because of missing plants in the rows or because of the small 
size of the plants (figure 4.4b). This in turn resulted in fewer strong shadows and 
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thereby a weaker backward scattering intensity. The rows of potato plants in Plot 
E, on the other hand, had fewer gaps and therefore displayed stronger shadows, and 
thus displayed a stronger backward scattering intensity. During the flight on 19 July 
2016, the canopy of Plot E had fully developed into a closed surface with a row 
structure that was at that point hardly visible. This resulted in strongly reduced 
row-induced shadow effects and thus decreased backward scattering on this date. 
On both dates, the backward scattering intensity for both plots at 848 nm remained 
more or less similar. 

 
Figure 4.9. Average 𝜌𝜌0, 𝑘𝑘, and 𝛩𝛩 parameters obtained by fitting the RPV model 
though each individual pixel in the experimental plots on both dates. The colored 
surfaces indicate the standard deviations. 

The average RPV parameters, based on the individually obtained RPV parameter 
values for every pixel within the experimental plots, are shown in figure 4.9. Again, 
pixels within a 3 m radius of the tractor tracks were excluded. The 𝜌𝜌0 parameter 
followed the pattern of a typical vegetation spectrum. In general, a higher 𝜌𝜌0 value 
was observed in the green and NIR wavelength region for plots that had a higher 
canopy cover on 19 July 2016. This is most clear for the plots where there was a 
strong increase in canopy cover between the two dates (table 4.4). The 𝑘𝑘 parameter 
was in general <1 at all wavelengths, indicating a bowl-shaped anisotropy pattern 
for the whole sampled wavelength region. The 𝛩𝛩 parameter, like the 𝜌𝜌0 parameter, 
followed in shape a vegetation spectrum. The strongest backward scattering effects 
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thereby a weaker backward scattering intensity. The rows of potato plants in Plot 
E, on the other hand, had fewer gaps and therefore displayed stronger shadows, and 
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structure that was at that point hardly visible. This resulted in strongly reduced 
row-induced shadow effects and thus decreased backward scattering on this date. 
On both dates, the backward scattering intensity for both plots at 848 nm remained 
more or less similar. 

 
Figure 4.9. Average 𝜌𝜌0, 𝑘𝑘, and 𝛩𝛩 parameters obtained by fitting the RPV model 
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surfaces indicate the standard deviations. 
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(the lowest 𝛩𝛩 values) were observed in the visible wavelength region, with a 
minimum at 674 nm, where shadow effects are strongest and multiple scattering 
effects are absent due to the absorption of radiance by chlorophyll in this region. In 
the NIR region, where shadow effects are diminished due to high reflectance and 
transmittance by vegetation, the 𝛩𝛩 values were in general less negative than in the 
visible region. The 𝛩𝛩 values obtained for the flight on Day 2 were consistently 
higher (less negative) than the 𝛩𝛩 values obtained for the flight on Day 1, indicating 
a reduced backward scattering intensity with increased canopy cover. 

4.3.5 RPV parameters vs. canopy cover and LAI 
Figure 4.10 shows the relation between the average RPV parameters of all pixels 
within each experimental plot and canopy cover at 658 nm and 848 nm, 
respectively. On both dates, an increased canopy cover resulted in a decrease in the 
𝜌𝜌0 parameter at 658 nm and in an increase at 848 nm. This trend can be explained 
by the lower reflectance of vegetation at 658 nm compared to the soil background 
reflectance at this wavelength. A higher canopy cover therefore resulted in higher 
reflectance, and thus a higher 𝜌𝜌0 value. The opposite holds at 848 nm, where the 
soil reflectance was lower than the vegetation reflectance. On 9 June 2016 at 658 
nm and on 19 July 2016 at 848 nm, the relations between 𝜌𝜌0 and canopy cover were 
strong, indicated by the R2 of 0.764 and 0.753, respectively. 
The relation between the 𝑘𝑘 parameter and canopy cover was less obvious. On Day 
1 at 658 nm, we observed a slight decrease in the 𝑘𝑘 parameter with increased 
canopy cover (R2 = 0.478). On both dates at 848 nm, the relation between the 𝑘𝑘 
parameter and canopy cover was very weak, indicated by the R2 of 0.262 and 0.211 
on Day 1 and Day 2, respectively. 
On Day 1, we observed a strong decrease in the 𝛩𝛩 parameter (which indicates 
increased backward scattering intensity) with an increase in the canopy cover at 
658 nm. On Day 2, on the contrary, we observed an increase in the 𝛩𝛩 parameter 
with increasing canopy cover. The decrease in the 𝛩𝛩 parameter on Day 1 happened 
most likely due to the aforementioned gaps in the potato rows that were present in 
the plots with low canopy cover on this day: the gaps in the rows result in weaker 
shadows and thus weaker backward scattering. On Day 2, when there were hardly 
any gaps left in the rows, we observed a decrease in backward scattering intensity 
with increasing canopy cover. This is likely due to the disappearance of the row-
structure since the potato rows started growing into each other, narrowing and 
disappearing the space between the rows, which cause strong shadow effects. 
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Figure 4.10. The relation between the 𝜌𝜌0, 𝑘𝑘, and 𝛩𝛩 parameters of the RPV model of 
all pixels in each experimental plot (indicated by letters A–H) and the canopy cover, 
at 658 nm (black circles) and 848 nm (gray triangles), respectively, for both dates. 
The error bars indicate the standard deviation. 

Finally, we studied the correlation of the RPV parameters with the canopy cover 
and LAI, respectively, for the different experimental plots at all measured spectral 
bands (figure 4.11). We calculated the Kendall’s tau ranking correlation coefficient, 
since not all canopy cover, LAI, and RPV parameter values were normally 
distributed, and the number of plots and thus number of observations (n = 8) was 
rather low. The Kendall’s tau correlation coefficient takes values between −1 and 
+1, where a positive value indicates that the ranks of both variables are increasing 
and a negative value indicates that the ranks of both variables are decreasing. The 
closer Kendall’s tau gets to +1 or −1, the stronger the correlation between the 
variables. Since the flight on Day 1 was performed at an early phase of the potato 
crop before it reached maximum LAI and the flight on Day 2 at a late phase after 
reaching maximum LAI, both flights are first analyzed separately and then 
combined. 
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The correlation of the 𝜌𝜌0 parameter with canopy cover (figure 4.11a, upper graph) 
on Day 1 was negative in the visible part of the spectrum, whereas it was positive 
in the NIR. On Day 2, this correlation was only negative in the red. A significant 
correlation at 5% confidence level (p = 0.05) was only observed in the NIR for both 
dates. The pattern for the correlation between 𝜌𝜌0 and LAI was quite similar to the 
one found for canopy cover on both dates (compare figure 4.11b with figure 4.11a, 
upper graphs). 

 

Figure 4.11. Ranking correlation (Kendall’s tau) between the 𝜌𝜌0, 𝑘𝑘, and 𝛩𝛩 parameters 
of the RPV model and the canopy cover (a) and Cropscan LAI (b) for the flights of Day 
1 and Day 2 separately and for the flights of both days combined. The gray-shaded 
areas indicate the significance levels: values above or below the dark-gray areas were 
significant for the analysis of both dates (n = 16) and values above or below the light-
gray areas were significant for the analysis of the separate days (n = 8), both at the 
5% confidence level. 
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The correlation of the 𝑘𝑘 parameter with canopy cover (figure 4.11a, middle graph) 
was strongest (negative) on Day 1 in the visible part of the spectrum. Only the 
correlation at 658 nm was significant. The correlations between the 𝑘𝑘 parameter 
and LAI (figure 4.11b, middle graph) were quite similar to the one for canopy cover. 
No correlations were significant at the 5% level. 
The correlation between the 𝛩𝛩 parameter and canopy cover was negative in the 
visible part of the spectrum and positive in the NIR on Day 1, but they were not 
significant (figure 4.11a, lower graph). On Day 2, the correlations were close to zero, 
except for positive, non-significant correlations in the visible part. The correlations 
between the 𝛩𝛩 parameter and LAI were similar to those of canopy cover. For LAI, 
the correlations were significant in the visible region on Day 1 (figure 4.11b, lower 
graph).  
When we combine the data collected on both days, the correlation between the 𝜌𝜌0 
parameter and canopy cover increased slightly over the whole spectrum (figure 
4.11a, upper graph). On the contrary, the correlation between the 𝜌𝜌0 parameter and 
LAI decreased when both days were combined, which indicates that the 𝜌𝜌0 
parameter was more sensitive to canopy cover than to LAI, and differences between 
the structure of the potato crop on both dates were not well represented by this 
parameter. This was likely due to the fact that the LAI did not change much between 
the two dates, while there was a strong increase in canopy cover (table 4.4). Over 
the whole spectrum, there was a positive correlation between the 𝛩𝛩 parameter and 
canopy cover when the data of both dates were combined (figure 4.11a, lower 
graph), suggesting that in general there was a decrease in backward scattering 
intensity (increase in the 𝛩𝛩 parameter) when the canopy cover increased. 

4.4 Discussion 

In this paper, we demonstrated how to extract multi-angular observations from 
overlapping pixels captured by a frame-based camera during a typical UAV 
mapping flight. After orthorectification and georeferencing of the individual images 
taken at all measured spectral bands, we were able to calculate the observation 
geometry of all ground referenced pixels based on the pixel location and camera 
positions from which the pixels were observed. 
During the two flights that we performed during the summer of 2016 over an 
experimental potato field, pixels were captured in up to 40 different images 
collected from different positions of the flight path of the UAV (figure 4.4), resulting 
in up to 40 different observation geometries per pixel. Although the angular 
sampling coverage of these observations was limited, strong anisotropy effects 
occurred (figures 4.5a,b). This highlights the importance of taking reflectance 
anisotropy into account when data is collected at off-nadir viewing angles. Either 
off-nadir data needs to be corrected and/or normalized to a standardized 
observation geometry [124], or the exact illumination and observation geometry 
needs to be considered in further analysis of the data [84]. 
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In this study, we sampled a relatively large area, which resulted in a relatively low 
angular sampling coverage. To achieve a higher sampling density, we suggested 
focusing on smaller areas and design flight paths with higher overlap and/or to 
introduce flight lines in multiple azimuth directions covering the area of interest, 
like for example done by Honkavaara et al. [125] (p. 78, figure 4). Our focus, 
however, was to derive anisotropy information during a typical UAV mapping flight, 
and we therefore did not test any alternative flight patterns than the one displayed 
in figure 4.1. Another option to sample larger VZAs would be to mount the camera 
tilted under the UAV. However, this could complicate photogrammetric processing 
steps. 
Several other methods to perform multi-angular reflectance measurements of 
vegetation targets using UAVs have recently been proposed ranging from 
spectrometers controlled by a gimbal [36,37] to the exploitation of the wide field of 
view of a hyperspectral line scanner [115]. Using these methods, clear anisotropy 
effects were observed for different vegetation targets at off-nadir viewing angles, 
where typically higher reflectance factors were observed in the backward 
scattering direction, with emphasis on view angles close to the hotspot position 
[36,115]. The drawback of these methods is that the measurements only provide 
the anisotropy information of a small area or the average anisotropy of a larger 
surface, respectively. Both of these methods lack information on the spatial 
distribution of the observed anisotropy effects. The method used in this paper does 
provide spatially explicit information on anisotropy. By fitting BRDF models, like 
we did with the RPV model, information on anisotropy can be stored and visualized 
in maps. 
In this study, we used an FPI frame-based camera, which complicates the 
photogrammetric processing due to the movement of the UAV during the collection 
of a datacube [121]. In addition, the movement of the UAV during the flight also 
caused the angular coverage per pixel to be slightly different for each spectral band 
(figure 4.5). For the fitting of a BRDF model, this does not have to be a problem as 
long as a large amount of observation angles are available per pixel.  
To capture a representative amount of potato rows and spaces between the potato 
rows in each ground pixel, we resampled the original ground pixels (~8 cm) to 5 m 
ground pixels. For more homogeneous surfaces or surfaces with smaller height 
differences, a smaller or even the original ground pixel size can be used. The 
proposed methodology in this study can easily be applied to—which is more 
commonly available—multispectral camera systems. We used the Rikola camera 
system because that was the camera we had available. Multispectral cameras, 
which in general have a higher spatial resolution, allow for analysis at a higher 
detail level. If local legislation allows it, these cameras can be flown at greater 
heights above ground level to cover a larger surface area, while maintaining a high 
spatial resolution. Multispectral camera systems with bands in both the visible and 
NIR capture the most pronounced changes in anisotropy that relate to increased 
canopy cover in a potato crop, as can be seen in the 𝛩𝛩 and 𝜌𝜌0 parameter spectra in 
Figure 4.9 and the correlation spectra in figure 4.11. 
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We studied the magnitude of anisotropic reflectance effects by analyzing 
anisotropy parameters obtained by fitting the RPV model through the multi-
angular observations of each georeferenced ground pixel. Observed trends were a 
backward scattering anisotropy for the whole study area, which was most 
pronounced in the visible wavelength region and less pronounced in the NIR region, 
which is typical for vegetation targets [6,7]. 
In addition, we studied the effects of canopy cover and LAI on reflectance 
anisotropy. On the first measuring day, we observed an increase in backward 
scattering intensity with increased canopy cover at visible wavelengths. This might 
be related to the higher amount of gaps in the potato rows on this day, which in turn 
resulted in weaker shadows and thus weaker backward scattering intensity. A 
higher canopy cover on this day occurred at plots where the potato rows had fewer 
gaps, which resulted in stronger shadow effects. On the second measuring day, 
when there were fewer gaps between rows, we observed a decrease in backward 
scattering intensity with an increase in canopy cover. This decrease is likely the 
result of the filling up of space between consecutive rows due to potato plants 
growing into each other (the potato plants had fallen over due to long and unstable 
haulms in combination with unfavorable weather conditions), which resulted in a 
decrease in shadows created by the rows. A decrease in backward scattering 
intensity with canopy closure was observed in a previous UAV-based anisotropy 
study of potato canopy development [115]. 
This study demonstrates that pixel-wise multi-angular observations can be 
obtained from frame-based cameras by calculation of the VAAs and VZAs of 
georeferenced ground pixels that were captured from multiple camera positions. 
The information contained in these multi-angular observations is valuable for 
correction of anisotropic reflectance effects, but also provides additional 
information to spectral data on vegetation characteristics. Moreover, knowing the 
observation geometry of every pixel makes it possible to select and analyze only 
observations that were taken from, for example, the backward scattering direction. 
In this direction, observations have been demonstrated to be more useful for LAI 
prediction [126]. Besides this, in the backward scattering direction, shadows are 
minimized and observations are more sensitive to vegetation pigments [127], 
which makes frame-based measurements in combination with their observation 
geometry also interesting for the study of biochemical vegetation parameters. 

4.5 Conclusions 

The overlap of images that are collected during a typical UAV mapping flight using 
a frame camera provides multi-angular views of georeferenced ground pixels. In 
this paper, we describe how to extract the observation geometry of these multi-
angular views. The results of this paper demonstrate that, in clear sky illumination 
conditions, strong anisotropy effects occur in measurements with off-nadir viewing 
when using a frame camera. 
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By fitting the RPV model through the multi-angular measurements, we 
parameterized and interpreted the anisotropic reflectance effects captured during 
two UAV flights in the growing season of 2016 for a potato field that contained eight 
experimental plots with different LAI and canopy cover levels. Analysis of the 
anisotropy patterns indicated that in general the potato crop had a higher 
reflectance in the backward scattering direction. An increase in canopy cover 
during the growing season resulted in a reduction of this backward scattering, 
which can be attributed to the diminishing row structure with increasing canopy 
cover, and thereby weaker row-induced shadow effects. 
The results of this study indicate that the parameters describing the anisotropy 
with the RPV model contain information on structural characteristics of the potato 
crop such as LAI and canopy cover. This suggests that including such anisotropy 
information may lead to more accurate estimates of these characteristics. Future 
research will focus on how to use this anisotropy information to better estimate 
vegetation parameters, for example, by using radiative transfer models. Moreover, 
since the method described in this paper can in theory be used to study the 
anisotropy of any surface, we will apply it to other vegetation, crop, and soil targets 
as well. Special focus will be on the influence of canopy development on the 
anisotropy signal. 
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Abstract 
In addition to single-angle reflectance data, multi-angular observations can be used 
as an additional information source for the retrieval of properties of an observed 
target surface. In this paper, we studied the potential of multi-angular reflectance 
data for the improvement of leaf area index (LAI) and leaf chlorophyll content (LCC) 
estimation by numerical inversion of the PROSAIL model. The potential for 
improvement of LAI and LCC was evaluated for both measured data and simulated 
data. The measured data was collected on 19 July 2016 by a frame-camera mounted 
on an unmanned aerial vehicle (UAV) over a potato field, where eight experimental 
plots of 30  30 m were designed with different fertilization levels. Simultaneously 
to the UAV flight, in situ measurements of LAI and LCC were performed. Inversion 
of the PROSAIL model was done based on nadir data and based on multi-angular 
data collected by the UAV. Inversion based on the multi-angular data performed 
slightly better than inversion based on nadir data, indicated by the decrease in 
RMSE from 0.70 to 0.65 m2/m2 for the estimation of LAI, and from 17.35 to 17.29 
µg/cm2 for the estimation of LCC, when nadir data were used and when multi-
angular data were used, respectively. In addition, we simulated several datasets at 
different angular configurations and compared the accuracy of the inversions of 
these datasets with the inversion based on nadir data. In general, the results 
indicated that when more viewing angles, more well distributed viewing angles, 
and viewing angles up to larger zenith angles were available for inversion, the most 
accurate estimations were obtained. However, when using a realistic angular 
sampling configuration as covered by the UAV platform, meaning a range of view 
zenith angles up to 30°, already a huge improvement could be obtained in 
comparison to nadir viewing. Based on the eight plots in this study, the RMSE of LAI 
improved from 0.64 to 0.08 m2/m2, whereas the RMSE of LCC improved from 24.37 
to 2.43 µg/cm2. The results of this study show that the estimation of LAI and LCC by 
numerical inversion of the PROSAIL model can be improved when multi-angular 
observations are introduced. 
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5.1 Introduction 

Accurate quantitative estimates of vegetation bio-physical/-chemical parameters 
are important for, e.g., precision agriculture [19], crop phenotyping and monitoring 
crop traits [128,129], and reduction of fertilizer usage and improvement of yield 
prediction [130,131]. Inversion of radiative transfer models (RTMs) using optical 
remote sensing data is a commonly applied technique for the estimation of these 
parameters. Based on physical laws, RTMs describe how radiation interacts with 
vegetation canopies. RTMs allow for the computation of reflectance at arbitrary 
viewing and illumination geometries and a set of leaf and canopy parameters. With 
different inversion schemes, RTMs can be used to estimate these parameters based 
on a reflectance input. The accuracy of the parameter estimations depends on the 
used model, the applied inversion technique and the quality of the input data [132]. 
PROSAIL [127] – a combination of the PROSPECT leaf model [133] and the SAIL 
canopy bidirectional reflectance model [134], is among the most widely used RTMs. 
By inversion of the PROSAIL model, it is possible to simultaneously estimate both 
leaf and canopy parameters such as leaf area index (LAI) and leaf chlorophyll 
content (LCC) [135].  
The inversion of RTMs is an ill-posed problem due to measurement and model 
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In addition to satellite-based measurements, multi-angular observations are 
typically collected using goniometers. On the one hand, goniometers provide a high 
angular sampling in general with accurate control of the observation angles 
[33,147]. Moreover, depending on the sensor mounted on the goniometer, 
measurements with high spectral resolution can be acquired. On the other hand, 
goniometer measurements are relatively time consuming. Especially for 
measurements in the field this can be a serious issue due to several factors including 
movement of the sun and possible changes in atmospheric conditions during a 
measurement sequence [82]. Moreover, most goniometer systems only sample a 
single point and thus lack information on the spatial distribution of anisotropy 
effects. 
Recently, multi-angular measurements have also been performed using unmanned 
aerial vehicles (UAVs). Several researchers have shown that these agile platforms 
are capable of collecting multi-angular observations in a relatively short amount of 
time [36,37,115,148]. Moreover, due to the relatively low flight height of UAVs, a 
good ground sampling distance (GSD) can be achieved, making UAV-based methods 
valuable for detailed studies on anisotropy effects at the individual plant level 
[148]. UAV-based methods where a gimbal is used to hold a spectrometer at 
different viewing angles can provide a good angular coverage of an area of interest 
[36,37]. However, to capture viewing angles covering all azimuth directions around 
a target requires complicated flight patterns, making it difficult to apply such a 
measurement strategy. Moreover, most professional UAVs have downward 
pointing sensors and do not have the flexibility to change their orientation during 
the flight.  
In a recent study we demonstrated that multi-angular views can easily be obtained 
by exploiting the overlap of images that are collected by a frame-camera mounted 
on a UAV [148]. This method is very attractive for studying pixel wise anisotropy 
effects, since every georeferenced pixel is captured from multiple camera positions 
and thus observed from different viewing angles. Using this method it was shown 
that different fertilization regimes within a potato field resulted in significantly 
different anisotropy signals due to variation in the development of the potato plants 
as a result of the differences in fertilization level. In that study, these differences in 
anisotropy were quantified using the parameters of the Rahman-Pinty-Verstraete 
(RPV) model [66]. A correlation between RPV and canopy parameters pointed at 
the information content of the anisotropy signal. The logical follow-up step would 
be to explore the use of these multi-angular views in combination with physically 
based RTMs to explore their use for the estimation of vegetation parameters. 
The aim of this paper is to study the use of multi-angular measurements for the 
retrieval of LAI and leaf LCC by inversion of the PROSAIL model. We studied three 
cases: In the first case we used the data that were collected during the study of 
Roosjen et al. [148] for inversion of the PROSAIL model to estimate LAI and LCC, 
which were simultaneously measured in the field during the UAV flight. However, a 
mismatch between the measured multi-angular reflectance data and the ability of 
the used model to reproduce this, which can be either caused by the quality of the 
RTM model or by the quality of the spectral measurements, might provide poor 
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results [141]. Therefore, in a second case, we used the configuration of viewing 
angles that was captured during the same study and simulated reflectance data at 
these angles, which we then used as input for the inversion of the PROSAIL model 
to estimate LAI and LCC. This case represents the situation where a realistic range 
and distribution of viewing angles is available for inversion, and where we were 
sure that the model used can reproduce the input data. In the third case, we 
simulated multi-angular reflectance data for inversion of the PROSAIL model based 
on several configurations of viewing angles that are typically collected with 
goniometer setups. This case represents the ideal situation where a wide range of 
well-distributed viewing angles is available. For all cases, the inversion accuracies 
based on the multi-angular data were compared with inversions based on nadir 
viewing data, in order to assess the improvement of LAI and LCC estimations when 
multi-angular observations were used. 
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5.2 Methods 

5.2.1 Study area 
The study area that was used for our UAV experiment and data simulations, was a 
potato field (Solanum tuberosum L., cultivar Fontane. Planting date: 16 April 2016) 
located south of the village Reusel (51°59’47.9”N, 5°9’34.5”E) on the Dutch–Belgian 
border, in the province of Noord-Brabant (The Netherlands). In this field, an 
experiment was performed to evaluate the effect of split-level fertilization on 
potato yield. Eight 30  30 meter plots, labelled A-H, were marked in the different 
fertilization zones (figure 5.1).  

