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Abstract  

Bustos-Korts, D. (2017). Modelling of Genotype by Environment Interaction and Prediction of 
Complex Traits across Multiple Environments as a Synthesis of Crop Growth Modelling, 
Genetics and Statistics. PhD thesis, Wageningen University, the Netherlands. 

The main objective of plant breeders is to create and identify genotypes that are 

well-adapted to the target population of environments (TPE). The TPE corresponds to 

the future growing conditions in which the varieties produced by a breeding program 

will be grown. All possible genotypes that could be considered as selection candidates 

for a specific TPE are said to belong to the target population of genotypes, TPG. 

Genotypes commonly show different sensitivities to environmental gradients and then 

genotype by environment interaction (GxE) is observed. GxE can lead to changes in 

genotypic ranking, complicating the breeding process. The main aim of this thesis was 

to investigate statistical models and the combination of statistical and crop growth 

models to improve phenotype prediction across multiple environments. One aspect 

that determines the quality of phenotype prediction is the set of genotypes used to 

train the prediction model, especially when the TPG is structured. We proposed a 

method that uniformly covers the genetic space of the TPG, leading to a larger 

prediction accuracy than random sampling. We produced positive results for wheat, 

maize and rice. A second aspect that influences the accuracy of phenotype predictions 

is the choice of environments used to train the prediction model, which should capture 

the heterogeneity in the TPE. When accounting for heterogeneity in environmental 

quality, it is important to distinguish between repeatable and well predictable elements 

in the environmental conditions from those that are badly predictable. We proposed 

statistical methods based on the AMMI model and on mixed models to identify groups 

of environments that show repeatable GxE, illustrating our ideas with multi-

environment wheat data in North-Western Europe. The importance of training set 

construction strategies and multi-environment genomic prediction models was also 

demonstrated for barley data. If breeders are interested in identifying the genetic basis 

of the target traits, it is advantageous to have a higher SNP density. In this thesis, we 

used exome sequence data of the EU-Whealbi-barley germplasm, which corresponds 

to a unique set of genotypes with a diverse origin, growth habit and breeding history. 
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For this diverse data, we assessed the effects of QTLs and haplotypes across multiple 

environments for awn length, grain weight, heading date and plant height. Our results 

show that the EU-Whealbi-barley collection possesses a large diversity of promising 

alleles regulating the four traits we analysed. The last major topic addressed in this 

thesis is the use of a combination of statistical-genetic models and crop growth models 

(APSIM) as a strategy to assess the traits and phenotyping schemes to improve the 

prediction accuracy of a target trait like yield. We assess the potential of the combined 

modelling approach to characterize a sample of the TPG and TPE, and illustrate how 

trait correlations are modified by environmental conditions and by the genetic 

architecture of the sample of the TPE. We discuss the topics mentioned above, from 

a didactical perspective, proposing a list of subjects that should be covered in a GxE 

course for plant breeders. Finally, we discuss challenges and opportunities presented 

by the characterization of the TPE and TPG when using simulations based on 

statistical and crop growth models. 
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1.1. Introduction 

The main goal of plant breeders is to create and identify genotypes that are well-adapted 

to the future growing conditions defined by the meteorological, soil and management at the 

growing area of interest (Cooper & Hammer, 1996). These growing conditions will influence 

the phenotypic response of individual genotypes. The functional form by which 

environmental inputs are translated into phenotypes is sometimes referred to as the reaction 

norm (Woltereck, 1909; Dobzhansky & Spassky, 1963; Sarkar, 1999; DeWitt & Scheiner, 

2004). Reaction norms depend both on environmental inputs and genetic sensitivities to these 

environmental inputs. When the reaction norms for different genotypes are not parallel, this 

indicates the existence of genotype by environment interaction (GEI) (Finlay & Wilkinson, 

1963; van Eeuwijk et al., 2005). An extreme form of GEI is cross-over interaction, where the 

ranking of the genotypes varies with the environmental conditions (Baker, 1988; Crossa et 

al., 2004). Cross-over interactions complicate the breeding process, making it necessary to 

recommend specific genotypes for specific environments. 

Usually, GxE patterns are analysed for a set of environments that correspond to the future 

growing conditions of the genotypes created by the breeding programme. This set of 

environments is also referred to as ‘the target population of environments’, TPE (Comstock 

& Moll, 1963; Cooper & Hammer, 1996; Cooper et al., 2014). The TPE will influence the 

traits and adaptation mechanisms that are necessary for a genotype to perform well, showing 

a high yield. The traits that are relevant for adaptation to particular growing conditions 

influence the decision process of breeders, modifying the selection strategy applied within 

breeding programme. The selection strategy, together with the crossing scheme, shape the 

target population of genotypes (TPG), which corresponds to all possible genotypes that the 

breeding programme for the TPE hopes to develop during the coming years. The TPG 

coincides with the notion of selection candidates (Jannink et al., 2010; Schulz-Streeck et al. 

2012; Albrecht et al. 2014). 

To select well-adapted genotypes, predictions need to be made for the phenotype as a 

function of genotype and environment. These predictions can be made with statistical-genetic 

models, crop growth models or with a combination of statistical-genetic and crop growth 
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models. Statistical models to characterize GxE range from the conventional ANOVA to 

factorial regression type of models and mixed models integrating explicit environmental and 

physiological information (van Eeuwijk et al., 2005; Malosetti et al., 2013). Commonly used 

fixed models to characterize GxE are the Additive Main effects and Multiplicative 

Interactions (AMMI) and the Genotype main effects and Genotype by Environment 

interaction effects model (GGE) models (Gauch, 1992, 2013; Yan et al., 2000; Yan & Hunt, 

2001). In fixed model terms, inferences are made with respect to the specific levels of 

genotypes and environments, whereas in random model terms, there is interest in the 

underlying distribution of the population (Searle et al., 2009). Both AMMI and GGE models 

allow examining GxE by means of biplots that provide a visual representation of which 

genotypes and environments are driving the interaction, allowing to group environments. To 

structure the network of testing sites, it is important to distinguish between GxE variation 

due to the consistent differences between locations, from the random year-to year variations 

(Atlin et al., 2000, 2011; Piepho & Möhring, 2005). If the phenotypic responses at particular 

locations have a certain degree of repeatability across years,  these locations may be classified 

into ‘mega-environments’, which correspond to sets of environments of similar quality that 

show a reduced number of cross-over interactions (Rajaram et al., 1993; Gauch & Zobel, 

1997). Within a mega-environment, similar genotypes can be recommended, simplifying the 

selection and the recommendation processes. Fixed-effects models to characterize GxE are 

certainly a useful tool for breeders, provided the GxE concerns well defined genotypes under 

repeatable environmental conditions. However, part of the GxE is commonly due to random 

trial-to-trial variations and not necessarily to repeatable GxE that would justify splitting the 

TPE in a number of mega-environments (Atlin et al., 2011). Random year-to-year variations 

can be handled by an adequate representation and replication of the testing sites across the 

TPE and by the use of mixed models that consider part of the GxE as a random process. 

Popular mixed models to characterize GxE are the unstructured model and the factor analytic 

model (Burgueño et al., 2008; Beeck et al., 2010). When the TPE can be subdivided into 

homogeneous mega-environments that show a consistent genotypic ranking across years, 

these mega-environments can also be either integrated into the mixed model as a fixed effect 

or used to model the variance-covariance structure. Modelling of the mega-environments 

explicitly allows to increase the response to selection and to obtain genotypes that are better 
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adapted to the within-mega-environment growing conditions (Atlin et al., 2000, 2011; Piepho 

& Möhring, 2005). 

The availability of molecular markers allows identifying genomic regions underlying the 

phenotypic differences via QTL models. If the expected genetic similarity is homogeneous 

across the whole population, as in doubled haploid populations (DHs) or recombinant inbred 

lines (RILs), the significance of QTL effects is tested using a simple residual structure (Rebai 

et al., 1995; Lynch & Walsh, 1998). However, a more elaborate structure for the residual 

genetic variance is needed to model for multi-parent populations or diversity panels 

(Malosetti et al., 2007, 2011; Korte & Farlow, 2013; Garin et al., 2017). If the interest is not 

in detecting genomic regions associated with the trait, but in making phenotype predictions, 

it is in general convenient to move from QTL models to genomic prediction models. In 

genomic prediction models, no explicit significance threshold is used and all markers are 

used (Meuwissen et al., 2001). Genomic prediction models range from those accounting only 

for additive effects, like GBLUP (VanRaden, 2008), up to more elaborate models that allow 

for nonlinearities associated with non-additive genetic effects. A popular model allowing for 

non-additive effects is the reproducible Kernel Hilbert Spaces model (RKHS) (Gianola & 

van Kaam, 2008; de los Campos et al., 2009; Jiang & Reif, 2015). An alternative to mixed 

models for genomic prediction are the Bayesian models. There is a large number of Bayesian 

models for genomic prediction and they basically differ in the degree of shrinkage imposed 

on the markers genome-wide (Meuwissen et al., 2001; Hayes et al., 2009; Perez et al., 2010; 

Habier et al., 2011; de los Campos et al., 2013).  

For a more explicit representation of the genotypic response across environments, it might 

be convenient to use factorial regression type of models with QTLs modulating the genotypic 

sensitivity to the environment. Examples for factorial regression-type of models can be seen 

in (Malosetti et al., 2004; Boer et al., 2007). More elaborate and dynamic characterization of 

the genotypic response to the environmental conditions can be modelled via functional 

mapping, which consists of a combination of QTLs and mathematical functions that model 

the QTL effects over time (Malosetti et al., 2006; Wu & Lin, 2006; van Eeuwijk et al., 2010; 

Li & Sillanpää, 2015). An increasingly popular approach to explicitly model the functional 

relationships between plant physiology and the environment is by using crop growth models 



Chapter 1 

6 
 

(Yin et al., 2000, 2005; Tardieu et al., 2005). Crop growth models usually decompose the 

target trait (grain yield) into a number of underlying genetically-correlated traits, called 

‘intermediate traits’ (Yin et al., 2004), ‘indicator traits’ (Calus & Veerkamp, 2011), 

‘secondary traits’ (Rutkoski et al., 2016) or ‘components’ (Porter & Gawith, 1999) that might 

have a simpler genetic basis and larger heritability than the target trait (Yin et al., 2004; 

Tardieu & Tuberosa, 2010; Cabrera-Bosquet et al., 2016). Examples of intermediate traits 

are biomass, grain number and grain weight. Intermediate traits are calculated indirectly from 

a set of environmental inputs and genotype-dependent parameters derived from prior 

experimentation. GxE in the target trait is then a consequence of the interactions between the 

intermediate phenotypes (Chapman et al., 2003; Tardieu et al., 2005; Chenu et al., 2009; 

Makumburage et al., 2013). GxE modelling via crop growth models is commonly done using 

a two-step approach; first, the genotype dependent parameters are estimated from 

experimental data, via QTL or genomic prediction models. Then, these predicted parameter 

values are introduced into the crop growth model to generate predictions for the target trait 

across multiple environments (Yin et al., 2000; Zheng et al., 2013). An alternative-two stage 

approach had been recently proposed by (Technow et al., 2015; Cooper et al., 2016), where 

component traits are treated as latent variables for prediction that arise from the propagation 

of the marker effects on yield through the crop growth model structure.  

1.2. Objectives and outline of the thesis 

The general objective of this thesis is to propose and evaluate models to characterize GxE 

and predict complex traits across multiple environments. To achieve this goal, we used 

statistical models and the crop growth model APSIM-Wheat. The first specific objective was 

to set the scene about prediction scenarios that are interesting for breeders and to discuss how 

either statistical models, crop growth models or the combination of both types of models can 

be used to predict phenotypes across environments (Chapter 2). The scenarios that we 

discussed in Chapter 2 correspond to the prediction of unobserved genotypes in observed 

environments, the prediction of observed genotypes in unobserved environments and finally, 

the prediction of unobserved genotypes in unobserved environments. The second specific 

objective of this thesis, assessed in Chapter 3, was to propose a strategy to construct the 

training set of genotypes, improving the prediction accuracy of unobserved genotypes in 
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observed environments. The main underlying hypothesis for our proposed training set 

construction method was that a homogeneous representation of the genetic diversity (genetic 

space) in the TPG leads to larger prediction accuracy. We compared our method based on 

uniform coverage of the genetic space, with commonly used methods like random sampling, 

stratified sampling and with a method that maximizes the generalized coefficient of 

determination, proposed by (Rincent et al., 2012). 

When the goal is to make predictions in a multi-environment setting, the first task is to 

characterize the GxE patterns present in the TPE because this will influence the multi-

environment prediction model that will have the largest accuracy. Therefore, the strategy to 

select candidates across a range of environments is highly dependent on the structure of GxE. 

This structure depends on the importance of year-to-year variability and on whether locations 

can be classified into more homogeneous groups, also called ‘mega-environments’. In 

Chapter 4, we assessed strategies based on the additive main effects and multiplicative 

interactions model (AMMI, Gauch, 1992, 2013; Gauch & Zobel, 1997)) as applied to 

repeatable genotype by location interaction and on mixed models to identify regions that are 

internally more homogeneous. We presented examples for historical multi-environment trials 

for wheat in Denmark, Germany, The Netherlands and the United Kingdom. In Chapter 5, 

we illustrate the concepts discussed in Chapters 2, 3 and 4, applying them to a multi-

environment genomic prediction context. Issues as the similarity between training and 

prediction environments and the design of training-validation schemes are also discussed and 

illustrated in Chapter 5. In Chapter 6, we apply multi-environment mixed models to 

characterize the EU-Whealbi germplasm collection as a source of valuable alleles for 

adaptation to European environments. The EU-Whealbi collection corresponds to 511 barley 

genotypes with a very wide range of origins and breeding history. EU-Whealbi was 

genotypically characterized with exome sequence data and phenotypically characterized in 

six very diverse European environments. Thanks to the genome sequence data, we could 

explore the effects of haplotypes instead of single SNPs, adding an extra layer the complexity 

to the statistical analysis.  

In Chapter  7, we switch from the prediction of single traits observed at a single time 

point to the modelling of multiple traits simultaneously to improve the prediction accuracy 
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of the target trait. We also compare strategies to model phenotypes of multiple time-points 

simultaneously to characterize trait dynamics during the growing season. For intermediate 

traits to be useful to improve the prediction accuracy of the target trait,  they have to be 

correlated to the target trait and have a large heritability. Trait correlations depend on the 

environment and heritability depends on the experimental and measurement quality. In 

Chapter 7, we propose the combination of statistical-genetic models and the APSIM crop 

growth model as a tool to assess the potential of traits and phenotyping strategies to improve 

the prediction accuracy of the target trait. Many of the concepts and statistical models 

discussed in Chapters 2 to 7 are presented in Chapter 8 from an educational/didactical 

perspective. In this Chapter, we propose a schedule of topics that should be covered in a GxE 

course for plant breeders. We also provide an overview of the trends in the usage of different 

GxE models in the literature over time. Finally, in Chapter 9, we discuss the convenience of 

modelling approaches based on statistical models, crop growth models or a combination of 

statistical and crop growth modelling for different breeding situations. We also discuss how 

high throughput genotyping and high throughput phenotyping can be used to increase the 

chances of selecting better-adapted varieties and about technical considerations when 

combining statistical-genetic and crop growth models to assess breeding strategies. 
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Abstract 

Selection processes in plant breeding depend critically on the quality of phenotype 
predictions. The phenotype is classically predicted as a function of genotypic and 
environmental information. Models for phenotype prediction contain a mixture of statistical, 
genetic and physiological elements. In this chapter, we discuss prediction from linear mixed 
models (LMMs), with an emphasis on statistics, and prediction from crop growth models 
(CGMs), with an emphasis on physiology. Three modalities of prediction are distinguished: 
predictions for new genotypes under known environmental conditions, predictions for known 
genotypes under new environmental conditions, and predictions for new genotypes under 
new environmental conditions. 

 For LMMs, the genotypic input information includes molecular marker variation, while 
the environmental input can consist of meteorological, soil and management variables. 
However, integrated types of environmental characterizations obtained from crop growth 
models (CGMs) can also serve as environmental covariable in LMMs. LMMs consist of a 
fixed part, corresponding to the mean for a particular genotype in a particular environment 
and a random part defined by genotypic and environmental variances and correlations. For 
prediction via the fixed part, genotypic and/or environmental covariables are required as in 
classical regression. For predictions via the random part, correlations need to be estimated 
between observed and new genotypes, between observed and new environments, or both. 
These correlations can be based on similarities calculated from genotypic and environmental 
covariables. A simple type of covariable assigns genotypes to sub-populations and 
environments to regions. Such groupings can improve phenotype prediction. 

 For a second type of phenotype prediction, we consider crop growth models. CGMs 
predict a target phenotype as a non-linear function of underlying intermediate phenotypes. 
The intermediate phenotypes are outcomes of functions defined on genotype dependent CGM 
parameters and classical environmental descriptors. While the intermediate phenotypes may 
still show some genotype by environment interaction, the genotype dependent CGM 
parameters should be consistent across environmental conditions. The CGM parameters are 
regressed on molecular marker information to allow phenotype prediction from molecular 
marker information and standard physiologically relevant environmental information.  

 Both LMMs and CGMs require extensive characterization of genotypes and 
environments. High-throughput technologies for genotyping and phenotyping provide new 
opportunities for upscaling phenotype prediction and increasing the response to selection in 
the breeding process. 
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2.1. Introduction 

The target production area for most arable crops spans a range of environmental 
conditions. In the absence of diseases and pests (not considered in this review), local 
environmental conditions are a function of meteorological and soil variables on the one hand 
and management interventions on the other hand. These conditions will influence the 
phenotypic response of individual genotypes, and to some extent genotypes will create their  
‘own’ environment, e.g. depending on how they use soil water across the season. The 
functional form by which environmental inputs are translated into phenotypes is sometimes 
referred to as the reaction norm (Woltereck 1909; Dobzhansky and Spassky 1963; Sarkar 
1999; DeWitt and Scheiner 2004). Reaction norms depend both on environmental inputs and 
genetic factors. For a given (multi-locus) genotype, the reaction norm is the functional 
relationship between the phenotype and an environmental gradient, and is often linearised in 
some way. Modelling of the reaction norms for a set of genotypes is a central objective in 
many breeding and genetic studies. The prediction of the phenotypic response as a function 
of genetic and environmental factors is the basis for decisions that involve selection of 
superior genotypes for a defined environmental range (Hammer et al. 2006; Chenu et al. 
2011; Sadras et al. 2013). 

 Several important concepts in breeding and genetics have been defined in relation to the 
behaviour of reaction norms for a population of genotypes. Firstly, when the reaction norms 
are non-constant, genotypes are said to show ‘plasticity’ (Bradshaw et al. 1965; DeWitt and 
Scheiner 2004; Sadras and Lawson 2011). Secondly, when the reaction norms for different 
genotypes are not parallel, this indicates the existence of genotype by environment interaction 
(GEI) (Finlay and Wilkinson 1963; van Eeuwijk et al. 2005). An extreme form of GEI is 
cross-over interaction, where the ranking of the genotypes varies with the environmental 
conditions (Baker 1988; Muir et al. 1992; Crossa et al. 2004). Another important concept in 
the context of the comparison of reaction norms is adaptation (Wright 1931, 1932; Finlay 
and Wilkinson 1963; Romagosa and Fox 1993; Cooper and Hammer 1996; Cooper 1999; 
Romagosa et al. 2013), i.e., some genotypes do better than other ones in a defined set of 
environmental conditions, the reaction norms of the adapted genotypes are then always above 
those of the less adapted. Finally, for a given genotype, ‘stability’ measures quantify the 
variation around the reaction norm (Lin and Binns 1988; Piepho 1998). So, while plasticity, 
GEI and adaptation refer to the expected response curve, which may be most simply thought 
of as the expectation in a linear regression model, stability refers to the variation around this 
expected response at a defined set of environmental conditions (Slafer and Kernich 1996; 
DeWitt and Scheiner 2004; van Eeuwijk et al. 2005; van Eeuwijk et al. 2010).  
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 To select genotypes with superior average performance or a given degree of adaptation, 
predictions need to be made for the phenotype as a function of genotype and environment. 
These types of predictions occur at various stages in a breeding programme. In the early 
stages of breeding programmes, seed is limiting and large numbers of new genotypes 
produced as offspring from crosses between well-chosen parents are evaluated in one or a 
few trials, normally in small plots. For the earliest stages of a breeding programme, modelling 
of reaction norms is not possible and selection takes place on the mean performance. At 
intermediate stages, offspring populations are tested in a limited number of trials at various 
locations for one or a few years. In those cases when seed is still limiting, it is attractive to 
use partially replicated designs (Cullis et al. 2006; Smith et al. 2006) so that genotypes can 
be tested at a larger sample of environmental conditions. Selection can be done on the mean 
across trials, but there are also possibilities to select for adaptation. At the later stages, when 
there is sufficient seed for individual genotypes, a limited number of genotypes can be tested 
in a large number of trials, with again possibilities for selection on wide adaptation to a wide 
set of environments or narrow adaptation to a limited set of environments (Cooper et al. 
2014). Simultaneously, at this stage selection on stability is possible.  

 When a population of genotypes is evaluated in multiple trials, reaction norms can be 
fitted to help in describing the observed data efficiently and to allow some form of selection 
on properties of the reaction norm. To evaluate the predictive quality of reaction norm 
models, special cross validation (CV) schemes have been proposed. In CV schemes, the data 
are subdivided in a training set, used to estimate model parameters, and a test set, used to 
assess the correlation between predicted values and observed values. Such a correlation is 
termed prediction ‘accuracy’ (Meuwissen et al. 2001). For multiple environment data, 
various CV strategies have been proposed (Crossa et al. 2010; Burgueño et al. 2012; Heslot 
et al. 2012; Zhao et al. 2012; Heslot et al. 2013; Crossa et al. 2014). At this point, it is useful 
to clarify some nomenclature. When genotypes were tested, evaluated or observed in at least 
one environment, we indicate this by the letter G. When this was not the case we use nG. For 
environments the same rule can be defined: E for observed environments, with at least one 
observed genotype, and nE for environments without observations. Specific combinations of 
genotype and environment can have been observed, GE, or not, nGE. Following this 
terminology, the set [G, E, GE] would indicate a genotype that was observed and an 
environment that was observed, while also the specific combination of genotype and 
environment was observed. The combination [G, E, nGE] indicates a genotype and 
environment that have been observed, but the specific combination of genotype and 
environment was not observed. This latter situation is typical for unbalanced genotype by 
environment data.   
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 Figure 1 shows four scenarios that are relevant to prediction of phenotypes from 
genotypes and environments as well as to the calculation of accuracies and CV strategies. 
Scheme 1 pertains to situations in which both genotypes and environments were observed. 
Specific combinations of genotypes and environments may be present, [G, E, GE] or absent 
[G, E, nGE]. Phenotype predictions for Scheme 1 can be made by simple additive models. 
The Schemes 2, 3 and 4 are more interesting and we will concentrate on those. Potential 
strategies for assessment of accuracy in genomic prediction are predictions for new genotypes 
in observed environments [nG, E, nGE] (Scheme 2, Fig. 1); predictions for observed 
genotypes in new environments [G, nE, nGE] (Scheme 3, Fig. 1); and predictions for new 
genotypes in new environments [nG, nE, nGE] (Scheme 4, Fig. 1) (Utz et al. 2000; Calus and 
Veerkamp 2011; Burgueño et al. 2012; Schulz-Streeck et al. 2012; Guo et al. 2013; Crossa 
et al. 2014). Scheme 4 of CV obviously represents the strictest type of accuracy assessment. 
(For the notation, whenever nG or nE appears, necessarily nGE needs to appear as well, so 
for Schemes 2, 3 and 4, we can omit the specification nGE.) 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Prediction scenarios, depending on whether genotypes were observed (G) or not observed (nG), and on 
whether environments were observed (E) or not observed (nE). 
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 To produce phenotype predictions for new genotypes (nG) from observed genotypes (G), 
it is essential to use statistical models that allow us to connect the new genotypes to the 
observed genotypes. The connections between nG and G can be achieved by the inclusion of 
explicit genotypic covariables in the statistical model, and/or by borrowing information via 
the correlation structure among genotypes, defined by their genetic similarities. Analogously, 
for predicting new environments, there needs to be a connection between nE and E via 
explicit environmental covariables and/or the correlation structure among environments. The 
latter correlation structure is an expression of environmental similarity as estimated from 
environmental characterizations.  

 In this chapter, we introduce linear mixed models (LMMs) as our default class of 
statistical prediction models. LMMs can be described as consisting of two parts: 1) a fixed 
part, corresponding to the mean; and 2) a random part defined by variances and covariances. 
Predictions in LMMs can be obtained via the fixed and the random part, although the 
statistical mechanism for prediction in those two cases is different. As an illustration, we 
provide an LMM for the phenotype of genotype i in environment j: 𝑦𝑦𝑖𝑖𝑗𝑗 = 𝜇𝜇𝑗𝑗 + 𝑥𝑥𝑖𝑖𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑖𝑖𝑧𝑧𝑗𝑗 +
𝐺𝐺𝐺𝐺𝑖𝑖𝑗𝑗 + 𝑒𝑒𝑖𝑖𝑗𝑗 (van Eeuwijk et al. 2010). The fixed part of this model is given by the expectation, 
or mean, for genotype i in environment j: 𝜇𝜇𝑖𝑖𝑗𝑗 = 𝜇𝜇𝑗𝑗 + 𝑥𝑥𝑖𝑖𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑖𝑖𝑧𝑧𝑗𝑗. Here 𝜇𝜇𝑗𝑗 is a fixed intercept  
(mean) for environment j, 𝑥𝑥𝑖𝑖 is a genotypic covariable, for example a molecular marker, 𝛼𝛼𝑗𝑗 
is an environment specific slope corresponding to 𝑥𝑥𝑖𝑖. When 𝑥𝑥𝑖𝑖 is a molecular marker, 𝛼𝛼𝑗𝑗 is 
an environment specific quantitative trait locus (QTL) effect (Malosetti et al. 2004; Boer et 
al. 2007). For the environments, 𝑧𝑧𝑗𝑗 is an environmental covariable, for example, a drought 
stress index, and 𝛽𝛽𝑖𝑖  is a corresponding genotype specific slope, for example a genotype-
specific sensitivity to drought stress.  

 For prediction via the fixed part, we use genotypic and/or environmental covariables as 
in classical regression (van Eeuwijk et al. 1996). Besides values for the covariable, 𝑥𝑥𝑖𝑖 and 𝑧𝑧𝑗𝑗, 
prediction requires that we have estimates for the slopes, 𝛼𝛼𝑗𝑗 and 𝛽𝛽𝑖𝑖. These can be obtained 
by fitting a model for the mean to training data, where we need to select suitable genotypic 
and/or environmental covariables. For prediction, we combine the estimated slopes in the 
training set with the values for genotypic and/or environmental covariables in the test set.  

 The random part of the model is determined by the terms 𝐺𝐺𝐺𝐺𝑖𝑖𝑗𝑗  and 𝑒𝑒𝑖𝑖𝑗𝑗 , the first term 
representing the (residual) genotypic effect of genotype i in environment j, the second term 
containing experimental (block) and measurement errors. (Random terms in model 
formulations are underlined.) The random terms are assumed to have a Gaussian distribution, 
with expectation zero and proper variance-covariance structures. The important random term 
for prediction purposes is 𝐺𝐺𝐺𝐺𝑖𝑖𝑗𝑗. For this term, the correlations among genotypes on the one 
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hand and the correlations among environments on the other hand determine the predictive 
properties of the LMM. Thus, for predictions via the random part of the LMM, correlations 
need to be estimated between observed and new genotypes (Scheme 2), observed and new 
environments (Scheme 3), or both (Scheme 4). Correlations among genotypes can be 
estimated from genotypic covariables, including molecular markers, and pedigree data, or a 
combination of genotypic covariables and pedigree. Correlations among environments 
follow from environmental covariables. Although important, we will largely ignore the error 
term 𝑒𝑒𝑖𝑖𝑗𝑗 in the remainder of this chapter. See Smith et al. (2001a) and Smith et al. (2005) for 
discussion on models for 𝑒𝑒𝑖𝑖𝑗𝑗. 

The realization of the predictive potential of LMMs depends on the selection of genotypic 
covariables and environmental covariables, for the fixed part as well as for the random part. 
Physiological knowledge on genotypes and environments can help in the choice of 
covariables for inclusion in LMMs. For example, knowledge on the structure and use of crop 
growth models (CGMs) can help in the dissection of complex traits (Chapman et al. 2002b; 
Edmeades et al. 2004; Reynolds et al. 2009a), thereby suggesting genotypic and 
environmental covariables for inclusion in predictive LMMs. A CGM can suggest writing a 
complex target trait as a function of a set of simpler component traits and a set of 
environmental input variables (Yin et al. 2003, 2004; Chenu et al. 2008; Hammer et al. 2010). 
These component traits are traditionally related to physiologically parameters in CGMs. The 
CGM produces GEI as an emerging property of the interaction between the physiological 
parameters and the environmental information (Chapman et al. 2002a, 2008; Hammer et al. 
2002, 2006, 2010). Interpreting the CGM as a function that transforms physiological 
parameters and environmental inputs into a complex trait, we can understand that when the 
CGM can be approximated by a linear function, the component traits may be entered as 
genotypic covariables and the environmental inputs as environmental covariables in an LMM 
for the complex trait.  