 
Figure 5.1. A schematic layout of the experimental plots (A–H) in the potato field 
with different initial nitrogen (N) fertilization levels (horizontal zones), and 
additional nitrogen fertilization levels (vertical zones). 

Varying initial nitrogen (N) fertilization was applied to half of the plots before 
planting. During the growing season plots B, D, F, and H received additional sensor-
based nitrogen fertilization based on reflectance measurements performed by 
Fritzmeier ISARIA crop sensors (Fritzmeier Umwelttechnik, Großhelfendorf, 



80  Improved parameter estimations 

5.2 Methods 

5.2.1 Study area 
The study area that was used for our UAV experiment and data simulations, was a 
potato field (Solanum tuberosum L., cultivar Fontane. Planting date: 16 April 2016) 
located south of the village Reusel (51°59’47.9”N, 5°9’34.5”E) on the Dutch–Belgian 
border, in the province of Noord-Brabant (The Netherlands). In this field, an 
experiment was performed to evaluate the effect of split-level fertilization on 
potato yield. Eight 30  30 meter plots, labelled A-H, were marked in the different 
fertilization zones (figure 5.1).  

 
Figure 5.1. A schematic layout of the experimental plots (A–H) in the potato field 
with different initial nitrogen (N) fertilization levels (horizontal zones), and 
additional nitrogen fertilization levels (vertical zones). 

Varying initial nitrogen (N) fertilization was applied to half of the plots before 
planting. During the growing season plots B, D, F, and H received additional sensor-
based nitrogen fertilization based on reflectance measurements performed by 
Fritzmeier ISARIA crop sensors (Fritzmeier Umwelttechnik, Großhelfendorf, 

5.2 Methods   81 

Germany) that were mounted on the front of a tractor, providing information on 
nitrogen need of the potato plants on a bi-weekly basis. The different fertilization 
regimes in the field resulted in variation of LAI and LCC in the experimental plots 
(table 5.1) at the time of data collection (19 July 2016) with the UAV. Measurements 
of LAI and LCC were performed in situ on the same day as the UAV flight. LAI and 
LCC were derived from reflectance measurements using a Cropscan Multispectral 
Radiometer [149]. For a more detailed description of the study area and the 
fertilizer-experiment, the reader is referred to [149] and [148]. 

Table 5.1. Leaf area index (LAI) and leaf chlorophyll content (LCC) measured in the 
experimental plots on 19 July 2016. 

Plot LAI [m2/m2] LCC [µg/cm2] 
A 3.43 39.55 
B 4.08 51.37 
C 2.19 50.05 
D 3.49 65.61 
E 3.73 42.46 
F 3.79 49.46 
G 2.99 41.76 
H 3.19 54.87 

5.2.2 Rikola sensor 
Spectral data were collected by a hyperspectral camera (Rikola Ltd., Oulu, Finland), 
mounted on an Altura AT8 octocopter. The camera collects images of 1010  1010 
pixels and has a horizontal and vertical field of view (FOV) of 36.5°. The camera uses 
Fabry–Perot interferometer (FPI) technology to capture images at a 
programmatically selectable set of spectral bands in the visible-near infrared (VIS-
NIR) wavelength range. The sampled wavelength is selected using a piezo driven 
FPI filter at which the bandpass wavelength depends on the distance (the air gap) 
between two semi-transparent mirror films. A sequence of wavelengths is collected 
by varying this air gap, which causes a small time difference between recording of 
each spectral band in a collected image. The bands that were sampled are shown in 
table 5.2. For a detailed description of the radiometric calibration of the collected 
images, the reader is referred to [148]. 

5.2.3 UAV viewing angles 
Spectral data were collected in clear atmospheric conditions during four back-and-
forth flight lines that were spaced 20 m apart, covering the experimental plots in 
the potato field. The UAV was programmed to fly at 120 m above ground level (AGL) 
with a horizontal speed of approximately 4 m/s. Images were collected 
continuously at an interval of 2.4 s, which resulted in an 88% forward and 75% 
sideways overlap of the collected images with a GSD of approximately 8 cm. The 
images were aligned and ortho- and georectified in PhotoScan Professional 1.2.6 
(AgiSoft LLC, St. Petersburg, Russia). After georeferencing, each image at each 
spectral band was separately exported as an orthorectified GeoTIFF file with a 5 
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meter ground pixel size, capturing a representative proportion of potato rows in 
each pixel.  
Then, using the position of the UAV at the time of image acquisition and the position 
of the georeferenced ground pixels, the observation angles of each ground pixel 
were calculated according to the equations given in [148]. Since georeferencing 
requires pixels to be captured in at least two images, this thus resulted in a multi-
angular dataset for each pixel. Due to the movement of the UAV during the 
acquisition of an image and the used FPI technology (section 5.2.2), each pixel was 
observed from a slightly different position in each spectral band.  

Table 5.2. Centre wavelengths and Full-Width-at-Half-Maximum (FWHM) of the 16 
spectral bands that were sampled in the study of [148] and used in this study. 

Band Centre Wavelength [nm] FWHM [nm] 
1 500.2 14.8 
2 547.0 13.2 
3 558.8 13.0 
4 568.8 12.9 
5 657.6 13.0 
6 673.6 13.2 
7 705.8 13.1 
8 739.0 19.4 
9 782.8 18.5 

10 791.6 18.4 
11 810.3 18.1 
12 829.0 17.8 
13 847.8 17.6 
14 864.7 17.4 
15 878.7 17.3 
16 894.7 17.1 

To demonstrate the angular coverage of this method, figure 5.2 shows the 
observation geometry for the center pixel in each experimental plot at band 6 
(673.6 nm). On average, the center pixels of the experimental plots were captured 
from 28 different positions per spectral band, covering the hemisphere up to 
around 30° from zenith. A pixel being captured in 28 camera positions implies that 
the pixel was viewed from 448 (number of camera positions times number of 
bands) different viewing angles. As can be seen in the polar plots of figure 5.2, the 
nadir position was never exactly captured. In this paper, we compare multi-angular 
inversions with inversions based on nadir data. For the nadir inversion, we used 
the pixels that were captured the closest to the nadir position. For the readability 
of this paper, we refer to such position closest to nadir as the nadir position. The 
reader is referred to [148] for a more detailed description of the processing of the 
data and the calculation of the viewing angles. 
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Figure 5.2. Angular coverage of the center pixels (blue pixels) in the experimental 
plots A-H. The red circles in the polar plots indicate the viewing angles from which 
the center pixels were observed. The azimuth angles of the polar plots are relative 
azimuth angles, where 0° is the forward scattering direction and 180° is the backward 
scattering direction. The red line indicates the path that the UAV flew over the study 
area. The open circles on this line indicate the positions at which the camera collected 
an image. The grey raster-background indicates the mapped area during the UAV 
flight with 5  5 meter pixels. 

5.2.4 Goniometer viewing angles 
To represent an ideal case where a wide range of well distributed viewing angles 
are available, we simulated data according to several goniometer angular sampling 
configurations. Sandmeier [147] suggested that an angular configuration with 
viewing angles at a 30° azimuth and 15° zenith resolution covering the hemisphere 
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would capture the reflectance anisotropy of a target surface in detail. This angular 
sampling resolution was therefore the hypothetical baseline of the angular 
configurations that we tested. However, since most variation in anisotropy is 
typically observed in the principal plane, we also tested the effect of a denser 
sampling resolution (every 5° zenith) in the principal plane. To create a realistic 
angular sampling scheme, we did not do any simulations at the hotspot position, 
because in practice it is difficult to take measurements at this position, since the 
sensor will typically be between the illumination source and the target surface. 
However, we did test the effect of additional observations around the hotspot 
position, according to the angular sampling as in [77]. To study the influence of the 
range of VZAs that are covered, we tested all angular configurations up to a VZA of 
respectively 30°, 60° or 75°, which are VZAs that can be covered by most 
goniometer systems [79,20,15,150,27]. Four different angular configurations were 
tested for these three VZA ranges resulting in 12 different angular sampling 
schemes (table 5.3 and figure 5.3). The angular configurations can be divided into: 
1) viewing angles only in the principal plane at 5° zenith angle interval 
[configurations 1, 5, 9], 2) viewing angles covering all azimuth directions at a 30° 
angular resolution in 15° zenith steps [configurations 2, 6, and 10], 3) the same 
configuration of viewing angles as angular configuration 2, with a higher density 
(every 5°) of viewing angles in the principal plane [configurations 3, 7, and 11], and 
4) the same angular configuration as angular configuration 3, with 3 additional 
viewing angles around the hotspot position [configurations 4, 8, and 12]. 

Table 5.3. The different angular configurations used to create the simulated 
goniometer data. PP = principal plane, Hs = hotspot. 
Angular 

configuration 
Azimuth 

range  
(step size) 

Zenith range 
(step size) 

Additional viewing 
angles 

Number 
of angles 

1 0°-180° (180°) 0°-30° (5°) - 12 
2 0°-180° (30°) 0°-30° (15°) - 14 
3 0°-180° (30°) 0°-30° (15°) 5° steps zenith in PP 21 
4 0°-180° (30°) 0°-30° (15°) 5° steps zenith in PP 

and 3 positions 
around the Hs 

25 

5 0°-180° (180°) 0°-60° (5°) - 22 
6 0°-180° (30°) 0°-60° (15°) - 28 
7 0°-180° (30°) 0°-60° (15°) 5° steps zenith in PP 42 
8 0°-180° (30°) 0°-60° (15°) 5° steps zenith in PP 

and 3 positions 
around the Hs 

45 

9 0°-180° (180°) 0°-75° (5°) - 28 
10 0°-180° (30°) 0°-75° (15°) - 35 
11 0°-180° (30°) 0°-75° (15°) 5° steps zenith in PP 53 
12 0°-180° (30°) 0°-75° (15°) 5° steps zenith in PP 

and 3 positions 
around the Hs 

56 
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Figure 5.3. Graphical representation of the 12 multi-angular sampling configurations 
as in table 5.3. 0° is the forward scattering direction and 180° is the backward 
scattering direction. 

5.2.5 Simulation of spectral data using PROSAIL 
To evaluate whether multi-angular observations can lead to improved estimations 
of LAI and LCC, we simulated multi-angular reflectance datasets with the PROSAIL 
model for both the UAV viewing angles (section 5.2.3) and goniometer angular 
configurations (section 5.2.4) using the hsdar-package in R [151]. We used this 
simulated multi-angular data to invert the PROSAIL model and estimate LAI and 
LCC, and compared the estimated LAI and LCC values with the field measurements 
that were used to simulate the data (section 5.2.6). Improvement of the LAI and LCC 
estimations was assessed by comparing the estimations of LAI and LCC based on 
solely nadir data and based on multi-angular data. 
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Table 5.4. Parameter settings for the simulation of the UAV and goniometer datasets.  
UAV and goniometer data simulation 

Parameter Description units Value / range steps 
N Leaf structure parameter - 2 - 

Cbrown Leaf brown pigment 
content 

- 0 - 

Cw Leaf equivalent water 
thickness 

cm 0.01 - 

Cm Leaf dry matter content µg/cm2 0.009 - 
psoil Dry/Wet soil factor - 0 - 
rsoil Background soil 

reflectance 
- Measurement 

of field sample 
- 

ALA Average leaf angle ° 60 - 
hspot Hotspot parameter - 0.33 - 

tts Solar zenith angle ° 34 - 
UAV data simulation 

LAI Leaf Area Index m2/m2 As in table 5.1 As in table 5.1 
LCC Leaf chlorophyll content µg/cm2 As in table 5.1 As in table 5.1 
tto Observer zenith angle ° As in figure 5.2 As in figure 5.2 
psi Relative azimuth angle ° As in figure 5.2 As in figure 5.2 

Goniometer data simulation 
LAI Leaf Area Index m2/m2 1-8 0.5 
LCC Leaf chlorophyll content µg/cm2 20-80 1.0 
tto Observer zenith angle ° As in table 5.3 As in table 5.3 
psi Relative azimuth angle ° As in table 5.3 As in table 5.3 

To perform the PROSAIL simulations for the UAV viewing angles, we used the LAI 
and LCC values of the experimental plots as given in table 5.1. The average leaf angle 
(ALA) was set to 60°, which was found to be the best performing angle for the 
measured data after testing a wide range of ALAs. Moreover, an ALA of 60° is in line 
with research done by Casa and Jones [152], who found ALAs of 57° to 65° for 
several potato canopies. The leaf brown pigment content parameter (Cbrown) was 
set at 0, since there were no brown leaves observed in the potato canopy after visual 
inspection. To model the soil background signal, a soil sample was collected in the 
field and its spectrum was measured with an ASD FieldSpec 3 spectrometer 
(Analytical Spectral Devices, Boulder, CO). The solar zenith angle (tts) was set to 
34°, similar to the sun angle during the UAV measurements. To perform the 
simulations for goniometer data, the LAI parameter was varied between 1 and 8 
m2/m2 in steps of 0.5 m2/m2 and the LCC was varied between 20 and 80 µg/cm2 in 
steps of 1.0 µg/cm2, resulting in 915 combinations of LAI and LCC values. An 
overview of the parameter settings is given in table 5.4. 
After the simulations with the PROSAIL model at the viewing angles and parameter 
settings of table 5.4, we spectrally resampled the simulated spectra to match the 
spectral characteristics of the Rikola camera (table 5.2). Then, Gaussian noise was 
added to the simulated spectra to mimic inaccuracies of the measurements. Since 
there is no standard amount of noise documented in literature that is typically 
added to the spectra [153-156], and because the objective of our study was not to 
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Table 5.4. Parameter settings for the simulation of the UAV and goniometer datasets.  
UAV and goniometer data simulation 

Parameter Description units Value / range steps 
N Leaf structure parameter - 2 - 

Cbrown Leaf brown pigment 
content 

- 0 - 

Cw Leaf equivalent water 
thickness 

cm 0.01 - 

Cm Leaf dry matter content µg/cm2 0.009 - 
psoil Dry/Wet soil factor - 0 - 
rsoil Background soil 

reflectance 
- Measurement 

of field sample 
- 

ALA Average leaf angle ° 60 - 
hspot Hotspot parameter - 0.33 - 

tts Solar zenith angle ° 34 - 
UAV data simulation 

LAI Leaf Area Index m2/m2 As in table 5.1 As in table 5.1 
LCC Leaf chlorophyll content µg/cm2 As in table 5.1 As in table 5.1 
tto Observer zenith angle ° As in figure 5.2 As in figure 5.2 
psi Relative azimuth angle ° As in figure 5.2 As in figure 5.2 

Goniometer data simulation 
LAI Leaf Area Index m2/m2 1-8 0.5 
LCC Leaf chlorophyll content µg/cm2 20-80 1.0 
tto Observer zenith angle ° As in table 5.3 As in table 5.3 
psi Relative azimuth angle ° As in table 5.3 As in table 5.3 
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investigate the influence of the amount of noise added, we only applied Gaussian 
noise with a mean of 0 and a standard deviation of 0.05. 

5.2.6 Model inversion 
The datasets produced with PROSAIL were inverted by means of a general-purpose, 
iterative optimizing routine in R that allows box-constraints using the optim 
function. The function was set to minimize the root-mean-squared-error (RMSE) 
between the measured and modelled reflectance factors over all available viewing 
angles and all available wavelengths (equation 5.1).  

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  √∑ ∑ (𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2

𝑁𝑁

𝑁𝑁𝑤𝑤𝑤𝑤

𝑗𝑗=1

𝑁𝑁𝑣𝑣𝑣𝑣

𝑖𝑖=1
 (5.1) 

Where 𝑁𝑁𝑣𝑣𝑣𝑣 is the number of viewing angles, 𝑁𝑁𝑤𝑤𝑤𝑤  is the number of wavelengths, 
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is the measured reflectance factor, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is the modelled reflectance 
factor and 𝑁𝑁 is the total number of observations (number of wavelengths times the 
number of bands). In the case of the simulated UAV and goniometer data, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  
refers to the simulated reflectance factors based on the parameter settings as in 
table 5.4. In the case of the measured data, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  refers to the reflectance factors 
measured by the Rikola camera. 
During the inversion, the LAI and LCC parameters were estimated while all other 
parameters were kept at fixed values as presented in table 5.4. The LAI and LCC 
parameter ranges were restricted between 0-10 m2/m2 and 0-120 µg/cm2, 
respectively. We specifically chose to set the parameter ranges beyond the 
measured and simulated range, to allow the fitting algorithm to look for solutions 
outside of the boundaries of data simulation. The initial value for the LAI parameter 
was set at 5 m2/m2 and the initial value for the LCC parameter was set at 40 µg/cm2.  

5.3 Results 

5.3.1 Measured UAV data 
Figure 5.4a and 5.4b show the estimated LAI values from PROSAIL inversion based 
on nadir UAV data and multi-angular UAV data, respectively. The differences in 
fertilization zones (figure 5.2) clearly show up in the maps. Especially plot C, the 
plot that did not receive any initial and additional fertilization, stands out with its 
low LAI value. Also plot G and H, the plots that received a relatively low amount of 
additional fertilization, have a clearly lower LAI. Moreover, the tractor-tracks, 
which ran through the center of the plots, have a lower LAI than the potato canopy 
as well. This is especially apparent in the fertilization zone of plot E and F.  
For LCC, the general patterns were the other way around: Plot C had a clearly higher 
LCC than the other plots, which had similar LCC values (figure 5.4d,e). In addition, 
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the LCC in the tractor-tracks was also estimated to be higher than in the potato 
canopy.  
In general, the inversion based on nadir data and based on multi-angular data 
yielded very similar results. A difference map (the multi-angle map subtracted from 
the nadir map, figure 5.4c) shows that the differences between the nadir LAI and 
multi-angular inverted LAI are in general small (average difference of -0.05±0.43 
m2/m2). The estimation of LCC based on nadir (figure 5.4d) and based on multi-
angular data (figure 5.4e) also resulted in small differences (figure 5.4f), with an 
average difference of -0.29±3.0 µg/cm2. 

 
Figure 5.4. LAI estimated from nadir data (a) and from multi-angular data (b). LCC 
estimated from nadir data (d) and from multi-angular data (e). Panel (c) and (f) show 
the difference between the estimations based on nadir data and based on multi-
angular data for LAI and LCC, respectively. The maps are in WGS84 UTM 31N 
projection. 
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Using the data collected in the field as a reference, we studied the accuracy of the 
inversion based on the nadir and based on the multi-angular UAV data. We 
calculated the average estimated LAI and LCC value of all pixels within each 
experimental plot to obtain an average estimated parameter value per plot. The 
pixels that contained tractor tracks were excluded from the analysis. Results are 
shown in figure 5.5, comparing the estimated LAI and LCC from model inversion 
with the field measurements for both nadir and multi-angular observations for the 
eight different plots yielding the RMSE with respect to the 1:1 line. Since deviations 
from the 1:1 line could be large but systematic, also a regression line was calculated 
yielding an R2 value using this regression line. 
When only the reflectance spectrum measured at nadir position was used for the 
inversion, LAI was retrieved with an RMSE of 0.7 m2/m2 and for the regression line 
an R2 of 0.91 was obtained. LCC was retrieved with an RMSE of 17.35 µg/cm2 and an 
R2 of 0.09 (figure 5.5 top panels). When the multi-angular data was used for the 
inversion, there was a small decrease of the RMSE for the LAI retrieval to 0.65 
m2/m2 (figure 5.5 bottom panels). The correlation between the measured and 
estimated LAI remained the same. For the LCC retrieval, a small decrease of the 
RMSE and an increase of the R2 was observed.  

 
Figure 5.5. Scatter plots showing the measured and estimated LAI (left panels) and 
LCC (right panels), based on inversion using solely the nadir spectrum (top panels) 
and the multi-angular spectra (bottom panels). The letters A-H indicate the 
experimental plots (figure 5.1). The red line indicates the regression line and the 
vertical cyan-colored lines indicate the standard deviation of the estimated LAI and 
LCC values of the pixels within each plot. Note that for the LCC estimates the standard 
deviations for most experimental plots were very small and therefore not always 
visible.  
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These results show that the improvement of using multi-angular measurements 
over using only nadir measurements was small, although the standard deviations 
of the individual retrieved LAI and LCC measurements were lower for the multi-
angular measurements than for the nadir measurements. The retrieved LAI 
estimates (figure 5.5, left panels) show that low LAI values are underestimated by 
the PROSAIL inversion, whereas high values are overestimated. The R2 for the 
calculated regression line is high, showing the good potential of LAI retrieval. It 
must be stated that conclusions should be drawn with care since these results are 
based on just eight different plots. Results for LCC retrieval are worse, because the 
range of LCC values was limited. The retrieved LCC value for plot C was larger than 
for all other plots (also compare figure 5.4), which might be caused by ambiguity 
occurring when retrieving LAI and LCC simultaneously. Plot C also had the lowest 
LAI retrieved by model inversion, and it was most underestimated. Such 
underestimation might be compensated by an overestimation of LCC. 

5.3.2 Simulated UAV data 
To assess the case where a realistic range and distribution of viewing angles are 
available and where we are sure that the used RTM can reproduce the input data, 
we repeated a similar exercise as in section 5.3.1 based on multi-angular reflectance 
data simulated with the PROSAIL model according to the viewing angles in figure 
5.2. For each experimental plot, we estimated LAI and LCC by inverting the PROSAIL 
data based on the reflectance spectrum simulated at nadir position and compared 
this with the estimation of LAI and LCC based on the multi-angular spectra. When 
the inversion was performed solely based on the nadir spectrum, LAI was retrieved 
with an RMSE of 0.64 m2/m2 and an R2 of 0.66 for the fitted regression line. LCC was 
retrieved with an RMSE of 24.37 µg/cm2 with an R2 of 0.28, respectively (figure 5.6, 
top panels). This indicates, that even though the input data was simulated by the 
PROSAIL model  ̶  and we can thus exclude that there was a disagreement between 
the input data and the model used for inversion  ̶  only using a nadir spectrum does 
not produce very accurate estimates of LAI and LCC. 
When the inversion was performed using data simulated at the viewing angles 
according to figure 5.2, the estimations of LAI and LCC strongly improved. LAI was 
retrieved with an RMSE of 0.08 m2/m2. The fitted regression line almost matched 
the 1:1 line and the R2 was 0.98. LCC was retrieved with and RMSE of 2.43 µg/cm2 
and an R2 of 0.96. Also for LCC the fitted regression line was close to the 1:1 line. 
This indicates that when multi-angular data are used for inversion and it is certain 
that the model can reproduce the input data, an improved accuracy of LAI and LCC 
retrievals can be obtained by using multi-angular data. 
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Figure 5.6. Scatter plots showing the measured and estimated LAI (left panels) and 
LCC (right panels), based on inversion using solely the spectrum simulated at nadir 
position (top panels) and the spectra simulated at the multiple viewing angles as in 
figure 5.2 (bottom panels). The letters A-H indicate the experimental plots (figure 
5.1).  

5.3.3 Simulated goniometer data 
Retrieval of the 915 different combinations of LAI and LCC was performed by 
inversion of the PROSAIL model solely based on the simulated nadir spectrum and 
the one based on the spectra simulated at the 12 multi-angular configurations 
according to table 5.3. Inversion results were already strongly improved in terms 
of RMSE and R2 when additional viewing angles were used for VZA up to 30° (figure 
5.7). All regression lines were close to the 1:1 line, meaning larger R2 values will 
coincide with smaller RMSE values. When only the nadir spectrum was used for 
inversion, an R2 of 0.79 and RMSE of 1.11 m2/m2 was obtained for the estimation of 
LAI, and an R2 of 0.40 and RMSE of 22.67 µg/cm2 for LCC. When viewing angles in 
the principal plane were used for the inversion, the R2 increased to 0.97 and 0.89 
for LAI and LCC, respectively. The RMSE decreased to 0.36 m2/m2 and 6.39 µg/cm2 
for LAI and LCC, respectively. Using viewing angles covering the hemisphere up to 
a VZA of 30° performed slightly better than when only viewing angles in the 
principal plane were used, indicated by the RMSE of 0.35 m2/m2 and 6.27 µg/cm2 
for LAI and LCC, respectively. The combination of viewing angles in the principal 
plane and the viewing angles covering the hemisphere performed slightly better 
than the viewing angles in the principal plane and the viewing angles covering the 
hemisphere separately. Finally, another small improvement was observed when 
the three observation angles close to the hotspot were used in addition to the 
viewing angles in the principal plane and the viewing angles covering the 
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hemisphere, yielding an RMSE of 0.25 m2/m2 and 4.51 µg/cm2 for the estimation of 
LAI and LCC, respectively. 
An overall pattern that could be observed was that when the number of viewing 
angles used for the inversion increased, estimations of LAI and LCC improved. 
Especially in the range 1-5 m2/m2, the estimated LAI parameter values were very 
close to the initial values when more viewing angles were used for inversion (figure 
5.7, left panels). At higher LAI values, the deviation from the 1:1 line increased. A 
similar trend was observed for the estimation of LCC. For this parameter, especially 
estimations in the 20-50 µg/cm2 range were very close to the initial LCC values 
(figure 5.7, right panels). 
When only the nadir spectrum was used for the inversion, there were some 
inversions where the fitting algorithm saturated and the maximum LAI or LCC value 
was found as best solution. With additional viewing angles used for the inversion, 
this saturation did almost not occur anymore (compare the top panels of figure 5.7 
with the other panels). 
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Figure 5.7. Scatter plots showing the initial and estimated LAI (left panels) and LCC 
(right panels), based on inversion using solely the nadir spectrum (top panels) and 
the spectra at different angular configurations up to a VZA of 30° (lower panels). N = 
915. The dashed lines indicated the 1:1-line and the red line indicates the regression 
line. PP = principal plane, Hem = hemisphere, and Hs = hotspot. 

Similar trends were observed when the angular configurations with VZAs up to 60° 
and 75° were used for the inversion. In general, the best estimations of LAI and LCC 
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were obtained when VZAs up to 75° were introduced (figure 5.8). When VZAs up to 
75° were used for the inversion, combined with a higher density of viewing angles 
in the principal plane and around the hotspot, a reduction of the RMSE of 84.05% 
and 88.26% was obtained as compared to the use of only the nadir spectrum for 
LAI and LCC, respectively. 

 
Figure 5.8. RMSE between the initial and inverted LAI (a) and LCC (b) values for the 
spectra simulated at the different angular configurations. The percentages on top of 
the bars indicate the decrease of the RMSE, compared to inversion solely based on 
the spectrum simulated at nadir position. PP = principal plane, Hem = hemisphere, 
and Hs = hotspot. 

5.4 Discussion 

In this paper, we studied whether using multi-angular reflectance data compared 
to solely nadir data could improve estimations of LAI and LCC by inversion of the 
PROSAIL model. We tested this for a measured dataset collected by a camera 
mounted on a UAV and for several simulated datasets, where a UAV angular 
sampling configuration and several goniometer angular configurations were used 
as basis for the simulations. Overall, inversion of PROSAIL yielded good results for 
LAI retrieval, but rather poor results for LCC retrieval. Low LAI values were 
underestimated by the model inversion, whereas high LAI values were 
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overestimated. The range in LCC values was limited, making LCC retrieval 
cumbersome. Notably, the experimental plot with the lowest LAI retrieved (plot C) 
showed the largest retrieved LCC value. RTMs like PROSAIL contain sets of input 
variables that always appear in combination, such as products between variables 
as is, e.g., the case with LAI and LCC [157]. Similar reflectance spectra simulated by 
PROSAIL may therefore correspond to a wide range of solutions for LAI and LCC. A 
compensation between variables may occur for LAI and LCC estimates. An 
underestimate of LAI often goes together with an overestimation of LCC, and vice 
versa. 
For the measured dataset, which was collected over a potato field, small 
improvements of the estimations of LAI and LCC were obtained when inversion 
based on the reflectance spectra measured at all available viewing angles was 
compared to inversion based on the spectrum collected at nadir position. There are 
several possible explanations for having only small improvements in the case of the 
measured UAV data. For instance, there is the possibility that PROSAIL was not able 
to adequately reproduce spectral and/or anisotropy characteristics of the 
measured potato canopy. Although the PROSAIL model has been successfully used 
before to estimate biophysical and biochemical parameters of potato canopies 
[158,88], the model has difficulties reproducing the strong anisotropy caused by 
shadow effects in for example row crops [141]. However, since the potato canopy 
for most of the experimental plots was fully developed and was completely covering 
the soil at the time of data collection, these row induced shadow effects in our data 
were minimal. In addition, the selection of parameter settings could not have 
represented the actual situation properly. However, we have tested several other 
combinations of fixed and free parameter settings (results not shown), but the 
combination of the LAI and LCC as free parameters, together with the fixed values 
for the other parameters as in table 5.4, provided the best results. Care should be 
taken with drawing conclusions on these results, because only 8 plots were 
included in this part of the study. 
For the simulated datasets, on the contrary, large improvements were obtained 
when multi-angular reflectance spectra were used for inversion of the PROSAIL 
model to estimate LAI and LCC. The simulated UAV dataset provided a realistic 
angular sampling configuration that can easily be obtained by frame-based 
cameras. Since the input data in this case was created by the PROSAIL model, it can 
be excluded that the model was not able to reproduce the input data. Inversion of 
this dataset based on multi-angular data led to strong improvements in the 
estimations of LAI and LCC as compared to nadir data. Moreover, the simulated data 
for the goniometer angular configurations demonstrated that when more viewing 
angles, more well distributed viewing angles, and viewing angles up to greater 
zenith angles were available for inversion, the estimations of LAI and LCC improved 
even further. 
In this study, we did not search for the optimal number and positions of viewing 
angles that are needed to obtain the best inversion results. Weiss et al. [144] 
showed that a limited number of sampling directions resulted in improvement of 
vegetation parameter estimations. Using more observation directions would add 
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more redundant information, and thereby more noise to the input data, which in 
the end resulted in more uncertainty in the parameter retrieval. A similar effect was 
also observed in a study of Dorigo [141], who studied the improvement of LAI and 
LCC estimation of a cotton crop based on multi-angular CHRIS data. In this study, 
up to five viewing angles were iteratively added to be used for the inversion of the 
PROSAIL model. Adding the first four viewing angles resulted in a decrease in RMSE 
between measured and estimated LAI and LCC. However, when the fifth 
observation angle was used, a strong increase in RMSE was observed. Dorigo [141] 
attributed this decrease in accuracy to the inability of the PROSAIL model to 
correctly reproduce the anisotropy at this angle and argued that the model 
probably compensated for this with an unnatural variation of the LAI and LCC 
parameters. It could be possible that the PROSAIL model was not capable of 
correctly reproducing the reflectance anisotropy of the potato canopy that we used 
in this study, which therefore might have resulted in the limited improvement of 
the estimations of the LAI and LCC parameters based on multi-angular data. 
The processing time  for iterative inversion techniques are in general quite long, 
especially when the number of input data points or the number of variables to be 
estimated is large. As an example, the estimation of LAI and LCC based on inversion 
of a nadir spectrum (1 viewing angle times 16 bands, thus 16 input data points) 
took on average 1 s, while inversion based on multi-angular spectra measured by 
the UAV (as example 28 observation angles; thus 28  16 bands = 448 input data 
points) took on average 27 s. Moreover, iterative optimization techniques can suffer 
from finding a local minimum instead of a global minimum as solution to the inverse 
problem. However, we applied an iterative optimization technique in this study, 
since doing so made it possible to directly use all the available viewing angles. Other 
inversion techniques, such as lookup tables (LUTs) which do not suffer from finding 
a local minimum as solution, or artificial neural networks (ANNs) require to be 
remade or retrained, respectively, every time a new viewing angle is introduced. 
This issue could be overcome when for example a model-to-model approach [159] 
is applied. In such an approach, a more simple BRDF model that uses just a couple 
of parameters to describe the surface reflectance anisotropy is fitted through the 
multi-angular measurements and its parameters are estimated. Subsequently, the 
obtained parameters are used to simulate multi-angular reflectance data at a fixed 
set of viewing directions, which then can be used to invert the RTM. Such a strategy 
makes it possible to test different inversion techniques on the multi-angular data. 
However, it has to be noted that a model-to-model approach might also introduce 
new sources of error or uncertainty caused by the additional modelling step. 
Although the improvements of the estimations of LAI and LCC using the UAV data 
were small compared to the improvements obtained with the simulated data, it is 
shown in this study that the easy to obtain multi-angular views that are captured in 
the overlap of frame-based cameras can be used for improved estimation of LAI and 
LCC. In future studies, an exercise as performed in this study should be undertaken 
for different types of vegetation or crops to confirm this. Moreover, it should be 
tested whether the estimation of other vegetation parameters benefit from multi-
angular observations as well. 



96  Improved parameter estimations 

more redundant information, and thereby more noise to the input data, which in 
the end resulted in more uncertainty in the parameter retrieval. A similar effect was 
also observed in a study of Dorigo [141], who studied the improvement of LAI and 
LCC estimation of a cotton crop based on multi-angular CHRIS data. In this study, 
up to five viewing angles were iteratively added to be used for the inversion of the 
PROSAIL model. Adding the first four viewing angles resulted in a decrease in RMSE 
between measured and estimated LAI and LCC. However, when the fifth 
observation angle was used, a strong increase in RMSE was observed. Dorigo [141] 
attributed this decrease in accuracy to the inability of the PROSAIL model to 
correctly reproduce the anisotropy at this angle and argued that the model 
probably compensated for this with an unnatural variation of the LAI and LCC 
parameters. It could be possible that the PROSAIL model was not capable of 
correctly reproducing the reflectance anisotropy of the potato canopy that we used 
in this study, which therefore might have resulted in the limited improvement of 
the estimations of the LAI and LCC parameters based on multi-angular data. 
The processing time  for iterative inversion techniques are in general quite long, 
especially when the number of input data points or the number of variables to be 
estimated is large. As an example, the estimation of LAI and LCC based on inversion 
of a nadir spectrum (1 viewing angle times 16 bands, thus 16 input data points) 
took on average 1 s, while inversion based on multi-angular spectra measured by 
the UAV (as example 28 observation angles; thus 28  16 bands = 448 input data 
points) took on average 27 s. Moreover, iterative optimization techniques can suffer 
from finding a local minimum instead of a global minimum as solution to the inverse 
problem. However, we applied an iterative optimization technique in this study, 
since doing so made it possible to directly use all the available viewing angles. Other 
inversion techniques, such as lookup tables (LUTs) which do not suffer from finding 
a local minimum as solution, or artificial neural networks (ANNs) require to be 
remade or retrained, respectively, every time a new viewing angle is introduced. 
This issue could be overcome when for example a model-to-model approach [159] 
is applied. In such an approach, a more simple BRDF model that uses just a couple 
of parameters to describe the surface reflectance anisotropy is fitted through the 
multi-angular measurements and its parameters are estimated. Subsequently, the 
obtained parameters are used to simulate multi-angular reflectance data at a fixed 
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5.5 Conclusions 

In this paper, we studied the additional value of multi-angular observations for the 
retrieval of LAI and LCC by inversion of the PROSAIL model for three cases: 1) for 
data captured during a UAV flight, 2) for data simulated at the angular 
configurations that were captured during this UAV flight, and 3) for data simulated 
at angular configurations that are typically captured by goniometer systems. The 
results for the simulated data showed a clear improvement of the retrieved 
parameters in terms of RMSE and R2 when multi-angular observations were used, 
as compared to solely nadir data. The generally observed trend was that when more 
viewing angles, more well-distributed viewing angles, and viewing angles up to 
larger zenith angles were available, the most accurate inversion results were 
obtained. 
Inversion of the PROSAIL model based on measured multi-angular reflectance data 
of a potato field, collected by a frame-camera mounted on a UAV, also showed 
improvements of the estimations of LAI and LCC, compared to when solely nadir 
data was used. Although the improvements were not as large as for the simulated 
data, it does indicate that the multi-angular views, that can easily be collected by 
frame-cameras on UAVs, can help to improve parameter estimation, making such 
an approach interesting for operational use. In this paper, we only estimated 
parameters of a potato crops. Future studies should focus on the improvement of 
parameter retrieval by the inversion based on multi-angular reflectance data for 
different vegetation targets as well.  

Acknowledgements: This research was funded by a grant from the User Support 
Programme Space Research (GO/12-15) in The Netherlands. The authors would 
like to thank the Wageningen University & Research Unmanned Aerial Remote 
Sensing Facility (UARSF) for providing the UAV and sensor system used in this 
study. In addition, the authors thank Jacob van den Borne for the preparation of and 
access to the experimental field and Marnix van den Brande for doing the LAI and 
LCC measurements. 





 

 
 
 
Chapter 6 

6 Synthesis 

  



100  Synthesis 

6.1 Main results 

The main objective of this thesis was to study the information content of the 
reflectance anisotropy signal for improved crop parameter retrieval and to study 
how UAVs can be used for this. Based on this objective, four research questions 
were defined (section 1.3). In this chapter, each research question will be addressed 
based on the main findings as presented in chapters 2-5. 