In Section 2, we will discuss how statistical LMM models can be used to predict 
phenotypic responses for new genotypes in observed environments (Scheme 2; [nG, E, 
nGE]), observed genotypes in unobserved (new) environments (Scheme 3; [G, nE, nGE]), or 
new genotypes in new environments (Scheme 4; [nG, nE, nGE]). In Section 3, we will discuss 
the use of CGMs to predict the performance of genotypes for environments in which they 
were not tested. Section 4 will discuss the contribution of high throughput genotyping and 
phenotyping to models for phenotype prediction. Strategies to group genotypes and 
environments will also be discussed in this section. We finish with some concluding remarks 
in Section 5.  

  



Chapter 2 

18 
 

2.2. Statistical models to predict phenotypic performance 

Section 2.1 presents statistical models for predicting the phenotype of genotypes that 
were so far not tested in the environments for which we want to predict, although we do have 
information about these environments from phenotypic evaluations for other genotypes [nG, 
E, nGE], Scheme 2 in Fig. 1. The connection between observed genotypes (G) and not 
observed genotypes (nG) will come from explicit genotypic covariables and/or the genetic 
correlations among genotypes. Section 2.2 describes statistical models for predicting 
phenotypes in environments that were not used to test genotypes, although we do have 
phenotypic information about these genotypes in other environments [G, nE, nGE], Scheme 
3 in Fig. 1. The connection between observed environments (E) and unobserved environment 
(nE), will result from the inclusion of explicit environmental covariables and/or the 
correlations among environments calculated on the basis of environmental characterizations. 
Section 2.3 discusses the most challenging prediction scenarios; predicting the phenotype of 
genotypes that were not tested so far, for environments that neither were tested [nG, nE, 
nGE], Scheme 4 in Fig. 1. Here, both explicit genotypic and environmental covariables are 
required for prediction. 

2.2.1. Statistical models to predict performance of unobserved genotypes in observed 
environments [nG, E, nGE] 

Quantitative traits are determined by many loci, with allelic effects varying in 
magnitude. Specific genomic regions significantly associated with phenotypic variation may 
be identified as quantitative trait loci, or QTLs (see Chapter 1 of this book by Baldazzi et al.). 
Besides QTLs, or instead thereof, many other loci with small additive effects (polygenic 
effects) can contribute to phenotypic variation. None of these loci with small effects might 
by itself have an important phenotypic effect, but these loci together can still make a sizeable 
contribution to the phenotype. Our first model, Model 1, includes loci with relatively large 
quantitative effects (QTLs) together with loci that have small effects. 

𝑦𝑦𝑖𝑖𝑗𝑗𝑡𝑡 = 𝜇𝜇𝑗𝑗 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼𝑗𝑗𝑖𝑖
𝑄𝑄
𝑖𝑖=1  + 𝐺𝐺𝑖𝑖𝑗𝑗 + 𝑒𝑒𝑖𝑖𝑗𝑗 (1) 

In the multi-environment Model 1, 𝑦𝑦𝑖𝑖𝑗𝑗𝑡𝑡  represents the target trait, t, (for example, yield) 
of genotype i in environment j, 𝜇𝜇𝑗𝑗  is a fixed intercept term for each environment, 𝑥𝑥𝑖𝑖𝑖𝑖 is a 
genotypic covariable that represents DNA information of genotype i at QTL position q, and 
𝛼𝛼𝑗𝑗𝑖𝑖 is the additive effect of the fixed QTL q in environment j. 𝐺𝐺𝑖𝑖𝑗𝑗 represents the residual 
genetic effect (polygenic effects) for genotype i in environment j. The matrix with elements 
𝐺𝐺𝑖𝑖𝑗𝑗, {𝐺𝐺𝑖𝑖𝑗𝑗},  has a multivariate normal distribution with zero mean, 𝟎𝟎, and, as we will see later, 
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a highly structured variance-covariance matrix 𝜮𝜮 ; {𝐺𝐺𝑖𝑖𝑗𝑗}~𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝜮𝜮) . (For notational 
simplicity, we will omit the dimensions of the various matrices.) 𝜮𝜮  defines the genetic 
variances and covariance for any two pair of observations, 𝑦𝑦𝑖𝑖𝑗𝑗𝑡𝑡  and 𝑦𝑦 𝑖𝑖´𝑗𝑗´

𝑡𝑡  and depends on the 
genetic and environmental similarities of the two genotypes, i and i’, and the two 
environments j and j’. The term 𝑒𝑒𝑖𝑖𝑗𝑗 stands for a non-genetic residual, {𝑒𝑒𝑖𝑖𝑗𝑗}~𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝑹𝑹), with 
𝑹𝑹 often allowing for specific residual variances per environment.  

 A simplification of Model 1 omits the genetic residual, 𝐺𝐺𝑖𝑖𝑗𝑗, and is appropriate when QTLs 
account for all of the genetic variation: 

𝑦𝑦𝑖𝑖𝑗𝑗𝑡𝑡 = 𝜇𝜇 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼𝑗𝑗𝑖𝑖
𝑄𝑄
𝑖𝑖=1  + 𝑒𝑒𝑖𝑖𝑗𝑗 (1.1) 

When Model 1.1 fits the data well, the performance of the unobserved genotype i in 
environment j can be predicted as; 

𝑦𝑦�𝑖𝑖𝑗𝑗𝑡𝑡 = �̂�𝜇𝑗𝑗 + �𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼�𝑗𝑗𝑖𝑖

𝑄𝑄

𝑖𝑖=1

 

Compared with single-environment QTL models, multi-environment QTL models like 
Model 1 or Model 1.1 are more powerful in picking up QTLs and generally explain a larger 
amount of the genetic variance (Piepho 2000; Piepho and Möhring 2005; Mathews et al. 
2008; Alimi et al. 2013). It has been shown that jointly considering multivariate phenotypes 
(i.e., the phenotype in multiple environments) allows a substantially greater separation 
between genotype classes than when considering univariate phenotypes (i.e., phenotype in a 
single environment) (Stephens 2013). 

 Another simplification of Model 1 occurs when we assume that there are no large discrete 
genetic effects in the form of QTLs that drive phenotypic differences, but that genetic effects 
are exclusively of a polygenic nature. A prediction model that generalizes the single 
environment genomic best linear unbiased prediction (G-BLUP) approach of (Meuwissen et 
al. 2001) to multi-environment prediction can be defined as:  

𝑦𝑦𝑖𝑖𝑗𝑗𝑡𝑡 = 𝜇𝜇𝑗𝑗 + 𝐺𝐺𝑖𝑖𝑗𝑗 + 𝑒𝑒𝑖𝑖𝑗𝑗        (1.2) 

In Model 1.2, the distribution of the polygenic effects 𝐺𝐺𝑖𝑖𝑗𝑗 is {𝐺𝐺𝑖𝑖𝑗𝑗}~𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝜮𝜮). Since 𝜮𝜮 is a 
function of the genetic and environment similarities, the larger the similarity of unobserved 
genotypes with observed genotypes, and the larger the similarity of observed environments 
with unobserved environments, the more information is available for phenotype prediction, 
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and the higher is the prediction accuracy (Crossa et al. 2006; Albrecht et al. 2014). Analogous 
to the classical partitioning of genetic and environmental effects, the covariance matrix 𝜮𝜮 can 
be partitioned into a ‘genotypic’ variance-covariance matrix (𝜮𝜮𝐺𝐺), and an ‘environmental’ 
variance-covariance matrix (𝜮𝜮𝐸𝐸), such that 𝜮𝜮 = 𝜮𝜮𝑮𝑮⨂𝜮𝜮𝐸𝐸, i.e., the Kronecker product of the 
genotypic variance-covariance matrix and the environmental variance-covariance matrix 
(West et al. 2006; Smith et al. 2005). It is important to realize that although 𝜮𝜮𝐸𝐸 is called an 
‘environmental’ variance-covariance matrix, 𝜮𝜮𝐸𝐸  reflects genetic correlations among 
environments, and so plays a role in forming predictions in the multi-environment context. 
Examples of commonly used models for these two covariance matrices are given below. 

 𝜮𝜮𝐺𝐺can be modelled as 𝜮𝜮𝐺𝐺 = 𝑨𝑨, where 𝑨𝑨 corresponds to the expected additive relationship 
matrix calculated from the coefficients of coancestry estimated from the pedigree, or to the 
realized additive relationship matrix estimated from molecular markers (Piepho et al. 2008). 
If the one step prediction with statistical models uses pedigree information, 𝐺𝐺𝑖𝑖𝑗𝑗 is commonly 
called “breeding value” (Falconer and Mackay 1996; Piepho et al. 2008). On the other hand, 
if the prediction uses molecular marker information, it is called “genomic estimated breeding 
value” (Burgueño et al. 2012; Piepho 2009).  

 In the multi-environment context, genotypic variances tend to change across 
environments with consequent changes in genotypic correlations for pairs of these 
environments. A flexible variance-covariance structure across environments 𝜮𝜮𝐸𝐸, is required 
to achieve higher prediction accuracies. One flexible and parsimonious model for variances 
and covariances/correlations across environments is the factor analytic model (FA) (Table 1) 
(Smith et al. 2001a, 2005; Mathews et al. 2008).  

 The decision about when it is convenient to use Models 1, 1.1, or 1.2 depends on the 
genetic architecture of the target trait. If the trait is regulated by a few QTLs with large effects, 
a QTL model (Model 1.1) might provide the largest prediction accuracy. On the other hand, 
traits like grain yield, which are regulated by many genes with small effects might not show 
any significant QTL that can be included in Model 1.1. In this case, Model 1.2, whose 
predictions we will call GE-BLUPs because they can account for GEI, should integrate the 
large number of small additive effects into a multi-environment prediction model. For the 
intermediate case when traits have a few QTLs with large effects, and many other loci with 
very small additive effects, Model 1 is adequate.  Bernardo (2014) suggested that it is 
convenient to consider QTLs (or genes) as fixed effects when they account for more than 
10% of the genetic variance. The simulations made by Bernardo (2014) show that the most 
adequate model depends on the genetic architecture of the trait, i.e., on the number of QTLs 
and the magnitudes of the QTL effects.   
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Table 1. Variance-covariance models for the environmental covariance (𝛴𝛴𝐸𝐸), ordered by increasing number of 
parameters. For simplicity, these examples assume three environments  (m=3). 

Name  Number of 
parameters 

Structure 

Identity 1 
�
𝜎𝜎2 0 0
0 𝜎𝜎2 0
0 0 𝜎𝜎2

� 

Compound symmetry 2 
�
𝜎𝜎2 + 𝜑𝜑 𝜑𝜑 𝜑𝜑
𝜑𝜑 𝜎𝜎2 + 𝜑𝜑 𝜑𝜑
𝜑𝜑 𝜑𝜑 𝜎𝜎2 + 𝜑𝜑

� 

Factor analytic, order 1 2m 
�
𝜆𝜆12 + 𝜓𝜓1 𝜆𝜆1𝜆𝜆2 𝜆𝜆1𝜆𝜆3
𝜆𝜆2𝜆𝜆1 𝜆𝜆22 + 𝜓𝜓2 𝜆𝜆2𝜆𝜆3
𝜆𝜆3𝜆𝜆1 𝜆𝜆3𝜆𝜆2 𝜆𝜆32 + 𝜓𝜓3

� 

Unstructured m(m+1)/2 
�
𝜎𝜎12 𝜎𝜎12 𝜎𝜎13
𝜎𝜎21 𝜎𝜎22 𝜎𝜎23
𝜎𝜎31 𝜎𝜎32 𝜎𝜎32

� 

2.2.2.  Statistical models to predict performance of observed genotypes in new 
environments 

After genotypes have been phenotyped in some environments, it can be useful to predict 
their performance in other environments that were not used for evaluation. New 
environments could, for example, include future trials at known locations, which implies that 
none of the genotypes were observed in that environment yet [G, nE, nGE]. Thus, the 
correlation between observed environments and the predicted environments cannot be 
estimated from phenotypic data, or direct observations on the complex trait. In this case, we 
may use environmental covariables, like meteorological, soil or management covariables, as 
predictors in models for the mean or define correlations between environments in models for 
the variance-covariance structure. 

 Models for the mean that can be used to predict phenotypes in unobserved environments 
usually correspond to factorial regression models that incorporate environmental covariables. 
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These models explicitly estimate the sensitivity of the QTL to environmental covariables 
(Model 2) (Campbell et al. 2004; Boer et al. 2007; Laperche et al. 2007; Malosetti et al. 2013; 
Romagosa et al. 2013). Hence, model parameters can have biological interpretation.  

𝑦𝑦𝑖𝑖𝑗𝑗 = 𝜇𝜇𝑗𝑗 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑄𝑄
𝑖𝑖=1 �𝛾𝛾𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑧𝑧𝑗𝑗�  + 𝐺𝐺𝑖𝑖𝑗𝑗 + 𝑒𝑒𝑖𝑖𝑗𝑗  (2) 

In Model 2, the additive effects (𝛼𝛼𝑗𝑗𝑖𝑖) of the fixed QTL q in environment j of Model 1 are 
replaced by a regression formulation, �𝛾𝛾𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑧𝑧𝑗𝑗�, in which the effect of QTL q is a function 
of the environmental covariable 𝑧𝑧𝑗𝑗, and so changes over environments. When the covariable 
𝑧𝑧𝑗𝑗 is centered, the intercept term, 𝛾𝛾𝑖𝑖, corresponds to the effect of the QTL in the average 
environment, while the slope 𝛿𝛿𝑖𝑖 corresponds to the sensitivity of the QTL q to the 
environmental covariable 𝑧𝑧𝑗𝑗. Although Model 2 does not explicitly restrict the environmental 
covariables to a particular range, it should be considered that crops respond differently to 
covariables in the environmental extremes (e.g., too cold or too warm). So, the sensitivity of 
the genotype to the environmental covariables cannot be assumed constant outside the range 
of environments in which 𝛿𝛿𝑖𝑖  was estimated. A second issue that needs to be taken into 
account is that models like Model 2 do not make explicit in which phenological stage the 
environmental covariable is considered. Since the sensitivity of a crop to the environment 
varies throughout the development, environmental covariables included in the prediction 
model need to coincide with the developmental timing used to estimate the sensitivity. 

 For example, Boer et al. (2007) analysed grain yield and grain moisture for F5 maize 
testcross progenies evaluated across 12 environments in the U.S. corn belt. Since QTLs did 
not have a constant effect across environments (QTL by environment interaction), QTL 
effects were modelled conditional on longitude and year, both consequences of temperature 
differences during critical stages of the development. This factorial regression model allows 
prediction of yield and moisture at any location provided that temperatures during specific 
developmental stages are contained within those of the observed environments.  

A second example is shown by Malosetti et al. (2004), who identified QTLs conferring 
differential sensitivity of grain yield to temperature during heading in a double haploid barley 
population. In a model like Model 2, the average daily temperature range during heading was 
the most important environmental covariable explaining differential QTL expression, i.e., the 
QTL allele from the parental line Steptoe, conferred an extra grain yield of 0.112 ton ha-1 for 
each extra degree Celsius during heading. Hence, yield could be predicted for unobserved 
environments if the average temperature for such environments was available. In that sense, 
Model 2 is closer to CGM than Model 1 because Model 2 explicitly represents environments 
on a continuous scale.   
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 The second way to use environmental information for prediction is using environmental 
covariables to estimate similarities (covariances) among environments, analogous to the way 
molecular markers are used to characterize similarity among genotypes. If environmental 
covariables are considered as an indicator of environmental similarity, they can be used to 
estimate the environmental variance-covariance matrix in Model 1.2. Hence, 𝜮𝜮𝐸𝐸 = 𝜴𝜴, where 
𝜴𝜴  is the variance-covariance matrix that accounts for the similarity in environmental 
conditions. The larger the covariance between observed and unobserved environments, the 
more information can be shared to make the predictions. The genotypic covariance 𝜮𝜮𝐺𝐺 can 
be modelled as explained in Section 2.1 by imposing an additive relationship matrix to define 
𝜮𝜮𝐺𝐺 = 𝑨𝑨, where 𝑨𝑨 can be estimated from the pedigree and/or from molecular markers.  

 Using multiple climatic variables to model the environmental covariance, as proposed by 
Jarquín et al. (2013) shows promise as a tool to predict genotypic performance in unobserved 
environments. However, many environmental covariables are correlated and not all need to 
be included in the model. Mechanistic CGMs such as APSIM have shown to be a good 
integrative tool to select subsets of variables that characterize environmental similarity 
(Chapman 2008).  

2.2.3. Statistical models to predict performance of unobserved genotypes in new 
environments 

Section 2.1 presented models that used genotypic covariables to predict the phenotype on 
unobserved genotypes. Section 2.2 described how environmental covariables can be used in 
factorial regression models for prediction, and how to estimate the environmental covariance 
of a random term, necessary for prediction along the random part of an LMM. This Section 
2.3 will combine both situations, aiming to predict the phenotype of genotypes that have not 
been tested yet for environments that have not been used for evaluation.  

 When predicting unobserved genotypes in new environments, both genotypic and 
environmental covariables are needed. In factorial regression-type of models, prediction of 
unobserved genotypes is possible, provided that the additive effects of each QTL-allele can 
be estimated from the tested genotypes. The phenotypes of unobserved genotypes can also 
be predicted in new environments, provided that the sensitivity of the QTL effects along an 
environmental gradient (e.g., temperature), can be estimated from observed environments. In 
the example of Malosetti et al. (2004) presented in Section 2.2, phenotype prediction is 
possible for any environment provided the temperature remains within the range used  to 
estimate the QTL sensitivity to temperature. 
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 In models that entirely rely on the use of the variance-covariance structures imposed on 
genotypes and environments, prediction of unobserved genotypes in new environments is 
possible via the reconstruction of the full covariance matrix 𝜮𝜮 from its components, 𝜮𝜮𝐺𝐺 and 
𝜮𝜮𝐸𝐸. For the genotypic part this runs via explicit pedigree information or information from 
genotypic covariables (molecular markers), while for the environmental part correlations 
between environments can be estimated from environmental characterization (temperature, 
precipitation, soil characteristics, etc.). Note that while in Section 2.1, 𝜮𝜮𝐺𝐺  was calculated 
from genotypic covariables, and 𝜮𝜮𝐸𝐸 was estimated from the phenotypic data on the target 
trait, here both 𝜮𝜮𝐺𝐺and  𝜮𝜮𝐸𝐸 are estimated from explicit covariables.  

2.3. Crop growth models to predict genotypic performance  

The algorithms in a CGM predict the target trait (e.g., grain yield) as a non-linear combination 
of underlying intermediate phenotypes (also commonly called “components”, e.g., biomass), 
which are calculated indirectly from a set of inputs to the CGM that typically comprise 
environment (soil, weather, and nutrients) data and CGM parameters derived from prior 
experimentation. GEI in the target trait is then a consequence of the interactions between the 
intermediate phenotypes (Chapman et al. 2003; Tardieu 2003; Tardieu et al. 2005; Chenu et 
al. 2009; Makumburage et al. 2013).   

 Considering the CGM in reverse, we can state that the value of the target trait is able to 
be ‘dissected’ into these intermediate phenotypes (See Chapter 7 of this book by Hammer et 
al.). Although these intermediate phenotypes are likely to show less GEI than the target trait, 
they still correspond to an integration of genotypic responses to environmental conditions 
(e.g., they may show GEI). Ideally, a complete dissection of the target trait would comprise 
of a set of CGM input parameters that depend only on the genotype (for example, a genotypic 
sensitivity of development rate to the air temperature), and to environmental covariables 
(Model 2), i.e., CGM parameters that do not show GEI (Slafer 2003; Yin et al. 2003; Bertin 
et al. 2010; Alam et al. 2014). The target trait for genotype i in environment j can be written 
as a function of CGM parameters and environmental inputs as follows: 

𝑦𝑦𝑖𝑖𝑗𝑗𝑡𝑡 = ∫𝑓𝑓 �𝒚𝒚𝑖𝑖𝑃𝑃;  𝒛𝒛𝑗𝑗�  𝑑𝑑𝑑𝑑 + 𝑒𝑒𝑖𝑖 (3) 

In Model 3, 𝑦𝑦𝑖𝑖𝑗𝑗𝑡𝑡  represents the target trait for genotype i in environment j, which is 
modelled as a function of multiple CGM parameters  𝒚𝒚𝑖𝑖𝑃𝑃 (p for parameter in superscript) and 
multiple environmental inputs, 𝒛𝒛𝑗𝑗 integrated over time (Fig. 2). The function f ( ; ) embodies 
the algorithms that transform CGM parameters into intermediate phenotypes as well as the 
interactions between the intermediate phenotypes that lead to the target trait. 
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 A commonly-studied CGM is APSIM, which currently has modules for several crops, 
e.g., wheat, canola, sorghum (Keating et al. 2003; Holzworth et al. 2014). In the case of 
APSIM-Wheat, growth (biomass accumulation) and development (phenological events, the 
functionality of plant structures or appearance of new structures) are calculated on a daily 
basis (Wang et al. 2002). The final phenotype (e.g., grain yield) is calculated as a function of 
a series of intermediate phenotypes. Examples of intermediate phenotypes are biomass, 
radiation use efficiency and radiation interception on any given day or accumulated to a given 
day (Fig. 2). Intermediate phenotypes depend on CGM parameters that are genetically 
determined, and which modulate the phenotypic response to environmental covariables. An 
example of CGM parameters is the development rate to flowering in wheat where the 
parameters are vernalization requirement and sensitivity to photoperiod, which are regulated 
by the VRN and the PPD alleles, and regulate the phenotypic response (phenology) to 
temperature and photoperiod (Zheng et al. 2013). 

 CGM parameters, 𝒚𝒚𝑖𝑖𝑃𝑃, for phenotyped genotypes can be directly observed, estimated or 
calculated from the phenotypic measurements. However, given that CGM parameters depend 
on the genotype, they can also be predicted from genotypic covariables, i.e., molecular 
marker information. When we can identify the genetic basis of physiological parameters in 
terms of underlying QTLs, or, equivalently, when we can predict the physiological 
parameters from marker information, we can effectively predict the target trait from marker 
information and environmental inputs provided the intermediate traits and their interactions 
have been correctly identified and implemented in the CGM. Hence, predicted CGM 
parameters enable to predict the phenotype of genotypes that have not been observed yet. 
The prediction for individual CGM parameters (𝑦𝑦𝑖𝑖𝑃𝑃) would look like Model 4:   

𝑦𝑦𝑖𝑖𝑃𝑃 = 𝜇𝜇 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼𝑖𝑖
𝑄𝑄
𝑖𝑖=1  + 𝐺𝐺𝑖𝑖 + 𝑒𝑒𝑖𝑖 (4) 

 Like Model 1, Model 4 can be modified to include (i) only the QTLs, in a QTL model 
(Model 4.1) or (ii) only the polygenic effects (𝐺𝐺𝑖𝑖), in a genomic prediction model with the 
random effects  𝐺𝐺𝑖𝑖 being structured by a genetic relationship matrix  (Model 4.2).  

 𝑦𝑦𝑖𝑖𝑃𝑃 = 𝜇𝜇 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼𝑖𝑖
𝑄𝑄
𝑖𝑖=1  + 𝑒𝑒𝑖𝑖 (4.1) 

  𝑦𝑦𝑖𝑖𝑃𝑃 = 𝜇𝜇 + 𝐺𝐺𝑖𝑖 + 𝑒𝑒𝑖𝑖  (4.2) 

If more than one CGM parameter is to be predicted from molecular markers and/or 

pedigree information, Models 4, 4.1, and 4.2 could also be expanded to a multi-trait 

prediction model that takes into account possible correlations among the CGM parameters, 
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in a model that is similar to the multi-environment Model 1. Modelling traits simultaneously 

allows to gain power for QTL detection and to detect QTLs with pleiotropic effects (Alimi 

et al. 2013; Ste phens 2013).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Representation of the main parameters of wheat yield used in the APSIM-CGM. Grey boxes correspond 

to intermediate phenotypes that are determined by the genotype and the environment (i.e. they show potentially large 

GEI), black boxes correspond to CGM parameters that are dependent on the genotype, and white boxes represent 

environmental covariables (http://www.apsim.info/). 

 Predictions for multiple CGM parameters, 𝒚𝒚�𝑖𝑖𝑃𝑃, can be used as input in Model 3 to calculate 
intermediate phenotypes, and produce the prediction for the target trait, �̂�𝜇𝑖𝑖𝑗𝑗𝑡𝑡 , in Model 5. 

�̂�𝜇𝑖𝑖𝑗𝑗𝑡𝑡 = ∫𝑓𝑓 �𝒚𝒚�𝑖𝑖𝑃𝑃;  𝒛𝒛𝑗𝑗�  𝑑𝑑𝑑𝑑 (5) 
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In Model 5, the prediction accuracy of the target trait depends on the accuracy of the 
prediction of each of the components, and on the ability of the functions that transform CGM 
parameters into intermediate phenotypes to correctly describe the processes leading to the 
target trait. 

 CGMs with known/predicted genotypic parameters are a potentially useful tool to 
understand which traits can be advantageous in a given environment, and also to identify 
management practices that contribute to improved crop productivity (Yin et al. 2004; 
Hammer et al. 2006; Reynolds et al. 2009b; Harrison et al. 2014). In the context of adaptation 
to climate change, Zheng et al. (2012) modelled how phenology of current wheat varieties 
would influence their adaptation to future environments, which are expected to show 
different CO2 and precipitation levels. In their second paper, Zheng et al. (2013) 
demonstrated that the flowering time of spring wheat genotypes can be modelled using the 
composition of their VRN1 and Ppd-D1 alleles together with responses derived from a single 
experiment with four environments: +/- treatments for vernalisation and extended 
photoperiod. Allelic combinations of loci Vrn-A1, Vrn-B1, Vrn-D1, and Ppd-D1 were used 
to predict APSIM-wheat parameters of a population of genotypes. From a single experiment 
(replicated in two years), they validated the model with more than 250 wheat genotypes 
across the entire Australian wheat belt, and were able to simulate flowering time for any 
weather records in the wheat belt. These conclusions can be useful to guide breeders in the 
process of determining which alleles should be considered in the selection process. 

 Bogard et al. (2014) extended this approach further to model the drivers of flowering time 
in winter wheat as functions of major genes as well as SNPs derived from association 
mapping, i.e., allowing prediction of unknown genotypes (but with known genes and SNPs) 
in new environments. In both Zheng et al. (2013) and Bogard et al. (2014), the predictions 
for heading date using the gene-based predicted parameters corresponded well with the 
observed dates to heading. Attributes that contributed to a successful phenotype prediction 
were (i) a well-defined CGM for heading date (Slafer and Rawson 1994), (ii) a well-defined 
set of environmental covariables with corresponding CGM parameters, and (iii) a well 
understood genetic basis of the CGM parameters (Snape et al. 2001).   

 The same approach has also shown to be successful for other more complex and less 
heritable traits such as grain yield under drought. For example, Chenu et al. (2009) used 
APSIM to model the impact of QTLs controlling the intermediate traits leaf and silk 
elongation on maize grain yield. The intercept and slope of these intermediate traits in 
response to meristem temperature, evaporative demand and soil water deficit were genotype-
dependent (Reymond et al. 2003; Reymond et al. 2004). 
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 Unfortunately, the identification of CGM parameters is sometimes less straightforward 
for complex traits like grain yield. Yin et al. (2000) showed an example in barley with a 
successful estimation of QTL effects for the CGM parameters, but with a poor prediction of 
grain yield. The correlation between the observed CGM parameters, i.e. phenotype of CGM 
parameters, and the QTL-predictions of the same parameters was high. However, the 
correlation between yield predictions of the CGM, whether phenotype based or QTL 
prediction based, and observed yield was not high. The cause of the poor predictions did not 
reside in the fact that the CGM parameters were replaced by predicted parameters from the 
QTL model, but in the fact that the CGM was unable to predict yield from its component 
traits. Similar work has been recently reported by Gu et al. (2014) on grain yield of rice crop, 
using a new CGM, which gave more promising results. However, efforts to improve CGM 
for predicting complex traits like grain yield are still strongly needed.  

 The example from Yin et al. (2000) shows that although the integrated statistical and 
CGM modelling allows for a larger flexibility, it might result in more complex and fragile 
models, because the approach can break down at the level of the estimation of the CGM 
parameters and at the level of the integration of these CGM parameters to calculate the 
intermediate phenotypes. However, even if the CGM are not fully able to predict the target 
trait, it is valuable to develop models of intermediate traits as well as for yield per se. Breeders 
can still be interested to recombine lines with high levels of proven intermediate traits with 
the expectation that these should on average result in better yield when further crossing and 
selection is done, i.e., because the selection on intermediate traits should already have 
improved part of the physiological adaptation pathway (Cooper et al. 2014). If breeders select 
mainly on yield per se, then it may be less likely that selections will also have high radiation 
use efficiency (RUE) or transpiration efficiency (TE) or traits for which genetic variation was 
not expressed in the given selection environment. 