6.1.1 What is the effect of soil moisture content on reflectance 
anisotropy? 

This research question was addressed in chapter 2. Soil moisture content (SMC) is 
an important parameter for many environmental, ecological, and agricultural 
practices, and therefore knowledge on the distribution of soil moisture at high 
temporal and spatial scales is of interest for many applications. Optical remote 
sensing methods to study SMC typically relate changes in reflectance to soil 
moisture based on empirically or physically based models. However, in most 
studies soil reflectance anisotropy is not taken into account. Moreover, little is 
known about the information content of the reflectance anisotropy signal in 
relation to SMC. 
To study the effects of SMC, we developed a laboratory experiment, where multi-
angular reflectance measurements in the 350-2500 nm wavelength region were 
taken of several soil samples at a variety of SMC levels, using a robotic goniometer 
setup [15]. At the start of the experiment, the soil samples were saturated with 
water and they were placed on a digital balance in the centre of the goniometer 
setup. Multi-angular reflectance measurements of the soil samples were 
repetitively taken at a set of 60 positions covering the hemisphere up to view zenith 
angles of 65°, while the soil samples were left to dry out. Using the known weight 
of the dry soil samples and of the added water, and the weight at the time that a 
reflectance measurement was taken, the SMC level was linked to each reflectance 
measurement. The measured anisotropy patterns at each wavelength in the 
captured wavelength range was parameterized and quantified by the parameters 
of the Rahman-Pinty-Verstraete (RPV) model [66]. Then, the relation between the 
RPV parameters and SMC was studied to see if, and how, the SMC level affects 
reflectance anisotropy. 
It is known that when the SMC level increases, the reflectance decreases [45,47]. 
This has been confirmed in several studies, e.g. [42,54,53], and was also clearly 
visible in our measurements. The higher the SMC level, the lower the observed 
reflectance factor. The amplitude parameter 𝜌𝜌0 of the RPV model, which closely 
relates to the nadir reflectance, followed this trend. At higher SMC levels, a lower 
value of 𝜌𝜌0 was found, especially in the water absorption bands around 1450 and 
1900 nm. This resulted in a maximum R2 of 0.622 at 1921 nm between SMC and the 
𝜌𝜌0 parameter. 
The relation between the parameters of the RPV model that describe the reflectance 
anisotropy, namely the asymmetry parameter (𝛩𝛩), which controls the intensity of 
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forward and backward scattering, the Minnaert parameter (𝑘𝑘), which controls the 
bell-shape and bowl-shape of the anisotropy curve, and the hotspot parameter (𝜌𝜌𝑐𝑐), 
which approximates the reflectance around the hotspot position, were also studied. 
Especially, the 𝛩𝛩 parameter showed a strong relationship to SMC level. Where dry 
soil samples showed a higher reflectance in the backward scattering direction, with 
a maximum reflectance at the hotspot position, soil samples with a higher SMC level 
showed less pronounced backward scattering. This relationship was observed for 
the whole measured wavelength range, but was most pronounced at the NIR and 
SWIR region, resulting in a maximum observed R2 of 0.797 between SMC and the 𝛩𝛩 
parameter at 2123 nm. Besides that the results of the performed experiment 
demonstrated that SMC has a strong influence on reflectance anisotropy and 
therefore needs to be taken into account when optical remote sensing methods are 
used to study SMC, the results also indicated that reflectance anisotropy contains 
information on SMC and might therefore be used for improved estimation of SMC 
using optical remote sensing methods. 

6.1.2 How can UAVs be used to study reflectance anisotropy? 

This research question was addressed in chapters 3 and 4. Whereas goniometers 
are suitable devices for multi-angular measurements of flat surfaces, like soils, such 
as measured in chapter 2, their ground-based design typically limits the sensor-
target distance, which does not allow them to take representative multi-angular 
measurements of surfaces with a strong three dimensional structure, such as 
vegetation or crops. To overcome this issue, we studied the opportunities to 
capture multi-angular measurements using a UAV. The flexibility of UAVs enables 
measurements taken with a greater distance between the target and sensor, 
allowing sampling the anisotropy of surfaces with a strong three dimensional 
structure. Until now, the number of attempts to perform multi-angular 
measurements using UAVs is very limited. 
We explored the collection of UAV-based multi-angular reflectance measurements 
by testing two different sensor systems. The first system, which was used in chapter 
3, was the Hyperspectral Mapping System (HYMSY) [91]. This system consist of a 
pushbroom spectrometer, a photogrammetric camera, and a miniature GPS-Inertial 
Navigation System. The spectrometer has a field of view (FOV) of 42.4°, making it 
possible to capture reflectance at off-nadir view angles. 
To capture the anisotropy of several crops (barley, potato, and winter wheat), we 
developed a flight plan where the UAV was programmed to fly to the centres of the 
crop fields. In the centre of the fields, the UAV was programmed to hover at 
approximately 10 meters above ground level (AGL), while rotating around its 
vertical axis. In this way, the spectrometer, which was mounted tilted at a 12° angle 
under the UAV, was able to capture measurements up to a view zenith angle (VZA) 
of approximately 30°, while covering all azimuth directions. Using this 
measurement strategy we assumed that the area that was captured in the FOV of 
the sensor was homogeneous. This strategy is similar as, for example, applied at 
goniometers like AMSPEC [28-30] and PARABOLA [31]. By fitting the RPV model 
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through the measurements, we were able to parameterize and quantify the 
anisotropy of the studied crops in the measured wavelength range covered by the 
sensor (450 – 915 nm at a 5-nm interval), enabling to study anisotropy at a 
hyperspectral resolution. 
Although the above described measurement strategy allows capturing the average 
anisotropy signal of the area covered by the sensor, it does not allow for an insight 
in the spatial distribution or variation of the reflectance anisotropy within a field, 
i.e., it does not allow for the creation of anisotropy maps. In order to do this, we 
tested a second system in chapter 4, where a snapshot camera was used to collect 
multi-angular observations. The used camera applies Fabry-Perot interferometer 
(FPI) technology to collect snapshot imagery at programmatically selectable bands. 
The camera has a horizontal and vertical FOV of 36.5° and collects images of 1010 
 1010 pixels. The measurement strategy applied in this chapter was to extract the 
reflectance factors at view angles that were captured in the overlapping parts of 
collected images during a standard mapping flight. 
By applying this measurement strategy over a potato field, we were able to capture 
views in the study area up to approximately 30° zenith angles, covering all azimuth 
directions. Pixels in the centre of our study area were captured in up to 40 different 
images, which thus resulted in up to 40 different view angles for these pixels. By 
fitting the RPV model through the multi-angular measurements, we were able to 
quantify the anisotropy of each pixel in our study area. Moreover, this enabled us 
to create anisotropy parameter maps, which gave an insight in the spatial 
distribution of anisotropy patterns within the area covered by the UAV. 
In chapter 3 and 4, we have shown for two different sensor systems that reflectance 
anisotropy can be captured with a UAV. This showed that UAV-based multi-angular 
measurements could be an interesting alternative for traditional goniometer or 
satellite-based multi-angular measurements. 

6.1.3 What is the effect of canopy development on reflectance 
anisotropy?  

This research question was addressed in chapters 3 and 4. To explore the 
information content of reflectance anisotropy of agricultural crops, it is important 
to study what the effects of canopy development of crops are on reflectance 
anisotropy. To do so, we applied the two UAV-based multi-angular measurement 
strategies as described in section 6.1.2 on multiple days during the growing season. 
Multi-angular measurements with the pushbroom system (chapter 3) were 
performed twice during the growing season of 2015 over a barley, potato, and 
winter wheat canopy. There was a time difference of 22 days between the 
measurements during which several canopy developments had taken place for the 
different crops. Whereas on the first measurement day, the top layer of both the 
barley and the winter wheat canopy was mainly formed by leaves, on the second 
measurement day both crops had developed grain heads. The grain heads of the 
barley crops had large awns and were bended downwards, while the grain heads of 
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the winter wheat did not have such large awns and were vertically orientated. The 
potato canopy had developed from an open row structure, where the soil was still 
visible between the potato rows, to a canopy that was completely covering the soil. 
On the first measurement day, before the development of grain heads, both barley 
and winter wheat showed very similar anisotropic reflectance patterns, which were 
mainly dominated by backward scattering. This backward scattering was strongest 
in the visible wavelengths, with emphasis on the red wavelength region, where 
shadow effects are strongest due to high absorption of light by chlorophyll in this 
region. This backward scattering was less pronounced in the NIR region as a result 
of the relatively low absorption of light by chlorophyll, and therefore higher 
transmittance and reflectance by the leaves in this wavelength region, and thus less 
pronounced shadows. When plotting the 𝛩𝛩 parameter as a function of wavelength, 
this resulted in an anisotropy signature having the shape of a vegetation spectral 
signature. On the second measurement day, when the grain heads had developed, a 
change in anisotropy was observed too. This was especially the case for the barley 
canopy, of which the top layer was now formed by downward bended grain heads 
with large awns, where a strong decrease of backward scattering intensity was 
observed in the visible wavelength region. 
For the potato canopy also clear changes in anisotropy were observed when the 
canopy had developed from an open row structure on the first measuring day to a 
closed canopy on the second measuring day. On the first day, strong shadows 
caused by the row structure of the canopy were observed, resulting in a negative 𝛩𝛩 
parameter value over the whole sampled wavelength range. On the second day, the 
space between the potato rows had disappeared due to the growth of the potato 
plants, which resulted in a strong decrease of anisotropy being most obvious 
through a decrease of backward scattering as indicated by a 𝛩𝛩 value of 
approximately 0 (indicating no dominating forward or backward scattering 
reflectance) over the whole measured wavelength region. 
Multi-angular measurements performed with a snapshot camera mounted on a 
UAV were presented in chapter 4. The measurements were taken on two days 
during the growing season of 2016 over a potato field where different initial (before 
planting) and sensor-based (during crop growth) fertilization regimes were 
applied to eight experimental plots, which resulted in differences in the growth of 
the potato plants and thus in different stages of canopy development within each 
experimental plot. By fitting the RPV model through the pixels that were captured 
in multiple images, we were able to create anisotropy parameter maps of the potato 
field. The relation between leaf area index (LAI) and canopy cover, and the obtained 
RPV parameters in each plot, was determined to study their influence reflectance 
anisotropy. On the first measurement day, when the potato rows were still being 
formed (i.e., the potato plants were still quite small and did not form a complete 
row, especially in experimental plots where no or low fertilization was applied), we 
observed the strongest backward scattering intensity in the experimental plots that 
had the highest canopy cover. In the plots with higher cover, there were no gaps 
between the individual plants due to the bigger size of the potato plants. Plots with 
a lower canopy cover, where there were still gaps in the potato rows, showed less 
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pronounced backward scattering. The gaps in the potato rows resulted in less 
strong row-induced shadow effects, and therefore a less pronounced contrast 
between the forward and backward scattering views, and thus a less pronounced 
backward scattering intensity. 
On the second measurement day, 40 days later, we observed in general a decrease 
of backward scattering with an increase of canopy cover. In this case, this was the 
result of the closing of the space between consecutive potato rows, which had as a 
result that the strong shadows caused by the potato rows were no longer present. 
This effect was similar as was observed in the measurements of chapter 3. 
Overall, the UAV-based multi-angular measurements presented in chapter 3 and 4 
demonstrated for three different crops that canopy development results in changes 
in anisotropy. Therefore, it indicates that the reflectance anisotropy signal contains 
information on canopy development. 

6.1.4 How can reflectance anisotropy be used to improve crop 
parameter retrieval? 

This research question was addressed in chapter 5. Using the RPV model in chapter 
3 and 4, we demonstrated that different crops and different growth stages of these 
crops result in a variety anisotropy patterns. This indicates that reflectance 
anisotropy contains information on crop type and their growing stage. In chapter 5, 
we studied if using multi-angular observations can be used to improve crop 
parameter retrieval using the PROSAIL model. 
We compared numerical inversions of the PROSAIL model to estimate LAI and leaf 
chlorophyll content (LCC) based on nadir data and based on multi-angular data. We 
tested this for the dataset of chapter 4 and for several datasets simulated by the 
PROSAIL model at a variety of view angle configurations that can be captured with 
a snapshot camera mounted on a UAV, and that can be captured using typical 
goniometer systems. For the measured dataset, we observed minor improvements 
between the estimated LAI and LCC when multi-angular data were used for the 
inversion of the PROSAIL model as compared to when nadir data were used. 
Reasons for the minor improvements can be, for example, limitations of the 
PROSAIL model to accurately reproduce the measured spectral and angular 
reflectance [141], or errors and uncertainties spectral measurements —either way, 
a possible mismatch between the measurements and the model. For the simulated 
datasets, we observed very large improvements in the estimation of LAI and LCC 
when multi-angular data were used for the inversion as compared to when only 
nadir data were used. When multi-angular data simulated at view angles that can 
easily be captured during a typical UAV flight, as is demonstrated in chapter 4, were 
used for inversion, already large improvements of the estimated LAI and LCC were 
achieved. Moreover, when more view angles, more widely distributed view angles, 
and view angles up to greater zenith angles were available, the inversion accuracy 
increased even further. This indicated that when it can be assumed that the used 
model can reproduce the input data (as was the case with these data because they 



104  Synthesis 

pronounced backward scattering. The gaps in the potato rows resulted in less 
strong row-induced shadow effects, and therefore a less pronounced contrast 
between the forward and backward scattering views, and thus a less pronounced 
backward scattering intensity. 
On the second measurement day, 40 days later, we observed in general a decrease 
of backward scattering with an increase of canopy cover. In this case, this was the 
result of the closing of the space between consecutive potato rows, which had as a 
result that the strong shadows caused by the potato rows were no longer present. 
This effect was similar as was observed in the measurements of chapter 3. 
Overall, the UAV-based multi-angular measurements presented in chapter 3 and 4 
demonstrated for three different crops that canopy development results in changes 
in anisotropy. Therefore, it indicates that the reflectance anisotropy signal contains 
information on canopy development. 

6.1.4 How can reflectance anisotropy be used to improve crop 
parameter retrieval? 

This research question was addressed in chapter 5. Using the RPV model in chapter 
3 and 4, we demonstrated that different crops and different growth stages of these 
crops result in a variety anisotropy patterns. This indicates that reflectance 
anisotropy contains information on crop type and their growing stage. In chapter 5, 
we studied if using multi-angular observations can be used to improve crop 
parameter retrieval using the PROSAIL model. 
We compared numerical inversions of the PROSAIL model to estimate LAI and leaf 
chlorophyll content (LCC) based on nadir data and based on multi-angular data. We 
tested this for the dataset of chapter 4 and for several datasets simulated by the 
PROSAIL model at a variety of view angle configurations that can be captured with 
a snapshot camera mounted on a UAV, and that can be captured using typical 
goniometer systems. For the measured dataset, we observed minor improvements 
between the estimated LAI and LCC when multi-angular data were used for the 
inversion of the PROSAIL model as compared to when nadir data were used. 
Reasons for the minor improvements can be, for example, limitations of the 
PROSAIL model to accurately reproduce the measured spectral and angular 
reflectance [141], or errors and uncertainties spectral measurements —either way, 
a possible mismatch between the measurements and the model. For the simulated 
datasets, we observed very large improvements in the estimation of LAI and LCC 
when multi-angular data were used for the inversion as compared to when only 
nadir data were used. When multi-angular data simulated at view angles that can 
easily be captured during a typical UAV flight, as is demonstrated in chapter 4, were 
used for inversion, already large improvements of the estimated LAI and LCC were 
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were made by the PROSAIL model) improvements in parameter retrieval can be 
achieved. 
Although improvements of LAI and LCC were not as pronounced for the measured 
dataset as for the simulated dataset, we did show that crop parameter retrieval can 
be improved when multi-angular data are used. Moreover, the multi-angular data 
used in this chapter were collected during a standard UAV mapping flight, meaning 
that it is relatively easy to obtain these multi-angular views, without the need to fly 
complicated flight patterns or changing the view direction of the sensor during the 
flight. UAV-based studies that focus on parameter retrieval might therefore benefit 
from the multiple view angles that are ‘always’ captured by frame cameras. 

6.2 Reflection and Outlook 

6.2.1 Reflection 
The research performed in this thesis was motivated by the need for high quality 
estimation of physical vegetation parameters at a fine spatial resolution for 
applications such as agriculture. Moreover, this thesis explored the use of UAVs to 
capture reflectance anisotropy, as an alternative for traditional ground-based 
goniometer and space-borne multi-angular measurements. The results presented 
in this thesis contribute to the following topics: 

1. Insights in the effects of surface characteristics on reflectance anisotropy, 
as demonstrated for SMC content in chapter 2 and for several vegetation 
parameters as demonstrated in chapter 3 and 4.  

2. Innovative measurement strategies to perform multi-angular 
measurements using a UAV with different sensor systems, as 
demonstrated in chapter 3 and 4. 

3. Additional value of multi-angular observations for improved parameter 
retrieval as demonstrated in chapter 5. 

6.2.2 Soil moisture content 
In chapter 2, the effects of SMC on reflectance anisotropy have been studied. In the 
experiment performed for this chapter, the soil moisture content was the only 
varied parameter, which made it possible to isolate the contribution of SMC to 
reflectance anisotropy. Soil reflectance anisotropy, however, is the result of several 
other soil properties, such as soil surface roughness, and soil organic matter content 
[41]. Especially, the confounding effects of soil surface roughness and SMC make it 
difficult to quantify the contributions of each parameter individually when both are 
varied.  
Due to the flat surface of the soil samples studied in this thesis, the soil samples 
could be measured using a ground-based goniometer. To study the combined 
contributions of both SMC and soil roughness on reflectance anisotropy, a 
measurement approach with a frame-based camera mounted on a UAV, such as 
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demonstrated in chapter 4, could be applied. The overlap of the images collected by 
a frame-based camera does not only allow for the creation of a multi-angular spatial 
dataset, it would also allow for the creation a detailed digital surface model (DSM), 
which can provide a reliable representation of soil surface roughness [160,161]. 
The multi-angular data combined with the DSM can provide an insight in the 
reflectance anisotropy and surface roughness on a pixel basis, and would, in 
combination with a suitable sampling scheme for in situ measurements of SMC, be 
a feasible method to study the combined effect of SMC and soil roughness on 
reflectance anisotropy. 

6.2.3 Measurement scale 
In the pre-launch phase of the Multi-angle Imaging Spectrometer (MISR) and the 
Compact High Resolution Imaging Spectrometer (CHRIS) and the period after the 
launch, reflectance anisotropy and BRDF received a lot of attention. Especially the 
additional information content of multi-angular observations with respect to 
vegetation structure was widely studied in this period [13,162,32]. The period after 
this, with the emergence of techniques such as LiDAR, which can provide accurate 
information of the structure of vegetation [163], the interest in this topic faded 
away again. However, recently, a new trend in the field of remote sensing has 
emerged with the advent of UAVs. UAVs have rapidly developed into a robust and 
widely used tool for remote sensing research. UAVs provide, in contrast to satellites, 
data at a very high spatial resolution, making them in particular useful for 
applications such as precision agriculture.  
The photogrammetric processing of data collected by UAVs relies on the overlap of 
images that are collected during a UAV flight. This overlap results in multi-angular 
views of pixels that are captured in the multiple images, due to the movement of the 
UAV during data collection. In most studies, these multiple view angles are ignored. 
However, in this thesis, we have shown that there is information on surface 
parameters in these multi-angular views. Depending on the used sensor and the 
height flown AGL during data collection, multi-angular measurements with a very 
high spatial resolution, up to a centimetre scale, can be obtained. For example, 
figure 6.1, shows multi-angular data collected with a UAV over four reference 
panels using a similar strategy as applied in chapter 4. A flight with different 
headings over the panels was executed to collect observations that cover multiple 
azimuth angles (figure 6.1b). The panels were 50  50 cm and were captured at a 
ground sampling distance (GSD) of approximately 8 cm. Panels 1 and 3 were 
covered with gravel, and panels 2 and 4 were covered with glossy and matte paint, 
respectively (figure 6.1c,d). The 𝑘𝑘, 𝛩𝛩, and 𝜌𝜌𝑐𝑐  parameters obtained by fitting the RPV 
parameters through the multi-angular data in the red band (658 nm) clearly 
showed distinctive values for the different panels (figure 6.1e). Of the four panels, 
the gravel covered panels showed the strongest backward scattering 
characteristics, indicated by the strongest negative 𝛩𝛩 values for the pixels of these 
panels (figure 6.1e, middle image). Interestingly, the smooth wooden edges of the 
panels displayed forward scattering characteristics, as can be seen by the positive 
𝛩𝛩 values at the edges of the panels. The matte-painted panel, like the gravel covered 
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panels, also showed backward scattering characteristics, however, less pronounced 
as indicated by the slightly negative 𝛩𝛩 values (i.e. 𝛩𝛩 values just below 0) for this 
panel. The glossy panel, on the contrary, showed strong forward scattering 
characteristics, indicated by the positive 𝛩𝛩 values for the pixels of this panel. 
Moreover, the bowl / bell shape parameter (𝑘𝑘), and the hotspot parameter (𝜌𝜌𝑐𝑐) also 
indicated distinctive anisotropy patterns for the different panels. 

 
Figure 6.1. A stack of individual ortho- and georectified RGB composite images 
collected during a UAV flight over four reference panels (a) and the number of 
observations for each pixel covered during this flight (b). The black rectangle 
indicates the location of the reference panels. Photos of the reference panels (c) and 
a close-up RGB composite of the panels at a GSD of approximately 8 cm (d). The 𝛩𝛩, 𝑘𝑘, 
and 𝜌𝜌𝑐𝑐  parameters obtained by fitting the RPV model though the multi-angular views 
captured by the UAV in the red band (658 nm), similar as done in chapter 4 (e). 
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The fine GSD that can be obtained by sensors carried by UAVs provides a whole new 
spatial scale for multi-angular measurements as opposed to satellite-based multi-
angular measurements, which typically have a coarse spatial resolution, and 
goniometers that usually only provide information of the reflectance anisotropy of 
a single point. The spatial support of UAV-based measurements with frame-based 
cameras allows for the sampling of reflectance anisotropy at the plant level, making 
it therefore possible to study in detail the effect of vegetation parameters on 
reflectance anisotropy. 

6.2.4 Zenith angle range 
In this thesis, UAV-based multi-angular measurements have only been collected up 
to a VZA of approximately 30°. Using multi-angular measurements up to this limited 
VZA for inversion of the PROSAIL model already improved the estimation of crop 
parameters, compared to nadir measurements (chapter 5). However, we have also 
shown using simulated data, that observations at larger VZAs can improve 
parameter estimation even further. In future studies, sampling up to larger VZAs 
needs to be explored to capture a more complete view of the reflectance anisotropy 
and thereby achieve even more improved parameter estimations with measured 
data. This could, for example, be done by mounting sensors tilted under UAVs, to 
capture larger VZAs in their FOV, like we already tested with a pushbroom 
spectrometer in chapter 3. Such tilting strategy could also be applied to frame-
based cameras. In this way, pixels near the edge of the FOV of the camera in the 
direction of the tilt will be viewed at larger zenith angles. Flying with different 
headings over a target area would thereby result in larger VZAs in multiple azimuth 
directions. Similarly, mounting a frame-based camera on a gimbal would allow the 
capturing of larger VZAs if the UAV is flown over and around a target surface while 
the camera is actively pointed towards the centre of this surface, forming a 
goniometer angular sampling scheme [36]. Moreover, to get a higher density of 
angular measurements, different flight patterns that not necessarily focus on 
mapping, such as demonstrated in figure 6.1, can be explored.  

6.2.5 Anisotropy correction 
Applications such as time series analysis, change detection, and crop growth 
monitoring require data with high spatio-temporal continuity, consistency, and 
quality. Currently, a multitude of satellite data is already available and this 
availability will increase enormously in the near future. To obtain the required 
temporal resolution for such applications, increased use has to be made of data 
collected by a combination of sensors onboard different satellites, collected during 
different orbits and thus at different observation and illumination geometries. This 
makes information on surface anisotropy of great importance. Multi-sensor data 
integration techniques currently are requiring algorithms correcting for surface 
anisotropy effects. An example of such corrected product is the nadir BRDF 
adjusted reflectance (NBAR) [72,11], which uses multi-angular reflectance data 
collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) 
onboard the Terra and Aqua satellites, accumulated over a period of 16 days, to 
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determine per pixel the reflectance as if they were observed from nadir view. The 
multi-angular views that are collected in the overlap of images acquired by a frame-
based camera on a UAV could also be used to determine the reflectance per pixel at 
a standardized viewing and illumination geometry, which is necessary to make data 
collected at different time points directly comparable.  
In this thesis, it is shown that anisotropy effects not only depend on the type of 
surface, like crop type or soil, but also on the canopy development stage and soil 
moisture level, indicating that anisotropy corrections should be highly dynamic. 
This still requires a lot of research in the future. 

6.2.6 Multi-angular UAV-based measurements for precision 
agriculture 

The main goal of precision agriculture is to reduce production costs and enhance 
sustainability while maintaining (or increasing) yields by applying fertilizers, 
pesticides, or irrigation at the right time and location with the right amounts [164]. 
Although satellite remote sensing is an important tool for the monitoring of 
agricultural fields, the relatively low spatial and temporal resolution of satellite 
products is not sufficient for precision management of crops [165]. The low 
operational costs and high operational flexibility of UAVs make them an interesting 
alternative to traditional satellite platforms [166]. Due to their relatively low flight 
height AGL, UAVs can provide measurements of crops at a centimetre scale, 
enabling the mapping and monitoring of individual plants.  
Currently, most precision agricultural products based on data collected by optical 
sensors mounted on UAVs are maps of Vegetation Indices (VIs) like the Normalized 
Difference Vegetation Index (NDVI), representing the crop’s health status of a 
particular field at a particular point in time. VIs are correlated to, for example, 
nutrient deficiency or water stress, and they can therefore identify areas in a field 
where plants may not develop up to their full potential. However, VIs do not 
adequately characterize vegetation as they are sensitive to the used sensor, the time 
of observation, and the crop under investigation. On the other hand, biophysical 
parameters adequately reflect the actual state of the crops. For accurate precision 
management of crops, information on their biophysical characteristics is of great 
importance to better serve the needs of individual plants.  
High resolution UAV-based observations in combination with radiative transfer 
models (RTMs), such as the PROSAIL model as applied in chapter 5, are a valuable 
tool for the estimation of biophysical crop parameters. The number of studies 
where biophysical crop parameters are estimated using RTMs in combination with 
data collected with UAVs is still very limited and requires more research in the 
future. 
Inversion of RTMs based on spectral data to obtain biophysical parameters is not 
straight forward [167]. The inversion of RTMs is an ill-posed problem due to 
measurement and model uncertainties [136], and due to the issue that different 
combinations of biophysical parameters may result in similar reflectance spectra 
[137,138]. Hence, inversion of an RTM based on spectral data may result in a range 
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of possible solutions. As demonstrated in chapter 5, the introduction of multi-
angular observations can help to improve the estimation of biophysical crop 
parameters. Frame-based cameras mounted on UAVs collect multi-angular views in 
the overlapping areas in the images that are captured during data acquisition [148]. 
These multi-angular observations can be utilized to produce more accurate maps 
of biophysical crop parameters, which will be beneficial for the field of precision 
agriculture. Future research should focus on different crops in addition to the 
potato crop that was studied in chapter 5, on the estimation of other biophysical 
parameters that are relevant for precision agriculture in addition to LAI and LCC, 
and on investigating robust and computationally efficient RTM inversion schemes. 
 



110  Synthesis 

of possible solutions. As demonstrated in chapter 5, the introduction of multi-
angular observations can help to improve the estimation of biophysical crop 
parameters. Frame-based cameras mounted on UAVs collect multi-angular views in 
the overlapping areas in the images that are captured during data acquisition [148]. 
These multi-angular observations can be utilized to produce more accurate maps 
of biophysical crop parameters, which will be beneficial for the field of precision 
agriculture. Future research should focus on different crops in addition to the 
potato crop that was studied in chapter 5, on the estimation of other biophysical 
parameters that are relevant for precision agriculture in addition to LAI and LCC, 
and on investigating robust and computationally efficient RTM inversion schemes. 
 

References   111 

References 

1. Schaepman, M.E.; Ustin, S.L.; Plaza, A.J.; Painter, T.H.; Verrelst, J.; Liang, S. 
(2009). Earth system science related imaging spectroscopy-An 
assessment. Remote Sensing of Environment, 113(SUPPL. 1), S123-S137. 

2. Inoue, Y. (2003). Synergy of remote sensing and modeling for estimating 
ecophysiological processes in plant production. Plant Production Science, 
6(1), 3-16. 

3. Pinter Jr, P.J.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; 
Daughtry, C.S.T.; Upchurch, D.R. (2003). Remote sensing for crop 
management. Photogrammetric Engineering and Remote Sensing, 69(6), 
647-664. 

4. Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; 
Martonchik, J.V. (2006). Reflectance quantities in optical remote sensing-
definitions and case studies. Remote Sensing of Environment, 103(1), 27-42. 

5. Barnsley, M.J.; Allison, D.; Lewis, P. (1997). On the information content of 
multiple view angle (MVA) images. International Journal of Remote Sensing, 
18(9), 1937-1960. 

6. Kimes, D.S. (1983). Dynamics of directional reflectance factor distributions 
for vegetation canopies. Applied Optics, 22(9), 1364-1372. 

7. Sandmeier, S.; Müller, C.; Hosgood, B.; Andreoli, G. (1998). Physical 
mechanisms in hyperspectral BRDF data of grass and watercress. Remote 
Sensing of Environment, 66(2), 222-233. 

8. Schaepman, M.E. (2007). Spectrodirectional remote sensing: From pixels 
to processes. International Journal of Applied Earth Observation and 
Geoinformation, 9(2), 204-223. 

9. Bacour, C.; Bréon, F.M.; Maignan, F. (2006). Normalization of the 
directional effects in NOAA-AVHRR reflectance measurements for an 
improved monitoring of vegetation cycles. Remote Sensing of Environment, 
102(3-4), 402-413. 

10. Roy, D.P.; Zhang, H.K.; Ju, J.; Gomez-Dans, J.L.; Lewis, P.E.; Schaaf, C.B.; Sun, 
Q.; Li, J.; Huang, H.; Kovalskyy, V. (2016). A general method to normalize 
Landsat reflectance data to nadir BRDF adjusted reflectance. Remote 
Sensing of Environment, 176, 255-271. 

 
 
 



112  References 

11. Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; 
Zhang, X.; Jin, Y.; Muller, J.P.; Lewis, P.; Barnsley, M.; Hobson, P.; Disney, M.; 
Roberts, G.; Dunderdale, M.; Doll, C.; D'Entremont, R.P.; Hu, B.; Liang, S.; 
Privette, J.L.; Roy, D. (2002). First operational BRDF, albedo nadir 
reflectance products from MODIS. Remote Sensing of Environment, 83(1-2), 
135-148. 

12. Vermote, E.; Justice, C.O.; Bréon, F.M. (2009). Towards a generalized 
approach for correction of the BRDF effect in MODIS directional 
reflectances. IEEE Transactions on Geoscience and Remote Sensing, 47(3), 
898-908. 

13. Asner, G.P. (2000). Contributions of multi-view angle remote sensing to 
land-surface and biogeochemical research. Remote Sensing Reviews, 18(2), 
137-162. 

14. Barnsley, M.J.; Lewis, P.; O'Dwyer, S.; Disney, M.I.; Hobson, P.; Cutter, M.; 
Lobb, D. (2000). On the potential of CHRIS/PROBA for estimating 
vegetation canopy properties from space. Remote Sensing Reviews, 19(1-4), 
171-189. 

15. Roosjen, P.P.J.; Clevers, J.G.P.W.; Bartholomeus, H.M.; Schaepman, M.E.; 
Schaepman-Strub, G.; Jalink, H.; van der Schoor, R.; de Jong, A. (2012). A 
laboratory goniometer system for measuring reflectance and emittance 
anisotropy. Sensors, 12(12), 17358-17371. 

16. Diner, D.J.; Beckert, J.C.; Reilly, T.H.; Bruegge, C.J.; Conel, J.E.; Kahn, R.A.; 
Martonchik, J.V.; Ackerman, T.P.; Davies, R.; Gerstl, S.A.W.; Gordon, H.R.; 
Muller, J.P.; Myneni, R.B.; Sellers, P.J.; Pinty, B.; Verstraete, M.M. (1998). 
Multi-angle imaging spectroradiometer (MISR) instrument description 
and experiment overview. IEEE Transactions on Geoscience and Remote 
Sensing, 36(4), 1072-1087. 

17. Barnsley, M.J.; Settle, J.J.; Cutter, M.A.; Lobb, D.R.; Teston, F. (2004). The 
PROBA/CHRIS mission: A low-cost smallsat for hyperspectral multiangle 
observations of the earth surface and atmosphere. IEEE Transactions on 
Geoscience and Remote Sensing, 42(7), 1512-1520. 

18. Nag, S. (2013). Design and analysis of distribute NANO-satellite systems for 
multi-angular, multi-spectral earth observation. In: Proceedings of the 
International Astronautical Congress, IAC, 2013; pp 4327-4340. 

19. Zhang, C.; Kovacs, J.M. (2012). The application of small unmanned aerial 
systems for precision agriculture: A review. Precision Agriculture, 13(6), 
693-712. 

20. Biliouris, D.; Verstraeten, W.W.; Dutré, P.; Van Aardt, J.A.N.; Muys, B.; 
Coppin, P. (2007). A Compact Laboratory Spectro-Goniometer (CLabSpeG) 
to assess the BRDF of materials. Presentation, calibration and 
implementation on Fagus sylvatica L. leaves. Sensors, 7(9), 1846-1870. 



112  References 

11. Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; 
Zhang, X.; Jin, Y.; Muller, J.P.; Lewis, P.; Barnsley, M.; Hobson, P.; Disney, M.; 
Roberts, G.; Dunderdale, M.; Doll, C.; D'Entremont, R.P.; Hu, B.; Liang, S.; 
Privette, J.L.; Roy, D. (2002). First operational BRDF, albedo nadir 
reflectance products from MODIS. Remote Sensing of Environment, 83(1-2), 
135-148. 

12. Vermote, E.; Justice, C.O.; Bréon, F.M. (2009). Towards a generalized 
approach for correction of the BRDF effect in MODIS directional 
reflectances. IEEE Transactions on Geoscience and Remote Sensing, 47(3), 
898-908. 

13. Asner, G.P. (2000). Contributions of multi-view angle remote sensing to 
land-surface and biogeochemical research. Remote Sensing Reviews, 18(2), 
137-162. 

14. Barnsley, M.J.; Lewis, P.; O'Dwyer, S.; Disney, M.I.; Hobson, P.; Cutter, M.; 
Lobb, D. (2000). On the potential of CHRIS/PROBA for estimating 
vegetation canopy properties from space. Remote Sensing Reviews, 19(1-4), 
171-189. 

15. Roosjen, P.P.J.; Clevers, J.G.P.W.; Bartholomeus, H.M.; Schaepman, M.E.; 
Schaepman-Strub, G.; Jalink, H.; van der Schoor, R.; de Jong, A. (2012). A 
laboratory goniometer system for measuring reflectance and emittance 
anisotropy. Sensors, 12(12), 17358-17371. 

16. Diner, D.J.; Beckert, J.C.; Reilly, T.H.; Bruegge, C.J.; Conel, J.E.; Kahn, R.A.; 
Martonchik, J.V.; Ackerman, T.P.; Davies, R.; Gerstl, S.A.W.; Gordon, H.R.; 
Muller, J.P.; Myneni, R.B.; Sellers, P.J.; Pinty, B.; Verstraete, M.M. (1998). 
Multi-angle imaging spectroradiometer (MISR) instrument description 
and experiment overview. IEEE Transactions on Geoscience and Remote 
Sensing, 36(4), 1072-1087. 

17. Barnsley, M.J.; Settle, J.J.; Cutter, M.A.; Lobb, D.R.; Teston, F. (2004). The 
PROBA/CHRIS mission: A low-cost smallsat for hyperspectral multiangle 
observations of the earth surface and atmosphere. IEEE Transactions on 
Geoscience and Remote Sensing, 42(7), 1512-1520. 

18. Nag, S. (2013). Design and analysis of distribute NANO-satellite systems for 
multi-angular, multi-spectral earth observation. In: Proceedings of the 
International Astronautical Congress, IAC, 2013; pp 4327-4340. 

19. Zhang, C.; Kovacs, J.M. (2012). The application of small unmanned aerial 
systems for precision agriculture: A review. Precision Agriculture, 13(6), 
693-712. 

20. Biliouris, D.; Verstraeten, W.W.; Dutré, P.; Van Aardt, J.A.N.; Muys, B.; 
Coppin, P. (2007). A Compact Laboratory Spectro-Goniometer (CLabSpeG) 
to assess the BRDF of materials. Presentation, calibration and 
implementation on Fagus sylvatica L. leaves. Sensors, 7(9), 1846-1870. 

References   113 

21. Feingersh, T.; Ben-Dor, E.; Filin, S. (2010). Correction of reflectance 
anisotropy: A multi-sensor approach. International Journal of Remote 
Sensing, 31(1), 49-74. 

22. Bachmann, C.M.; Abelev, A.; Montes, M.J.; Philpot, W.; Gray, D.; Doctor, K.Z.; 
Fusina, R.A.; Mattis, G.; Chen, W.; Noble, S.D.; Coburn, C.; Corl, T.; Slomer, L.; 
Nichols, C.R.; van Roggen, E.; Hughes, R.J.; Carr, S.; Kharabash, S.; Brady, A.; 
Vermillion, M. (2016). Flexible field goniometer system: the Goniometer 
for Outdoor Portable Hyperspectral Earth Reflectance. Journal of Applied 
Remote Sensing, 10(3), 036012-036012. 

23. Coburn, C.A.; Peddle, D.R. (2006). A low-cost field and laboratory 
goniometer system for estimating hyperspectral bidirectional reflectance. 
Canadian Journal of Remote Sensing, 32(3), 244-253. 

24. Deering, D.W.; Leone, P. (1986). A sphere-scanning radiometer for rapid 
directional measurements of sky and ground radiance. Remote Sensing of 
Environment, 19(1), 1-24. 

25. Painter, T.H.; Paden, B.; Dozier, J. (2003). Automated spectro-goniometer: 
A spherical robot for the field measurement of the directional reflectance 
of snow. Review of Scientific Instruments, 74(12), 5179-5188. 

26. Sandmeier, S.R.; Itten, K.I. (1999). A field goniometer system (FIGOS) for 
acquisition of hyperspectral BRDF data. Geoscience and Remote Sensing, 
IEEE Transactions on, 37(2), 978-986. 

27. Suomalainen, J.; Hakala, T.; Peltoniemi, J.; Puttonen, E. (2009). Polarised 
multiangular reflectance measurements using the finnish geodetic 
institute field goniospectrometer. Sensors, 9(5), 3891-3907. 

28. Hilker, T.; Coops, N.C.; Nesic, Z.; Wulder, M.A.; Black, A.T. (2007). 
Instrumentation and approach for unattended year round tower based 
measurements of spectral reflectance. Computers and Electronics in 
Agriculture, 56(1), 72-84. 

29. Hilker, T.; Nesic, Z.; Coops, N.C.; Lessard, D. (2010). A new, automated, 
multiangular radiometer instrument for tower-based observations of 
canopy reflectance (AMSPEC II). Instrumentation Science and Technology, 
38(5), 319-340. 

30. Tortini, R.; Hilker, T.; Coops, N.C.; Nesic, Z. (2015). Technological 
advancement in tower-based canopy reflectance monitoring: The 
AMSPEC-III system. Sensors, 15(12), 32020-32030. 

31. Bruegge, C.J.; Helmlinger, M.C.; Conel, J.E.; Gaitley, B.J.; Abdou, W.A. (2000). 
Parabola III: A sphere-scanning radiometer for field determination of 
surface anisotropic reflectance functions. Remote Sensing Reviews, 19(1-4), 
75-94. 

32. Walthall, C.; Roujean, J.L.; Morisette, J. (2000). Field and landscape BRDF 
optical wavelength measurements: Experience, techniques and the future. 
Remote Sensing Reviews, 18(2), 503-531. 



114  References 

33. Sandmeier, S.; Müller, C.; Hosgood, B.; Andreoli, G. (1998). Sensitivity 
analysis and quality assessment of laboratory BRDF data. Remote Sensing 
of Environment, 64(2), 176-191. 

34. Wang, Z.; Coburn, C.A.; Ren, X.; Teillet, P.M. (2012). Effect of soil surface 
roughness and scene components on soil surface bidirectional reflectance 
factor. Canadian Journal of Soil Science, 92(2), 297-313. 

35. Colomina, I.; Molina, P. (2014). Unmanned aerial systems for 
photogrammetry and remote sensing: A review. ISPRS Journal of 
Photogrammetry and Remote Sensing, 92, 79-97. 