 The examples of Zheng et al. (2013), Bogard et al. (2014), and Chenu et al. (2009) show 
that CGMs are a tool to integrate complex information from the genotypic, organ, and crop 
level. Dissection of a target trait into component traits at different levels of biological 
organisation allows phenotype prediction for the target trait in the face of genotype by 
environment and QTL by environment interactions for that same trait. Hence, the combined 
approach of statistical QTL-modelling and CGM is an alternative to model complex GEI 
interactions (Yin et al. 2004).   
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2.4. Further considerations 

2.4.1. Classification of environments 

Sections 2.2 and 2.3 presented models to predict the performance of genotypes in new 
environments ([G, nE, nGE] or [nG, nE, nGE]). However, if there are repeatable patterns that 
allow to classify environments, these patterns might help to reduce the complexity of  𝜮𝜮𝐸𝐸 and 
thereby improve the accuracy of prediction.  

 One example of repeatable patterns that often justifies to group environments is the 
presence of regions. Here, we understand ‘regions’ (or mega-environments) as a group of 
locations where genotypes perform consistently across years (Bull et al. 1992; Gauch and 
Zobel 1997; Basford and Cooper 1998; Yan et al. 2000). Environments inside the same region 
are expected to be more homogeneous in terms of genotypic ranking, i.e., less GEI inside the 
regions (e.g. Atlin et al. 2000; Burgueño et al. 2008). In dryland production areas, other 
groupings may relate to characteristics of the soil (shallow/deep, low/high water holding 
capacity) and the management of the crop (sowing date, row spacing arrangement, etc.). De 
la Vega and Chapman (2010) showed how multiple component traits related to yield for a 
complex set of mega-environments in Argentina. 

 If locations can be grouped into regions, it is generally convenient to breed for specific 
adaptation to those regions, instead of broad adaptation across regions (Atlin et al. 2000, 
2011). In this case, predictions can be produced for the whole of a region, or for new 
environments within a region. Precision of yield estimates might still benefit from the 
information of neighbouring regions by means of the covariance structure in a mixed model 
(Piepho and Möhring 2005; Kleinknecht et al. 2013).   

 When phenotypes are not available for all the locations of interest, environmental 
covariables can also be used to classify environments, and reduce the complexity of 𝜮𝜮𝐸𝐸 . 
Classifying environments into regions on the basis of environmental similarity, potentially 
allows to (i) predict new environments (as discussed in Sections 2.2 and 2.3, and also (ii) 
define the target population of environments, where a particular genotype is to be evaluated 
(Chapman et al. 2000a; Hammer et al. 2002; Chenu et al. 2011).  CGMs are a powerful tool 
to identify relevant environmental factors (Chapman 2008; Messina et al. 2011), and the 
periods when the crop is most sensitive to those factors (Chenu et al. 2013). For example, 
considering drought seasonal patterns could give a better indication of the environment types, 
instead of the total rainfall per year (Chapman et al. 2000a, 2000b).  
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 A further application of explicit environmental characterization is to weight environments 
based on their expected relevance for future years (Podlich et al. 1999). This means that 
environmental conditions that are more likely to occur receive more weight when doing the 
predictions, compared to less likely environmental conditions.  

2.4.2. Population structure 

Sections 2 and 3 discussed different models to predict phenotypes of unobserved genotypes 
using molecular marker information. In those sections, 𝜮𝜮𝐺𝐺  had the structure of the genomic 
relationship matrix, without explicitly specifying sub-populations. However, genetic 
relatedness between training and validation sets largely influences prediction accuracy 
(Windhausen et al. 2012; Riedelsheimer et al. 2013). Hence, when there is strong population 
structure, it is necessary to define whether prediction will be done among or within 
populations. When predictions are limited to specific sub-populations, accuracy is commonly 
larger than when predicting across sub-populations, or when correcting for population 
structure (Daetwyler et al. 2012; Guo et al. 2014).  

Methods to consider population structure in the model for genomic prediction can be 
based on the incorporation of the eigenvectors of the genotype by molecular marker data 
matrix (Patterson et al. 2006; Janss et al. 2012). Another option is to consider population 
structure in the design of the cross-validation scheme, for example by a stratified cross-
validation design conditional on known population structure to ensure that each sub-
population is equally represented in the training and validation sets (Albrecht et al. 2014; 
Guo et al. 2014). 

2.4.3. Next generation sequencing  

With the recent development of next generation sequencing technologies, genotyping costs 
have been largely reduced, allowing improving the genotypic characterization of important 
crops as barley, wheat and potato (Poland et al. 2012b; Uitdewilligen et al. 2013). In 
sequence-based genotyping approaches, marker discovery and genotyping are completed at 
the same time, allowing for faster genotyping processes (Poland and Rife 2012). The shorter 
time needed is thanks to the combination of restriction enzymes, sequencing, imaging, and 
genome alignment and assembly methods (Metzker 2010; Elshire et al. 2011). 

 These technologies permit the genotyping of larger populations of plants with higher 
marker density and increased mapping resolution (Varshney et al. 2014). Larger marker 
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density increases the chances of including causal loci that otherwise would not have been 
considered in models for phenotype prediction (Spindel et al. 2013). More loci in the model 
means increased genomic prediction accuracy (Poland et al. 2012a). However, models for 
phenotype prediction have diminishing returns on additional markers once the point of 
“marker saturation” has been reached, which depends on the genetic diversity of the 
population (Jannink et al. 2010; Heffner et al. 2011; Poland et al. 2012a).  

 Other questions regarding larger numbers of markers that remain not fully answered are: 
(i) how imputation of missing genotype data or haplotype inferences may affect prediction 
accuracies when genotyping by sequencing is used (Crossa et al. 2013), (ii) how to reduce 
the computational time needed because of the large number of markers (Verbyla and Cullis 
2012), and (iii) how to improve model diagnostics, distinguishing between loci with large 
effects, and loci with smaller effects (Bernardo 2014). 

2.4.4. High-throughput phenotyping to input to models for phenotype prediction 

Mixed models and CGM discussed in Sections 2 and 3 are promising tools for phenotype 
prediction. However, these models require the phenotyping of multiple genotypes, traits and 
environments. With the reduction of genotyping costs, evaluating the populations 
phenotypically has become the limiting factor (Cobb et al. 2013).  

 High-throughput phenotyping platforms can either measure the target trait directly, or 
measure one or more traits that are correlated with the target trait. The use of CGMs allows 
estimation of hard-to-measure traits such as seasonal water use, given inputs of leaf area over 
time and canopy thermal characteristics, for example. Correlated traits measured by high-
throughput phenotyping platforms can be used as inputs in models like Model 1. To do so, 
traits must: (i) have high genetic correlation with the target trait in the target environment, 
(ii) be less affected by environment (have a larger heritability) than the target trait, and (iii) 
provide an easy and reliable measurement, which is less expensive than the target trait itself 
(Bänziger 2000; Araus et al. 2008; Prasanna et al. 2013). When measuring correlated traits, 
high-throughput phenotyping platforms could be particularly useful for obtaining detailed 
non-destructive measurements of plant characteristics that collectively provide reliable 
estimates of trait phenotypes (Cabrera-Bosquet et al. 2012; Prasanna et al. 2013; Cooper et 
al. 2014).  

 High-throughput phenotyping platforms are commonly used under two scenarios: (i) 
precise phenotyping under controlled environments that aim at representing different levels 
of environmental quality, and (ii) phenotyping in environments that correspond to a sample 
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of environments in the field. The main advantage of controlled environments is that screening 
protocols can be more easily standardized, ensuring that plants are exposed to fairly reliable 
levels of stress. Hence, controlled environments offer the stability to search for attractive 
phenotypes or genotypes in a specific type of environment, e.g. drought stress (Cobb et al. 
2013; Passioura 2012).   

 Growth under controlled conditions is usually different from that under field conditions. 
Hence, high-throughput phenotyping platforms in controlled environments might not lead to 
the identification of important yield-determining processes and promising genotypes in the 
field (Passioura 2012). This limits the application for phenotyping to specific stages of the 
crop (e.g., early vigour), or to traits that are correlated with the target trait (e.g., carbon isotope 
discrimination as an indicator of water use efficiency (Passioura 2012; Prasanna et al. 2013).  

 Popular high-throughput phenotyping techniques are those based on spectral technologies 
or remote sensing, as near infrared spectroscopy (NIRS), or image analysis. These techniques 
are a powerful tool that can provide information about multiple traits from only one or few 
images, and can be applied in controlled conditions as well as in field trials.  

 One example of how phenotypes obtained by image analysis can be included in phenotype 
prediction is shown by van der Heijden et al. (2012). Here, QTLs for leaf area were identified 
from the 3D representation of the plant canopy reconstructed from stereo images. The QTLs 
for leaf area from the image analysis agreed with the QTLs detected when using manually 
measured leaf areas, showing the potential of stereo images to characterize phenotypically 
breeding populations. 

 Image analysis introduces potentially larger measurement errors than conventional 
measurement techniques. For that reason, image information should be first carefully selected 
with the aid of statistical and physiological knowledge, in an automatized and standardized 
fashion, before incorporating it in the genetic analysis (Eberius and Lima-Guerra 2009; 
Hartmann et al. 2011). Hence, models accounting separately for the measurement error and 
for the experimental (plot) error should be considered (Smith et al. 2001b). 
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2.4.5. Concluding remarks 

This chapter discussed several approaches that aim at predicting the phenotype in a multi-
environment context. These approaches ranged from pure statistical models and pure CGMs, 
to a combination of both types of models. Special attention was given to different prediction 
scenarios; unobserved genotypes, new environments, and the combination of both. How 
prediction accuracy can profit from the large availability of environmental and genotypic 
information was also discussed, aiming at integrating physiological and statistical 
knowledge. Phenotypic and genomic data start to become abundant. The challenge for better 
phenotype prediction and more effective selection lies in more sophisticated procedures for 
selection of genotypic and environmental covariables in models for phenotype prediction, 
separating the signal from the noise.  
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Abstract  

Genome-enabled prediction provides breeders with the means to increase the number of 
genotypes that can be evaluated for selection. One of the major challenges in genome-enabled 
prediction is how to construct a training set of genotypes from a calibration set that represents 
the target population of genotypes, where the calibration set is composed of a training and 
validation set. A random sampling protocol of genotypes from the calibration set will lead to 
low quality coverage of the total genetic space by the training set when the calibration set 
contains population structure. As a consequence, predictive ability will be affected 
negatively, because some parts of the genotypic diversity in the target population will be 
under-represented in the training set, whereas other parts will be over-represented. Therefore, 
we propose a training set construction method that uniformly samples the genetic space 
spanned by the target population of genotypes, thereby increasing predictive ability. To 
evaluate our method, we constructed training sets alongside with the identification  of  
corresponding  genomic  prediction models for four genotype panels that differed in the 
amount of population structure they contained (maize Flint, maize Dent, wheat, and rice). 
Training sets were constructed using uniform sampling, stratified-uniform sampling, 
stratified sampling and random sampling. We compared these methods with a method that 
maximizes the generalized coefficient of determination (CD). Several training set sizes were 
considered. We investigated four genomic prediction models: multi-locus QTL models, 
GBLUP models, combinations of QTL and GBLUPs, and Reproducing Kernel Hilbert Space 
(RKHS) models. For the maize and wheat panels, construction of the training set under 
uniform sampling led to a larger predictive ability than under stratified and random sampling. 
The results of our methods were similar to those of the CD method. For the rice panel, all 
training set construction methods led to similar predictive ability, a reflection of the very 
strong population structure in this panel. 
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3.1. Introduction 

The key factor to progress in plant breeding is the number of genotypes that can be 
evaluated phenotypically (Cooper et al. 2014b). Unfortunately, field testing is slow and 
costly, forcing breeders to limit the number of genotypes that is phenotyped. Genomic 
prediction offers the potential to alleviate this limitation, allowing to broaden the pool of 
genotypes for selection, and thereby increasing selection intensity (Crossa et al. 2013; 
Windhausen et al. 2012) and efficiency of breeding programs (Heffner et al. 2010; Crossa et 
al. 2013; Windhausen et al. 2012; Hickey et al. 2014; Longin et al. 2015). 

In genomic selection, genome-enabled genotypic or breeding values are calculated from 
genomic prediction models as sums of effects for large numbers of markers, often without 
explicitly testing individual marker–trait associations (Meuwissen et al. 2001). Genomic 
prediction models are developed for a target population of genotypes (TPG). The TPG 
describes the full collection of existing and future genotypes that is supposed to be suitably 
adapted to the environmental conditions defined by the target population of environments 
(Cooper et al. 2014a; Cooper and Hammer 1996; Comstock 1977). Breeders have access to 
a sample from the TPG, the target sample. This sample of genotypes (or part of it) can be 
regarded as a calibration set for genomic prediction models when both phenotypic and marker 
data are available. To estimate the marker effects in prediction models, the calibration set is 
typically partitioned into a training set and a validation set. Marker effects are estimated on 
the training set of genotypes, and subsequently, genotypic values are calculated for all 
genotypes in the training and validation set. For accurate genomic prediction of the genotypic 
values in the validation set, training and validation sets should have similar genetic diversity, 
reflected in large kinship coefficients (Saatchi et al. 2011; Auinger et al. 2016). This condition 
is more likely to be met if the training set covers the whole genotypic, say genetic, space of 
the calibration set. As the calibration set is assumed to be a representative sample of the TPG, 
we also hope to cover the genetic space of the TPG. Therefore, a highly diverse TPG requires 
a larger training set size to capture the whole range of genetic diversity (Hayes et al. 2009). 

Conventionally, genomic prediction literature uses random sampling as a strategy to split 
the calibration set into a training and a validation set (Burgueño et al. 2012; Crossa et al. 
2010; Heslot et al. 2013; Schulz-Streeck et al. 2012; Riedelsheimer et al. 2012). In random 
sampling, genotypes belonging to the calibration set have equal probability to enter the 
training set. Hence, random sampling reproduces the genotypic frequencies of the calibration 
set, leading to a more dense coverage of those parts of the genetic space that are represented 
by a larger number of genotypes (Odong et al. 2013; Jansen and van Hintum 2007). 
Furthermore, we hypothesize that the heterogeneous coverage of the genetic space produced 
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by random sampling leads to decreased predictive ability because part of the genetic 
diversity in the validation set is not well represented in the training set. 

One strategy to improve the coverage of the genetic space is to use stratified sampling. 
In stratified sampling, the calibration set is divided into subpopulations and then a 
proportion of genotypes is randomly selected from each subpopulation (Guo et al. 2014; 
Albrecht et al. 2014; Janss et al. 2012; Daetwyler et al. 2012). However, subpopulations 
are sometimes not clearly defined or they are internally heterogeneous (Crossa et al. 
2013). Thus, stratified sampling improves the coverage of the genetic space compared to 
random sampling, but it does not guarantee that all relevant genotypes are included in the 
training set. 

The importance of an adequate representation of the genetic space for successful 
genomic prediction has been acknowledged in the recent literature. Rincent et al. (2012) 
assumed that predictive ability can be improved if genotypes in the training set are chosen 
in such a way that the precision of the contrasts between each genotype in the validation 
set and the mean of the calibration set is maximized. This can be achieved by maximizing 
the generalized coefficient of determination (CD). This method was further adapted by 
Isidro et al. (2015), who combined the method of Rincent et al. (2012) with stratified 
sampling. In this method (Isidro et al. 2015), the calibration set is first classified into 
subpopulations and then the CD mean criterion proposed by Rincent et al. (2012) is 
applied inside each subpopulation. 

The methods proposed by Rincent et al. (2012) and by Isidro et al. (2015) rely on the 
variance components estimated from phenotypic data to choose genotypes for the training 
set. Although training set composition is not very sensitive to changes in variance 
components, some small differences in the genotypes allocated to the training set could 
be observed from trait to trait due to trait heritability differences (Rincent et al. 2012). 

A statistically attractive strategy to increase the genetic similarity between training 
and validation sets is to uniformly cover the genetic space of the population of genotypes. 
Uniform coverage of the genetic space as a criterion for choosing members of the training 
set has the advantage of purely genotypic information being sufficient, without requiring 
phenotypic information (Jansen and van Hintum 2007; Odong et al. 2011). This principle 
is well known in the genetic resources literature, where it is used to define germplasm 
core collections (Odong et al. 2013). Here, we interpret the core collection as a training 
set because both of them, core collection and training set, are a subset of genotypes that 
aim at representing the genetic diversity present in a larger population. 
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Once the training set has been constructed, the next task is to identify a suitable prediction 
model. A large range of prediction models have been proposed, and they differ in two main 
aspects. The first aspect is the weight that models assign to specific genomic regions. If large 
QTL are present, predictive ability might benefit from modifying the common assumption 
that all marker effects come from a common normal distribution (Hayes et al. 2009). Hence, 
depending on the trait genetic architecture, it might be convenient to give more importance 
to genomic regions with large effects (Crossa et al. 2013; Daetwyler et al. 2010; Speed and 
Balding 2014; Hayes et al. 2009; Bernardo 2010). 

The second aspect is whether the model accounts only for additive genetic effects, or also 
for nonadditive effects (Langer et al. 2014; Reif et al. 2011; Kippes et al. 2014; Stange et al. 
2013). The GBLUP model proposed by Meuwissen et al. (2001) can be extended to 
separately account for nonadditive genetic effects (Oakey et al. 2006). However, the model 
proposed by Oakey et al. (2006) is computationally demanding. A less demanding model 
option for various types of nonadditive effects is the class of Reproducing Kernel Hilbert 
Space (RKHS) models, for example, with a Gaussian Kernel (Gianola and van Kaam 2008; 
Piepho 2009; Jiang and Reif 2015). The advantage of RKHS models is that they can be used 
across a spectrum of genetic architectures (de los Campos et al. 2009). 

Given the importance of population structure and trait genetic architecture for effective 
implementation of a genomic prediction strategy, the objectives of this paper were (i) to 
compare strategies to define the training set, and (ii) to compare the predictive ability for 
models with explicit QTL with the predictive ability of GBLUP and RKHS models. 

3.2. Materials and Methods 

3.2.1. Data 

To compare the strategies for training set construction and prediction models, we used 
four genotype panels that differed in the amount of population structure (Flint and Dent maize 
panels, and a wheat and rice panel). 

Maize 

The maize data consisted of a Flint panel crossed with a Dent tester (F353) and of a Dent 
panel crossed with a Flint tester (UH007) to produce hybrid progeny for phenotypic 
evaluation, published by Rincent et al. (2014b). Both panels were composed of lines aiming 
at best representing the diversity of Flint and Dent maize in Northern Europe. The panels 
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included commercially used inbred lines created from open pollinated varieties, and lines 
recently developed by public institutes or, in the case of the Dent panel, private companies. 

The Dent panel consisted of 276 genotypes, whereas the Flint panel had 259 
genotypes. Both panels were evaluated infield trials in Germany, France and Spain during 
2010 and 2011. In this paper, we used the adjusted means of tasseling date, silking date 
and dry matter yield for each genotype across all environments (Supplemental Materials 
12 and 13 in Rincent et al. (2014b)). Tasseling and silking date were expressed as growing 
degree days after sowing, considering a base temperature of 6°C, using the mean daily air 
temperature measured in each environment. Both panels were characterized genotypically 
with the Illumina maize SNP50 BeadChip described in Ganal et al. (2011). From this set, 
we used only the markers that were developed by comparing the sequences of nested 
association mapping founder lines (PANZEA SNPs, Gore et al. (2009); Rincent et al. 
(2012)). Individuals which had marker missing rate and/or heterozygosity higher than 
0.10 and 0.05, respectively, were eliminated. Missing marker genotypes (below 2% in 
both panels) were imputed with the software BEAGLE. Markers with minor allele 
frequency lower than 0.05 were eliminated, leading to 28,304 PANZEA markers for the 
Dent panel, and 25,578 PANZEA markers for the Flint panel (Rincent et al. 2014b). 

Wheat 

This wheat panel was constructed to represent flowering time variation present in 
Australian wheat germplasm. Phenotypic data corresponded to the adjusted means across 
environments for yield and heading date of 149 genotypes observed during 2009. Yield 
was observed at eight locations, whereas heading date was observed at six locations in 
the Australian wheat belt. Genotypes were characterized with 4295 SNPs, from which 
four SNPs were at the position of major genes regulating phenology (Ppd-D1, Vrn-A1, 
Vrn-B1, Vrn-D1). Missing markers were replaced by imputed genotypic data using the 
missForest package in R, following the methodology explained in Bogard et al. (2014). 
One marker was discarded as it showed .25% missing data, 39 markers were removed as 
they were monomorphic on this panel, and 431 were discarded because they had a minor 
allele frequency lower than 0.05. This led to 3754 markers for further analysis. Wheat 
genotypic and phenotypic data are available in Supplemental Material, File S1, File S2, 
and File S3. 

Rice 

The rice data consisted of 413 diverse accessions of inbred lines from 82 countries. 
This data set is publicly available at http://www.ricediversity.org. Phenotypes consisted 



Improvement of predictive ability by uniform coverage of  the target genetic space 

41 
 

of plant height, seed number per panicle and flowering time in Arkansas. Genotypes that were 
too similar to each other (causing the relationship matrix to be singular) or that had a missing 
phenotype, were removed, leaving 350 genotypes for the analysis. The panel was genotyped 
with a 44-K SNP chip. After filtering, 36,091 markers were retained in the published data set. 
From this set of markers we discarded those that had 5% of missing values. The remaining 
missing marker scores were imputed with the software BEAGLE. Markers with minor allele 
frequency lower than 0.05 (considering only the phenotyped lines) were eliminated, leading 
to 26,259 markers. 

3.2.2. Characterization of the population structure 

Population diversity was explored by principal component analysis of the identity by state 
(IBS) matrix among genotypes, calculated from molecular markers (Equation 1). This IBS 
calculation method indicates the proportion of shared alleles between genotypes. 

𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐺𝐺𝐺𝐺′+𝐺𝐺2𝐺𝐺2′

𝐾𝐾
 (1) 

The number of subpopulations present in each data set was determined with the Tracy–
Widom statistic, following Patterson et al. (2006). Here, the number of subpopulations equals 
the number of significant principal components, plus one. Genotypes were qualitatively 
assigned to the subpopulation using the STRUCTURE software (Pritchard et al. 2000) and 
with the number of groups as determined by the Tracy–Widom statistic. To get an impression 
about population differentiation, the Fst statistic was calculated following Weir (1996) using 
a self-coded program in GenStat v.17 (VSN-International 2015). 

3.2.3. Training and validation sets 

To split the calibration sets into a training and a validation set, we used the following five 
methods: 

Uniform coverage of the genetic space (U)  

In U, we used the methodology proposed by Jansen and van Hintum (2007). This method 
consists of the following steps, which are applied to the list of all genotypes contained in the 
panel (𝑃𝑃1): (1) Molecular markers are used to calculate identity by state among all genotypes 
in 𝑃𝑃1 (IBS, Equation 1). (2) The first entry of the training set (𝑇𝑇1) is sampled at random from 
the panel. Genotypes with a distance to 𝑇𝑇1;  smaller than a  sampling radius r, are discarded 
from the training set. The new list of candidate genotypes is called 𝑃𝑃2: The genotypes that 
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are discarded are stored in a list called 𝐷𝐷1: (3) The second entry of the training set is 
sampled at random from 𝑃𝑃2 and it is called 𝑇𝑇2: Genotypes with a distance to 𝑇𝑇2  smaller 
than the sampling radius r are discarded from the list of genotypes. This process is 
repeated until all the genotypes have been included in the training set 𝑇𝑇𝑛𝑛, or in the list of 
discarded genotypes (𝐷𝐷𝑛𝑛). U is implemented in the “sampling” method of the GenStat 
procedure QGSELECT (VSN-International 2015). 

The sampling radius used in step (2) was obtained empirically. The size of this radius 
depends on the training set size one aims at. If the desired training set size is larger, the 
sampling radius becomes smaller. The target r is obtained by slowly decreasing its values 
until the number of sampled genotypes is greater than or equal to the target sample size, 
following Figure 1 in Jansen and van Hintum (2007). 

Stratified sampling with uniform coverage of the genetic space (SU)  

In SU, prior information about the grouping of the genotypes was supplied. In this 
method, an extra restriction was added to the distance restriction. Genotypes are discarded 
when they are within the sampling radius and they belong to the same group (i.e., they 
are included in the training set when they are within the sampling radius, but they belong 
to a different group). This method ensures that each group is represented by at least one 
genotype. 

Generalized coefficient of  determination  (CD)  

The generalized coefficient of determination was used as a criterion to select 
genotypes for the training set in such a way that the precision of the prediction  of the 
difference between the value of each individual in the validation set and the mean of the 
total calibration set is maximized (Rincent et al. 2012). Briefly, the precision is 
maximized when the generalized coefficient of determination (CD, Equation 2) is 
maximized.  

𝐶𝐶𝐷𝐷(𝑐𝑐) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �
�𝑐𝑐′�𝐴𝐴𝐴𝐴𝐴𝐴−𝜆𝜆�𝑍𝑍′𝑀𝑀𝑍𝑍+𝜆𝜆�𝐴𝐴𝐴𝐴𝐴𝐴�

−1
�
−1

 ��𝑐𝑐

𝑐𝑐′𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐
�  (2) 

In Equation 2, c is a matrix of the contrasts between each individual in the validation 
set and the mean of the calibration set, M, is an orthogonal projector of the subspace 
spanned by the columns of the design matrix of the fixed effects, X, (in our case, only the 
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intercept): 𝑀𝑀 = 𝐼𝐼 − 𝑋𝑋(𝑋𝑋′𝑋𝑋)−𝑋𝑋′. 𝜆𝜆 is the ratio between the residual and the additive genetic 
variance. For Flint and Dent, we calculated 𝜆𝜆 from the heritability estimates reported by 
Rincent et al. (2014b). For wheat heading time and yield, we used an estimate for 𝜆𝜆 calculated 
from the phenotypic data (h2= 0.95 for heading time and h2= 0.89 for yield). No heritability 
estimate was available for rice. Thus, we arbitrarily used 0.85 for the three rice traits.  

𝐴𝐴𝐴𝐴𝐼𝐼  is the realized additive genetic relationship matrix calculated from all molecular 
markers along the whole genome following the equation proposed by Astle and Balding 
(2009), with as typical entry for the relationship between genotypes i and j:  

𝐴𝐴𝑗𝑗𝐴𝐴𝐼𝐼 = 1
𝐾𝐾
∑ (𝐺𝐺𝑖𝑖𝑖𝑖−2𝑝𝑝𝑖𝑖)�𝐺𝐺𝑗𝑗𝑖𝑖−2𝑝𝑝𝑖𝑖�

2𝑝𝑝𝑖𝑖(1−𝑝𝑝𝑖𝑖)
𝐾𝐾
𝑘𝑘=1   (3) 

where 𝐺𝐺𝑖𝑖𝑘𝑘  is a marker score that can take the value 2, 1, or 0 for genotype i at marker k, 
and 𝑝𝑝𝑘𝑘  is the allele frequency of marker k. The matrix above was calculated using the 
“realizedAB” option in the “kin” function of the Synbreed package (Wimmer et al. 2012). 

The optimization algorithm used by Rincent et al. (2012) to construct the training set was 
implemented in R3.2.1. Briefly, at each step, one genotype in the training set is exchanged 
by one genotype in the validation set. This exchange is accepted if CD is increased and is 
rejected otherwise. The algorithm was allowed to iterate until the CD did not change anymore 
(800 times was enough to reach stability in all data sets).  

Stratified random sampling (S) 

In S, the number of sampled genotypes depended on the logarithm of the subpopulation 
size, following Franco et al. (2005) and Malosetti and Abadie (2001).  

𝑛𝑛𝑡𝑡,𝑠𝑠 = 𝑛𝑛𝑡𝑡
log (𝑛𝑛𝑠𝑠)

∑ log (𝑛𝑛𝑠𝑠)𝑆𝑆
𝑠𝑠=1

 (4) 

In Equation 4, 𝑛𝑛𝑡𝑡,𝑠𝑠 is the number of genotypes to be sampled from subpopulation s into 
the training set, S is the number of subpopulations, 𝑛𝑛𝑡𝑡 is the total size of the training set we 
want to construct, and 𝑛𝑛𝑠𝑠 is the number of individuals belonging to subpopulation s in the 
calibration set. Within the subpopulations, genotypes were sampled at random. 

Random sampling (R)  

In strategy R, the training set was sampled at random, so each genotype in the calibration 
set had equal probability of being included in the training set.  
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One hundred independent realizations of each of the five sampling strategies U, SU, 
CD, S, and R were generated for each calibration set. Each of the training sets (sampled 
genotypes) was used for QTL detection and as a training set for the prediction models. 

Table 1. Abbreviations and descriptions for training set construction methods 

Abbreviation Description 
U Uniform coverage of the genetic space 

SU Stratified sampling with uniform coverage of the genetic space 
CD Generalized coefficient of determination (Rincent et al. 2012) 
S Stratified random sampling 
R Random sampling 

3.2.4. Characterization of the training sets 

To characterize the connection between the training and the validation set, we 
calculated the distance between each genotype in the validation set and the nearest entry 
in the training set, following the method Average distance between each accession and 
the nearest entry (A–NE) in Odong et al. (2013). Here, we interpret the core collection in 
that paper, consisting of entries, as a training set. Core collection entries and training set 
members form a subset of genotypes that aim at representing a larger collection of 
genotypes. The set of accessions from which a core collection is created, we interpret to 
represent a calibration set. The distance between a genotype in the validation set and the 
nearest genotype in the training set (or core collection in Odong et al. (2013)) was 
calculated as (1 − 𝐼𝐼𝐼𝐼𝐼𝐼). The empirical distribution of these distances was plotted for each 
training set construction method. 

To obtain an impression of how each subpopulation is represented in the training set, 
we calculated the proportion of genotypes from each subpopulation that is included in the 
training set. The mean IBS in each subpopulation was used to relate the sampling 
proportion to the genetic diversity in each subpopulation.  

3.2.5. QTL detection 

Training sets obtained by U, SU, CD, S or R sampling of the genotype panel were 
used to identify QTL that became part of the prediction model. QTL were identified by a 
genome-wide association mapping scan (GWAS), following Equation 5: 

𝑦𝑦𝑖𝑖 = 𝜇𝜇 + 𝑥𝑥𝑖𝑖𝑘𝑘𝛼𝛼𝑘𝑘 + 𝐺𝐺𝑖𝑖 + 𝑒𝑒𝑖𝑖 (5) 
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In Equation 5, 𝑦𝑦𝑖𝑖 stands for the phenotype of genotype i, m is the intercept, 𝑥𝑥𝑖𝑖𝑘𝑘 is a vector 
that represents information of genotype i at marker k (0 and 2 for homozygous and 1 for 
heterozygous), and 𝛼𝛼𝑘𝑘 is the additive QTL effect (fixed) for marker k. 𝐺𝐺𝑖𝑖  represents a 
polygenic effect for genotype i, and 𝑒𝑒𝑖𝑖  is the nongenetic residual �𝑒𝑒𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑒𝑒2)� .  The 
distribution of 𝐺𝐺𝑖𝑖 is 𝐺𝐺𝑖𝑖~𝑁𝑁�0,𝐴𝐴𝜎𝜎𝑔𝑔2�.  𝐴𝐴 is the additive genetic relationship matrix calculated from 
the molecular marker information as in Rincent et al. (2014a). In this method, a specific 𝐴𝐴 is 
calculated for each linkage group by excluding the markers on that particular linkage group. 
A significance threshold equivalent to a genome-wide significance level of 0.01 was used for 
the four data sets, following the Li and Ji (2005) multiple-testing correction. We performed 
the GWAS as implemented in GenStat 17th edition (VSN-International 2015). 

3.2.6. Prediction models 

The following prediction models were used: 

QTL: 

𝑦𝑦𝑖𝑖 = 𝜇𝜇 + ∑ �𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼𝑖𝑖�𝑖𝑖∈𝑄𝑄 + 𝑒𝑒𝑖𝑖  (6) 

In Equation 6, 𝜇𝜇 is the intercept, ∑ �𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼𝑖𝑖�𝑖𝑖∈𝑄𝑄  is for genotype i the sum of (random) QTL 
effects belonging to the QTL set Q, where these QTL were identified in a preliminary GWAS 
scan. Effects for each QTL were allowed to have their own distribution �𝛼𝛼𝑖𝑖~𝑁𝑁�0,𝜎𝜎𝑖𝑖2��, and 𝑒𝑒𝑖𝑖 
is the residual �𝑒𝑒𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑒𝑒2)�. 

GBLUP: 

𝑦𝑦𝑖𝑖 = 𝜇𝜇 + 𝐺𝐺𝑖𝑖 + 𝑒𝑒𝑖𝑖   (7) 

In Equation 7, 𝜇𝜇 is the intercept and 𝐺𝐺𝑖𝑖 represents the random genotype effects that follow 
a distribution 𝐺𝐺𝑖𝑖~𝑁𝑁�0,𝐴𝐴𝐴𝐴𝐼𝐼𝜎𝜎𝑔𝑔2�. 𝐴𝐴𝐴𝐴𝐼𝐼  is the additive relationship matrix, following Astle and 
Balding (2009), Equation 3. The predictions were calculated using GenStat 17th edition 
(VSN-International 2015). 

QGBLUP: 

𝑦𝑦𝑖𝑖 = 𝜇𝜇 + ∑ �𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼𝑖𝑖�𝑖𝑖∈𝑄𝑄 + 𝐺𝐺𝑖𝑖 + 𝑒𝑒𝑖𝑖 (8) 

The model in Equation 8 combines the QTL and GBLUP model. Again, 𝜇𝜇 is the intercept, 
∑ �𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼𝑖𝑖�𝑖𝑖∈𝑄𝑄  is the sum of random QTL effects from the QTL set Q for genotype i, with each 
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of the QTL effects having proper variance component, 𝛼𝛼𝑖𝑖~𝑁𝑁�0,𝜎𝜎𝑖𝑖2�. The polygenic effects 
𝐺𝐺𝑖𝑖  are assumed to follow a distribution 𝐺𝐺𝑖𝑖~𝑁𝑁�0,𝐴𝐴𝐴𝐴𝐼𝐼𝐴𝐴𝜎𝜎𝑔𝑔2�. 𝑒𝑒𝑖𝑖  is the residual �𝑒𝑒𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑒𝑒2)�. 
𝐴𝐴𝐴𝐴𝐼𝐼𝐴𝐴 corresponds to a modified additive relationship matrix, calculated from all markers 
except those that were within a window of ±20cM around QTL. This precaution was 
taken to avoid accounting for the QTL effects both in the random QTL terms, and in the 
residual polygenic term. Again, predictions were calculated in GenStat 17th edition 
(VSN-International 2015). 

RKHS:  

The RKHS model is as the GBLUP model in Equation 7, but 𝐺𝐺𝑖𝑖~𝑁𝑁(0,𝐴𝐴∗). 𝐴𝐴∗ = 𝑒𝑒𝑥𝑥𝑝𝑝�−
𝐷𝐷
𝜃𝜃�  

represents the genetic relationship matrix, where D is a matrix with Euclidean 
dissimilarities among genotypes calculated from marker scores in the Synbreed package 
(Wimmer et al. 2012), and Θ is a tuning parameter which determines how the covariance 
among individuals decays as a function of the genetic distance (Gianola and van Kaam 
2008; Piepho 2009). An estimate for Θ was obtained by fitting mixed models along a grid 
of values between 0.05 and 5. The u value that provided the best predictive ability over a 
number of validation sets was used as the final Θ value (de los Campos et al. 2010). The 
final Θ value also showed the lowest AIC across the grid. The RKHS predictions were 
fitted by the REML procedure in GenStat v.17 (VSN-International 2015). 

3.2.7. Training set size 

 For maize, training sets contained 50, 70, 100, 150, or 200 genotypes (to match 
sample sizes chosen by Rincent et al. (2012)). The wheat data had a limited panel size, so 
training set sizes of 50, 75, and 100 genotypes were used. Rice training sets had a size of 
50, 100, 150, 200, or 300 genotypes to match the sizes used by Isidro et al. (2015). 

3.2.8. Predictive ability 

Predictive ability was calculated as the Pearson correlation coefficient between 
observed and predicted phenotypes (Meuwissen et al. 2001). To evaluate whether 
predictive ability was driven by population  structure, the  Pearson  correlation  was  
calculated  both across subpopulations, so ignoring population structure, and within the 
subpopulations, where it should be remarked that for smaller sub-populations no reliable 
estimates of predictive ability may be possible. We wanted to study the influence of 
training set construction method, prediction model, and training set size on predictive 
ability. For each combination of these three factors, we calculated mean predictive ability 
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across 100 training set realizations. We also calculated a standard error (S.E.). To comply 
with the normality assumption, correlations were analyzed on a transformed scale using 
Fischer’s z transformation, 𝑧𝑧 = 1/2  (𝑙𝑙𝑛𝑛((1 + 𝑟𝑟)/(1 − 𝑟𝑟))) and means were back 
transformed using 𝑟𝑟 = (exp (2𝑧𝑧) + 1)/(exp (2𝑧𝑧) − 1) before reporting them. 

3.2.9. Data availability 

The authors state that all data necessary for confirming the conclusions presented in the 
article are represented fully within the article. 

3.3. Results  

We first explored population structure for the Flint, Dent, wheat, and rice panels. 
Subsequently, we investigated the properties of training sets constructed following the 
training set construction methods U, SU, CD, S, and R. Finally, we present the results of 
predictive abilities as defined by training set construction method and varying training 

3.3.1. Population structure 

We present the panels ordered from the least to the most structured. Flint with an Fst 
statistic of 0.11 was the least structured panel; 5.96% of the total variation was explained by 
PC1 and 3.84% by PC2 (Figure 1). PC1 separated the Northern Flint genotypes from the 
other Flint genotypes, coinciding with what was reported by Rincent et al. (2012). The Tracy-
Widom statistic indicated that four PCs were significant, suggesting five genetic groups. 
Although the separation between some groups is not visible in the three dimensions shown 
in Figure 1, groups were separated in higher dimensions. 

The Dent panel with an Fst of 0.19 was slightly more structured than the Flint panel. A 
larger percentage of variation was explained by the first PCs (5.64% for PC1 and 4.62% for 
PC2, Figure S1). Five PCs were significant, thus, genotypes were classified into six 
subpopulations. The first PC separated the IODent from the non-IODent genotypes, the 
second PC separated the stiff-stalk from the non-stiff-stalk genotypes, and the third PC 
separated the D06 family from the rest. The remaining subpopulations were separated by PC4 
and PC5. 

For the wheat panel, Fst was 0.28 and four PCs were significant, indicating the presence 
of five subpopulations. PC1 (11.41%) tended to separate genotypes by their vernalization 
requirements, and PC2 (8.48%) tended to separate genotypes by their sensitivity to 
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photoperiod (Figure S2). Rice was the most structured panel that we analyzed with an Fst 
of 0.36. Only the first PC was significant (39.41% of the variation), indicating two clearly 
distinguishable subpopulations (see Figure 2). 

 

Figure 1. Scatter plots for principal components representing IBS matrix of the Flint panel. Symbol colour represents 
each of the five subpopulations. 

 

 

Figure 2. Histogram for the scores of the principal component representing the IBS matrix of the rice panel. Symbol 
colour represents each of the subpopulations.  
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3.3.2. Training and validation sets 

In this section, we compare five methods to construct training sets from calibration sets 
(U, SU, CD, S, and R, see Table 1 for a description of the method abbreviations). Each 
individual calibration set is split into a training set and a validation set. For each combination 
of training set construction method, training set size, and genomic prediction model, 100 
training sets were constructed, or drawn, from a calibration set. 

Representation of subpopulations in training sets:  

Random sampling of genotypes in the calibration set, i.e., training set construction 
method R, to create a training set, will lead to a training set with proportional representation 
of subpopulations. In Table 2, we express the abundance of genotypes coming from a 
particular subpopulation when using training set construction methods U, SU, CD, and S 
relative to the abundance for that subpopulation as realized by application of training set 
construction method R. For all panels it held that large and diverse subpopulations were over-
represented in the training sets created by application of U, SU, and CD in comparison to R. 
The lowest diversity subpopulations were always under-represented when using U, SU, and 
CD. Subpopulation affected representation in an expected way for the Dent panel and rice 
panel for the comparison of S vs. R, that is, larger subpopulations were under-represented 
and smaller subpopulations were over-represented. For the Flint and wheat panel the 
relationship between representation and subpopulation size was not clear. In conclusion, for 
U and SU, a relatively larger number of genotypes was allocated to the training set from those 
parts of the genetic space that were more diverse. CD behaved comparably to U and SU for 
all panels. 

 

Table 2.  Subpopulation size in the calibration set, genetic diversity (Div =1- median IBS) and number of calibration 

set genotypes assigned to the training set, expressed as a percentage of the number realized by random sampling. 

 Flint, 200   Dent, 200   Wheat, 200   Rice, 300 
 Size Div. U SU CD S   Size Div. U SU CD S   Size Div. U SU CD S   Size Div. U SU CD S 
a 50 0.26 -35 -25 -30 13  a 17 0.26 -61 -53 -42 38  a 17 0.18 -20 -13 -14 -9  a 220 0.17 -8 -8 -4 0 
b 30 0.30 -5 12 -7 -18  b 45 0.28 -33 -31 -25 10  b 19 0.25 -5 -1 -4 -8  b 129 0.31 14 14 7 0 
c 55 0.33 8 6 8 3  c 13 0.31 -1 -4 -10 35  c 41 0.31 -28 -24 2 2         
d 30 0.34 1 8 4 -1  d 38 0.32 -11 -13 -14 22  d 21 0.35 5 4 -3 6         
e 94 0.39 15 4 13 -3  e 40 0.36 -3 -4 -5 22  e 51 0.40 22 14 14 0         
        f 123 0.38 25 24 22 -27                 

For the description of the training set construction methods U, SU, CD, S, and R, see Table 1. 
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Distance between validation set and training set:  

Our objective was to evaluate methods for training set construction that provide a 
more homogeneous coverage of the genetic space and that reduce the genetic distance 
between genotypes in the validation set and those in the training set. The underlying 
rationale is that the lower the genetic distance (larger genetic relatedness) between 
validation and training sets, the better the predictive ability in the validation set is 
expected to be. Figure 3 shows the distribution of distances of validation set genotypes to 
the closest training set genotype, with 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑐𝑐𝑒𝑒 = 1 − 𝐼𝐼𝐼𝐼𝐼𝐼 ; summed over all 100 
realizations of the training set. A broad distribution indicates high heterogeneity of 
distance, i.e., some validation genotypes are close to the training set, whereas others are 
distant. Our objective was to construct a training set that is on average close to the 
validation set with little variation between validation genotypes, reflected in a narrow 
distribution. 

At all training set sizes, SU and U had a narrower distribution than CD, S, and R, 
showing that training set samples created by SU and U achieve a homogeneous coverage 
of the genetic space and that these sampling outcomes are consistent from realization to 
realization. At small training set size, the median and the maximum genetic distance 
between genotypes in the validation set and those in the training set was similar for U, 
SU, S, and R. Only CD showed a smaller median distance, compared to the other four 
methods, especially for wheat and rice (Figure 3 and Table S1). At larger training set 
sizes, the methods CD, U, and SU showed smaller distances between genotypes in the 
validation and training sets, compared to S and R (Figure 3 and Table S1). CD coincided 
with U and SU for the modal genetic distance, but tended to have a broader distance 
distribution. This broader genetic distance distribution implies that while on average CD, 
U, and SU are similar, CD tends to achieve a less homogeneous coverage of the genetic 
space, when compared to U and SU. 

Incorporating a priori defined subpopulations into the genetic distance sampling, SU 
vs. U, had only a small effect for the least structured panels, Flint and Dent. For those 
panels, U showed a slightly narrower distribution than SU. This difference was most 
relevant at small sample sizes. In the case of more structured populations (wheat and rice), 
the incorporation of a priori subpopulation information into the sampling process did not 
change the distribution of genetic distances between validation and training sets. This 
means that as a desirable feature of our U method population substructure, whether subtle 
or not, it will automatically be accounted for in the construction of the training set. 



Improvement of predictive ability by uniform coverage of  the target genetic space 

51 
 

 

Figure 3. Distribution of genetic distances (distance=1-IBS) between validation set genotypes and the closest 
genotype in the training set (summed over 100 sampling events). For the description of the training set construction 
methods U, SU, CD, S, and R see Table 1. 

QTL detection in the training set:  

The number of detected QTL increased with training set size (Table S2, Table S3, and 
Table S4). At training set sizes smaller than 100 genotypes, the number of sets in which QTL 
were detected was very small and their positions changed across training sets. For training 
set sizes of 100 genotypes or larger, CD, U, and SU produced a larger number of QTL than 
S and R. In the case of the Flint panel, most consistent QTL were detected on linkage group 
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1 for tasseling, silking and yield (Table S2). For Dent, QTL were detected most often on 
linkage groups three and eight for tasseling and silking and in linkage group 5 for yield (Table 
S3). 

Very few QTL for grain yield were detected in the wheat panel. For heading time, 
large QTL for photoperiod and vernalization requirements appeared only at larger sample 
sizes, reflecting that the population was too small for QTL detection in the training set. 
However, given that the population was characterized for loci that are known to be 
relevant for vernalization and photoperiod sensitivity, we decided to include these four 
loci in all the QGBLUP and QTL models for heading date. For the rice panel, the most 
consistent QTL for plant height was detected on linkage group 1 (Table S4). When using 
the methods U, SU, and CD, an important proportion of the training sets showed a QTL 
on linkage groups 2 and 6 at larger training set sizes. For seed number, a consistent QTL 
was detected for a training set size of 300 genotypes on linkage group 12. For flowering 
date, the most consistent QTL were detected on linkage groups 3 and 5. Again, these QTL 
were more often detected with U, SU, and CD, than with S and R. 

Predictive ability in the validation set, ignoring subpopulations:  

First, we present predictive ability as calculated on all genotypes in the validation set, 
pooling validation genotypes across subpopulations. To investigate the influence of the 
subpopulations on the accuracy, we have also calculated within subpopulation prediction 
abilities (see below).  

In the Flint, Dent, wheat, and rice panel, as expected, the relative predictive ability of 
methods depended on the training set size (Figure 4 and Figure 5). While at small training 
set sizes, differences between all methods were minor, at larger training set sizes, methods 
that reduced the distances between the validation and the training set (i.e., U, SU, and 
CD) showed a clear improvement compared to S and R with an absolute increase in 
predictive ability of between 0.10 and 0.25. 

Prediction models differed in predictive ability (Table 3, Table 4, Table 5, and Table 
6). For the Flint, Dent, and rice panels, RKHS, GBLUP, and QGBLUP showed a larger 
predictive ability than the QTL model. This indicates that the evaluated traits were 
regulated by a large number of loci (Table 3, Table 4, and Table 6). For the same reason, 
including QTL in a separate model term (QGBLUP) was not advantageous over GBLUP. 
The comparable results of RKHS and GBLUP indicate that non-additive genetic effects 
were not so relevant for the analyzed traits in the Flint, Dent, or rice panels. 
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Model ranking was slightly different for heading date in the wheat panel from that in 
Flint, Dent, and rice. In the case of heading date, QGBLUP led to larger predictive ability, 
compared to GBLUP and QTL (Table 5). This indicates that, for heading time in wheat, it is 
convenient to account separately for loci with large effects. However, RKHS showed a larger 
predictive ability than QGBLUP, reflecting that non- additive genetic effects contribute to 
phenotypic variation of heading date. In the case of grain yield, no large QTL were 
consistently detected and therefore, we only used RKHS and GBLUP to predict this trait in 
wheat. As for heading, RKHS showed a larger yield predictive ability than GBLUP. 

 

Figure 4. Predictive ability for the Flint and Dent panels as a function of training set size, using the RKHS model. 
The mean standard error for predictive ability was 0.001. For the description of the training set construction methods 
U, SU, CD, S, and R see Table 1. 
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Figure 5. Predictive ability for the wheat and rice panels as a function of training set size, using the RKHS model. 
The mean standard error for predictive ability was 0.001. For the description of the training set construction methods 
U, SU, CD, S, and R see Table 1. 
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Table 3. Predictive ability for the Flint panel, using a training set size of 200 genotypes. 

Model U SU CD S R S.E. 
Silking, Flint, 200 genotypes 
QTL 0.514 0.531 0.468 0.373 0.378 0.010 
GBLUP 0.810 0.830 0.836 0.695 0.713 0.009 
QGBLUP 0.806 0.822 0.829 0.680 0.698 0.010 
RKHS 0.819 0.832 0.835 0.684 0.706 0.009 
Tasseling, Flint, 200 genotypes 
QTL 0.231 0.399 0.328 0.286 0.263 0.017 
GBLUP 0.813 0.824 0.832 0.669 0.684 0.009 
QGBLUP 0.784 0.800 0.798 0.619 0.635 0.017 
RKHS 0.819 0.828 0.834 0.665 0.682 0.009 
Tasseling, Flint, 200 genotypes 
QTL 0.287 0.443 0.187 0.067 0.130 0.021 
GBLUP 0.372 0.381 0.447 0.388 0.388 0.021 
QGBLUP 0.334 0.383 0.373 0.224 0.284 0.021 
RKHS 0.380 0.378 0.444 0.373 0.377 0.010 

For the description of the training set construction methods U, SU, CD, S, and R see Table 1. S.E. indicates the 
mean standard error across methods. 

 

Table 4. Predictive ability for Dent, using a training set size of 200 genotypes. 

Model U SU CD S R S.E. 
Silking, Dent, 200 genotypes 
QTL 0.461 0.471 0.396 0.409 0.367 0.008 
GBLUP 0.822 0.820 0.818 0.698 0.744 0.007 
QGBLUP 0.842 0.829 0.822 0.696 0.729 0.008 
RKHS 0.818 0.814 0.805 0.621 0.678 0.007 
Tasseling, Dent, 200 genotypes 
QTL 0.580 0.597 0.530 0.438 0.452 0.009 
GBLUP 0.823 0.823 0.829 0.712 0.752 0.009 
QGBLUP 0.839 0.832 0.826 0.707 0.741 0.009 
RKHS 0.823 0.821 0.817 0.628 0.687 0.009 
Tasseling, Dent, 200 genotypes 
QTL 0.416 0.395 0.403 0.241 0.300 0.009 
GBLUP 0.649 0.677 0.674 0.567 0.650 0.007 
QGBLUP 0.649 0.677 0.678 0.524 0.617 0.009 
RKHS 0.621 0.646 0.655 0.523 0.603 0.007 

For the description of the training set construction methods U, SU, CD, S, and R see Table 1. SE indicates the 
mean standard error across methods. 
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Table 5. Predictive ability for wheat, using a training set size of 100 genotypes 

Model U SU CD S R S.E. 
Wheat, heading, 100 genotypes 
QTL 0.303 0.301 0.336 0.382 0.351 0.009 
GBLUP 0.472 0.472 0.474 0.357 0.371 0.009 
QGBLUP 0.512 0.519 0.562 0.517 0.478 0.009 
RKHS 0.632 0.611 0.592 0.421 0.419 0.009 
Wheat, yield, 100 genotypes 
GBLUP 0.660 0.650 0.620 0.475 0.482 0.009 
RKHS 0.699 0.679 0.654 0.538 0.517 0.009 

For the description of the training set construction methods U, SU, CD, S, and R see Table 1. SE indicates the 
mean standard error across methods. 

 

Table 6. Predictive ability for rice, using a training set size of 300 genotypes 

Model U SU CD S R S.E. 
Silking, Rice, 300 genotypes 
QTL 0.309 0.320 0.303 0.271 0.267 0.013 
GBLUP 0.778 0.779 0.751 0.676 0.657 0.013 
QGBLUP 0.766 0.770 0.728 0.673 0.653 0.013 
RKHS 0.815 0.816 0.787 0.699 0.677 0.013 
Tasseling, Rice, 300 genotypes 
QTL 0.379 0.379 0.301 0.361 0.366 0.014 
GBLUP 0.759 0.756 0.805 0.804 0.800 0.011 
QGBLUP 0.740 0.738 0.801 0.806 0.801 0.011 
RKHS 0.785 0.779 0.806 0.790 0.788 0.011 
Tasseling, Rice, 300 genotypes 
QTL 0.231 0.223 0.275 0.191 0.191 0.019 
GBLUP 0.556 0.554 0.638 0.580 0.571 0.013 
QGBLUP 0.479 0.467 0.582 0.515 0.519 0.019 
RKHS 0.603 0.599 0.671 0.589 0.579 0.013 

For the description of the training set construction methods U, SU, CD, S, and R see Table 1. SE indicates the 

mean standard error across methods.  
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Table 7. Predictive ability within groups for Flint silking date, using a training set size of 200 genotypes 

Model U SU CD S R S.E. 
QTL 

a 0.073 0.104 0.140 0.043 0.232 0.052 
b 0.775 0.893 0.663 0.686 0.648 0.061 
c 0.803 0.446 0.761 0.347 0.439 0.034 
d 0.603 0.797 0.641 0.680 0.622 0.053 
e 0.371 0.191 0.258 0.121 0.182 0.023 

GBLUP 
a 0.485 0.588 0.485 0.395 0.577 0.031 
b 0.625 0.867 0.656 0.579 0.638 0.039 
c 0.850 0.331 0.908 0.449 0.575 0.028 
d 0.802 0.726 0.860 0.501 0.534 0.043 
e 0.666 0.563 0.727 0.634 0.563 0.019 

QGBLUP 
a 0.452 0.597 0.509 0.42 0.552 0.038 
b 0.611 0.867 0.625 0.654 0.647 0.048 
c 0.864 0.402 0.899 0.489 0.561 0.034 
d 0.705 0.736 0.803 0.631 0.574 0.053 
e 0.737 0.603 0.714 0.523 0.512 0.023 

RKHS       
a 0.578 0.576 0.519 0.266 0.554 0.031 
b 0.625 0.959 0.627 0.554 0.629 0.039 
c 0.807 0.354 0.877 0.523 0.609 0.028 
d 0.760 0.753 0.859 0.509 0.582 0.043 
e 0.732 0.559 0.732 0.633 0.554 0.019 

For the description of the training set construction methods U, SU, CD, S, and R see Table 1. SE indicates the 
mean standard error across methods. 

Predictive ability in the validation set, calculated within subpopulations:  

We present predictive ability as calculated within subpopulations for the Flint, Dent, and 
rice panel. The wheat data were not included in this analysis because the panel was too small, 
and predictive ability within subpopulations could not be calculated reliably. Within 
subpopulations, training set construction methods generally maintained their ranking, 
compared to predictive ability calculated across subpopulations; U, SU, and CD were better 
than S and R (Table 7, Table S5, Table S6, Table S7, Table S8, and Table S9). This indicates 
that the improvement in predictive ability observed for U, SU, and CD was not driven by the 
subpopulations. This result can also be observed in the correlation plot between predicted 
and observed phenotypes. Figure 6 shows that the relation between predicted and observed 
trait values was similar within subpopulations and across subpopulations, demonstrating that 
predictive ability was not driven by population structure. For the rice data, predictive ability 
within subpopulations was similar for all the training set construction methods, coinciding 
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with the result observed for the predictive ability across subpopulations (Table S10, Table 
S11, and Table S12). 

For all the panels, the ranking of prediction models with respect to within 
subpopulation predictive abilities coincided with that for across subpopulations; RKHS, 
GBLUP, and QGBLUP were similar (with minor differences in the ranking, depending 
on the panel), whereas the QTL model led to clearly lower predictive ability. 

 

Figure 6. Relation between predicted and observed tasseling date for the Dent panel using the RKHS model and 
200 genotypes. A single training set realization is shown for each training set construction method. Symbol colour 
represents each of the six subpopulations. 
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3.4. Discussion 

The main objective of this study was to assess the impact of five training set construction 
methods (U, SU, CD, S, and R) on predictive ability in the validation set. A secondary 
objective was to compare four prediction models that differ in the importance that they assign 
to specific genomic regions and in the type of genetic effects that they consider (additive/non-
additive). The training set construction methods and prediction models were evaluated at 
different training set sizes in four diversity panels. Predictive ability was calculated for the 
validation set in all the panels. 

3.4.1. Training set construction methods 

Prediction of unobserved genotypes is possible provided that genotypes to be predicted 
are genetically similar to those that have been observed (Habier et al. 2010; Saatchi et al. 
2011). Hence, a prerequisite to obtain large predictive ability is that the training set represents 
well the calibration set and that the calibration set represents well the TPG (Rincent et al. 
2012; Crossa et al. 2013; Albrecht et al. 2014; Auinger et al. 2016). Breeding populations are 
commonly structured. When population structure is present, genetic similarity is 
heterogeneous, because pairs of genotypes can belong to the same or different 
subpopulations. Random sampling from the calibration set reproduces its distributional 
properties without taking into account diversity differences across the genetic space (Jansen 
and van Hintum 2007). Thus, in structured populations, simple random sampling will not 
result in training sets that adequately represent the full genetic variation in the calibration set, 
leading to on average lower similarity between genotypes in the training and the validation 
set (Pszczola et al. 2012; Albrecht et al. 2011; Wientjes et al. 2016). 

We showed that a more homogeneous coverage of the genetic space by applying the 
methods U and SU leads to smaller distances between genotypes in training and validation 
sets, and to a higher predictive ability. A uniformly covered genetic space also offers the 
potential to provide good predictive ability for new genotypes not belonging to the initial 
calibration set, provided that they are contained within the genetic space spanned by the 
initial calibration set.  

Rincent et al. (2012) proposed to increase predictive ability by maximizing the precision 
of the contrast between each individual in the validation set and the mean of the calibration 
set (training and validation sets). This method was also successfully applied to genomic pre- 
diction in pea (Tayeh et al. 2015). Here, we show that CD, U, and SU are alternative methods 
that deliver comparable results because they all provide a training set that has a smaller 



Chapter 3 

60 
 

genetic distance to the validation set. One of the advantages of U and SU is that no 
estimate of heritability is required. Thus, it resolves the unavoidable ambiguity when 
defining a training set for multiple traits with different heritabilities. A second advantage 
is that U and SU showed more consistency of training set sample properties revealed by 
a narrower distribution of distances between the validation and the training set, compared 
to CD, S, and R. The genotypes in the training set are at more constant distances, 
providing a more uniform coverage of the genetic space and larger predictive ability, even 
when the distribution of genotypic distances in the validation set is different from that in 
the training set. Furthermore, U and SU have the advantage that they are computationally 
easier and faster to apply than CD. 