36. Burkart, A.; Aasen, H.; Alonso, L.; Menz, G.; Bareth, G.; Rascher, U. (2015). 
Angular dependency of hyperspectral measurements over wheat 
characterized by a novel UAV based goniometer. Remote Sensing, 7(1), 725-
746. 

37. Grenzdörffer, G.J.; Niemeyer, F. (2011). UAV based brdf-measurements of 
agricultural surfaces with pfiffikus. In: International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS 
Archives, 2011; pp 229-234. 

38. Hakala, T.; Suomalainen, J.; Peltoniemi, J.I. (2010). Acquisition of 
bidirectional reflectance factor dataset using a micro unmanned aerial 
vehicle and a consumer camera. Remote Sensing, 2(3), 819-832. 

39. Sandmeier, S.R.; Itten, K.I. (1999). A field goniometer system (FIGOS) for 
acquisition of hyperspectral BRDF data. IEEE Transactions on Geoscience 
and Remote Sensing, 37(2 II), 978-986. 

40. Wang, L.; Qu, J.J. (2009). Satellite remote sensing applications for surface 
soil moisture monitoring: A review. Frontiers of Earth Science in China, 
3(2), 237-247. 

41. Croft, H.; Anderson, K.; Kuhn, N.J. (2014). Evaluating the influence of 
surface soil moisture and soil surface roughness on optical directional 
reflectance factors. European Journal of Soil Science, 65(4), 605-612. 

42. Lobell, D.B.; Asner, G.P. (2002). Moisture effects on soil reflectance. Soil 
Science Society of America Journal, 66(3), 722-727. 

43. Somers, B.; Gysels, V.; Verstraeten, W.W.; Delalieux, S.; Coppin, P. (2010). 
Modelling moisture-induced soil reflectance changes in cultivated sandy 
soils: A case study in citrus orchards. European Journal of Soil Science, 
61(6), 1091-1105. 

44. Sadeghi, M.; Jones, S.B.; Philpot, W.D. (2015). A linear physically-based 
model for remote sensing of soil moisture using short wave infrared bands. 
Remote Sensing of Environment, 164, 66-76. 

 
 
 



114  References 

33. Sandmeier, S.; Müller, C.; Hosgood, B.; Andreoli, G. (1998). Sensitivity 
analysis and quality assessment of laboratory BRDF data. Remote Sensing 
of Environment, 64(2), 176-191. 

34. Wang, Z.; Coburn, C.A.; Ren, X.; Teillet, P.M. (2012). Effect of soil surface 
roughness and scene components on soil surface bidirectional reflectance 
factor. Canadian Journal of Soil Science, 92(2), 297-313. 

35. Colomina, I.; Molina, P. (2014). Unmanned aerial systems for 
photogrammetry and remote sensing: A review. ISPRS Journal of 
Photogrammetry and Remote Sensing, 92, 79-97. 

36. Burkart, A.; Aasen, H.; Alonso, L.; Menz, G.; Bareth, G.; Rascher, U. (2015). 
Angular dependency of hyperspectral measurements over wheat 
characterized by a novel UAV based goniometer. Remote Sensing, 7(1), 725-
746. 

37. Grenzdörffer, G.J.; Niemeyer, F. (2011). UAV based brdf-measurements of 
agricultural surfaces with pfiffikus. In: International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS 
Archives, 2011; pp 229-234. 

38. Hakala, T.; Suomalainen, J.; Peltoniemi, J.I. (2010). Acquisition of 
bidirectional reflectance factor dataset using a micro unmanned aerial 
vehicle and a consumer camera. Remote Sensing, 2(3), 819-832. 

39. Sandmeier, S.R.; Itten, K.I. (1999). A field goniometer system (FIGOS) for 
acquisition of hyperspectral BRDF data. IEEE Transactions on Geoscience 
and Remote Sensing, 37(2 II), 978-986. 

40. Wang, L.; Qu, J.J. (2009). Satellite remote sensing applications for surface 
soil moisture monitoring: A review. Frontiers of Earth Science in China, 
3(2), 237-247. 

41. Croft, H.; Anderson, K.; Kuhn, N.J. (2014). Evaluating the influence of 
surface soil moisture and soil surface roughness on optical directional 
reflectance factors. European Journal of Soil Science, 65(4), 605-612. 

42. Lobell, D.B.; Asner, G.P. (2002). Moisture effects on soil reflectance. Soil 
Science Society of America Journal, 66(3), 722-727. 

43. Somers, B.; Gysels, V.; Verstraeten, W.W.; Delalieux, S.; Coppin, P. (2010). 
Modelling moisture-induced soil reflectance changes in cultivated sandy 
soils: A case study in citrus orchards. European Journal of Soil Science, 
61(6), 1091-1105. 

44. Sadeghi, M.; Jones, S.B.; Philpot, W.D. (2015). A linear physically-based 
model for remote sensing of soil moisture using short wave infrared bands. 
Remote Sensing of Environment, 164, 66-76. 

 
 
 

References   115 

45. Angstrom, A. (1925). The albedo of various surfaces of ground. Geogr. Ann., 
7, 323-342. 

46. Twomey, S.A.; Bohren, C.F.; Mergenthaler, J.L. (1986). Reflectance and 
albedo differences between wet and dry surfaces. Appl. Opt., 25(3), 431-
437. 

47. Lekner, J.; Dorf, M.C. (1988). Why some things are darker when wet. 
Applied Optics, 27(7), 1278-1280. 

48. Bach, H.; Mauser, W. (1994). Modelling and model verification of the 
spectral reflectance of soils under varying moisture conditions. In: 
International Geoscience and Remote Sensing Symposium (IGARSS), 1994; 
pp 2354-2356. 

49. Anderson, K.; Croft, H. (2009). Remote sensing of soil surface properties. 
Progress in Physical Geography, 33(4), 457-473. 

50. Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, 
M.L.; Sommer, S. (2009). Using Imaging Spectroscopy to study soil 
properties. Remote Sensing of Environment, 113(SUPPL. 1), S38-S55. 

51. Bartholomeus, H.M.; Schaepman, M.E.; Kooistra, L.; Stevens, A.; Hoogmoed, 
W.B.; Spaargaren, O.S.P. (2008). Spectral reflectance based indices for soil 
organic carbon quantification. Geoderma, 145(1-2), 28-36. 

52. Muller, E.; Décamps, H. (2001). Modeling soil moisture - Reflectance. 
Remote Sensing of Environment, 76(2), 173-180. 

53. Weidong, L.; Baret, F.; Xingfa, G.; Qingxi, T.; Lanfen, Z.; Bing, Z. (2002). 
Relating soil surface moisture to reflectance. Remote Sensing of 
Environment, 81(2-3), 238-246. 

54. Nolet, C.; Poortinga, A.; Roosjen, P.P.J.; Bartholomeus, H.M.; Ruessink, G. 
(2014). Measuring and modeling the effect of surface moisture on the 
spectral reflectance of coastal beach sand. PLoS ONE, 9(11), e112151. 

55. Philpot, W.D. (2010). Spectral reflectance of wetted soils. Symposium: "Art, 
Science and Applications of Reflectance Spectroscopy (ASARS)". 

56. Weidong, L.; Baret, F.; Xingfa, G.; Bing, Z.; Qingxi, T.; Lanfen, Z. (2003). 
Evaluation of methods for soil surface moisture estimation from 
reflectance data. International Journal of Remote Sensing, 24(10), 2069-
2083. 

57. Haubrock, S.N.; Chabrillat, S.; Lemmnitz, C.; Kaufmann, H. (2008). Surface 
soil moisture quantification models from reflectance data under field 
conditions. International Journal of Remote Sensing, 29(1), 3-29. 

58. Lesaignoux, A.; Fabre, S.; Briottet, X. (2013). Influence of soil moisture 
content on spectral reflectance of bare soils in the 0.4-14 μm domain. 
International Journal of Remote Sensing, 34(7), 2268-2285. 

 
 



116  References 

59. Chappell, A.; Strong, C.; McTainsh, G.; Leys, J. (2007). Detecting induced in 
situ erodibility of a dust-producing playa in Australia using a bi-directional 
soil spectral reflectance model. Remote Sensing of Environment, 106(4), 
508-524. 

60. Chappell, A.; Zobeck, T.M.; Brunner, G. (2006). Using bi-directional soil 
spectral reflectance to model soil surface changes induced by rainfall and 
wind-tunnel abrasion. Remote Sensing of Environment, 102(3-4), 328-343. 

61. Rosendahl, S.; Casselgren, J.; Sjödahl, M. (2013). Simplified model for light 
scattering from granular materials with varying moisture content. Applied 
Optics, 52(17), 4006-4012. 

62. Hapke, B. (1981). Bidirectional reflectance spectroscopy. 1. Theory. J. 
Geophys. Res., 86(4 B), 3039-3054. 

63. Pinty, B.; Verstraete, M.M.; Dickinson, R.E. (1989). A physical model for 
predicting bidirectional reflectances over bare soil. Remote Sensing of 
Environment, 27(3), 273-288. 

64. Jacquemoud, S.; Baret, F.; Hanocq, J.F. (1992). Modeling spectral and 
bidirectional soil reflectance. Remote Sensing of Environment, 41(2-3), 123-
132. 

65. Daughtry, C.S.T.; Hunt Jr, E.R. (2008). Mitigating the effects of soil and 
residue water contents on remotely sensed estimates of crop residue 
cover. Remote Sensing of Environment, 112(4), 1647-1657. 

66. Rahman, H.; Pinty, B.; Verstraete, M.M. (1993). Coupled surface-
atmosphere reflectance (CSAR) model 2. Semiempirical surface model 
usable with NOAA advanced very high resolution radiometer data. Journal 
of Geophysical Research, 98(D11), 20,791-720,801. 

67. Henyey, L.G.; Greenstein, J.L. (1941). Diffuse radiation in the galaxy. 
Astrophys. J., 93, 70-83. 

68. Kay, S.; Hedley, J.D.; Lavender, S. (2009). Sun glint correction of high and 
low spatial resolution images of aquatic scenes: A review of methods for 
visible and near-infrared wavelengths. Remote Sensing, 1(4), 697-730. 

69. Cox, C.; Munk, W. (1954). Measurement of the roughness of the sea surface 
from photographs of the sun's glitter. J. Opt. Soc. Am., 44(11), 838-850. 

70. Oltra-Carrió, R.; Baup, F.; Fabre, S.; Fieuzal, R.; Briottet, X. (2015). 
Improvement of soil moisture retrieval from hyperspectral VNIR-SWIR 
data using clay content information: From laboratory to field experiments. 
Remote Sensing, 7(3), 3184-3205. 

71. Weyermann, J.; Damm, A.; Kneubuhler, M.; Schaepman, M.E. (2014). 
Correction of reflectance anisotropy effects of vegetation on airborne 
spectroscopy data and derived products. IEEE Transactions on Geoscience 
and Remote Sensing, 52(1), 616-627. 



116  References 

59. Chappell, A.; Strong, C.; McTainsh, G.; Leys, J. (2007). Detecting induced in 
situ erodibility of a dust-producing playa in Australia using a bi-directional 
soil spectral reflectance model. Remote Sensing of Environment, 106(4), 
508-524. 

60. Chappell, A.; Zobeck, T.M.; Brunner, G. (2006). Using bi-directional soil 
spectral reflectance to model soil surface changes induced by rainfall and 
wind-tunnel abrasion. Remote Sensing of Environment, 102(3-4), 328-343. 

61. Rosendahl, S.; Casselgren, J.; Sjödahl, M. (2013). Simplified model for light 
scattering from granular materials with varying moisture content. Applied 
Optics, 52(17), 4006-4012. 

62. Hapke, B. (1981). Bidirectional reflectance spectroscopy. 1. Theory. J. 
Geophys. Res., 86(4 B), 3039-3054. 

63. Pinty, B.; Verstraete, M.M.; Dickinson, R.E. (1989). A physical model for 
predicting bidirectional reflectances over bare soil. Remote Sensing of 
Environment, 27(3), 273-288. 

64. Jacquemoud, S.; Baret, F.; Hanocq, J.F. (1992). Modeling spectral and 
bidirectional soil reflectance. Remote Sensing of Environment, 41(2-3), 123-
132. 

65. Daughtry, C.S.T.; Hunt Jr, E.R. (2008). Mitigating the effects of soil and 
residue water contents on remotely sensed estimates of crop residue 
cover. Remote Sensing of Environment, 112(4), 1647-1657. 

66. Rahman, H.; Pinty, B.; Verstraete, M.M. (1993). Coupled surface-
atmosphere reflectance (CSAR) model 2. Semiempirical surface model 
usable with NOAA advanced very high resolution radiometer data. Journal 
of Geophysical Research, 98(D11), 20,791-720,801. 

67. Henyey, L.G.; Greenstein, J.L. (1941). Diffuse radiation in the galaxy. 
Astrophys. J., 93, 70-83. 

68. Kay, S.; Hedley, J.D.; Lavender, S. (2009). Sun glint correction of high and 
low spatial resolution images of aquatic scenes: A review of methods for 
visible and near-infrared wavelengths. Remote Sensing, 1(4), 697-730. 

69. Cox, C.; Munk, W. (1954). Measurement of the roughness of the sea surface 
from photographs of the sun's glitter. J. Opt. Soc. Am., 44(11), 838-850. 

70. Oltra-Carrió, R.; Baup, F.; Fabre, S.; Fieuzal, R.; Briottet, X. (2015). 
Improvement of soil moisture retrieval from hyperspectral VNIR-SWIR 
data using clay content information: From laboratory to field experiments. 
Remote Sensing, 7(3), 3184-3205. 

71. Weyermann, J.; Damm, A.; Kneubuhler, M.; Schaepman, M.E. (2014). 
Correction of reflectance anisotropy effects of vegetation on airborne 
spectroscopy data and derived products. IEEE Transactions on Geoscience 
and Remote Sensing, 52(1), 616-627. 

References   117 

72. Lucht, W.; Schaaf, C.B.; Strahler, A.H. (2000). An algorithm for the retrieval 
of albedo from space using semiempirical BRDF models. IEEE Transactions 
on Geoscience and Remote Sensing, 38(2 II), 977-998. 

73. Kneubühler, M.; Koetz, B.; Huber, S.; Schaepman, M.E.; Zimmermann, N.E. 
(2008). Space-based spectrodirectional measurements for the improved 
estimation of ecosystem variables. Canadian Journal of Remote Sensing, 
34(3), 192-205. 

74. Wang, Y.; Li, G.; Ding, J.; Guo, Z.; Tang, S.; Liu, R.; Chen, J. (2016). A combined 
GLAS and MODIS estimation of the global distribution of mean forest 
canopy height. Remote Sensing of Environment, 174, 24-43. 

75. Chen, J.M.; Menges, C.H.; Leblanc, S.G. (2005). Global mapping of foliage 
clumping index using multi-angular satellite data. Remote Sensing of 
Environment, 97(4), 447-457. 

76. He, L.; Chen, J.M.; Pisek, J.; Schaaf, C.B.; Strahler, A.H. (2012). Global 
clumping index map derived from the MODIS BRDF product. Remote 
Sensing of Environment, 119, 118-130. 

77. Roosjen, P.P.J.; Bartholomeus, H.M.; Clevers, J.G.P.W. (2015). Effects of soil 
moisture content on reflectance anisotropy - Laboratory goniometer 
measurements and RPV model inversions. Remote Sensing of Environment, 
170, 229-238. 

78. Koukal, T.; Atzberger, C.; Schneider, W. (2014). Evaluation of semi-
empirical BRDF models inverted against multi-angle data from a digital 
airborne frame camera for enhancing forest type classification. Remote 
Sensing of Environment, 151, 27-43. 

79. Bachmann, C.M.; Abelev, A.; Montes, M.J.; Philpot, W.; Gray, D.; Doctor, K.Z.; 
Fusina, R.A.; Mattis, G.; Chen, W.; Noble, S.D.; Coburn, C.; Corl, T.; Slomer, L.; 
Nichols, C.R.; Roggen, E.V.; Hughes, R.J.; Carr, S.; Kharabash, S.; Brady, A.; 
Vermillion, M. (2016). Flexible field goniometer system: The Goniometer 
for Outdoor Portable Hyperspectral Earth Reflectance. Journal of Applied 
Remote Sensing, 10(3). 

80. Sandmeier, S.R.; Strahler, A.H. (2000). BRDF laboratory measurements. 
Remote Sensing Reviews, 18(2), 481-502. 

81. Dangel, S.; Verstraete, M.M.; Schopfer, J.; Kneubühler, M.; Schaepman, M.; 
Itten, K.I. (2005). Toward a direct comparison of field and laboratory 
goniometer measurements. IEEE Transactions on Geoscience and Remote 
Sensing, 43(11), 2666-2675. 

82. Milton, E.J.; Schaepman, M.E.; Anderson, K.; Kneubühler, M.; Fox, N. (2009). 
Progress in field spectroscopy. Remote Sensing of Environment, 113(SUPPL. 
1), S92-S109. 

83. Shahbazi, M.; Théau, J.; Ménard, P. (2014). Recent applications of 
unmanned aerial imagery in natural resource management. GIScience and 
Remote Sensing, 51(4), 339-365. 



118  References 

84. Verger, A.; Vigneau, N.; Che´ron, C.; Gilliot, J.M.; Comar, A.; Baret, F. (2014). 
Green area index from an unmanned aerial system over wheat and 
rapeseed crops. Remote Sensing of Environment, 152, 654-664. 

85. Gevaert, C.M.; Suomalainen, J.; Tang, J.; Kooistra, L. (2015). Generation of 
Spectral-Temporal Response Surfaces by Combining Multispectral Satellite 
and Hyperspectral UAV Imagery for Precision Agriculture Applications. 
IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing, 8(6), 3140-3146. 

86. Huang, Y.B.; Thomson, S.J.; Hoffmann, W.C.; Lan, Y.B.; Fritz, B.K. (2013). 
Development and prospect of unmanned aerial vehicle technologies for 
agricultural production management. International Journal of Agricultural 
and Biological Engineering, 6(3), 1-10. 

87. Honkavaara, E.; Eskelinen, M.A.; Polonen, I.; Saari, H.; Ojanen, H.; Mannila, 
R.; Holmlund, C.; Hakala, T.; Litkey, P.; Rosnell, T.; Viljanen, N.; Pulkkanen, 
M. (2016). Remote Sensing of 3-D Geometry and Surface Moisture of a Peat 
Production Area Using Hyperspectral Frame Cameras in Visible to Short-
Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne 
Vehicle (UAV). IEEE Transactions on Geoscience and Remote Sensing, 54(9), 
5440-5454. 

88. Duan, S.B.; Li, Z.L.; Wu, H.; Tang, B.H.; Ma, L.; Zhao, E.; Li, C. (2014). 
Inversion of the PROSAIL model to estimate leaf area index of maize, 
potato, and sunflower fields from unmanned aerial vehicle hyperspectral 
data. International Journal of Applied Earth Observation and 
Geoinformation, 26(1), 12-20. 

89. Rasmussen, J.; Ntakos, G.; Nielsen, J.; Svensgaard, J.; Poulsen, R.N.; 
Christensen, S. (2016). Are vegetation indices derived from consumer-
grade cameras mounted on UAVs sufficiently reliable for assessing 
experimental plots? European Journal of Agronomy, 74, 75-92. 

90. Brede, B.; Suomalainen, J.; Bartholomeus, H.; Herold, M. (2015). Influence 
of solar zenith angle on the enhanced vegetation index of a Guyanese 
rainforest. Remote Sensing Letters, 6(12), 972-981. 

91. Suomalainen, J.; Anders, N.; Iqbal, S.; Roerink, G.; Franke, J.; Wenting, P.; 
Hünniger, D.; Bartholomeus, H.; Becker, R.; Kooistra, L. (2014). A 
lightweight hyperspectral mapping system and photogrammetric 
processing chain for unmanned aerial vehicles. Remote Sensing, 6(11), 
11013-11030. 

92. Verrelst, J.; Clevers, J.G.P.W.; Schaepman, M.E. (2010). Merging the 
Minnaert-k parameter with spectral unmixing to map forest heterogeneity 
with CHRIS/PROBA data. IEEE Transactions on Geoscience and Remote 
Sensing, 48(11), 4014-4022. 

93. Widlowski, J.L.; Pinty, B.; Gobron, N.; Verstraete, M.M.; Diner, D.J.; Davis, 
A.B. (2004). Canopy structure parameters derived from multi-angular 
remote sensing data for terrestrial carbon studies. Climatic Change, 67(2-
3), 403-415. 