U, SU, and CD are methods that use genetic similarity/distance as a criterion to 
construct the training set. Thus, the set of markers used for distance calculation influences 
training set composition. One aspect that could be further explored is the convenience of 
considering only those genomic regions that influence the trait of interest, especially for 
traits regulated by a small number of loci. In the same vein, the presence of ascertainment 
bias in the marker set needs to be evaluated because it might modify the relative distances 
among genotypes, and, therefore, the training set composition. For that reason, we 
repeated all calculations for maize, using the full SNP50 BeadChip in place of the 
PANZEA marker set (results not shown). The relative distances among genotypes were 
highly comparable between those two marker sets (Frascaroli et al. 2012) and therefore 
we did not observe changes in the ranking of training set construction methods or 
prediction models for predictive ability. 

3.4.2. Prediction models 

The main difference among prediction models is the relative importance assigned to 
specific loci as contrasted with the rest of the genome. It is therefore natural to expect that 
the degree of success of the different models depends on trait genetic architecture. This 
study dealt with yield, yield components (regulated by many loci with small effects), and 
with phenology traits. In the case of wheat, flowering time is regulated mainly by a few 
loci with large effect. However, despite the apparently simple genetic regulation of 
heading date favoring a QTL model, it is still beneficial to include a term that accounts 
for residual genetic variance. This result is in line with Zheng et al. (2013), who showed 
that flowering time in wheat is not only regulated by major genes for photoperiod and 
vernalization requirements, but also by a polygenic effect that influences earliness per se. 
In contrast, in the case of maize and rice, phenology and yield traits are regulated by many 
QTL (Buckler et al. 2009; Rincent et al. 2014b; Zhao et al. 2011). The more complex 
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genetic architecture of maize and rice traits is in agreement with our findings of models using 
genome-wide information showing larger predictive ability than those using information 
from a few QTL (QTL prediction model). 

The importance of considering trait genetic architecture when selecting the prediction 
model was also discussed by Daetwyler et al. (2010) and by Bernardo (2014), who simulated 
diverse traits that differed in the number of QTL explaining the genotypic variance. The 
authors observed that traits regulated by a small number of QTL tend to be predicted better 
by models that give a larger importance to QTL with large effects, compared to the GBLUP 
model. This result has also been observed for a set of human diseases regulated by few loci 
with different effect size, for which it was advantageous to include several random terms 
(Speed and Balding 2014). We are aware that the number of QTL included in our QGBLUP 
models contains an element of subjectivity because of the selection of a significance threshold 
to define when a locus enters the QTL list. Bernardo (2014) gave some guidelines about when 
to include the QTL in a separate model term. 

Previous paragraphs discussed the convenience of separately ac- counting for additive 
loci, depending on their effect size. However, part of the genetic variance might be non-
additive. If the epistasis is simple (interaction between a few loci with large effects), it can 
be modeled as a QTL-interaction term (Malosetti et al. 2011). Unfortunately, in the case of 
the traits analyzed here, epistasis has been shown to be largely complex (Reif et al. 2011; 
Kippes et al. 2014). Langer et al. (2014) showed that epistasis for heading date in wheat can 
be dissected into at least 30 epistatic interactions, among which many of them did not 
correspond to interaction between large phenology genes. The results shown by Langer et al. 
(2014) coincide with the lack of improvement in predictive ability that we observed when we 
incorporated additional terms accounting for interaction among large phenology genes 
(results not shown). The RKHS model allows to account for epistatic interactions, without 
the need of specifying which genomic regions are responsible for this interaction (Crossa et 
al. 2010, 2013; Gianola and van Kaam 2008; Jiang and Reif 2015). 

Traits and crops might also differ in the relative size of epistatic interactions (Langer et 
al. 2014; Reif et al. 2011; Spindel et al. 2015; Blanc et al. 2006). For example, a larger 
improvement was observed with the RKHS model for wheat data than for maize and rice. 
This result coincides with those of Endelman (2011) and Stange et al. (2013), who observed 
that the advantage of the RKHS model was large in the case of wheat grain yield, but it was 
small in the case of maize traits. A further issue that needs to be considered in structured 
populations is the convenience of assuming constant or heterogeneous allele effects across 
subpopulations (Lehermeier et al. 2015; de los Campos et al. 2015). Models that allow for 
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subpopulation-specific allele effects range from models that assume fully independent 
populations (effects estimated in each population separately), to more complex models that 
allow allele effects to be correlated across subpopulations (Lehermeier et al. 2015; Olson 
et al. 2012). In this paper, we focused on models that assume homogeneous effects. We 
also explored the idea of allowing for subpopulation-specific effects by fitting all the 
models to each subpopulation independently (not shown). However, models that allow 
for subpopulation-specific effects did not show a clear advantage over models with 
homogeneous effects, coinciding with Lehermeier et al. (2015), Schulz-Streeck et al. 
(2012), and Albrecht et al. (2011). 

3.4.3.  Sample size 

Sample size reduction inevitably leads to a larger probability of losing genotypes with 
extreme values for the trait of interest, thereby narrowing down the phenotypic trait range 
and the predictive ability. Our results showed a nonlinear decrease in predictive ability as 
a function of training set size. This nonlinear decrease of the predictive ability was also 
observed by Heffner et al. (2011), Zhao et al. (2012), and Rincent et al. (2012) and can 
be explained by the number of individuals, trait heritability, and the effective number of 
chromosome segments (Daetwyler et al. 2008, 2013). When assessing the sampling 
methods in relation to sample size, 

U produced a more homogeneous representation of the genetic diversity of the 
original population, compared to S and R, leading to larger predictive ability. The fact 
that this advantage was maintained only at large sample sizes can be explained by the fact 
that, at smaller training set sizes, none of the training sets was able to provide enough 
information for an accurate estimation of genotypic effects. 
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Conclusions 

Training set construction methods that take into account the genetic diversity of the 
calibration set have higher predictive ability and are not sensitive to population structure in 
the calibration set: U, SU, and CD vs. S and R. 

U and SU and CD produce comparable predictive abilities, but U and SU are simpler to 
calculate and require less computational cost and no phenotypic information in comparison 
to CD. 

As expected, training sample size reduction led to lower predictive ability, but this 
reduction was stronger for the wheat and maize panels than for the rice panel. 
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Supplementary Material 

 

Figure S1. Representation of principal components analysis on the IBS matrix of the Dent panel. 

 

Figure S2. Representation of principal components analysis on the IBS matrix of the wheat panel. 
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Table S1. Median of the distance (1-IBS) between validation set genotypes and the closest genotype in the training 
set (over 100 sampling events).  

Panel Size U SU CD S R 
Flint  70 0.29 0.24 0.22 0.26 0.25 
  200 0.13 0.19 0.12 0.23 0.21 
        
Dent  70 0.28 0.27 0.21 0.27 0.25 
  200 0.15 0.15 0.14 0.27 0.21 
        
Wheat  50 0.19 0.19 0.13 0.19 0.19 
  100 0.09 0.09 0.07 0.14 0.15 
        
Rice  50 0.13 0.13 0.08 0.09 0.09 
  300 0.02 0.02 0.02 0.06 0.06 

For the description of the training set construction methods U, SU, CD, S and R see Table 1. SE indicates the 
mean standard error across methods. 

 

Table S2. Flint number of QTLs with a genome-wide significant threshold p<0.01 (Li and Ji (2005)). Columns 1-
10 represent the linkage groups where the QTLs were located. Multiple QTLs can occur on a chromosome.  

For the description of the training set construction methods U, SU, CD, S and R see Table 1. SE indicates the 
mean standard error across methods. 
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Table S3. Dent number of QTLs with a genome-wide significant threshold p<0.01 (Li and Ji (2005)). Columns 1-
10 represent the linkage groups where the QTLs were located. Multiple QTLs can occur on a chromosome.  

 
For the description of the training set construction methods U, SU, CD, S and R see Table 1. SE indicates the 
mean standard error across methods. 

Table S4. Rice number of QTLs with a genome-wide significant threshold p<0.01 (Li and Ji (2005)). Columns 1-
12 represent the linkage groups where the QTLs were located. Multiple QTLs can occur on a chromosome.  

 
For the description of the training set construction methods U, SU, CD, S and R see Table 1. SE indicates the 
mean standard error across methods. 



Improvement of predictive ability by uniform coverage of  the target genetic space 

67 
 

Table S5. Flint Tasseling date predictive ability within groups using a training set size of 200 genotypes.  

QTL 
Subpop. U SU CD S R s.e. 

a 0.141 0.180 0.185 0.145 0.127 0.091 
b 0.627 0.832 0.615 0.663 0.684 0.099 
c 0.366 0.368 0.535 0.238 0.271 0.058 
d 0.272 0.523 0.424 0.711 0.496 0.098 
e 0.214 0.106 0.215 0.008 0.063 0.045 

GBLUP 
Subpop. U SU CD S R s.e. 

a 0.316 0.228 0.357 0.269 0.427 0.034 
b 0.615 0.849 0.620 0.594 0.649 0.037 
c 0.875 0.290 0.899 0.307 0.484 0.026 
d 0.802 0.841 0.879 0.526 0.577 0.047 
e 0.821 0.555 0.804 0.607 0.548 0.022 

QGBLUP 
Subpop. U SU CD S R s.e. 

a 0.302 0.309 0.372 0.303 0.324 0.071 
b 0.608 0.796 0.559 0.632 0.649 0.077 
c 0.881 0.359 0.882 0.331 0.432 0.055 
d 0.774 0.824 0.769 0.635 0.495 0.098 
e 0.847 0.518 0.743 0.423 0.450 0.045 

RKHS 
Subpop. U SU CD S R s.e. 

a 0.460 0.315 0.426 0.239 0.431 0.034 
b 0.654 0.944 0.650 0.593 0.655 0.037 
c 0.826 0.308 0.856 0.402 0.529 0.026 
d 0.771 0.843 0.887 0.539 0.614 0.047 
e 0.847 0.562 0.786 0.608 0.540 0.022 

For the description of the training set construction methods U, SU, CD, S and R see Table 1. SE indicates the 
mean standard error across methods. 
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Table S6. Flint yield predictive ability within groups using a training set size of 200 genotypes.  

QTL 
Subpop. U SU CD S R s.e. 

a -0.114 -0.003 -0.146 -0.248 -0.048 0.135 
b 0.521 0.015 0.328 0.419 0.473 0.194 
c 0.030 0.399 0.130 -0.071 0.061 0.136 
d 0.628 0.838 0.638 0.666 0.708 0.102 
e 0.555 -0.124 0.331 0.043 0.009 0.038 

GBLUP 
Subpop. U SU CD S R s.e. 

a 0.131 0.279 0.238 0.117 0.372 0.040 
b 0.564 0.094 0.516 0.401 0.314 0.053 
c 0.403 0.195 0.371 0.236 0.270 0.028 
d 0.672 0.619 0.783 0.603 0.600 0.039 
e 0.702 0.531 0.662 0.457 0.442 0.016 

QGBLUP 
Subpop. U SU CD S R s.e. 

a 0.022 0.158 0.137 -0.127 0.257 0.090 
b 0.670 0.044 0.506 0.457 0.450 0.120 
c 0.408 0.266 0.402 0.041 0.217 0.064 
d 0.674 0.657 0.771 0.708 0.676 0.089 
e 0.687 0.361 0.521 0.183 0.170 0.037 

RKHS 
Subpop. U SU CD S R s.e. 

a 0.142 0.337 0.290 0.245 0.392 0.040 
b 0.447 0.037 0.408 0.360 0.271 0.053 
c 0.382 0.240 0.342 0.259 0.284 0.028 
d 0.708 0.680 0.818 0.679 0.688 0.039 
e 0.745 0.451 0.666 0.410 0.389 0.016 

For the description of the training set construction methods U, SU, CD, S and R see Table 1. SE indicates the 
mean standard error across methods. 
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Table S7. Dent silking date predictive ability within groups using a training set size of 150 genotypes.  

QTL 
Subpop. U SU CD S R s.e. 

a 0.049 0.060 -0.057 -0.063 -0.031 0.080 

b 0.044 -0.072 0.060 0.040 0.090 0.025 

c 0.113 0.020 0.213 0.210 0.243 0.028 

d 0.179 0.079 0.124 0.212 0.276 0.116 

e 0.387 0.212 0.280 0.112 0.161 0.035 

GBLUP 
Subpop. U SU CD S R s.e. 

a 0.512 0.532 0.364 0.327 0.376 0.051 

b 0.610 0.554 0.597 0.706 0.649 0.019 

c 0.526 0.458 0.478 0.410 0.410 0.021 

d 0.549 0.541 0.517 0.630 0.521 0.036 

e 0.772 0.707 0.681 0.683 0.671 0.025 

QGBLUP 
Subpop. U SU CD S R s.e. 

a 0.488 0.570 0.287 0.110 0.108 0.071 

b 0.443 0.380 0.431 0.549 0.510 0.025 

c 0.532 0.426 0.539 0.462 0.494 0.028 

d 0.522 0.503 0.452 0.688 0.547 0.047 

e 0.700 0.652 0.609 0.632 0.612 0.032 

RKHS 
Subpop. U SU CD S R s.e. 

a 0.492 0.465 0.345 0.131 0.158 0.051 

b 0.641 0.537 0.602 0.612 0.573 0.019 

c 0.477 0.415 0.412 0.356 0.344 0.021 

d 0.618 0.610 0.574 0.600 0.531 0.036 

e 0.757 0.699 0.664 0.638 0.650 0.025 

For the description of the training set construction methods U, SU, CD, S and R see Table 1. SE indicates the 
mean standard error across methods. 
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Table S8. Dent tasseling date predictive ability within groups using a training set size of 150 genotypes.  

Dent, Tasseling date, 150 genotypes 
QTL 

Subpop. U SU CD S R s.e. 
a 0.308 0.207 0.236 0.164 0.094 0.019 
b 0.201 0.140 0.267 0.290 0.337 0.023 
c 0.058 -0.075 0.105 0.162 0.204 0.078 
d 0.544 0.435 0.443 0.224 0.221 0.028 
e 0.385 0.439 0.225 0.094 0.207 0.067 
f 0.513 0.510 0.472 - 0.374 0.014 

GBLUP 
Subpop. U SU CD S R s.e. 

a 0.554 0.543 0.511 0.640 0.581 0.018 
b 0.445 0.390 0.444 0.410 0.420 0.021 
c 0.547 0.574 0.615 0.632 0.553 0.039 
d 0.806 0.743 0.718 0.721 0.703 0.025 
e 0.595 0.639 0.593 0.486 0.475 0.046 
f 0.812 0.817 0.771 - 0.709 0.013 

QGBLUP 
Subpop. U SU CD S R s.e. 

a 0.466 0.432 0.414 0.528 0.423 0.019 
b 0.530 0.446 0.531 0.518 0.551 0.023 
c 0.490 0.508 0.549 0.585 0.536 0.042 
d 0.730 0.671 0.658 0.647 0.638 0.028 
e 0.654 0.721 0.558 0.328 0.473 0.062 
f 0.689 0.729 0.704 - 0.647 0.014 

RKHS 
Subpop. U SU CD S R s.e. 

a 0.580 0.558 0.520 0.541 0.501 0.018 
b 0.409 0.361 0.368 0.367 0.358 0.021 
c 0.618 0.656 0.638 0.598 0.565 0.039 
d 0.796 0.735 0.708 0.678 0.680 0.025 
e 0.630 0.626 0.614 0.318 0.229 0.046 
f 0.759 0.775 0.703 - 0.626 0.013 

For the description of the training set construction methods U, SU, CD, S and R see Table 1. SE indicates the 
mean standard error across methods. 
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Table S9. Dent yield predictive ability within groups using a training set size of 150 genotypes.  

Dent, Yield, 150 genotypes 
QTL 

Subpop. U SU CD S R s.e. 
a 0.055 0.275 0.067 0.394 0.045 0.101 
b 0.368 0.305 0.266 0.149 0.215 0.040 
c 0.299 -0.06 0.361 0.365 0.286 0.133 
d 0.424 0.488 0.399 0.378 0.274 0.047 
e 0.391 0.455 0.346 0.121 0.331 0.044 
f 0.249 0.189 0.312 - 0.202 0.027 

GBLUP 
Subpop. U SU CD S R s.e. 

a -0.193 -0.144 -0.026 0.285 0.037 0.042 
b 0.380 0.352 0.434 0.359 0.364 0.017 
c 0.385 -0.010 0.544 0.608 0.586 0.053 
d 0.578 0.501 0.404 0.477 0.441 0.020 
e 0.669 0.688 0.676 0.654 0.650 0.019 
f 0.574 0.547 0.539 - 0.493 0.012 

QGBLUP 
Subpop. U SU CD S R s.e. 

a -0.005 0.213 0.072 0.518 0.141 0.096 
b 0.478 0.387 0.445 0.321 0.365 0.039 
c 0.486 -0.128 0.489 0.516 0.401 0.120 
d 0.644 0.604 0.464 0.479 0.462 0.046 
e 0.543 0.575 0.609 0.514 0.624 0.044 
f 0.604 0.537 0.537 - 0.414 0.027 

RKHS 
Subpop. U SU CD S R s.e. 

a -0.103 -0.080 -0.06 0.268 0.032 0.042 
b 0.369 0.340 0.385 0.314 0.311 0.017 
c 0.393 0.016 0.625 0.572 0.538 0.053 
d 0.438 0.423 0.334 0.418 0.370 0.020 
e 0.581 0.588 0.575 0.576 0.564 0.019 
f 0.557 0.529 0.522 - 0.455 0.012 

For the description of the training set construction methods U, SU, CD, S and R see Table 1. SE indicates the 
mean standard error across methods. 
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Table S10. Rice height predictive ability within groups using a training set size of 300 genotypes. For the description 
of the training set construction methods U, SU, CD, S and R see Table 1. 

Plant height, rice, 300 genotypes 
QTL 

Subpop. U SU CD S R s.e. 
a 0.216 0.219 0.181 0.160 0.139 0.038 
b - 0.099 -0.356 - 0.148 0.044 

GBLUP 
Subpop. U SU CD S R s.e. 

a 0.758 0.759 0.717 0.707 0.683 0.015 
b 0.973 0.479 0.894 0.974 0.481 0.036 

QGBLUP 
Subpop. U SU CD S R s.e. 

a 0.741 0.744 0.683 0.691 0.670 0.015 
b 0.971 0.501 0.889 0.970 0.518 0.036 

RKHS 
Subpop. U SU CD S R s.e. 

a 0.795 0.795 0.753 0.725 0.695 0.015 
b 0.963 0.534 0.924 0.963 0.526 0.036 

For the description of the training set construction methods U, SU, CD, S and R see Table 1. SE indicates the 
mean standard error across methods. 

Table S11. Rice Flowering date predictive ability within groups using a training set size of 300 genotypes.  

Flowering, rice, 300 genotypes 
QTL 

Subpop. U SU CD S R s.e. 
a 0.219 0.253 0.396 0.326 0.314 0.019 
b 0.894 0.897 0.813 0.690 0.707 0.115 

GBLUP 
Subpop. U SU CD S R s.e. 

a 0.706 0.702 0.730 0.762 0.741 0.016 
b 0.982 0.981 0.939 0.767 0.794 0.028 

QGBLUP 
Subpop. U SU CD S R s.e. 

a 0.685 0.680 0.720 0.752 0.728 0.016 
b 0.981 0.980 0.944 0.789 0.812 0.028 

RKHS 
Subpop. U SU CD S R s.e. 

a 0.737 0.730 0.731 0.753 0.736 0.016 
b 0.983 0.983 0.943 0.752 0.776 0.028 

For the description of the training set construction methods U, SU, CD, S and R see Table 1. SE indicates the 
mean standard error across methods. 
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Abstract 

Wheat is adapted to a wide range of environmental conditions and it often shows 
crossover genotype-by-environment interactions (GxE). To select adapted genotypes, 
breeders perform multi-environment trials (MET) that aim at representing the target 
population of environments (TPE). Response to selection can be improved by subdividing 
the TPE in more homogeneous parts, where ranking of genotypes within subdivisions 
exhibits higher consistency than across subdivisions. For subdividing the TPE, series of 
METs can be analysed, concentrating on repeatable genotype-by-location interactions and 
group locations into regions Various approaches based on fixed linear-bilinear models are 
popular to group trials in METs (SHMM, AMMI, GGE). Mixed model approaches for the 
identification of groups of trials with a higher internal homogeneity are potentially powerful 
alternatives, although in general they require a higher ingenuity in statistical modelling than 
standard fixed models do. We compare here two strategies for grouping trial locations into 
regions, one based on a full mixed model analysis, and one based on  a relatively simple, yet 
robust two-step approach based fitting AMMI models to within year genotype by location 
tables of means. The AMMI predictions are then used to cluster locations within years. 
Consistent clustering of locations over years is used to assign locations to regions. The mixed 
model approach uses the parameters of a factor analytic model to classify locations in regions. 
The approaches are illustrated on yield data from official variety trials from 1995 to 2012, in 
Denmark, Germany, the Netherlands and the United Kingdom. We identified regions in 
Denmark, Germany and the United Kingdom that coincided with latitudinal and longitudinal 
gradients. Regions were most outspoken in Denmark. 

Abbreviations 

AMMI, Additive main effects and multiplicative interaction model 
ANOVA, analysis of variance 
 FA1, factor analytic model of order 1 
FA2, factor analytic model of order 2 
GGE, genotype main effects and genotype x environment interaction model 
GxE, genotype by environment interaction 
MET, multi-environment trials 
LSD, least significant difference 
PC, principal component 
REML, restricted maximum likelihood 
SHMM, Shifted Multiplicative Model  
SVD; singular value decomposition. 
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4.1. Introduction 

Wheat is a crop with a strong potential for adaptation, or adaptability (Trethowan et al. 
2002; van Eeuwijk et al. 2016)). The environmental range in which wheat can grow is wide. 
For example, wheat is able to deal with the very dry conditions of the Sonora dessert (Fischer 
and Maurer 1978), and it tolerates extreme temperatures as low as -20○C in the vegetative 
phase as well as temperatures as high as 45○C during grain filling (Porter and Gawith 1999). 

Because of its adaptability to favourable growing conditions wheat can reach yields above 
15 Mg ha-1,  as observed in  Southern Chile (Bustos et al. 2013; García et al. 2013). The 
strong adaptability of wheat together with the large environmental range makes wheat the 
largest contributor to the calories supply worldwide (FAO 2013). As a consequence of the 
same factors, strong adaptability and large environmental range, wheat is susceptible to 
strong genotype by environment interactions (GxE) including those that lead to rank changes 
(cross-overs). These genotypic rank changes complicate the selection of new varieties 
(Crossa et al. 2004; Reynolds et al. 2002).  

To select varieties that are well adapted to target growing conditions, breeders perform 
multi-environment trials (METs). In METs, individual candidate varieties typically are 
evaluated at a number of locations across a limited set of years. The idea behind METs is that 
the trials in a MET form a representative sample of the current and near-future growing 
conditions, the target population of environments, or TPE. The growing conditions that 
define the TPE result from a combination of soil and meteorological parameters that are 
determined by location, say geography, latitude and longitude (climate, photoperiod), time 
(season, year, occurrence of stresses), and cultural practices (management, nutrients, pests, 
water). In the context of TPEs and METs, it is important to distinguish between repeatable 
and well predictable elements in the environmental conditions from those that are badly 
predictable. In general, environmental conditions associated with location and management 
are better predictable than those associated with year. A relevant consequence for breeders is 
that genotype by location and genotype by management interactions may be better 
predictable than genotype by year interactions or genotype by location by year and genotype 
by management by year interactions. The latter constitute sources of error variation, whereas 
the earlier represent GxE interactions that can be exploited. 

For the analysis of MET data, mixed models are an appropriate class of models METs 
(Smith et al. 2005). Ignoring the experimental design structure of individual trials for the 
moment, for classical METs a factorial structure of genotypes, locations and years is defined 
and frequent model choices are to take all main effects random, or take all genotype related 
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terms random (Talbot 1984; Piepho and Möhring 2005; Smith et al. 2005; Atlin et al. 2011). 
Other choices in mixed models for METs aim at choosing repeatable and predictable terms 
fixed and non-repeatable terms random. For example, genotypes and location effects as well 
as their interactions may be taken fixed (Atlin et al 2011). The mixed models can easily be 
extended to include management related terms, in which case the genotype by management 
interactions will be fixed. As soon as interactions with years are involved, model terms will  
be chosen random because the idea is that those interactions will be unrepeatable and hard to 
predict.  

When defining a TPE, it makes sense to choose environmental conditions within which 
relative few rank changes occur. Selection of the best yielding genotypes can then follow a 
standard best linear unbiased predictor (BLUP) protocol in which a shrinkage estimate is 
produced for the genotypic performance across the full set of trials taking into account the 
variance components for the different types of GxE interaction (Piepho and Möhring 2005; 
Smith et al. 2005; Piepho et al. 2008; Atlin et al. 2011). Although, a TPE may have been 
devised with the idea of a single homogeneous environmental continuum, in the sample of 
trials that is included in a MET, the realized genotypic responses may create doubt about the 
correctness of the sample of trials coming from a single indivisible TPE. If indeed strong 
heterogeneity occurs between groups of trials and the reason for this heterogeneity can be 
identified and appear to be predictable in the future, then it may be advisable to split up the 
original TPE in two or more TPEs and consider the sample of trials to come from various 
TPEs. Breeding efforts can then be directed at improving the performance for the newly 
defined TPEs that are a subset of the original undivided TPE.  

Part of the analysis of the MET data can consist in checking the homogeneity of the 
included trials and decide whether to divide the initially targeted TPE into subsets that 
internally show increased homogeneity and strongly reduced number of crossovers. 
Preferably, decisions for subdividing the TPE are taken on the basis of the analysis of 
repeatable form of GxE interaction, like genotype by location and genotype by management 
interactions. The case that has received a lot of attention and on which we will concentrate 
in this paper is the grouping of locations into regions (Atlin et al 2000; Piepho and Möhring 
2005, Atlin et al 2011). From a breeding point of view, ranking and selection decisions can 
be performed within-regions, which are supposedly internally more homogeneous increasing 
the heritability within regions (H2), and the response to selection (Falconer and Mackay 
1996). From a statistical modelling point of view, the original genotype-by-location 
interaction variation is partitioned into  genotype by region and genotype by location within-
region variation, where the first interaction is seen as repeatable and fixed, whereas the 
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second type of interaction stands for a random error term that can only be reduced by taking 
more locations per region. 

Various approaches to group repeatable components of the environment have been 
proposed, where it needs to be emphasized that in some of the original papers little attention 
was given to the repeatability of the GxE interactions. The most popular approaches involve 
bilinear models, as the Shifted Multiplicative Model (SHMM, Cornelius et al.,  1992), 
Genotypic main effects plus Genotype by Environment interaction models (GGE models, 
Yan et al.,  2000) and Additive Main effects and Multiplicative Interaction models (AMMI 
models,  Gauch Jr., 1988; Gauch and Zobel, 1997).  

In the mixed model context repeatable GxE interactions can be chosen fixed and non-
repeatable GxE interactions will be random. Grouping is then done on fixed interactions, 
using appropriate weighting schemes for information from individual genotypes and trials by 
defining a variance-covariance structure based on non-repeatable GxE interactions. 
Classification of the locations into regions uses the covariance of genotypes between pairs of 
locations (Atlin et al, 2000; Piepho and Möhring 2005; Burgueño et al 2008; Atlin et al 2011). 
These covariances can be estimated in various ways. By classical variance components 
models as in Atlin 2000, Piepho and Möhring 2005; Atlin et al 2011), or more parsimoniously 
by factor analytic models (FA, Smith et al., 2005). The FA variance covariance model is a 
multiplicative model, and in that sense it can be considered analogous to the multiplicative 
terms in the AMMI and GGE models (Piepho 1998; Smith et al. 2001). The magnitude of 
correlation (covariance) of genotypes between locations can be used to identify regions that 
are internally homogenous (Crossa et al. 2004; Burgueño et al. 2008; Beeck et al. 2010). 
Modelling the covariance structure across locations is often not straightforward and it 
requires a higher ingenuity in statistical modelling than standard fixed models do. A strategy 
to group locations based on approaches with less computational demands than in mixed 
models would be useful.  

We propose an alternative approach to regionalize trials using an AMMI-fit-based 
clustering, where we fit AMMI models to genotype by location tables of genotypic means 
(Best Linear Unbiassed Estimators) to obtain improved genotypic means that serve as the 
input for a clustering procedure. We define similarity between trials within years as the 
Jaccard index calculated from performance indicators for genotypes that show whether the 
genotypes belong to the best ones (value 1) or not (value 0) in that trial. In contrast to current 
who-won-where proposals our method can use information of a set of highest ranking 
genotypes, instead of the single best genotype as proposed by (Yan et al. 2000; Gauch 2006). 
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As we use information of more genotypes than the highest ranking one, our procedure should 
result in a more robust regionalization.  

The focus of our method is on the repeatable part of the GxE, so we group trials annually 
based on geography (genotype by location interaction), and subsequently assess the 
consistency of the obtained annual classifications across years.  By using the AMMI fitted 
values instead of the original data we favour the grouping to be driven by patterns of GxE, 
since we consider only the first principal components (Odong et al. 2013).  

Historical data from official wheat variety trials sown in Denmark, Germany, the 
Netherlands and in the United Kingdom were used in this paper to: (i) quantify GxE 
interactions on grain yield in North-European wheat trials, (ii) compare strategies to identify 
regions, AMMI model versus mixed model approach, and (iii) evaluate the resulting 
classification of locations into regions in terms of response to selection. 

4.2.  Methods 

4.2.1. The study area and datasets 

The data corresponded to genotypic yield means obtained from analyses of official trials 
for the assessment of Value for Cultivation and Use (VCU) in winter wheat for several 
locations in Denmark, Germany, the Netherlands and the United Kingdom between 1995 and 
2012 (Figure1, Table 1). These data were compiled by the 3rd author of this paper. The data 
were unbalanced as set of trial locations changed from year to year, while, proper to the VCU 
testing system the set of genotypes changed over the years.  

 
Figure 1. Geographical position of the field trials. Circles are proportional to the number of yield observations 
accumulated over the period 1995-2012. 
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Table 1. Institution that generated the data (data origin), years with data, number of locations and number of 
genotypes per country.  

Country Data origin Period Number 
of  

locations 

Number 
of 

genotypes 

Denmark Videncentret for Landbrug 1995-2011 12 426 

Germany Bundessortenamt 1999-2012 17 1103 

The Netherlands 
Commissie samenstelling 
aanbevelende rassenlijst 

landbouwgewassen 
2006-2011 10 163 

United Kingdom Agriculture and Horticulture 
Development Board 2003-2012 24 137 

4.2.2. Mixed model analysis  

Mixed models were fitted to estimate GxE variance components that will serve to quantify 
GxE interactions in the various countries. The variance components serve as a basis for 
establishing to which extent the grouping of locations in regions will lead to a larger response 
to selection for an evaluation system based on a undivided or a divided TPE following the 
procedure described by Atlin et al. (2000). 

4.2.3. Variance components 

The unbalanced genotype by location by year data per country was modelled as in 
Equation (1); 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐿𝐿𝑖𝑖 + 𝑌𝑌𝑖𝑖 + 𝐿𝐿𝑌𝑌𝑖𝑖𝑖𝑖 + 𝐺𝐺𝑖𝑖 + 𝐺𝐺𝐿𝐿𝑖𝑖𝑖𝑖 + 𝐺𝐺𝑌𝑌𝑖𝑖𝑖𝑖 + 𝐺𝐺𝐿𝐿𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖      (1) 

In Equation (1) 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 is the phenotype (yield) of the ith genotype in the jth location and the 
kth year (i=1,...ng; j=1,...nl, k=1,... ny). µ is the general intercept, 𝐿𝐿𝑖𝑖  and 𝑌𝑌𝑖𝑖  are the fixed 
effects of location and year and 𝐿𝐿𝑌𝑌𝑖𝑖𝑖𝑖 is the fixed interaction between location and year.  𝐺𝐺𝑖𝑖 is 
the random main effect of  the ith genotype whereas  𝐺𝐺𝐿𝐿𝑖𝑖𝑖𝑖 and 𝐺𝐺𝑌𝑌𝑖𝑖𝑖𝑖 are the random effects of 
genotype by location interaction and genotype by year interaction, respectively. 𝐺𝐺𝐿𝐿𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 
corresponds to a residual term that contains genotype by location by year interaction and a 
within trial error. Random effects are assumed to be independent and normal with zero mean 
and proper variance: 𝜎𝜎𝑔𝑔2, 𝜎𝜎𝑔𝑔𝑔𝑔2 , 𝜎𝜎𝑔𝑔𝑔𝑔2  and 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔2 . The residual term 𝐺𝐺𝐿𝐿𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 in the Netherlands and 
in the United Kingdom was split into the variance of genotype by location by year and the 
error (𝜎𝜎𝑒𝑒2). The error was estimated in the Netherlands and in the United Kingdom from the 
least significant difference (LSD) of the trials. Variance components were estimated by 
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restricted maximum likelihood (REML) implemented in ASReml-R (VSN-International 
2013a). 

Broad sense heritability on a plot (H2
plot, Equation 2) and on a line mean basis (H2

line, 
Equation 3) were calculated from the variance components. The error term 𝜎𝜎𝑒𝑒2  was only 
included in the Netherlands and in the United Kingdom. In Equation 2 and Equation3,  𝑛𝑛𝑛𝑛, 
𝑛𝑛𝑦𝑦 and 𝑛𝑛𝑛𝑛 represent the median of the number of locations, years and replicates in which 
genotypes were present, respectively.  

𝐻𝐻𝑝𝑝𝑔𝑔𝑝𝑝𝑝𝑝2 = 𝜎𝜎𝑔𝑔2

𝜎𝜎𝑔𝑔2 + 𝜎𝜎𝑔𝑔𝑔𝑔
2  + 𝜎𝜎𝑔𝑔𝑔𝑔2 +�𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔 

2 + 𝜎𝜎𝑒𝑒2�
  (2) 

𝐻𝐻𝑔𝑔𝑖𝑖𝑙𝑙𝑒𝑒2 =  𝜎𝜎𝑔𝑔2

𝜎𝜎𝑔𝑔2+ 
𝜎𝜎𝑔𝑔𝑔𝑔
2

𝑛𝑛𝑔𝑔  + 
 𝜎𝜎𝑔𝑔𝑔𝑔2

𝑛𝑛𝑔𝑔   + �
𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔
2

𝑛𝑛𝑔𝑔  𝑛𝑛𝑔𝑔  + 𝜎𝜎𝑒𝑒2

𝑛𝑛𝑔𝑔  𝑛𝑛𝑔𝑔  𝑛𝑛𝑛𝑛�
         (3) 

Variance components were also estimated for intervals of three consecutive years, which 
reflect the standard testing cycles (cultivars are typically tested for 3 years before release). 
For example, interval 1=1995, 1996, 1997; interval 2=1996, 1997, 1998 and so on, which 
resulted in 15 intervals for Denmark, 10 for Germany, 3 for the Netherlands and 8 for the 
United Kingdom. The median of the number of genotypes that occurred in the three years 
was calculated across intervals to give an impression of the amount of imbalance (Table 1). 
The logarithm of the variance of each term was regressed against mean yield of the different 
series to determine whether variance components were associated to the observed yield level. 

Partition of genetic variance between and within regions 

Regions were constructed in two ways (see section 2.3). For a given division of the TPE, 
the contribution of genotype by region interaction to the total variation was estimated to 
evaluate the efficiency of an evaluation system using regions versus a system with an 
undivided TPE. In Equation (4), the term genotype by location interaction (𝐺𝐺𝐿𝐿𝑖𝑖𝑖𝑖) of Equation 
(1) was partitioned into genotype by region interaction (𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖) and genotype by location 
interaction nested within region 𝐺𝐺𝐿𝐿(𝐺𝐺)𝑖𝑖𝑖𝑖(𝑖𝑖). The interaction of genotype by location by year 
(𝐺𝐺𝐿𝐿𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖) was partitioned into genotype by region by year interaction (𝐺𝐺𝐺𝐺𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖)  and genotype 
by location within region by year interaction, 𝐺𝐺𝐿𝐿(𝐺𝐺)𝑌𝑌𝑖𝑖𝑖𝑖(𝑖𝑖)𝑖𝑖, following Atlin et al. (2000). A 
log-likelihood ratio test with two degrees of freedom was used to compare the goodness of 
fit of  Equation (4) and (1) (Welham and Thompson 1997). 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐿𝐿𝑖𝑖 + 𝑌𝑌𝑖𝑖 + 𝐿𝐿𝑌𝑌𝑖𝑖𝑖𝑖 + 𝐺𝐺𝑖𝑖 + 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 + 𝐺𝐺𝐿𝐿(𝐺𝐺)𝑖𝑖𝑖𝑖(𝑖𝑖) + 𝐺𝐺𝑌𝑌𝑖𝑖𝑖𝑖 + 𝐺𝐺𝐺𝐺𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐺𝐺𝐿𝐿(𝐺𝐺)𝑌𝑌𝑖𝑖𝑖𝑖(𝑖𝑖)𝑖𝑖  (4) 
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Modelling genotypic covariance between locations across years 

With the random terms in Equation (4) each having their own variance, the variance-
covariance structure for the 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 term is compound symmetry, like in Atlin et al. (2000) and 
in Piepho and Möhring (2005), although in this paper alternative structures are mentioned. 
To investigate patterns of genotype by location interaction and to classify locations into 
regions, we chose for the 𝐺𝐺𝐿𝐿𝑖𝑖𝑖𝑖 term a factor analytic model of order 1 (FA1), with the genetic 
variance-covariance between locations Σ𝐺𝐺𝐺𝐺 = 𝜆𝜆𝑔𝑔𝜆𝜆𝑔𝑔′ + 𝜓𝜓𝑔𝑔 . 𝜆𝜆𝑔𝑔 is a vector of location scores of 
length 𝑛𝑛𝑛𝑛, and 𝜓𝜓𝑔𝑔  a diagonal matrix of dimension 𝑛𝑛𝑛𝑛 with an location-specific lack of fit 
parameter. In addition, the genetic variance-covariance for the 𝐺𝐺𝑌𝑌𝑖𝑖𝑖𝑖 term was modelled by a 
FA1 in Denmark, the Netherlands, and the United Kingdom (Σ𝐺𝐺𝐺𝐺 = 𝜆𝜆𝑔𝑔𝜆𝜆𝑔𝑔′ + 𝜓𝜓𝑔𝑔).   A 
diagonal model Σ𝐺𝐺𝐺𝐺 = 𝐷𝐷𝑔𝑔  for the genetic variance-covariance between years was used in 
Germany (i.e. different variances for each year, and covariance between years equal to zero). 

The vector 𝜆𝜆𝑔𝑔 of the FA1 structure for genotypes across locations was used to classify 
locations in regions, by a k-means clustering procedure (Dillon and Goldstein 1984; 
Zelterman 2015). Clusters were defined based on Euclidean distances, reducing the 
variability of individuals within a cluster, while maximizing the variability between clusters. 
The sum of the squared distances of cluster members to their cluster centroid was plotted as 
a function of the number of clusters to identify the final number of groups (Hastie et al. 2009). 

4.2.4. AMMI-based clustering to identify groups of locations 

A two-stage approach was used to identify consistent groups of locations across years. In 
the first stage, locations were classified within years on the basis of AMMI predictions, and 
the consistency of these groups over years was evaluated in the second stage. 

Grouping within years: AMMI-based clustering of locations 

MET data are usually balanced within years for genotypes and locations, but unbalanced 
across years as the locations can differ from year to year and new genotypes enter the VCU 
system while other genotypes are discarded and leave the system. Because our data were 
balanced within years, we could fit standard AMMI models to the within year genotype by 
location tables. AMMI predictions were obtained by fitting the following model in GenStat 
16 (VSN-International 2013b);  

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐺𝐺𝑖𝑖 + 𝐿𝐿𝑖𝑖 + ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖𝑀𝑀
𝑖𝑖=1 + 𝜀𝜀𝑖𝑖𝑖𝑖 (5) 
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In Equation (5) 𝑦𝑦𝑖𝑖𝑖𝑖  represents the mean yield of the ith genotype in the jth location as 
obtained from the trial analyses in the VCU system, 𝜇𝜇 stands for an intercept, Gi is the fixed 
effect of the ith genotype and 𝐿𝐿𝑖𝑖  is the fixed effect of the jth location within a year. The 
interaction is explained by M multiplicative terms. Each multiplicative term formed by the 
product of a genotypic sensitivity 𝑛𝑛𝑖𝑖𝑖𝑖 (genotypic score) and an environmental scores 𝑧𝑧𝑖𝑖𝑖𝑖. 
Finally, 𝜀𝜀𝑖𝑖𝑖𝑖 is a residual term. The number of principal components M to be retained was 
determined according to Gollob’s test (1968).   

Gauch (2006) suggested to classify locations that have the same highest yielding genotype 
as belonging to the same group of trials, which were called mega-environment. Grouping 
trials on the basis of the identity of the best performing genotype according to an AMMI fit 
in model (5), we will call strategy A. The groups of locations following from the coincidence 
of the best performing genotypes can be formed for each year. The grouping results across 
the years need to be considered to establish the consistency of the grouping. 

We propose a more robust approach, called strategy B, in which regions are defined using 
a certain percentage, say 20%, of the best performing genotypes, again using the AMMI fitted 
values (Figure 2). Effectively, the fitted values from the AMMI model were replaced by 
binary vectors having the value 1 when a genotype is among the best and 0 otherwise 
(Figure2, steps 1 and 2). A similarity matrix of locations by locations in a particular year was 
constructed on these binary vectors using a Jaccard similarity (Giudici 2003) (step 3 in Figure 
2). The resulting similarity matrix was used in a hierarchical clustering procedure (average 
linkage, (Johnson and Wichern 2007)) (step 4 in Figure 2). Locations were considered to be 
in the same cluster, or region, when their fitted similarity in the dendrogram was above 0.8. 
This process was repeated for each of the years, delivering a series of clusterings of locations. 
The consistency of these clusterings then remains to be assessed. 

In strategy C, locations within years were clustered on Euclidean distances between 
locations as calculated from the AMMI fitted values across the full set of included genotypes. 
As in strategy B, the resulting similarity matrix was used in a hierarchical clustering of 
locations, by the agglomerative method group average (Johnson and Wichern 2007). A 
similarity of 0.8 fitted in the dendrogram was used as a threshold to define the groups within 
years. This cut-off level produced the best fit for a mixed model for the genotype by location 
means within a year with location fixed and random effects for genotype, genotype by region 
and genotype by location within region interactions.  
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Grouping across years 

The second step of clustering aimed at identifying locations that tend to consistently 
belong to the same region across years. The input was an incidence table of region 
memberships for locations in particular years which had the dimensions of the number of 
locations by the number of years. This table was constructed by combining the vectors of 
region memberships obtained within years (step 5 in Figure 2). The entries of the table consist 
of region levels. Similarities between locations were defined by simple matching coefficients 
(Dillon and Goldstein 1984), and locations were then clustered by the agglomerative method 
group average (Steps 6 and 7 in Figure 2). The response to selection using the groups of 
locations suggested by the branching of the dendrogram to divide the TPE (MET) versus the 
response to selection of an undivided TPE (MET) was used as a criterion to decide the cut-
off value in the clustering. The cut-off value that produced groups with the largest response 
to selection was used.  

 

Figure 2. Steps in the strategy to identify regions based on clustering of AMMI predictions.  
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4.2.5. Evaluation of the regions 

As Piepho and Möhring (2005) show, it can always be worthwhile to try to find divisions 
of the TPE provided that an appropriately chosen weighting regime is chosen to combine the 
BLUP estimators for the genetic values in the different parts of the subdivision. The utility 
and efficiency of groupings of trials in METs and thereby subdivisions of the TPE can be 
evaluated in a number of ways. We describe three of them in this section. 

4.2.6.  Overlap with agro-climatically attainable wheat yield map 

The Global Agro-Ecological Zones (GAEZ) map (http://www.fao.org/nr/gaez/en/) was 
used as a reference to assess whether the regions resulting from our strategies coincided with 
those from the agro ecological wheat map. All the locations were georeferenced and 
superimposed on the GAEZ map for high input level winter wheat, by FAO/IIASA (2011). 
Different versions of the map are available and the one for a growth cycle length of 45+135 
days was chosen because it resembles the cycle length of European wheat genotypes. Groups 
of locations were visually compared with the geographical pattern of the predicted yield using 
the software ESRI©Arc MapTM 10.1. 

4.2.7. Effects of latitude and longitude 

Coordinates of each location (projected using the WGS 1984 Web Mercator coordinate 
system) were included as covariables in the model of Equation (6). This model aimed at 
determining whether there is an effect of latitude and longitude on genotypic performance 
across environments. 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐿𝐿𝑖𝑖 + 𝑌𝑌𝑖𝑖 + 𝐿𝐿𝑌𝑌𝑖𝑖𝑖𝑖 + 𝐺𝐺𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑥𝑥1𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑥𝑥2𝑖𝑖 + 𝐺𝐺𝐿𝐿𝑖𝑖𝑖𝑖 + 𝐺𝐺𝑌𝑌𝑖𝑖𝑖𝑖 + 𝐺𝐺𝐿𝐿𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖    (6) 

In  Equation (6), 𝐺𝐺𝑖𝑖 considered as a fixed term, 𝑥𝑥1𝑖𝑖 and 𝑥𝑥2𝑖𝑖 are covariables representing 
the latitude and longitude of the  jth location respectively. 𝛽𝛽𝑖𝑖  and 𝛾𝛾𝑖𝑖 represent the genotype-
specific regression coefficients. Significance of fixed terms was evaluated with the Wald test 
(Welham and Thompson 1997). The relevance of latitude and longitude for grouping 
environments follows from the significance of the slopes and the reduction of the genotype 
by location variance. 

  



Identifying regions in multi-environment trials by bilinear and mixed models 

87 
 

4.2.8. Predicted response to selection in the divided and in the undivided target regions   

The grouping of locations in regions was also assessed in terms of the expected response 
to selection, by comparing the direct response to selection estimated when selecting within a 
region with the correlated response expected when indirect selection would be performed 
across all locations (Atlin et al., 2000). This ratio was calculated as in Equation (7), following 
Falconer and Mackay (1996). Ratios smaller than 1.0 indicate a larger response when 
selecting within regions, so subdivision into regions is worthwhile, and ratios above 1.0, 
indicate a larger response when selecting across regions, so better not to subdivide into 
regions. 

𝐶𝐶𝐺𝐺
𝐷𝐷𝐺𝐺� = 𝜌𝜌𝑔𝑔�

𝐻𝐻𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙
2

𝐻𝐻𝑟𝑟𝑒𝑒𝑔𝑔𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙
2  (7) 

In Equation (7),   𝜌𝜌𝑔𝑔 is the genetic correlation for grain yield between undivided and 
countries, using all locations, and regions, using only the locations in a region, calculated as 
follows; 

𝜌𝜌𝑔𝑔 =  𝜎𝜎𝑔𝑔2

�𝜎𝜎𝑔𝑔2(𝜎𝜎𝑔𝑔2+𝜎𝜎𝑔𝑔𝑟𝑟2 )
 (8) 

 𝐻𝐻𝑔𝑔𝑝𝑝𝑙𝑙𝑙𝑙𝑝𝑝𝑖𝑖𝑝𝑝𝑙𝑙𝑙𝑙2  and 𝐻𝐻𝑖𝑖𝑒𝑒𝑔𝑔𝑖𝑖𝑝𝑝𝑙𝑙𝑙𝑙2  are the heritability, or better, the repeatability, of line means in 
the undivided countries and the regions, respectively, estimated by using equations 9 and 10, 
in which 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑦𝑦 and nr are the median number of locations, years and regions in which 
genotypes were present, respectively (Atlin et al. 2000). 

𝐻𝐻𝑔𝑔𝑝𝑝𝑙𝑙𝑙𝑙𝑝𝑝𝑖𝑖𝑝𝑝𝑙𝑙𝑙𝑙2 = 𝜎𝜎𝑔𝑔2

𝜎𝜎𝑔𝑔2+
𝜎𝜎𝑔𝑔𝑟𝑟2

𝑛𝑛𝑟𝑟 +
𝜎𝜎𝑔𝑔𝑔𝑔(𝑟𝑟)
2

 𝑛𝑛𝑔𝑔  𝑛𝑛𝑟𝑟  +
𝜎𝜎𝑔𝑔𝑔𝑔2

𝑛𝑛𝑔𝑔  +
𝜎𝜎𝑔𝑔𝑟𝑟𝑔𝑔2

  𝑛𝑛𝑔𝑔 + 
𝜎𝜎𝑔𝑔𝑔𝑔(𝑟𝑟)𝑔𝑔
2

𝑛𝑛𝑔𝑔 𝑛𝑛𝑟𝑟 𝑛𝑛𝑔𝑔  
    (9) 

𝐻𝐻𝑖𝑖𝑒𝑒𝑔𝑔𝑖𝑖𝑝𝑝𝑙𝑙𝑙𝑙2 = 𝜎𝜎𝑔𝑔2+ 𝜎𝜎𝑔𝑔𝑟𝑟2

𝜎𝜎𝑔𝑔2+ 𝜎𝜎𝑔𝑔𝑟𝑟2 +
𝜎𝜎𝑔𝑔𝑔𝑔(𝑟𝑟)
2

𝑛𝑛𝑔𝑔 +
𝜎𝜎𝑔𝑔𝑔𝑔2

𝑛𝑛𝑔𝑔  +
𝜎𝜎𝑔𝑔𝑟𝑟𝑔𝑔2

𝑛𝑛𝑔𝑔 + 
𝜎𝜎𝑔𝑔𝑔𝑔(𝑟𝑟)𝑔𝑔
2

𝑛𝑛𝑔𝑔 𝑛𝑛𝑔𝑔  
    (10) 
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4.3. Results 

4.3.1. Variance components 

Yield in Denmark, Germany, the Netherlands and the United Kingdom showed a complex 
GxE interaction, with strong 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔2  (between 43 and 52% of the total variance, Table 2). When 
estimating variance components without regions (Equation 1), the genotypic variance (𝜎𝜎𝑔𝑔2) 
was smaller than 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔2  in all countries with the exception of Germany where 𝜎𝜎𝑔𝑔2 was larger 
than 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔2  (𝜎𝜎𝑔𝑔2=23.6 x 10-3 (Mg/ha)2  and 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔2 =18.1 x 10-3 (Mg/ha)2). 𝜎𝜎𝑔𝑔𝑔𝑔2  and 𝜎𝜎𝑔𝑔𝑔𝑔2  represented 
a minor proportion of the total variance (between 3 and 9% for 𝜎𝜎𝑔𝑔𝑔𝑔2  and between 8 and 21% 
in the case of 𝜎𝜎𝑔𝑔𝑔𝑔2 ). 𝜎𝜎𝑔𝑔𝑔𝑔2  was in all countries about twice the size of 𝜎𝜎𝑔𝑔𝑔𝑔2 . The broad sense 
heritability at a plot level (H2

plot) was similar for Denmark, the Netherlands and the United 
Kingdom, i.e. 0.29, 0.26 and 0.26 respectively, and was larger in Germany (0.49) mainly 
because of the larger 𝜎𝜎𝑔𝑔2 (Table 2). At a genotype means level, countries showed the same 
ranking of heritabilities as at a plot level, with Germany with the highest, followed by 
Denmark, United Kingdom and the Netherlands. The Netherlands,  with only 10 locations, 
had the lowest H2

line.  

Table 2. Variance components for each country estimated from the full unbalanced data set. Variance explained by 
genotype, genotype-by-location, genotype-by-year, genotype-by-location-by-year and the error term are represented 
by 𝜎𝜎𝑔𝑔2, 𝜎𝜎𝑔𝑔𝑔𝑔2 , 𝜎𝜎𝑔𝑔𝑔𝑔2 , 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔2  and  𝜎𝜎𝑒𝑒2, respectively, as defined in model (1). Broad sense heritability at the plot (H2

plot) and 
genotypic mean basis (H2

gmean ) are also shown.  

Country  Variance (Mg/ha)2 x103 H2plot H2gmean 
  𝝈𝝈𝒈𝒈𝟐𝟐  𝝈𝝈𝒈𝒈𝒈𝒈𝟐𝟐  𝝈𝝈𝒈𝒈𝒈𝒈𝟐𝟐  𝝈𝝈𝒈𝒈𝒈𝒈𝒈𝒈𝟐𝟐  𝝈𝝈𝒆𝒆𝟐𝟐 

Denmark  76.8 19.3 54.9 114.5 - 0.289 0.737 

Germany  235.9 20.7 41.6 185.1 - 0.488 0.896 

Netherlands  75.5 15.2 51.3 128.3 24.7 0.256 0.675 

United Kingdom 78.4 29.0 52.1 107.2 40.6 0.255 0.721 

Variance components estimated for the intervals of three years oscillated over time, but 
there was no general trend to increase or decrease (Figure 3). H2

plot was therefore stable 
(Figure 4). Average yield across environments did not change much in the period that we 
analysed and no association of the logarithm of the variance components with grain yield 
was observed. H2

plot estimated for the original unbalanced dataset was similar to the mean of 
H2

plot estimated for the collection of data series of three years (Figure 4). Therefore, H2
plot 

estimates from three years can be considered as representative for what occurred in the longer 
term. 



Identifying regions in multi-environment trials by bilinear and mixed models 

89 
 

4.3.2. Using the FA1 model to identify regions 

The vector λ𝑔𝑔 that contains location loadings was used to classify locations into regions 
by K-means clustering. Location loadings and the classification of locations into regions are 
shown in Figure 5. The regions obtained with the K-means clustering were used in Equation 
(4) to estimate variance components. The CR/DR ratio was calculated using these variance 
components (upper part of Table 3). In the case of Denmark, the CR/DR ratio was 0.93, 
suggesting an improvement in the response to selection when selecting directly in regions 
versus selecting across all locations in a country. More modest results were observed in 
Germany, the Netherlands and the United Kingdom, where the CR/DR ratio was 0.99, 0.98 
and 0.98, respectively. These modest results suggest that response to selection would only 
marginally improve with regionalization in Germany, the Netherlands and in the United 
Kingdom.  

 

Figure 3. Mean yield and variance components estimated for each of the intervals of 3-years in Denmark, Germany, 
the Netherlands and the United Kingdom. Components are plotted in chronological order. 
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Figure 4. Histogram of broad sense heritability estimated at the plot level for each of the intervals of 3 years of 
information in Denmark, Germany, the Netherlands and the United Kingdom. Mean heritabilities are 0.34, 0.47, 
0.24 and 0.28, for the countries in the same order. Arrows show heritability estimated using form the whole period 
considered in the analysis (0.28, 0.43, 0.26 and 0.26, respectively). 
 

 

Figure 5. REML estimates of environmental loadings for Denmark, Germany, the Netherlands and the United 
Kingdom, estimated with a FA1 model. Circles of different colours indicate locations that were classified into 
different regions. 
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4.3.3. AMMI-based clustering to identify regions 

The AMMI analysis was done separately for the tables of genotypes by locations available 
for each of the years. These tables of genotypes by locations differed in size (number of 
genotypes and locations). In consequence, the number of significant components that were 
retained in the AMMI model differed between years (from 1 to 4 components in Denmark, 
from 2 to 8 in Germany, from 2 to 3 in The Netherlands and from 1 to 6 in United Kingdom).  

The predictions obtained from the AMMI model were used to define the regions though 
a two-step cluster analysis. In the first step, methods A, B or C grouped locations within year 
using information of the best genotype, the best 20%, and all of the genotypes, respectively. 
For strategy B, results obtained by using the top 10% and 30% genotypes were produced as 
well (Table 4). Depending on the percentage of genotypes that were considered, between 2 
and 6 regions were obtained in Denmark, whereas the range in Germany, the Netherlands 
and the United Kingdom was between 3 and 6, 3 and 8 and 2 and 8 regions, respectively 
(Table 4, Figure 6). In the four countries, the  CR/DR ratio was lowest for regions formed 
from when considering 20% of the genotypes. If the CR/DR ratio is smaller than 1.0, it 
suggests that subdivision into regions is worthwhile. When taking the top 20% of genotypes, 
regionalization was advantageous in Denmark, Germany and in the United Kingdom, with 
no advantage in the Netherlands. This result was in line with the significant improvement in 
goodness of fit after regions were included in Denmark, Germany and in the United 
Kingdom, but not in the Netherlands (Table 3).  

4.3.4. Comparison of regions obtained using the FA1 model, the AMMI-based 
clustering and geographical information 

The FA1 and the AMMI-based clustering agreed in that correlated response to selection 
within regions was largely improved in Denmark, whereas it was only marginally improved 
in Germany and in the United Kingdom (Table 3). In the Netherlands, the clustering of the 
FA1 loadings allowed to obtain regions with an improved response to selection, whereas 
response to selection did not benefit from regions obtained with the AMMI strategy. The lack 
of improved response to selection in the Netherlands coincides with its absence of significant 
latitudinal and longitudinal effects and with the homogenous yield predicted by the GAEZ 
map (Figure 7). In contrast, the latitudinal and longitudinal gradients were significant in 
Denmark, Germany and in the United Kingdom (Figure7). These gradients were represented 
by the regions obtained by using the FA1 model and by the regions resulting from the AMMI 
based-clustering. Main difference between regions obtained with both models is that the FA1 
model tended to set the geographical limits to separate locations further South, compared to 
the AMMI model (Figure 7).  
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Figure 6. Dendrograms of the locations in Denmark, Germany, the Netherlands and the United Kingdom using the 
table of yearly clustering of locations of the AMMI-based strategy, based on the 20% best genotypes. The vertical 
line represents the threshold used to define the regions, which was set using the lowest CR/DR ratio. 
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Table 3. Variance components with their standard errors for the original unbalanced data estimated with the regions 
obtained using FA1 model and the top 20% of the genotypes. Variance explained by genotype, genotype-by-region, 
genotype-by-location-within-region, genotype-by-year, genotype-by-region-by-year and to genotype-by-location-
by-year are represented by 𝜎𝜎𝑔𝑔2, 𝜎𝜎𝑔𝑔𝑖𝑖2 , 𝜎𝜎𝑔𝑔𝑔𝑔(𝑖𝑖)

2 , 𝜎𝜎𝑔𝑔𝑔𝑔2 , 𝜎𝜎𝑔𝑔𝑖𝑖𝑔𝑔2  and  𝜎𝜎𝑔𝑔𝑔𝑔(𝑖𝑖)𝑔𝑔
2 , respectively, as defined in model (4). Difference 

of deviance was calculated using equation (4) as a full model and equation (1) as a reduced model.  