118  References 

84. Verger, A.; Vigneau, N.; Che´ron, C.; Gilliot, J.M.; Comar, A.; Baret, F. (2014). 
Green area index from an unmanned aerial system over wheat and 
rapeseed crops. Remote Sensing of Environment, 152, 654-664. 

85. Gevaert, C.M.; Suomalainen, J.; Tang, J.; Kooistra, L. (2015). Generation of 
Spectral-Temporal Response Surfaces by Combining Multispectral Satellite 
and Hyperspectral UAV Imagery for Precision Agriculture Applications. 
IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing, 8(6), 3140-3146. 

86. Huang, Y.B.; Thomson, S.J.; Hoffmann, W.C.; Lan, Y.B.; Fritz, B.K. (2013). 
Development and prospect of unmanned aerial vehicle technologies for 
agricultural production management. International Journal of Agricultural 
and Biological Engineering, 6(3), 1-10. 

87. Honkavaara, E.; Eskelinen, M.A.; Polonen, I.; Saari, H.; Ojanen, H.; Mannila, 
R.; Holmlund, C.; Hakala, T.; Litkey, P.; Rosnell, T.; Viljanen, N.; Pulkkanen, 
M. (2016). Remote Sensing of 3-D Geometry and Surface Moisture of a Peat 
Production Area Using Hyperspectral Frame Cameras in Visible to Short-
Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne 
Vehicle (UAV). IEEE Transactions on Geoscience and Remote Sensing, 54(9), 
5440-5454. 

88. Duan, S.B.; Li, Z.L.; Wu, H.; Tang, B.H.; Ma, L.; Zhao, E.; Li, C. (2014). 
Inversion of the PROSAIL model to estimate leaf area index of maize, 
potato, and sunflower fields from unmanned aerial vehicle hyperspectral 
data. International Journal of Applied Earth Observation and 
Geoinformation, 26(1), 12-20. 

89. Rasmussen, J.; Ntakos, G.; Nielsen, J.; Svensgaard, J.; Poulsen, R.N.; 
Christensen, S. (2016). Are vegetation indices derived from consumer-
grade cameras mounted on UAVs sufficiently reliable for assessing 
experimental plots? European Journal of Agronomy, 74, 75-92. 

90. Brede, B.; Suomalainen, J.; Bartholomeus, H.; Herold, M. (2015). Influence 
of solar zenith angle on the enhanced vegetation index of a Guyanese 
rainforest. Remote Sensing Letters, 6(12), 972-981. 

91. Suomalainen, J.; Anders, N.; Iqbal, S.; Roerink, G.; Franke, J.; Wenting, P.; 
Hünniger, D.; Bartholomeus, H.; Becker, R.; Kooistra, L. (2014). A 
lightweight hyperspectral mapping system and photogrammetric 
processing chain for unmanned aerial vehicles. Remote Sensing, 6(11), 
11013-11030. 

92. Verrelst, J.; Clevers, J.G.P.W.; Schaepman, M.E. (2010). Merging the 
Minnaert-k parameter with spectral unmixing to map forest heterogeneity 
with CHRIS/PROBA data. IEEE Transactions on Geoscience and Remote 
Sensing, 48(11), 4014-4022. 

93. Widlowski, J.L.; Pinty, B.; Gobron, N.; Verstraete, M.M.; Diner, D.J.; Davis, 
A.B. (2004). Canopy structure parameters derived from multi-angular 
remote sensing data for terrestrial carbon studies. Climatic Change, 67(2-
3), 403-415. 

References   119 

94. Wassenaar, T.; Andrieux, P.; Baret, F.; Robbez-Masson, J.M. (2005). Soil 
surface infiltration capacity classification based on the bi-directional 
reflectance distribution function sampled by aerial photographs. The case 
of vineyards in a Mediterranean area. Catena, 62(2-3), 94-110. 

95. Biliouris, D.; van der Zande, D.; Verstraeten, W.W.; Stuckens, J.; Muys, B.; 
Dutré, P.; Coppin, P. (2009). RPV model parameters based on hyperspectral 
bidirectional reflectance measurements of Fagus sylvatica L. Leaves. 
Remote Sensing, 1(2), 92-106. 

96. R Core Team (2016). R: A Language and Environment for Statistical 
Computing. R Foundation for Statistical Computing: Vienna, Austria. 

97. Breunig, F.M.; Galvão, L.S.; Formaggio, A.R.; Epiphanio, J.C.N. (2011). 
Directional effects on NDVI and LAI retrievals from MODIS: A case study in 
Brazil with soybean. International Journal of Applied Earth Observation and 
Geoinformation, 13(1), 34-42. 

98. Alonso, L.; Moreno, J.; Leroy, M. (2001). BRDF signatures from polder data. 
In: European Space Agency, (Special Publication) ESA SP, 2001; p 183. 

99. Jackson, R.D.; Teillet, P.M.; Slater, P.N.; Fedosejevs, G.; Jasinski, M.F.; Aase, 
J.K.; Moran, M.S. (1990). Bidirectional measurements of surface reflectance 
for view angle corrections of oblique imagery. Remote Sensing of 
Environment, 32(2-3), 189-202. 

100. Zhou, K.; Guo, Y.; Geng, Y.; Zhu, Y.; Cao, W.; Tian, Y. (2014). Development of 
a novel bidirectional canopy reflectance model for row-planted rice and 
wheat. Remote Sensing, 6, 7632-7659. 

101. Huang, W.; Wang, Z.; Huang, L.; Lamb, D.W.; Ma, Z.; Zhang, J.; Wang, J.; Zhao, 
C. (2011). Estimation of vertical distribution of chlorophyll concentration 
by bi-directional canopy reflectance spectra in winter wheat. Precision 
Agriculture, 12(2), 165-178. 

102. Sun, T.; Fang, H.; Liu, W.; Ye, Y. (2017). Impact of water background on 
canopy reflectance anisotropy of a paddy rice field from multi-angle 
measurements. Agricultural and Forest Meteorology, 233, 143-152. 

103. Hill, M.J.; Averill, C.; Jiao, Z.; Schaaf, C.B.; Armston, J.D. (2008). Relationship 
of MISR RPV parameters and MODIS BRDF shape indicators to surface 
vegetation patterns in an Australian tropical savanna. Canadian Journal of 
Remote Sensing, 34(SUPPL. 2), S247-S267. 

104. Lavergne, T.; Kaminski, T.; Pinty, B.; Taberner, M.; Gobron, N.; Verstraete, 
M.M.; Vossbeck, M.; Widlowski, J.L.; Giering, R. (2007). Application to MISR 
land products of an RPV model inversion package using adjoint and 
Hessian codes. Remote Sensing of Environment, 107(1-2), 362-375. 

105. Bousquet, L.; Lachérade, S.; Jacquemoud, S.; Moya, I. (2005). Leaf BRDF 
measurements and model for specular and diffuse components 
differentiation. Remote Sensing of Environment, 98(2-3), 201-211. 

 



120  References 

106. Huang, W.; Niu, Z.; Wang, J.; Liu, L.; Zhao, C.; Liu, Q. (2006). Identifying crop 
leaf angle distribution based on two-temporal and bidirectional canopy 
reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44(12), 
3601-3608. 

107. Roujean, J.L.; Leroy, M.; Deschamps, P.Y. (1992). A bidirectional reflectance 
model of the Earth's surface for the correction of remote sensing data. 
Journal of Geophysical Research, 97(D18), 20,455-420,468. 

108. Brown De Colstoun, E.C.; Walthall, C.L. (2006). Improving global scale land 
cover classifications with multi-directional POLDER data and a decision 
tree classifier. Remote Sensing of Environment, 100(4), 474-485. 

109. Duca, R.; Del Frate, F. (2008). Hyperspectral and multiangle CHRIS-PROBA 
images for the generation of land cover maps. IEEE Transactions on 
Geoscience and Remote Sensing, 46(10), 2857-2866. 

110. Su, L.; Huang, Y.; Chopping, M.J.; Rango, A.; Martonchik, J.V. (2009). An 
empirical study on the utility of BRDF model parameters and topographic 
parameters for mapping vegetation in a semi-arid region with MISR 
imagery. International Journal of Remote Sensing, 30(13), 3463-3483. 

111. Wang, L.; Dong, T.; Zhang, G.; Niu, Z. (2013). LAI retrieval using PROSAIL 
model and optimal angle combination of multi-angular data in wheat. IEEE 
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 
6(3), 1730-1736. 

112. Painter, T.H.; Dozier, J. (2004). Measurements of the hemispherical-
directional reflectance of snow at fine spectral and angular resolution. 
Journal of Geophysical Research Atmospheres, 109(18), D18115 18111-
18121. 

113. Peltoniemi, J.I.; Kaasalainen, S.; Näränen, J.; Matikainen, L.; Piironen, J. 
(2005). Measurement of directional and spectral signatures of light 
reflectance by snow. IEEE Transactions on Geoscience and Remote Sensing, 
43(10), 2294-2304. 

114. Miller, I.; Forster, B.C.; Laffan, S.W.; Brander, R.W. (2016). Bidirectional 
reflectance of coral growth-forms. International Journal of Remote Sensing, 
37(7), 1553-1567. 

115. Roosjen, P.P.J.; Suomalainen, J.M.; Bartholomeus, H.M.; Clevers, J.G.P.W. 
(2016). Hyperspectral reflectance anisotropy measurements using a 
pushbroom spectrometer on an unmanned aerial vehicle—Results for 
barley, winter wheat, and potato. Remote Sensing, 8(11), 909. 

116. Näsi, R.; Honkavaara, E.; Lyytikäinen-Saarenmaa, P.; Blomqvist, M.; Litkey, 
P.; Hakala, T.; Viljanen, N.; Kantola, T.; Tanhuanpää, T.; Holopainen, M. 
(2015). Using UAV-based photogrammetry and hyperspectral imaging for 
mapping bark beetle damage at tree-level. Remote Sensing, 7(11), 15467-
15493. 



120  References 

106. Huang, W.; Niu, Z.; Wang, J.; Liu, L.; Zhao, C.; Liu, Q. (2006). Identifying crop 
leaf angle distribution based on two-temporal and bidirectional canopy 
reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44(12), 
3601-3608. 

107. Roujean, J.L.; Leroy, M.; Deschamps, P.Y. (1992). A bidirectional reflectance 
model of the Earth's surface for the correction of remote sensing data. 
Journal of Geophysical Research, 97(D18), 20,455-420,468. 

108. Brown De Colstoun, E.C.; Walthall, C.L. (2006). Improving global scale land 
cover classifications with multi-directional POLDER data and a decision 
tree classifier. Remote Sensing of Environment, 100(4), 474-485. 

109. Duca, R.; Del Frate, F. (2008). Hyperspectral and multiangle CHRIS-PROBA 
images for the generation of land cover maps. IEEE Transactions on 
Geoscience and Remote Sensing, 46(10), 2857-2866. 

110. Su, L.; Huang, Y.; Chopping, M.J.; Rango, A.; Martonchik, J.V. (2009). An 
empirical study on the utility of BRDF model parameters and topographic 
parameters for mapping vegetation in a semi-arid region with MISR 
imagery. International Journal of Remote Sensing, 30(13), 3463-3483. 

111. Wang, L.; Dong, T.; Zhang, G.; Niu, Z. (2013). LAI retrieval using PROSAIL 
model and optimal angle combination of multi-angular data in wheat. IEEE 
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 
6(3), 1730-1736. 

112. Painter, T.H.; Dozier, J. (2004). Measurements of the hemispherical-
directional reflectance of snow at fine spectral and angular resolution. 
Journal of Geophysical Research Atmospheres, 109(18), D18115 18111-
18121. 

113. Peltoniemi, J.I.; Kaasalainen, S.; Näränen, J.; Matikainen, L.; Piironen, J. 
(2005). Measurement of directional and spectral signatures of light 
reflectance by snow. IEEE Transactions on Geoscience and Remote Sensing, 
43(10), 2294-2304. 

114. Miller, I.; Forster, B.C.; Laffan, S.W.; Brander, R.W. (2016). Bidirectional 
reflectance of coral growth-forms. International Journal of Remote Sensing, 
37(7), 1553-1567. 

115. Roosjen, P.P.J.; Suomalainen, J.M.; Bartholomeus, H.M.; Clevers, J.G.P.W. 
(2016). Hyperspectral reflectance anisotropy measurements using a 
pushbroom spectrometer on an unmanned aerial vehicle—Results for 
barley, winter wheat, and potato. Remote Sensing, 8(11), 909. 

116. Näsi, R.; Honkavaara, E.; Lyytikäinen-Saarenmaa, P.; Blomqvist, M.; Litkey, 
P.; Hakala, T.; Viljanen, N.; Kantola, T.; Tanhuanpää, T.; Holopainen, M. 
(2015). Using UAV-based photogrammetry and hyperspectral imaging for 
mapping bark beetle damage at tree-level. Remote Sensing, 7(11), 15467-
15493. 

References   121 

117. Stoorvogel, J.J.; Kooistra, L.; Bouma, J. (2015). Managing soil variability at 
different spatial scales as a basis for precision agriculture. Advances in Soil 
Science, 37-72. 

118. Clevers, J.G.P.W. (1989). Application of a weighted infrared-red vegetation 
index for estimating leaf Area Index by Correcting for Soil Moisture. Remote 
Sensing of Environment, 29(1), 25-37. 

119. Kooistra, L.; Clevers, J.G.P.W. (2016). Estimating potato leaf chlorophyll 
content using ratio vegetation indices. Remote Sensing Letters, 7(6), 611-
620. 

120. Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; 
Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; Meygret, A.; Spoto, F.; Sy, 
O.; Marchese, F.; Bargellini, P. (2012). Sentinel-2: ESA's Optical High-
Resolution Mission for GMES Operational Services. Remote Sensing of 
Environment, 120, 25-36. 

121. Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; 
Mäkynen, J.; Pesonen, L. (2013). Processing and assessment of 
spectrometric, stereoscopic imagery collected using a lightweight UAV 
spectral camera for precision agriculture. Remote Sensing, 5(10), 5006-
5039. 

122. Maignan, F.; Bréon, F.M.; Lacaze, R. (2004). Bidirectional reflectance of 
Earth targets: Evaluation of analytical models using a large set of 
spaceborne measurements with emphasis on the Hot Spot. Remote Sensing 
of Environment, 90(2), 210-220. 

123. Obidiegwu, J.E.; Bryan, G.J.; Jones, H.G.; Prashar, A. (2015). Coping with 
drought: Stress and adaptive responses in potato and perspectives for 
improvement. Frontiers in Plant Science, 6(542), 1-23. 

124. Schlapfer, D.; Richter, R.; Feingersh, T. (2015). Operational BRDF effects 
correction for wide-field-of-view optical scanners (BREFCOR). IEEE 
Transactions on Geoscience and Remote Sensing, 53(4), 1855-1864. 

125. Honkavaara, E.; Hakala, T.; Nevalainen, O.; Viljanen, N.; Rosnell, T.; 
Khoramshahi, E.; Näsi, R.; Oliveira, R.; Tommaselli, A. (2016). Geometric 
and reflectance signature characterization of complex canopies using 
hyperspectral stereoscopic images from uav and terrestrial platforms. In: 
International Archives of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences - ISPRS Archives, 2016; pp 77-82. 

126. Verrelst, J.; Romijn, E.; Kooistra, L. (2012). Mapping vegetation density in a 
heterogeneous river floodplain ecosystem using pointable CHRIS/PROBA 
data. Remote Sensing, 4(9), 2866-2889. 

127. Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, 
G.P.; François, C.; Ustin, S.L. (2009). PROSPECT + SAIL models: A review of 
use for vegetation characterization. Remote Sensing of Environment, 
113(SUPPL. 1), S56-S66. 



122  References 

128. Domingues Franceschini, M.; Bartholomeus, H.; van Apeldoorn, D.; 
Suomalainen, J.; Kooistra, L. (2017). Intercomparison of Unmanned Aerial 
Vehicle and Ground-Based Narrow Band Spectrometers Applied to Crop 
Trait Monitoring in Organic Potato Production. Sensors, 17(6), 1428. 

129. Jay, S.; Maupas, F.; Bendoula, R.; Gorretta, N. (2017). Retrieving LAI, 
chlorophyll and nitrogen contents in sugar beet crops from multi-angular 
optical remote sensing: Comparison of vegetation indices and PROSAIL 
inversion for field phenotyping. Field Crops Research, 210, 33-46. 

130. Cilia, C.; Panigada, C.; Rossini, M.; Meroni, M.; Busetto, L.; Amaducci, S.; 
Boschetti, M.; Picchi, V.; Colombo, R. (2014). Nitrogen status assessment for 
variable rate fertilization in maize through hyperspectral imagery. Remote 
Sensing, 6(7), 6549-6565. 

131. Goffart, J.P.; Olivier, M.; Frankinet, M. (2008). Potato crop nitrogen status 
assessment to improve N fertilization management and efficiency: Past-
present-future. Potato Research, 51(3-4), 355-383. 

132. Jacquemoud, S.; Bacour, C.; Poilvé, H.; Frangi, J.P. (2000). Comparison of 
four radiative transfer models to simulate plant canopies reflectance: 
Direct and inverse mode. Remote Sensing of Environment, 74(3), 471-481. 

133. Jacquemoud, S.; Baret, F. (1990). PROSPECT: A model of leaf optical 
properties spectra. Remote Sensing of Environment, 34(2), 75-91. 

134. Verhoef, W. (1984). Light scattering by leaf layers with application to 
canopy reflectance modeling: The SAIL model. Remote Sensing of 
Environment, 16(2), 125-141. 

135. Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C. (2008). Inversion 
of a radiative transfer model for estimating vegetation LAI and chlorophyll 
in a heterogeneous grassland. Remote Sensing of Environment, 112(5), 
2592-2604. 

136. Combal, B.; Baret, F.; Weiss, M.; Trubuil, A.; Macé, D.; Pragnère, A.; Myneni, 
R.; Knyazikhin, Y.; Wang, L. (2003). Retrieval of canopy biophysical 
variables from bidirectional reflectance using prior information to solve 
the ill-posed inverse problem. Remote Sensing of Environment, 84(1), 1-15. 

137. Jacquemoud, S.; Baret, F.; Andrieu, B.; Danson, F.M.; Jaggard, K. (1995). 
Extraction of vegetation biophysical parameters by inversion of the 
PROSPECT + SAIL models on sugar beet canopy reflectance data. 
Application to TM and AVIRIS sensors. Remote Sensing of Environment, 
52(3), 163-172. 

138. Weiss, M.; Baret, F. (1999). Evaluation of canopy biophysical variable 
retrieval performances from the accumulation of large swath satellite data. 
Remote Sensing of Environment, 70(3), 293-306. 

139. Laurent, V.C.E.; Schaepman, M.E.; Verhoef, W.; Weyermann, J.; Chávez, R.O. 
(2014). Bayesian object-based estimation of LAI and chlorophyll from a 
simulated Sentinel-2 top-of-atmosphere radiance image. Remote Sensing of 
Environment, 140, 318-329. 



122  References 

128. Domingues Franceschini, M.; Bartholomeus, H.; van Apeldoorn, D.; 
Suomalainen, J.; Kooistra, L. (2017). Intercomparison of Unmanned Aerial 
Vehicle and Ground-Based Narrow Band Spectrometers Applied to Crop 
Trait Monitoring in Organic Potato Production. Sensors, 17(6), 1428. 

129. Jay, S.; Maupas, F.; Bendoula, R.; Gorretta, N. (2017). Retrieving LAI, 
chlorophyll and nitrogen contents in sugar beet crops from multi-angular 
optical remote sensing: Comparison of vegetation indices and PROSAIL 
inversion for field phenotyping. Field Crops Research, 210, 33-46. 

130. Cilia, C.; Panigada, C.; Rossini, M.; Meroni, M.; Busetto, L.; Amaducci, S.; 
Boschetti, M.; Picchi, V.; Colombo, R. (2014). Nitrogen status assessment for 
variable rate fertilization in maize through hyperspectral imagery. Remote 
Sensing, 6(7), 6549-6565. 

131. Goffart, J.P.; Olivier, M.; Frankinet, M. (2008). Potato crop nitrogen status 
assessment to improve N fertilization management and efficiency: Past-
present-future. Potato Research, 51(3-4), 355-383. 

132. Jacquemoud, S.; Bacour, C.; Poilvé, H.; Frangi, J.P. (2000). Comparison of 
four radiative transfer models to simulate plant canopies reflectance: 
Direct and inverse mode. Remote Sensing of Environment, 74(3), 471-481. 

133. Jacquemoud, S.; Baret, F. (1990). PROSPECT: A model of leaf optical 
properties spectra. Remote Sensing of Environment, 34(2), 75-91. 

134. Verhoef, W. (1984). Light scattering by leaf layers with application to 
canopy reflectance modeling: The SAIL model. Remote Sensing of 
Environment, 16(2), 125-141. 

135. Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C. (2008). Inversion 
of a radiative transfer model for estimating vegetation LAI and chlorophyll 
in a heterogeneous grassland. Remote Sensing of Environment, 112(5), 
2592-2604. 

136. Combal, B.; Baret, F.; Weiss, M.; Trubuil, A.; Macé, D.; Pragnère, A.; Myneni, 
R.; Knyazikhin, Y.; Wang, L. (2003). Retrieval of canopy biophysical 
variables from bidirectional reflectance using prior information to solve 
the ill-posed inverse problem. Remote Sensing of Environment, 84(1), 1-15. 

137. Jacquemoud, S.; Baret, F.; Andrieu, B.; Danson, F.M.; Jaggard, K. (1995). 
Extraction of vegetation biophysical parameters by inversion of the 
PROSPECT + SAIL models on sugar beet canopy reflectance data. 
Application to TM and AVIRIS sensors. Remote Sensing of Environment, 
52(3), 163-172. 

138. Weiss, M.; Baret, F. (1999). Evaluation of canopy biophysical variable 
retrieval performances from the accumulation of large swath satellite data. 
Remote Sensing of Environment, 70(3), 293-306. 

139. Laurent, V.C.E.; Schaepman, M.E.; Verhoef, W.; Weyermann, J.; Chávez, R.O. 
(2014). Bayesian object-based estimation of LAI and chlorophyll from a 
simulated Sentinel-2 top-of-atmosphere radiance image. Remote Sensing of 
Environment, 140, 318-329. 

References   123 

140. Mousivand, A.; Menenti, M.; Gorte, B.; Verhoef, W. (2015). Multi-temporal, 
multi-sensor retrieval of terrestrial vegetation properties from spectral-
directional radiometric data. Remote Sensing of Environment, 158, 311-330. 

141. Dorigo, W.A. (2012). Improving the robustness of cotton status 
characterisation by radiative transfer model inversion of multi-angular 
CHRIS/PROBA data. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 5(1), 18-29. 

142. Schaepman, M.E.; Koetz, B.; Schaepman-Strub, G.; Itten, K.I. (2005). 
Spectrodirectional remote sensing for the improved estimation of 
biophysical and -chemical variables: Two case studies. International 
Journal of Applied Earth Observation and Geoinformation, 6(3-4), 271-282. 

143. Vuolo, F.; Dini, L.; D'Urso, G. (2008). Retrieval of leaf area index from 
CHRIS/PROBA data: An analysis of the directional and spectral information 
content. International Journal of Remote Sensing, 29(17-18), 5063-5072. 

144. Weiss, M.; Baret, F.; Myneni, R.B.; Pragnère, A.; Knyazikhin, Y. (2000). 
Investigation of a model inversion technique to estimate canopy 
biophysical variables from spectral and directional reflectance data. 
Agronomie, 20(1), 3-22. 

145. Barnsley, M.J.; Strahler, A.H.; Morris, K.P.; Muller, J.P. (1994). Sampling the 
surface bidirectional reflectance distribution function (BRDF): 1. 
evaluation of current and future satellite sensors. Remote Sensing Reviews, 
8(4), 271-311. 

146. Chen, J.M.; Liu, J.; Leblanc, S.G.; Lacaze, R.; Roujean, J.L. (2003). Multi-
angular optical remote sensing for assessing vegetation structure and 
carbon absorption. Remote Sensing of Environment, 84(4), 516-525. 

147. Sandmeier, S.R. (2000). Acquisition of bidirectional reflectance factor data 
with field goniometers. Remote Sensing of Environment, 73(3), 257-269. 

148. Roosjen, P.P.J.; Suomalainen, J.S.; Bartholomeus, H.M.; Kooistra, L.K.; 
Clevers, J.G.P.W. (2017). Mapping reflectance anisotropy of a potato canopy 
using aerial images acquired with an unmanned aerial vehicle. Remote 
Sensing, 9(5), 417. 

149. Clevers, J.; Kooistra, L.; van den Brande, M. (2017). Using Sentinel-2 Data 
for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato 
Crop. Remote Sensing, 9(5), 405. 

150. Schopfer, J.; Dangel, S.; Kneubühler, M.; Itten, K.I. (2008). The improved 
dual-view field goniometer system FIGOS. Sensors, 8(8), 5120-5140. 

151. Lehnert, L.W.; Meyer, H.; Bendix, J. (2016). hsdar: Manage, analyse and 
simulate hyperspectral data in R. 

152. Casa, R.; Jones, H.G. (2004). Retrieval of crop canopy properties: A 
comparison between model inversion from hyperspectral data and image 
classification. International Journal of Remote Sensing, 25(6), 1119-1130. 



124  References 

153. Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, 
B.; Niño, F.; Weiss, M.; Samain, O.; Roujean, J.L.; Leroy, M. (2007). LAI, fAPAR 
and fCover CYCLOPES global products derived from VEGETATION. Part 1: 
Principles of the algorithm. Remote Sensing of Environment, 110(3), 275-
286. 

154. Koetz, B.; Baret, F.; Poilvé, H.; Hill, J. (2005). Use of coupled canopy 
structure dynamic and radiative transfer models to estimate biophysical 
canopy characteristics. Remote Sensing of Environment, 95(1), 115-124. 

155. Richter, K.; Atzberger, C.; Vuolo, F.; Weihs, P.; D'Urso, G. (2009). 
Experimental assessment of the Sentinel-2 band setting for RTM-based LAI 
retrieval of sugar beet and maize. Canadian Journal of Remote Sensing, 
35(3), 230-247. 

156. Verrelst, J.; Rivera, J.P.; Leonenko, G.; Alonso, L.; Moreno, J. (2014). 
Optimizing LUT-based RTM inversion for semiautomatic mapping of crop 
biophysical parameters from sentinel-2 and -3 data: Role of cost functions. 
IEEE Transactions on Geoscience and Remote Sensing, 52(1), 257-269. 

157. Baret, F.; Buis, S. (2008). Estimating canopy characteristics from remote 
sensing observations: Review of methods and associated problems. In: 
Advances in Land Remote Sensing: System, Modeling, Inversion and 
Application, 2008; pp 173-201. 

158. Botha, E.J.; Leblon, B.; Zebarth, B.; Watmough, J. (2007). Non-destructive 
estimation of potato leaf chlorophyll from canopy hyperspectral 
reflectance using the inverted PROSAIL model. International Journal of 
Applied Earth Observation and Geoinformation, 9(4), 360-374. 

159. Qi, J.; Cabot, F.; Moran, M.S.; Dedieu, G. (1995). Biophysical parameter 
estimations using multidirectional spectral measurements. Remote Sensing 
of Environment, 54(1), 71-83. 

160. Nouwakpo, S.K.; Weltz, M.A.; McGwire, K. (2016). Assessing the 
performance of structure-from-motion photogrammetry and terrestrial 
LiDAR for reconstructing soil surface microtopography of naturally 
vegetated plots. Earth Surface Processes and Landforms, 41(3), 308-322. 

161. Snapir, B.; Hobbs, S.; Waine, T.W. (2014). Roughness measurements over 
an agricultural soil surface with Structure from Motion. ISPRS Journal of 
Photogrammetry and Remote Sensing, 96, 210-223. 

162. Liang, S.; Strahler, A.H.; Barnsley, M.J.; Borel, C.C.; Gerstl, S.A.W.; Diner, D.J.; 
Prata, A.J.; Walthall, C.L. (2000). Multiangle remote sensing: Past, present 
and future. Remote Sensing Reviews, 18(2), 83-102. 

163. Mallet, C.; Bretar, F. (2009). Full-waveform topographic lidar: State-of-the-
art. ISPRS Journal of Photogrammetry and Remote Sensing, 64(1), 1-16. 

164. Hunt, E.R.; Horneck, D.A.; Spinelli, C.B.; Turner, R.W.; Bruce, A.E.; Gadler, 
D.J.; Brungardt, J.J.; Hamm, P.B. (2017). Monitoring nitrogen status of 
potatoes using small unmanned aerial vehicles. Precision Agriculture, 1-20. 



124  References 

153. Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, 
B.; Niño, F.; Weiss, M.; Samain, O.; Roujean, J.L.; Leroy, M. (2007). LAI, fAPAR 
and fCover CYCLOPES global products derived from VEGETATION. Part 1: 
Principles of the algorithm. Remote Sensing of Environment, 110(3), 275-
286. 

154. Koetz, B.; Baret, F.; Poilvé, H.; Hill, J. (2005). Use of coupled canopy 
structure dynamic and radiative transfer models to estimate biophysical 
canopy characteristics. Remote Sensing of Environment, 95(1), 115-124. 

155. Richter, K.; Atzberger, C.; Vuolo, F.; Weihs, P.; D'Urso, G. (2009). 
Experimental assessment of the Sentinel-2 band setting for RTM-based LAI 
retrieval of sugar beet and maize. Canadian Journal of Remote Sensing, 
35(3), 230-247. 

156. Verrelst, J.; Rivera, J.P.; Leonenko, G.; Alonso, L.; Moreno, J. (2014). 
Optimizing LUT-based RTM inversion for semiautomatic mapping of crop 
biophysical parameters from sentinel-2 and -3 data: Role of cost functions. 
IEEE Transactions on Geoscience and Remote Sensing, 52(1), 257-269. 

157. Baret, F.; Buis, S. (2008). Estimating canopy characteristics from remote 
sensing observations: Review of methods and associated problems. In: 
Advances in Land Remote Sensing: System, Modeling, Inversion and 
Application, 2008; pp 173-201. 

158. Botha, E.J.; Leblon, B.; Zebarth, B.; Watmough, J. (2007). Non-destructive 
estimation of potato leaf chlorophyll from canopy hyperspectral 
reflectance using the inverted PROSAIL model. International Journal of 
Applied Earth Observation and Geoinformation, 9(4), 360-374. 

159. Qi, J.; Cabot, F.; Moran, M.S.; Dedieu, G. (1995). Biophysical parameter 
estimations using multidirectional spectral measurements. Remote Sensing 
of Environment, 54(1), 71-83. 

160. Nouwakpo, S.K.; Weltz, M.A.; McGwire, K. (2016). Assessing the 
performance of structure-from-motion photogrammetry and terrestrial 
LiDAR for reconstructing soil surface microtopography of naturally 
vegetated plots. Earth Surface Processes and Landforms, 41(3), 308-322. 

161. Snapir, B.; Hobbs, S.; Waine, T.W. (2014). Roughness measurements over 
an agricultural soil surface with Structure from Motion. ISPRS Journal of 
Photogrammetry and Remote Sensing, 96, 210-223. 

162. Liang, S.; Strahler, A.H.; Barnsley, M.J.; Borel, C.C.; Gerstl, S.A.W.; Diner, D.J.; 
Prata, A.J.; Walthall, C.L. (2000). Multiangle remote sensing: Past, present 
and future. Remote Sensing Reviews, 18(2), 83-102. 

163. Mallet, C.; Bretar, F. (2009). Full-waveform topographic lidar: State-of-the-
art. ISPRS Journal of Photogrammetry and Remote Sensing, 64(1), 1-16. 

164. Hunt, E.R.; Horneck, D.A.; Spinelli, C.B.; Turner, R.W.; Bruce, A.E.; Gadler, 
D.J.; Brungardt, J.J.; Hamm, P.B. (2017). Monitoring nitrogen status of 
potatoes using small unmanned aerial vehicles. Precision Agriculture, 1-20. 

References   125 

165. Torres-Sánchez, J.; Peña, J.M.; de Castro, A.I.; López-Granados, F. (2014). 
Multi-temporal mapping of the vegetation fraction in early-season wheat 
fields using images from UAV. Computers and Electronics in Agriculture, 
103, 104-113. 

166. Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; 
Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. (2015). 
Intercomparison of UAV, aircraft and satellite remote sensing platforms for 
precision viticulture. Remote Sensing, 7(3), 2971-2990. 

167. Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; 
Clevers, J.G.P.W.; Moreno, J. (2015). Optical remote sensing and the 
retrieval of terrestrial vegetation bio-geophysical properties – A review. 
ISPRS Journal of Photogrammetry and Remote Sensing, 108, 273-290. 

 



126  Summary 

Summary 

Optical remote sensing is a well-established technology for qualitative and 
quantitative characterization of the Earth’s surface. Using optical remote sensing 
techniques, biophysical crop parameters can be estimated based on the reflected 
radiation either through empirical-statistical methods, or through inversion of 
radiative transfer models. Natural surfaces, however, reflect light anisotropically, 
which means that the intensity of reflected light depends on the viewing and 
illumination geometry. On the one hand, reflectance anisotropy is considered as an 
unwanted effect that needs to be corrected for, since it leads to inaccuracies in 
parameter estimations. On the other hand, reflectance anisotropy can be 
considered as a source of information in addition to spectral data, due to its unique 
response to optical and structural properties of the observed surface. 
For several decades, reflectance anisotropy has been studied using ground-based 
and space-borne sensors that are capable of collecting multi-angular 
measurements. Both ground-based and space-borne platforms have their own 
specific advantages and shortcomings. In the last few years, the opportunities of 
Unmanned Aerial Vehicles (UAVs) to collect multi-angular measurements started 
to be explored. Due to the relatively low flight height of these platforms, UAVs have 
the potential to study reflectance anisotropy at high spatial resolution, which is 
needed for applications such as precision agriculture. Until now, the attempts to 
collect multi-angular data using UAVS is rather limited. The main objectives of this 
thesis were (i) to study the relation between reflectance anisotropy and properties 
of crops and soils that are important for agriculture; (ii) to study the ability of UAVs 
to collect multi-angular measurements; (iii) to study the use of multi-angular 
observations to improve estimations of crop parameters. 
In chapter 2, the effects of soil moisture content (SMC), an important 
environmental parameter for agriculture, on reflectance anisotropy have been 
studied. Optical remote sensing methods to study SMC are often based on 
empirically or physically based models that relate changes in reflectance intensity 
to SMC. The effects of SMC on the reflectance anisotropy, however, have not 
received much attention. Using a laboratory goniometer setup, multi-angular 
reflectance measurements were taken of five soil samples during a dry-out 
experiment. At the start of the experiment, the soil samples were saturated with 
water and placed in the center of the goniometer. Reflectance measurements in the 
350-2500 nm range were taken continuously at 60 positions around the target, 
covering the full hemisphere, while the soil samples were left to dry. The Rahman-
Pinty-Verstraete (RPV) model, a semi-empirical model that is able to describe the 
reflectance anisotropy of any arbitrary surface using just four parameters, was 
fitted though the multi-angular measurements to parameterize and quantify the 
reflectance anisotropy of the soil samples at different SMC levels during the dry-out 
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experiment. The results of this study showed that SMC has a strong influence on 
reflectance anisotropy. Moreover, studying the relation between the estimated RPV 
parameters and the SMC level revealed a strong relation between SMC and the 
parameter responsible for the forward / backward scattering intensity. This 
relation was even stronger than the relation between the parameter that relates to 
the nadir reflectance and SMC, indicating that the anisotropy signal contains 
important information on SMC. 
Although the goniometer that was used to perform the measurements of chapter 2 
is highly suitable for measurements of flat targets such as soils, it is unsuitable for 
measurements of objects that have a strong three dimensional structure, such as 
vegetation or crops. Chapter 3 explored the potential of using an unmanned aerial 
vehicle (UAV) to perform multi-angular measurements of such targets. The used 
equipment for the measurements consisted of an Altura AT8 octocopter with a 
downward-pointing hyperspectral line scanner (450–915 nm at a 5-nm sampling 
interval) mounted underneath it; a configuration that is typically used for mapping 
of small areas of 2-10 ha. By hovering the UAV at a relatively low height above a 
canopy, while rotating it around its vertical axis, we were able to capture the 
reflectance anisotropy of a barley, potato, and winter wheat canopy. The reflectance 
anisotropy was again quantified and parameterized using the RPV model. The 
experiment was repeated twice during the growing season of 2015, which enabled 
the study of the effects of canopy development for the barley, potato, and winter 
wheat canopies on reflectance anisotropy. The results of this repetition showed 
that canopy development for barley and winter wheat (the development of grain 
heads) resulted in significant changes in the observed anisotropy signal. For the 
potato canopy, where the canopy developed from an open row-structure to a closed 
canopy between the two measurement days, there was a clear reduction of the 
anisotropy. Especially, the backward scattering intensity had reduced over the 
whole measured spectrum. The results demonstrated that anisotropy can be 
measured with a line scanner mounted under a UAV, and moreover, the results 
showed that canopy development can be observed in the anisotropy signal.  
The method used in chapter 3 provides an average anisotropy signal of the scanned 
area. However, it does not provide any information on the spatial distribution or 
the heterogeneity of the anisotropy within the field. In chapter 4, we used a 
snapshot camera (500-900 nm) mounted on a UAV to capture pixel-wise 
anisotropy. Using the location of the georeferenced pixels after photogrammetric 
processing of the collected imagery, combined with the location of the UAV during 
the image acquisition, it was possible to calculate the viewing geometry per pixel. 
In areas where the collected imagery overlapped, pixels were thus captured from 
multiple view angles, resulting in a multi-angular dataset for each pixel. The RPV 
model was used to quantify and parameterize the observed anisotropy per pixel 
and RPV-parameter maps were created, showing the spatial distribution of the 
anisotropy in the area covered by the UAV. For this chapter, data were collected 
over a potato field where a fertilizer experiment was performed. Different initial 
fertilization levels (before planting) in specific zones in the field and sensor-based 
additional fertilization applied to half of the field during the growing season 
resulted in variation in the growth of the potato plants, and therefore in differences 
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in canopy cover and leaf area index (LAI). A correlation study between the RPV 
parameters and measurements in the field of LAI and estimations of canopy cover 
based on high resolution imagery showed that there was a strong relation between 
the RPV parameters and these canopy properties, indicating that there is 
information on LAI and canopy cover in the anisotropy signal. Moreover, this study 
showed that it is relatively easy to collect multi-angular measurements using a 
snapshot camera mounted on a UAV. 
In chapter 5, we used the multi-angular dataset of chapter 4 to study the use of 
multi-angular observations for the improvement of estimations of vegetation 
parameters. We numerically inverted the PROSAIL model to estimate LAI and leaf 
chlorophyll content (LCC) based on multi-angular data and compared the accuracy 
of the estimations to inversion of the PROSAIL model based on nadir data, with in 
situ measurements of LAI and LCC as a reference. Moreover, we repeated the same 
exercise for several simulated multi-angular datasets with angular configurations 
that were captured during the UAV flight, and angular configurations that are 
typically captured by goniometer setups. The results showed that for the simulated 
datasets, strong improvements in the estimation of LAI and LCC could be obtained 
when multi-angular data were used for inversion, compared to when nadir data 
were used. For the measured dataset also improvements were found when multi-
angular data were used for inversion, however, not as large as with the simulated 
data. The results of this study indicate that when the used model is capable of 
reproducing the input data (as was the case for the simulated data), estimates of 
LAI and LCC can be improved significantly. Moreover, the results indicated that 
multi-angular views collected in overlapping pixels that are captured by snapshot 
cameras during a typical UAV mapping flight already provide the angular coverage 
needed to improve inversion results. 
In chapter 6, the main findings of this thesis were discussed. The overall conclusion 
is that multi-angular reflectance data can improve the estimation of crop 
parameters and, moreover, that UAVs are highly capable platforms to perform 
these multi-angular measurements. The fine spatial resolution that is typically 
obtained in UAV-based measurements provides a new intermediate measurement 
scale for the study of reflectance anisotropy compared to the relatively coarse 
spatial resolution measurements obtained by satellite-based sensors and the point 
data acquired by ground-based goniometers. The results presented in this thesis 
provide a good starting point for reflectance anisotropy research with UAVs and the 
further development of methods to improve crop parameter retrieval using multi-
angular observations. 
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