Component 

Denmark   Germany   The Netherlands   United Kingdom 

Variance    s.e.  Variance    s.e.  Variance    s.e.  Variance    s.e. 

 (Mg/ha)2 x103    (Mg/ha)2 x103    (Mg/ha)2 x103    (Mg/ha)2 x103 

Regions FA1 model         
𝝈𝝈𝒈𝒈𝟐𝟐  55.7 8.6  125.0 20.9  78.6 23.6  57.8 13.1 

𝝈𝝈𝒈𝒈𝒈𝒈𝟐𝟐  7.1 1.3  27.9 6.0  7.2 9.2  3.5 1.7 
𝝈𝝈𝒈𝒈𝒈𝒈(𝒈𝒈)
𝟐𝟐  1.8 0.3  6.7 1.0  0.0 0.0  2.5 0.6 

𝝈𝝈𝒈𝒈𝒈𝒈𝟐𝟐  41.7 5.1  0.0 0.0  8.6 14.3  31.1 7.2 

𝝈𝝈𝒈𝒈𝒈𝒈𝒈𝒈𝟐𝟐  2.7 0.9  13.1 1.4  25.2 8.9  4.9 1.4 
𝝈𝝈𝒈𝒈𝒈𝒈(𝒈𝒈)𝒈𝒈
𝟐𝟐  118.8 2.4  178.9 4.2  159.1 7.7  160.2 4.4 

CR/DR 0.932  0.986  0.975  0.976 

Δ deviance 43.210  94.464  16.410  18.066 

p-value <0.001  <0.001  <0.001  <0.001 

Regions AMMI clustering (regions identified using the top 20% genotypes)  

𝝈𝝈𝒈𝒈𝟐𝟐  64.7 8.9  232.5 18.5  74.0 21.9  78.5 14.5 

𝝈𝝈𝒈𝒈𝒈𝒈𝟐𝟐  17.2 3.7  9.8 2.3  1.7 6.8  6.5 3.0 

𝝈𝝈𝒈𝒈𝒈𝒈(𝒈𝒈)
𝟐𝟐  13.3 1.9  13.9 3.7  14.5 8.3  24.8 3.7 

𝝈𝝈𝒈𝒈𝒈𝒈𝟐𝟐  48.7 4.5  41.6 4.5  44.8 12.9  48.5 6.3 

𝝈𝝈𝒈𝒈𝒈𝒈𝒈𝒈𝟐𝟐  12.3 3.2  0.0 0.0  11.6 9.6  6.9 3.0 

𝝈𝝈𝒈𝒈𝒈𝒈(𝒈𝒈)𝒈𝒈
𝟐𝟐  109.8 2.5  185.3 4.4  145.9 10.8  144.0 4.5 

CR/DR 0.872  0.982  1.048  0.970 

Δ deviance 92.454  23.024  3.130  28.376 

p-value <0.001  <0.001  n.s  <0.001 
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Table 4. Predicted selection response in a region when doing selection in the undivided country (CR), expressed 
relative to predicted response to direct selection within a region (DR). The ratio CR/DR  and the number of resulting 
regions is shown for each of the grouping strategies. The groups used in the following analyses are shown in bold. 

Grouping strategy 

Denmark   Germany   The Netherlands   United Kingdom 

N. locations=12 
 

N. locations=17 
 

N. locations=10 
 

N. locations=24 

CR/DR N. regions 
 
CR/DR N. regions 

 
CR/DR N. regions 

 
CR/DR N. regions 

Best genotype 0.980 3 
 

0.997 3 
 

1.142 5 
 

1.006 8 

Top 10% 0.973 3 
 

1.014 4 
 

1.071 6 
 

0.979 4 

Top 20% 0.872 3 
 

0.982 3 
 

1.048 3 
 

0.970 3 

Top 30% 0.932 6 
 

0.988 6 
 

1.098 8 
 

1.001 7 

All genotypes 0.955 2   0.996 2   1.127 5   1.014 2 

4.4. Discussion 

4.4.1. Variance components 

A first objective of this paper was to characterise GxE interactions of wheat grain yield 
to have an overview of the main sources of variation of multi-environment trials sown in 
Denmark, Germany, the Netherlands and the United Kingdom. The relatively large size of 
the variance for the genotypic main effect suggests that the germplasm included in the trials 
was broadly adapted to the explored environments (in all countries it was above 25% of the 
total variance). The large 𝜎𝜎𝑔𝑔2, together with the large number of locations and years included 
in the analysis, resulted in a large H2

line. In addition, the small 𝜎𝜎𝑔𝑔𝑔𝑔2   compared to 𝜎𝜎𝑔𝑔2 and to the 
unpredictable components ( 𝜎𝜎𝑔𝑔𝑔𝑔2   and 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔2 ) greatly complicated the identification of 
homogeneous growing conditions that are stable over time and that can contribute to an 
improved response to selection for regional evaluations in place of national evaluations. We 
could not always separate intra trial plot error from the term 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔2  because we did not have 
access to the original plot data. However for the Netherlands and the United Kingdom, the 
estimation of 𝜎𝜎𝑒𝑒2 was possible from the reported LSD for the trials. The estimated 𝜎𝜎𝑒𝑒2  showed 
that the variance associated to genotype by location by year interactions corresponded to a 
large proportion of the residual term (Table 2). Large 𝜎𝜎𝑔𝑔𝑔𝑔2  and 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔2 , compared to 𝜎𝜎𝑔𝑔𝑔𝑔2 , are 
characteristic of environments of North-Western Europe since similar partitioning of the total 
variance has been observed in other studies in these countries (Cullis et al. 1996; Laidig et 
al. 2008; Piepho et al. 2014; Weber and Westermann 1994).  
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The partitioning of the total variation was homogeneous over time and hence, broad sense 
heritability was also stable. The large heritability indicates that genotypes have a broad 
adaptation to the environments included in the analysis. Although variance components have 
also behaved in a stable way in other cases, as in Australia (Cooper et al. 1996), the apparent 
stability has to be taken with caution because changes might occur in the long term (Laidig 
et al. 2008). In our data, the magnitude of variance components was not associated to grain 
yield, which was stable in the time frame of our analysis. If yield potential largely changes 
in the future, as occurred in the past (Austin 1999; Mackay et al. 2011), the partitioning of 
the total variation could change. 

 

Figure 7. Groups of locations in Denmark, Germany, the Netherlands and the United Kingdom, plotted on the GAEZ 
map of attainable yield for high input level winter wheat, 45+135 days. Symbols of different shapes represent groups 
obtained with the strategy that used the top 20% of the genotypes and symbols of different colours represent the 
groups identified with the FA1 model. Background colours represent yield levels predicted by the GAEZ model, 
which are indicated in a scale on the bottom left panel. Interaction between genotype and latitude (G.Lat.) and 
genotype and longitude (G.Long.) is shown in the upper-left part of each map. 
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4.1.1. Identification of regions 

A second and major objective of this paper was to compare strategies based on the FA1 
model and on the AMMI model to identify regions. The FA1 covariance structure for 
genotypes across locations showed to be simple enough for fitting to the data of Denmark, 
Germany, the Netherlands and of the United Kingdom. Clustering of environmental loadings 
estimated with a FA model have also shown elsewhere to be a good strategy to group 
locations (Burgueño et al. 2008). However, fitting more complex covariance structures is not 
straightforward. Therefore, consideration of a simpler two-step approach to the identification 
of regions,  as in our AMMI-fitted values based clustering, might be worthwhile. 

Data tables of genotypes across locations were very unbalanced across years, but they 
were almost completely balanced within years, which made them suitable for fitting AMMI 
models by standard approaches (ANOVA and singular value decomposition of interaction 
residuals (van Eeuwijk 1995; van Eeuwijk et al. 2016). The wheat yield  data had the 
advantageous feature that variance components were stable over time, enabling us to do the 
analysis across years.  

Other applications of the AMMI model, based on stratified rankings or cluster analysis 
have been proposed elsewhere (Crossa et al. 1991). These improvements have the advantage 
of allowing a sharper identification of ranking patterns compared to using genotypic means 
as such. However, they assign equal weights to genotypes in the top as to the ones in the 
bottom of the ranking. The main change that we proposed for the identification of regions is 
to include information of more than a single best genotype, while assigning more weight to 
the best part of the ranking through the use of the Jaccard index, which in our implementation 
focusses on selected genotypes. Relying on more than a single best genotype is expected to 
produce a more robust classification of locations into regions, allowing to find regions that 
are less sensitive to changes of genotypes in the evaluations. The use of the best 20% of the 
genotypes worked best in our data set (based on the CR/DR ratio). Though, it is 
recommendable to explore the most suitable percentage of genotypes to be considered, as 
well as the thresholds used for the within- and across-year clustering when applying the 
method to other data. Another advantage of our strategy is that the two-step approach allowed 
us to identify regions across years, which is not possible to be done with a one-step AMMI 
or GGE model (Gauch and Zobel 1997; Yan and Rajcan 2002).  

4.1.2. Correlated response to selection in the regions 

This paper used mixed models to identify regions and also as a central criterion to evaluate 
the defined regionalization. Crossa et al. (2004) used an analogous approach, identifying the 
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regions with the SHMM model and evaluating these regions by mixed models. Although a 
model including regions might have a better fit, breeders will only put the regionalization 
into practice when there is clear evidence showing that response to selection can benefit from 
the classification of locations into regions. For that reason, it is important to include selection 
response theory to the evaluation of the regions, as we did.  

The correlated response to selection within regions versus the response to selection in the 
undivided region is strongly affected by the size of the ratios 𝜎𝜎𝑔𝑔𝑔𝑔(𝑖𝑖)

2 /𝜎𝜎𝑔𝑔2, 𝜎𝜎𝑔𝑔𝑖𝑖2 /𝜎𝜎𝑔𝑔𝑔𝑔2  and by the 
reduction in replication because of a lower number of locations within each region. If the 
reduction of locations within regions offsets the increase of the genotypic main effect within 
regions, the response to direct selection in the region will be smaller than for indirect selection 
in an undivided country (Atlin et al. 2011). If low genotype by location interaction is 
observed (e.g. 𝜎𝜎𝑔𝑔𝑔𝑔(𝑖𝑖)

2 /𝜎𝜎𝑔𝑔2 close to 0.1), the subdivision is not expected to increase response 
unless 𝜎𝜎𝑔𝑔𝑖𝑖2  accounts for at least 50% of 𝜎𝜎𝑔𝑔𝑔𝑔2 . This was the case in the Netherlands,  where 
response to selection did not improve when classifying the locations into regions. A similar 
result was observed in work done by Atlin et al. (2000) and by Forkman et al. (2012) who 
used Canadian and Swedish winter wheat. In those cases, the largest response to selection 
was observed when pooling all the locations within a single group.  

In Germany and in the United Kingdom, the partitioning of the variation was similar for 
the regions obtained with the FA1 and with the AMMI model. In these countries, 𝜎𝜎𝑔𝑔𝑖𝑖2  
explained a larger proportion of the total variance, as compared to the Netherlands. However, 
increase of the genotypic main effect within regions was offset by the reduction in the number 
of locations within each region. This offset led to a marginal improvement of the response to 
selection.  

In Denmark, regions obtained with the FA1 and with the AMMI model followed a similar 
geographical pattern. However, the partitioning of the total variance was different for the 
regions obtained with the two methods. 𝜎𝜎𝑔𝑔𝑖𝑖2  was larger when using the AMMI strategy and 
in consequence CR/DR ratio vas also larger. Similar geographical patterns and different 
CR/DR ratios might appear contradictory. The contradiction can be explained by the fact that 
in the regions obtained with the AMMI model, two out of the three regions were formed by 
only one location, resulting in some confounding between 𝜎𝜎𝑔𝑔𝑖𝑖2  and 𝜎𝜎𝑔𝑔𝑔𝑔(𝑖𝑖)

2 . In consequence, 
CR/DR might have been overestimated in the Danish regions that were identified with the 
AMMI strategy. A possible modification of our grouping strategy may penalize too small 
groups, as these will be logistically inconvenient and of little practical value while disturbing 
the evaluation of the efficiency of the grouping. 
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In this paper we evaluated regions, with a simple compound symmetry model for the 
covariance between regions, and an assumption of independence for the genotypes. However, 
genotypic effect estimates will benefit from considering more flexible models for regions and 
include a relationship matrix between genotypes. Genotypic estimates can be improved by 
using weighted combinations of regional estimates (Piepho and Möhring 2005).   Suggestions 
for the use of factor analytic models for the variance-covariance structure between regions 
were given by Piepho and Möhring (2005). Another example of heterogeneous covariances 
between regions with a FA model can be found in  (Kleinknecht et al. 2013).  

The relations between genotypes can be modelled by imposing an additive relationship 
matrix (A matrix) as a covariance structure (Beeck et al. 2010; Burgueño et al. 2012; Crossa 
et al. 2013). The A matrix could be potentially calculated either from pedigree or from 
molecular marker information (Legarra et al. 2009; Burgueño et al. 2012; Ashraf et al. 2016; 
Pérez-Rodríguez et al. 2017). However, comparing models to exploit the correlated response 
to selection was beyond the scope if this paper and can be covered in further research.  

We took a simple approach for evaluating the consequences of  regionalization of VCU 
trials, ignoring relations between genotypes and following Atlin et al. (2000) in comparing 
direct selection in a region with indirect selection for the same region in an undivided country. 
Piepho and Möhring (2005) show how a BLUP based estimation procedure will always 
improve the selection response upon regionalisation, although the logistic costs of such 
regionalisations may outweigh the gains in selection response. We leave the application of 
such an alternative BLUP estimator, more complicated models for the correlations between 
regions and the inclusion of a relationship matrix between genotypes for further research, as 
the objective of the current paper was to give insight in the sources of variation for yield in 
VCU trials in North West Europe and to propose alternative ways for the identification of 
regions with schemes for evaluating the efficiency of different regionalisations. 
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4.2. Concluding remarks 

Wheat sown in Denmark, Germany, The Netherlands and United Kingdom showed large 
GxE, with variance components for unpredictable GxE variation (𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔2  and 𝜎𝜎𝑔𝑔𝑔𝑔2 ) larger than 
predictable GxE variation (𝜎𝜎𝑔𝑔𝑔𝑔2 ). These features were stable over the full and extensive 
evaluation period in this study.  

We used two approaches to identify regions; the first one based on modelling the variance 
covariance structure for the genotype by location interactions by a factor analytic model and 
then clustering the location scores. The second approach was based on selecting best 
genotypes using fitted values from AMMI models fitted to within year balanced genotype by 
location tables of means. We proposed a two-step approach in which first locations within 
years are grouped based on selected genotypes. The consistency of the location grouping over 
years is assessed in a second clustering where the similarity between locations is determined 
by the number of years that locations were assigned to the same group. This process allowed 
us to identify regions in Denmark, Germany and United Kingdom.  

The regions obtained with the FA1 model and with the AMMI strategy were in agreement 
with the latitudinal and longitudinal gradients. In Denmark, the correlated response to 
selection was larger when selecting within regions than when selecting across regions. 
Although still advantageous, the inclusion of regions in Germany and the United Kingdom 
led to marginal improvements in expected response to selection.  
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Abstract 

Prediction of the phenotypes for a set of genotypes across multiple environments is a 
fundamental task in any plant breeding program. Genomic prediction (GP) can assist 
selection decisions by combining incomplete phenotypic information over multiple 
environments (ME) with dense sets of markers. We compared a range of ME-GP models 
differing in the way environment-specific genetic effects were modeled. Information among 
environments was shared either implicitly via the response variable, or by the introduction of 
explicit environmental covariables. We discuss the models not only in the light of their 
accuracy, but also in their ability to predict the different parts of the incomplete G×E table: 
(𝐺𝐺𝑡𝑡;𝐸𝐸𝑡𝑡), (𝐺𝐺𝑢𝑢;𝐸𝐸𝑡𝑡), (𝐺𝐺𝑡𝑡;𝐸𝐸𝑢𝑢),  and (𝐺𝐺𝑢𝑢;𝐸𝐸𝑢𝑢) , where 𝐺𝐺 =  genotype, 𝐸𝐸 =  environment, t= 
tested (in one or more instances), and u= untested. Using the Steptoe × Morex barley 
population (Hordeum vulgare L.) as an example, we show the advantage of ME-GP models 
that account for genotype by environment interactions. In addition, for our example data set, 
we show that for prediction in the most challenging scenario of untested environments (𝐸𝐸𝑢𝑢), 
the use of explicit environmental information is preferable over the simpler approach of 
predicting from a main effects model. Besides producing the most general ME-GP model, 
the use of environmental covariables naturally links with eco-physiological and crop growth 
models (CGMs) for G×E. We conclude with a list of future research topics in ME-GP, where 
we see CGMs playing a central role. 

 

Abbreviations:   

G×E  Genotype by Environment Interaction 
MNV  Multivariate Normal Distribution 
FA   Factor Analytic 
G BLUP /GE BLUP  Main/Environment Specific Genomic Best Linear Unbiased 

Prediction 
CTD / DTD  Connected / Disconnected Training Design 
DH  Double Haploid 
CGM  Crop Growth Model 
CV  Cross Validation 
QTL  Quantitative Trait Locus 
QTL×E  QTL by Environment Interaction 
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5.1. Introduction 

Introductory courses in biology and genetics commonly start with the model 𝑃𝑃 = 𝐺𝐺 + 𝐸𝐸, 
that is, the phenotype is the result of the effect of the DNA constitution of an organism (the 
genotype), and of the effects of external inputs (the environment). However, for most 
complex traits, that simple link between DNA and phenotype is an oversimplification. 
Complex traits are the outcome of many small effects induced by DNA polymorphisms. 
These effects are subject to additional variation caused by environmental changes. The 
integration of the small genetic effects varying across environments may lead to genotype by 
environment interaction (GxE): genotypic differences vary in relation to the environmental 
conditions. 

G×E is ubiquitous in plant breeding, where varieties should be selected for environments 
that are almost by definition heterogeneous, both in space and time. For example, 
heterogeneity can be caused by soil and climate conditions (structural factors), or by plot to 
plot variability and weather fluctuations (non-structural factors). While dealing with an 
essentially biological phenomenon, the term G×E is highly statistical as it implies a departure 
from the simple additive model, 𝑃𝑃 = 𝐺𝐺 + 𝐸𝐸. A large inventory of models related with the 
classical two-way ANOVA and regression have been used to describe G×E, including 
linear-bilinear models (Finlay and Wilkinson, 1963; Gauch, 1992; Crossa and Cornelius, 
1997; Crossa et al., 2002; Yan and Kang, 2003) and mixed model versions of it (Piepho, 
1997, 1998; Smith et al., 2001, 2005). Factorial regression models (Denis, 1988; van Eeuwijk 
et al., 1996; Denis et al., 1997) are a particularly interesting type of models because by using 
explicit environmental information, they can predict phenotypic responses in conditions not 
necessarily observed. In addition, they offer the opportunity to enhance models by biological 
knowledge, as a bonus. Classical reviews on G×E models include (Cooper and Hammer, 
1996; Kang and Gauch, 1996; van Eeuwijk, 2006), more recent ones are (Crossa, 2012; 
Malosetti et al., 2013). 

Plant breeding is going through a turning point in history thanks to: 1) an increase of scale 
via massive data generation (phenotypic and genotypic), and 2) a greater use of modelling 
and prediction methods via increased data management and processing capacity (Cooper et 
al., 2014). Clearly, the use of large numbers of markers to predict phenotypic responses 
(genomic prediction) fits within this context, and has a role to play in modern plant breeding. 
The idea of estimating breeding values by a large set of markers was introduced by 
Meuwissen et al. (2001), and can be regarded as an extension of earlier ideas by Lande and 
Thompson (1990). While initiated within the animal breeding context, genomic prediction 
quickly showed its potential in plant breeding (Bernardo and Yu, 2007). A comprehensive 
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overview of the role of genomic prediction in plant breeding can be found in Heffner et al. 
(2009). Genomic prediction can play a role especially at early and intermediate stages of the 
breeding cycle, when abundant DNA information on thousands of new genotypes can be used 
to predict candidate line performance even when the phenotypic information is scarce or 
absent. These predictions can then be used to select the best genotypes, promoting only those 
genotypes that are more likely to perform well to the later stages of expensive multi-
environment phenotyping (advanced testing). Simulations have shown the increase in 
expected genetic gain per unit of time in both under high- and low-investment breeding 
schemes (Heffner et al., 2010). 

Initial examples of genomic prediction in plant breeding dealt with within environment 
predictions (Piepho, 2009; Crossa et al., 2010; Heslot et al., 2012). However, the need to 
account for genotype by environment interaction effects when predicting for multiple 
environments was quickly recognized (Burgueño et al., 2011; Burgueño et al., 2012; Schulz-
Streeck et al., 2013). More recently, factorial regression type of models, which include 
explicit environmental covariables to form predictions have been proposed (Heslot et al., 
2013a; Jarquín et al., 2014). 

In this paper, we discuss the performance in terms of prediction accuracy of different 
types of prediction models for incomplete genotype by environment data sets. The compared 
models differ in whether they allow environment-specific effects or not, in whether they 
allow borrowing information between environments or not, and whether they allow forming 
predictions for fully unobserved environments or not. Different layers of the prediction 
problem are treated, that is, predictions in observed environments of genotypes that were 
either tested in other environments or never tested, and the most challenging scenario, 
prediction in new environments. The effect of the training set design on prediction accuracy 
is also discussed. As illustration example we use a double haploid barley population that is 
simple but well known and for which multi-environment yield data and explicit 
environmental covariables are available. We analyzed the data, draw conclusions, and 
underline future research areas regarding the difficult task of predicting for multiple 
environments. 

5.2. Materials and Methods 

5.2.1. G×E Table with Empty Cells 

The general structure of a genotype by environment data can be summarized by a 
two-way table (𝐼𝐼 × 𝐽𝐽) with genotypes in the rows ( 𝑖𝑖 = 1 … 𝐼𝐼)  and environments in the 
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columns (𝑗𝑗 = 1 … 𝐽𝐽). In a balanced data set all 𝐼𝐼 × 𝐽𝐽 cells in the table are present. However, 
in most of the cases, the G×E table has empty cells for different reasons. For example, a 
particular combination of genotype and environment might not have been tested, or the 
information of a genotype is available in some but not all of the tested environments (e.g. 
because of the limited amount of seeds or available plots). In some cases, the information 
might be absent either because a particular genotype was never tested in the field or because 
an environment was never observed (e.g. a new testing site or a future planting season). To 
accommodate these situations, the 𝑖𝑖 = 1 … 𝐼𝐼 genotypes can be grouped 𝑖𝑖 ∈ (𝐺𝐺𝑡𝑡 ,𝐺𝐺𝑢𝑢), and the 
𝑗𝑗 = 1 … 𝐽𝐽  environments 𝑗𝑗 ∈ (𝐸𝐸𝑡𝑡 ,𝐸𝐸𝑢𝑢)  where the superscript 𝑡𝑡  and 𝑢𝑢  stand for tested and 
untested respectively. A schematic representation of the entire G×E table with filled and 
empty cells is shown in Figure 1, where the white areas represent absence of phenotypic 
information. Note that in the case of tested genotypes and environments, (𝐺𝐺𝑡𝑡;𝐸𝐸𝑡𝑡), it is not 
implied that all genotype-environment combinations are observed. Also note that the empty 
cells in the table can have regular or irregular patterns (the one displayed in Figure 1 is just 
an arbitrary example for easy visualization that shows no particular pattern). 

 

Figure 1. Representation of an incomplete G×E table with genotypes in the rows and environments in the columns. 
Dashed areas represent available phenotypic observations, and white areas representing unavailable phenotypic data. 
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5.2.2. The General Model for the G×E Table 

The general model for the G×E table is given by 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝐺𝐺𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 (1) 

where 𝑦𝑦𝑖𝑖𝑖𝑖  is the trait value of the 𝑖𝑖𝑡𝑡ℎ  genotype 𝑖𝑖 ∈ (𝐺𝐺𝑡𝑡 ,𝐺𝐺𝑢𝑢) in the 𝑗𝑗𝑡𝑡ℎ environment 𝑗𝑗 ∈
(𝐸𝐸𝑡𝑡 ,𝐸𝐸𝑢𝑢), 𝜇𝜇𝑖𝑖 is an intercept term for environment 𝑗𝑗, 𝐺𝐺𝑖𝑖𝑖𝑖 the environment-specific genotypic 
random effect of genotype 𝑖𝑖  in environment 𝑗𝑗 that follows 𝐺𝐺𝑖𝑖𝑖𝑖~𝑀𝑀𝑀𝑀𝑀𝑀(0,𝛴𝛴), where Σ is a 
covariance matrix, and  𝜖𝜖𝑖𝑖𝑖𝑖 a residual term that includes non-additive genetic effects and error 
variance (both environment-specific), 𝜖𝜖𝑖𝑖𝑖𝑖~𝑀𝑀𝑀𝑀𝑀𝑀(0,𝑅𝑅) . For the residual variation, 
heteroscedasticity is typically required, so 𝑅𝑅 takes a diagonal form 𝐷𝐷 = 𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷{𝜎𝜎𝑖𝑖2}, where 
each environment has its own residual variance. Although not treated here, further modelling 
of the residual term is possible to account for autocorrelations due to non-additive genetic 
variation and/or local environmental variation (Oakey et al., 2006; Burgueño et al., 2007). 

Model (1) can be used to predict empty cells in the G×E table. The prediction ability for 
empty cells by the model comes from the fact that via the term 𝐺𝐺𝑖𝑖𝑖𝑖  information can be 
borrowed from the filled cells in the table. In particular, the recovery of information is 
possible via the covariance matrix Σ, which approximates the multi-dimensional genotypic 
space defined by the genotype-environment combinations. In this paper we discuss different 
models for Σ and their implications in terms of the predictions that the corresponding models 
would allow.  

As the white areas in Figure 1 suggest, there are different types of predictions to be made, 
namely: 1) prediction of tested genotypes in tested environments but for which the particular 
combination was not observed (𝐺𝐺𝑡𝑡;𝐸𝐸𝑡𝑡), 2) prediction of new genotypes in environments that 
were observed (𝐺𝐺𝑢𝑢;𝐸𝐸𝑡𝑡), and 3) prediction of genotypes (previously tested or not) in new 
(future) environments ({𝐺𝐺𝑡𝑡 ,𝐺𝐺𝑢𝑢};𝐸𝐸𝑢𝑢). The complexity of the prediction problem increases 
from situation 1 to 3, and as we will argue later in this paper, will require the use of different 
types of information to model the covariance matrix Σ. 

5.2.3. Models for 𝚺𝚺 

The matrix Σ  is a genotypic covariance matrix that can be decomposed into a 
genotypic-related and an environment-related component, say 𝛴𝛴 = 𝛴𝛴𝐺𝐺⨂𝛴𝛴𝐸𝐸 , with  ⊗ the 
Kronecker product of the two matrices. The matrix Σ𝐺𝐺 reflects similarities among genotypes 
in terms of the DNA sequence, whereas Σ𝐸𝐸 reflects similarities among environments induced 
by the growing conditions, and both jointly determine the similarities among genetic effects. 
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The genetic similarity Σ𝐺𝐺 can be derived from pedigree records (i.e., expected kinship) or 
from molecular marker information (i.e., realized kinship). With a biallelic marker system as 
SNPs with say, alleles A and B, a standard expression for Σ𝐺𝐺 is Σ𝐺𝐺 = 𝑊𝑊𝑊𝑊′, with 𝑊𝑊 an (𝐼𝐼 ×
𝑀𝑀) marker scores matrix, 𝐼𝐼 is the population size and 𝑀𝑀 is the total number of markers. Each 
element in the matrix, 𝑤𝑤𝑖𝑖𝑖𝑖, contains the number of B alleles in genotype 𝑖𝑖 for marker 𝑚𝑚, 
𝑤𝑤𝑖𝑖𝑖𝑖 = {0, 1, 2} , or after centering and standardization 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖−2𝑝𝑝𝑚𝑚

�2𝑝𝑝𝑚𝑚(1−𝑝𝑝𝑚𝑚)
, with 𝑝𝑝𝑖𝑖  the 

frequency of the B allele at SNP 𝑚𝑚 (Speed and Balding, 2014).  

Here we give special attention to matrix Σ𝐸𝐸, which conditions the genetic variation on 
implicit or explicit properties of the environments. The model for Σ𝐸𝐸  determines the 
prediction scenario for which a particular model can be useful, i.e. (𝐺𝐺𝑡𝑡;𝐸𝐸𝑡𝑡), (𝐺𝐺𝑢𝑢;𝐸𝐸𝑡𝑡), or 
({𝐺𝐺𝑡𝑡 ,𝐺𝐺𝑢𝑢};𝐸𝐸𝑢𝑢). We start with predictions in tested environments (𝐺𝐺𝑡𝑡;𝐸𝐸𝑡𝑡) ∪ (𝐺𝐺𝑢𝑢;𝐸𝐸𝑡𝑡), which 
have in common that predictions are made in environments in which at least part of the 
genotypes were observed. Therefore, we can model Σ𝐸𝐸  in relation to the implicit 
environmental information that is available in the phenotypic data. In the basic G-BLUP 
model, all environment-specific effects are assumed to come from the same distribution with 
variance 𝜎𝜎𝐺𝐺2 (Table 1). However, if genetic effects are conditional on the environment (i.e. 
there is G×E), the genetic variance should be allowed to vary from environment to 
environment. A simple extension of the model for Σ𝐸𝐸 is to fit a separate variance component 
per environment, with a diagonal structure, with the genetic variance component 𝜎𝜎𝐺𝐺𝑗𝑗

2  attached 
to each environment (Table 1, GE-Diag model). The GE-Diag model assumes no genetic 
correlations between environments, which is not realistic if two environments have properties 
in common, and so, one would expect genetic correlations to occur between those 
environments. Genetic correlations between environments can be modeled by allowing 
non-zero covariances among environments. The most general option to model environmental 
covariance is the unstructured model that has a separate variance component for each 
environment, 𝜎𝜎𝐺𝐺𝑗𝑗

2 , and a separate covariance parameter for each pair of environments 𝜎𝜎𝐺𝐺(𝑖𝑖,𝑖𝑖∗) 
(Table 1, GE-Unstr). Depending on the number of environments involved, parsimonious 
models such as the Factor Analytic model can be an interesting alternative for Σ𝐸𝐸 (Denis et 
al., 1997; Piepho, 1997; Smith et al., 2001). The models discussed above assume that it is 
possible to estimate the covariance between the environments, implying that environments 
have been tested, i.e. 𝐸𝐸𝑡𝑡. However, the covariance between tested and untested environments, 
i.e. 𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸𝑡𝑡;𝐸𝐸𝑢𝑢), or between untested environments, i.e. 𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸𝑢𝑢;𝐸𝐸𝑢𝑢) cannot be estimated 
from the phenotypic data, since by definition observations are not available. Without implicit 
environmental information (phenotypes), prediction for new environments will necessarily 
require the use of explicit environmental information to model Σ𝐸𝐸. Analogous to molecular 
markers (which are explicit genotypic covariables), explicit environmental covariables can 
be used to define similarities between environments (i.e. form an “environmental kinship”, 
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Table 1, model GE-KE). Each entry in the environmental similarity matrix is a function of 𝐾𝐾 
covariables (𝑘𝑘 = 1 …𝐾𝐾) , that are chosen to characterize the environments, with the 
covariables having the environment-specific values 𝑧𝑧𝑘𝑘𝑖𝑖 . At a finer resolution, the 
environmental characterization can be made at the individual genotype level (𝑧𝑧𝑘𝑘𝑖𝑖𝑖𝑖 ) by 
considering the individual genotype phenology, in which case Σ = 𝑍𝑍𝑔𝑔Σ𝐺𝐺𝑍𝑍𝑔𝑔′ ∘ Σ𝐸𝐸

∗, with 𝑍𝑍𝑔𝑔 an 
incidence matrix of genotypes, and ∘ the Hadamard product of the two matrices (Jarquín et 
al., 2014). Note that the environmental matrix Σ𝐸𝐸∗ is defined at the individual genotype level, 
so of dimension (𝐼𝐼𝐼𝐽𝐽 × 𝐼𝐼𝐽𝐽). An important difference of the inclusion of explicit environmental 
covariables in the model is that modeling is not restricted to the tested environments (𝐸𝐸𝑡𝑡), 
but covers the whole environmental range 𝑗𝑗 ∈ (𝐸𝐸𝑡𝑡 ,𝐸𝐸𝑢𝑢). Therefore, this last type of prediction 
model is the most general one as it will be useful to predict any environment (either tested or 
not tested). 

Table 1. Models for the genetic variation in a multi-environment space, 𝛴𝛴 = 𝛴𝛴𝐺𝐺⨂𝛴𝛴𝐸𝐸, with Σ𝐺𝐺 a genotypic-related 
component, and Σ𝐸𝐸 an environment-related component.  

Model name 𝚺𝚺𝑮𝑮 𝚺𝚺𝑬𝑬 
G-BLUP 𝑊𝑊𝑊𝑊′ Σ(𝑖𝑖,𝑖𝑖∗)

𝐸𝐸𝑡𝑡 = 𝜎𝜎𝐺𝐺2 if 𝑗𝑗 = 𝑗𝑗∗, zero otherwise 
GE-Diag 𝑊𝑊𝑊𝑊′ Σ(𝑖𝑖,𝑖𝑖∗)

𝐸𝐸𝑡𝑡 = 𝜎𝜎𝐺𝐺𝑗𝑗
2  if 𝑗𝑗 = 𝑗𝑗∗, zero otherwise 

GE-Unstr 𝑊𝑊𝑊𝑊′ Σ(𝑖𝑖,𝑖𝑖∗)
𝐸𝐸𝑡𝑡 = 𝜎𝜎𝐺𝐺𝑗𝑗

2  if 𝑗𝑗 = 𝑗𝑗∗, Σ(𝑖𝑖,𝑖𝑖∗)
𝐸𝐸𝑡𝑡 = 𝜎𝜎𝐺𝐺(𝑖𝑖,𝑖𝑖∗) otherwise 

GE-KE 𝑊𝑊𝑊𝑊′ 
Σ(𝑖𝑖,𝑖𝑖∗)
𝐸𝐸 = 1 −�

𝑧𝑧𝑘𝑘𝑖𝑖 − 𝑧𝑧𝑘𝑘𝑖𝑖∗
max(𝑧𝑧𝑘𝑘) − min (𝑧𝑧𝑘𝑘)

𝐾𝐾

𝑘𝑘=1

 

The superscript t stands for tested, j and j* are indexes for any two environments. The similarity coefficient in model 
GE-KE is defined based on K covariables (𝑧𝑧𝑘𝑘). 

5.2.4. Example Data Set 

As illustration of a G×E data set, we use the well-known Steptoe × Morex double haploid 
(DH) population (Hayes et al., 1993). More information about the  phenotypic and 
meteorological data can be found in Malosetti et al. (2004). The phenotypic information 
consisted of grain yield (Mg ha-1) of 148 DH lines observed in 10 trials, covering sites in US 
and Canada in two consecutive years (1991-1992). Meteorological information consisted of 
daily records of temperature, available water (rainfall and irrigation when applicable), and 
photoperiod. The climatic information was summarized per crop stage: vegetative (from 
sowing to visible awns), heading time (from visible awns to end of anthesis), and grain filling 
(from end of anthesis to maturity). The original markers for this population consisted of a 
low density set of 116 markers, but a much denser set of about 3000 SNPs was published 
later for this population (Close et al., 2009). Here we used a subset of 794 SNPs evenly spaced 
over the seven linkage groups, such that the largest gaps between consecutive SNPs were 
about 5 cM.  
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We considered two major prediction scenarios: 1) a time structured prediction scenario, 
which emulates the situation where selections are performed for a future environment using 
past phenotypic data, and 2) a physically structured prediction scenario, which emulates the 
situation where the trials used to train the prediction model have been selected based on their 
explicit physical properties defined by a number of environmental covariables. 

In the time structured prediction scenario, we used a fraction of the phenotypic data of 
1991 to train the prediction model, and predicted the untested genotypes in 1991 and all 
genotypes in 1992. In addition, we compared two alternative training designs for the 
phenotyping in 1991. Under the so-called connected training design (CTD), the entire 
population was split into 5 sets, and the sets randomized over the four environments, with 
one set observed in all the environments, and the remaining sets observed in two out of the 
four environments (Figure 2a). So, the CTD design was unbalanced with respect to 
environments. Therefore, predictions within 1991 were for genotypes and environments that 
were tested (𝐺𝐺𝑡𝑡;𝐸𝐸𝑡𝑡) and predictions for 1992 were for tested genotypes but in new (untested) 
environments (𝐺𝐺𝑡𝑡;𝐸𝐸𝑢𝑢). Under the disconnected training design (DTD), the DH lines were 
split into a training set (60% of the lines), and a test set (40% of the lines), implying that DH 
lines were either fully observed in 1991 or not observed (Figure 2b). The DTD design was 
balanced with respect to environments. Therefore, predictions within 1991 were for untested 
new genotypes (𝐺𝐺𝑢𝑢;𝐸𝐸𝑡𝑡) , and predictions for 1992 were for both tested and untested 
genotypes ({𝐺𝐺𝑡𝑡 ,𝐺𝐺𝑢𝑢};𝐸𝐸𝑢𝑢). Both training designs (CTD and DTD) are equivalent in terms of 
the amount of phenotypic data that was used (60% of the 1991 data), and in both designs, the 
training population represents as a whole 24% of the total data and the remaining 76% is used 
as testing/validation set (since all the 1992 information was assumed absent). 

 

 

 

 

Figure 2. Diagram of the time structured prediction scenario, under two designs of the training phenotyping (a) 
Connected Training Design, and (b) Disconnected Training Design applied to the Steptoe x Morex barley DH 
population. The rows represent genotypes, and the columns represent environments, which are grouped by year 
(1991 and 1992 trials). Shaded areas represent available phenotypic information, white areas represents unavailable 
information.  
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In the physically structured prediction scenario, we took a different approach regarding 
the 10 trials as a sample of possible environments, and from which a training set of 
environments should be selected. The physical properties of the environments (and not yield 
information) were used to assign environments to the training set, via the explicit 
environmental information. First a similarity matrix was estimated using the environmental 
covariables, and a selection of the trials in the training set was made after inspection of a 
Principal Coordinate plot (Gower, 1971). Five trials were designated as training set, chosen 
such that they covered the entire environmental space in the plot. The two training designs, 
CTD and DTD, were also applied in this prediction scenario (Figure 3). 

The different scenarios were repeated 25 times (independent realizations) and the models 
fitted by Residual Maximum Likelihood (REML) in GenStat 17th Edition (VSNi, 2014). The 
accuracy of predictions was assessed by the Pearson correlation coefficient between 
predictions and their actual observations. A linear mixed model including prediction model, 
training design, and environment (and their interactions) as fixed effects and replicates as 
random effects (blocks) was fitted to assess the influence on the observed accuracies (𝑟𝑟). For 
the analysis, and to comply with the normality assumption, the Fisher’s z transformation was 
used, 𝑧𝑧 = 1/2 (ln ((1 + 𝑟𝑟)/(1 − 𝑟𝑟))). Final results (tables of means following the findings from 
the Wald/F test statistic) were presented on the original scale by reporting the values after 
back-transformation:  𝑟𝑟 = exp(2𝑧𝑧)−1

exp(2𝑧𝑧)+1
 . 

 

 

Figure 3. Diagram of the physically structured prediction scenario, with five environments selected as training 
environments and the remaining five used as testing/validation environments. The information within the training 
environments is incomplete following a connected (a), and a disconnected design (b), similar as the one described 
in Figure 2. The rows represent genotypes, and the columns represent environments. Shaded areas represent 
available phenotypic information, white areas represents unavailable information.  
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5.3. Results 

5.3.1. Prediction accuracies in tested environments (1991) 

Table 2 summarizes the results of the simplest prediction situation, that is, the prediction 
of unobserved genotypes in tested environments (𝐸𝐸𝑡𝑡) under the time structured prediction 
scenario. Note that while here we report only the results of unobserved DH lines (thus 
focusing on prediction accuracies), both, BLUP of observed and unobserved DH lines are 
relevant, because essentially all genotypes are of interest for genomic selection. In the case 
of the observed lines, predictions can be regarded as improved estimates of their breeding 
values over the ones estimated from phenotypic records alone (Heffner et al., 2009). The 
value of the F-test statistics shows a strong effect of prediction model by environment 
interaction (Table 2). Figure 4A shows that in ID91 and WA91 the GE-BLUP models were 
substantially better than the G-BLUP model and not substantially different among each other.  
However, in MTd91 and MTi91 no major differences were found between all models (the 
GE-Diag somewhat lower in MTi91). In addition, and although relatively less important, the 
model by design interaction also showed some effect (Table 2). From Figure 4B can be 
observed that most of the effect is associated with the relative differences among GE-BLUP 
models. Although the total number of phenotypic observations is the same in the CTD and 
in the DTD designs, the total number of genotypes in the training population is larger in the 
former than in the latter. That explains why the accuracies under the CTD are in general 
higher than under the DTD for the same model (Figure 4B). The same observation was made 
by Endelman et al. (2014), who compared the performance of the G-BLUP model using the 
Harrington × T306 barley double haploid population under a wide range of CTD and DTD 
designs and training population sizes. However, here an extra advantage of the CTD was 
uncovered, and that is the one of exploiting the information from correlated environments. 
Only the CTD allowed the factor analytic or the environmental kinship model to express their 
superiority over the diagonal model by exploiting the correlation structure in the data. Under 
the DTD design, the advantage of the former two over the latter vanished due to the much 
lower connectivity in the data set. 
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Table 2. Wald test (and corresponding approximate F-test stastistic) associated with the effects of prediction model, 
design of training population, environment, and their corresponding interactions on the prediction accuracy (�̅�𝑟) of 
unobserved DH lines in four North American environments in 1991. The probability (F pr) corresponds to the F-test 
statistic. 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Model 381.56 3 127.19 576 <0.001 

Design 6.49 1 6.49 48 0.014 

Environment 342.90 3 114.30 144 <0.001 

Model × Environment 691.36 9 76.82 576 <0.001 

Model × Design 36.30 3 12.10 576 <0.001 

Environment × Design 4.43 3 1.48 144 0.224 

Model × Environment × Design 8.02 9 0.89 576 0.533 

 

 

 

 

 

 

 

 

Figure 4. Mean prediction accuracies in tested environments in 1991 (E^t) of four prediction models: a main effect 
model (G BLUP, circle), a diagonal model (GE Diag, diamond), a factor analytic model (GE-FA, square), and an 
environmental kinship model (GE-KE, star). A) The four tested environments and B) the connected (CTD) and 
disconnected (DTD) training designs. The bars give the upper and lower bounds of the 95% confidence interval. 

5.3.2. Prediction accuracies in new environments (1992)  

The results of the performance of the models under the most demanding prediction 
scenario, i.e. the prediction for new environments (𝐸𝐸𝑢𝑢), are shown in Table 3 and Figure 5. 
As one would expect given the far more difficult task at hand, the results were less conclusive 
than the within year prediction. Only in two environments (ID92 and MTi92) the accuracies 

a) b) 
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were comparable (or slightly lower) to those observed in the within year prediction scenario 
(compare Figure 4A with Figure 5). The ranking of the models depended on the environment, 
which was reflected in the large F test statistic associated with model by environment 
interaction (Table 3). For example, in ID92 all models differ from each other, with G-BLUP 
the best model followed by GE-KE, GE-FA, and GE-Diag. However, in MTi92 no 
differences were found among these models. For the other three environments accuracies 
were either moderate or low (and in some cases even negative). In 1992 two new testing sites 
were included (MAN and SKs). As was mentioned in the model description section, and 
reflected in Figure 5, not all GE-BLUP models were able to produce predictions for the 
unobserved environments. Model G-BLUP predicts under the strong assumption that genetic 
effects are not conditional on the environment (main effects prediction model), and so 
predictions are always possible. The diagonal model and the factor analytic model do 
condition genetic effect on the environment, but in return, they require implicit information 
for those environments to form predictions, which were not available. In contrast, even when 
no information was available from 1991 in MAN and SKs, the environmental kinship model 
did allow predicting for these new environments, and in the case of MAN92 it showed to be 
superior over the G-BLUP model. 

Table 3. Wald test (and corresponding approximate F-test stastistic) associated with the effects of prediction model, 
design of training population, environment, and their corresponding interactions on the prediction accuracy (�̅�𝑟) of 
the performance of DH lines in four North American environments in 1992 (𝐸𝐸𝑢𝑢) using past data (1991). The 
probability (F pr) corresponds to the F-test statistic. 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Model 759.28 3 253.09 679.1 <0.001 

Design 1.76 1 1.76 48.0 0.191 

Environment 14438.44 5 2887.58 249.5 <0.001 

Model × Environment  4249.79 11 386.34 679.1 <0.001 

Model × Design  1.06 3 0.35 679.1 0.786 

Design × Environment 1.35 5 0.27 249.5 0.929 

Model × Environment × Design 13.54 11 1.23 679.1 0.262 

5.3.3. Using environmental covariables in G×E prediction 

The prediction accuracies for new environments under a time structured prediction (i.e. 
prediction of 1992 using 1991 data) were very low. Obviously, the prediction of an untested 
environment (𝐸𝐸𝑢𝑢) is a more difficult case than prediction within a tested environment (𝐸𝐸𝑡𝑡). 
However, the low level of accuracy, suggested the need of an additional explanation. As in 
any prediction exercise, the prediction ability of models depends not only on the choice of 
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the model, but also on the suitability of the training data used to estimate the model 
parameters. A detached training data set from the target population, will lead to poor 
prediction ability. Lack of consistency of performance across years as the result of complex 
genotype by environment interaction patterns is not an uncommon situation in plant breeding 
data, and the Steptoe x Morex population is not an exception of that (Romagosa et al., 1996). 
The imperfect overlapping between the 1991 and 1992 environments as training and testing 
set respectively is clearly shown in Figure 6. The plot shows a two-dimensional 
representation of the growing conditions in the two years based on the physical properties 
used to characterize these environments (temperature, water availability and photoperiod in 
the different crop stages). Clearly, the growing conditions were quite different between the 
two years, and so, they help to explain the poor prediction of the 1992 performance by models 
trained with 1991 data. 

When environmental information is available for potential testing sites, a selection of the 
training set of environments can be made based on that information. That was the rationale 
behind the so-called physically structured prediction scenario. As an example, after 
inspection of the plot in Figure 6, five environments (ID91, MTi91, MTi92, SKs92, and 
WA91) that roughly covered the environmental spectrum were selected as training set, and 
the remaining environments left as testing/validation set. Under this scenario, the two models 
that can produce predictions in untested environments (𝐸𝐸𝑢𝑢) were compared: the G-BLUP 
model and the GE-KE model. The results in Table 4 show that model by environment 
interaction had a dominant effect, reflected by the largest F test statistic among all interaction 
terms. One first observation in Figure 7 is that accuracies were in general above 0.3 for all 
environments except in one, WA92 and in MTd91 for the G-BLUP model. Therefore, there 
was a clear improvement over the accuracies in the untested environments in Figure 5. In 
addition, no large differences in accuracies were found between tested (𝐸𝐸𝑡𝑡) and untested 
(𝐸𝐸𝑢𝑢) environments (left and and right of the gray dotted line in Figure 7). If WA92 is not 
considered, the mean prediction accuracies for the G-BLUP and GE-KE were in the range of 
0.4-0.5. What was consistently observed in all environments was that the GE-KE model 
showed higher accuracies than the G-BLUP model, with a few exceptions where differences 
were not large (MTi91 and WA92). Note that in WA92 none of the models had predictive 
power. Regarding the training population design, and in agreement with the conclusions in 
Endelman et al. (2014), for the same model, the CTD design showed to be superior over the 
DTD design, although the magnitude of the effect was comparatively lower than that of the 
prediction model (Figure 7B). 
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Table 4. Wald test (and corresponding approximate F-test stastistic) associated with the effects of prediction model, 
design of training population, environment, and their corresponding interactions on the prediction accuracy (�̅�𝑟) of 
the performance of DH lines in the training and testing environments in North America. The probability (F pr) 
corresponds to the F-test statistic. 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 
Model 1316.95 1 1316.95 480 <0.001 
Design 6.43 1 6.43 48 0.015 
Environment 4176.65 9 464.07 432 <0.001 
Model × Environment 1774.81 9 197.20 480 <0.001 
Model × Design 14.54 1 14.54 480 <0.001 
Design × Environment 27.94 9 3.10 432 0.001 
Model × Environment × Design 20.34 9 2.26 480 0.017 

 

 
Figure 5. Mean prediction accuracies in untested environments in 1992 (𝐸𝐸𝑢𝑢) of four prediction models: a main 
effect model (G-BLUP, circle), a diagonal model (GE-Diag, diamond), a factor analytic model (GE-FA, square), 
and an environmental kinship model (GE-KE, star). In MAN92 and SKs92 predictions from GE-Diag and GE-FA 
were not available since those environments were not present in the 1991 data. The bars give the upper and lower 
bounds of the 95% confidence interval. 
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Figure 6. Principal Coordinate (PCo) plot of the environmental kinship estimated from explicit environmental 
covariable (temperature, water availability and photoperiod) measured in different crop stages (vegetative, heading 
time, and grain filling). Explained variances by the first three axes were 31.5%, 18.0%, and 14.6%. 

 

 

 

 

 

 

 

Figure 7. Mean prediction accuracies of the main effect model (G BLUP, circle), and the environmental kinship 
model (GE-KE, star) in: A) tested (𝐸𝐸𝑡𝑡) and untested environments (𝐸𝐸𝑢𝑢), the gray dotted line separates tested 
environments (to the left), and untested environments (to the right); and B) under two training population designs: 
connected design (CTD), and disconnected design (DTD). The bars give the upper and lower bounds of the 95% 
confidence interval. 

b) a) 
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5.4. Discussion 

We have compared the performance of different prediction models in the context of 
multi-environment data. The prediction models that we compared can be classified as either 
a main effects model (G-BLUP) or models that allow environment-specific genetic effects, 
GE-BLUP models. The GE-BLUP models differ among each other in two major features: a) 
whether they allow to borrow information from other environments or not, and b) whether 
they use implicit or explicit environmental information. In addition, we have compared the 
effect of the design of the phenotyping of the training population set, that is, either assuring 
that all genotypes have some phenotyping information (although not in all environments), or 
having some genotypes fully phenotyped (training set), while others are left without any 
phenotypic information (test set). Finally, the performance of the models have been compared 
at different layers of the prediction exercise, that is, prediction in tested environments (𝐸𝐸𝑡𝑡) 
of partially tested genotypes (𝐺𝐺𝑡𝑡;𝐸𝐸𝑡𝑡), or fully untested genotypes (𝐺𝐺𝑢𝑢;𝐸𝐸𝑡𝑡), and the most 
challenging prediction scenario, prediction in new environments (𝐸𝐸𝑢𝑢) of tested or untested 
genotypes ({𝐺𝐺𝑡𝑡 ,𝐺𝐺𝑢𝑢};𝐸𝐸𝑢𝑢). The major findings were: 

• In our data set, models that conditioned genetic effects on the environment 
(GE-BLUP models) were in general superior to the main effect model (G-BLUP). 

• In prediction scenarios for tested environments (𝐺𝐺𝑡𝑡;𝐸𝐸𝑡𝑡) and (𝐺𝐺𝑢𝑢;𝐸𝐸𝑡𝑡), GE-BLUP 
models that borrow information between environments were superior, especially 
when the design of the training set included all genotypes (connected design). 

• In the most challenging prediction scenario ({𝐺𝐺𝑡𝑡 ,𝐺𝐺𝑢𝑢};𝐸𝐸𝑢𝑢)  the overlap of the 
training and test set becomes a crucial issue (when predicting for tested 
environments, the overlap is guaranteed since the predictions are restricted to the 
same set of environments, 𝐸𝐸𝑡𝑡). 

• The use of external environmental information in the prediction model allows 
formulating the most general GE-BLUP prediction model, as it can predict for any 
situation, i.e. (𝐺𝐺𝑡𝑡;𝐸𝐸𝑡𝑡), (𝐺𝐺𝑢𝑢;𝐸𝐸𝑡𝑡), (𝐺𝐺𝑡𝑡;𝐸𝐸𝑢𝑢), and (𝐺𝐺𝑢𝑢;𝐸𝐸𝑢𝑢). 

We now elaborate our major conclusions, and give some final remarks regarding future 
research in this area. 

We found that GE-BLUP models were superior to or not different from G-BLUP. This 
result implies that it was advantageous (or at least had no penalty) to allow 
environment-specific genetic (marker) effects when dealing with multi-environment 
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prediction. A similar conclusion was found by Burgueño et al. (2012), where for example 
their models 14 and 15 (equivalent to our GE-Diag, and GE-FA) were as good as or better 
than model 13 (equivalent to our G-BLUP model). In a similar work, but within a Bayesian 
framework, Lopez-Cruz et al. (2015) showed an improvement of accuracy or no difference 
with the across environment model when marker-specific effects were allowed. Naturally, 
the superiority of the GE-BLUP models over main effect models depends on the importance 
of G×E. In a large international wheat data set no differences were observed between main 
effects and (mega)environment-specific effects models (Dawson et al., 2013). The result was 
explained by the relatively high correlations between environments, and it was shown by 
simulations that GE-BLUP models have no advantage when correlations between 
environments are high (above 0.7). Finally, one should note the parallelism of 
multi-environment prediction with that of predicting multiple populations, where the 
prediction model can be equally allowed to have population-specific marker effects (Schulz-
Streeck et al., 2012; Technow and Tutoir, 2015). 

We also found that the gains of more sophisticated models to borrow information between 
environments (e.g. FA models) depend on the design of the training set. As one would expect, 
a strategy of partial phenotyping of the population within environments as our connected 
design, offers more scope for borrowing information among environments than a full 
phenotyping of part of the population as in the disconnected design. Similarly, Burgueño et 
al. (2012) and Lopez-Cruz et al. (2015), observed a difference in favor of models allowing 
correlations between environments under the cross-validation scheme CV2 (that corresponds 
to predictions for (𝐺𝐺𝑡𝑡;𝐸𝐸𝑡𝑡) in our connected design), and not under CV1 (the equivalent of 
our predictions for (𝐺𝐺𝑢𝑢;𝐸𝐸𝑡𝑡) under the disconnected design). Therefore, and for a fixed 
amount of resources for example in terms of available evaluation plots, one should consider 
training the model using as many different genotypes as possible and spreading them over 
the testing environments, instead of exclusively fully phenotyping part of the population. 

Quite frequently, genomic prediction procedures are compared using cross-validation 
(CV) schemes. Within the context of multi-environment data, CV almost by definition 
restricts the prediction problem to only part of the scenarios of interest, i.e. (𝐺𝐺𝑡𝑡;𝐸𝐸𝑡𝑡) and 
(𝐺𝐺𝑢𝑢;𝐸𝐸𝑡𝑡). In addition, CV results might overestimate the ability of the prediction models, 
which may do differently outside the boundaries of the training/testing space (Albrecht et al., 
2014). Prediction in new environments (𝐸𝐸𝑢𝑢) is a more difficult task but works as a validation 
procedure, that is, data that is not used to estimate the model parameters but that is used to 
independently assess the performance of the prediction models. In addition, ({𝐺𝐺𝑡𝑡 ,𝐺𝐺𝑢𝑢};𝐸𝐸𝑢𝑢) 
is clearly a more relevant type of prediction for a plant breeding program that needs to 
forecast which lines are likely to do well in future testing and eventually in production. 
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However, ({𝐺𝐺𝑡𝑡 ,𝐺𝐺𝑢𝑢};𝐸𝐸𝑢𝑢) introduces an extra complication that is the need to establish a link 
between tested (𝐸𝐸𝑡𝑡) and untested (𝐸𝐸𝑢𝑢) environments. A good understanding of the G×E 
patterns by classical analytical approaches using historical data can be instrumental in finding 
those links (van Eeuwijk et al. 2015, this issue). Alternatively, prediction models can be 
generalized by the addition of explicit environmental information, as we shown here with our 
GE-KE model.  

The idea of modeling genetic variation conditional on explicit environmental data has 
been applied in the context of QTL×E (Crossa et al., 1999; Malosetti et al., 2004; Boer et al., 
2007). The extensions within the framework of multi-environment prediction models were 
simultaneously proposed by Heslot et al. (2013) and Jarquín et al. (2014), although they differ 
in that the former was oriented towards prediction of new environments (𝐸𝐸𝑢𝑢) while the latter 
still focused on prediction of tested environments (𝐸𝐸𝑡𝑡). Our results showed that the inclusion 
of environmental covariables allowed predicting reasonably well in the more challenging 
situation of an unobserved environment ({𝐺𝐺𝑡𝑡 ,𝐺𝐺𝑢𝑢};𝐸𝐸𝑢𝑢). In tested environments, predictions 
for (𝐺𝐺𝑡𝑡;𝐸𝐸𝑡𝑡) and (𝐺𝐺𝑢𝑢;𝐸𝐸𝑡𝑡) from the GE-KE model did equally well (or even better) than other 
GE-BLUP prediction models. The distinctive feature of the use of explicit environmental 
covariables is that it shifts from predicting at a discrete set of environments, to prediction in 
a continuous genotypic space defined by the configuration of genotype and environmental 
combinations, previously observed or not. Of course, forming groups of environments 
(mega-environments) is an alternative way of dealing with prediction of future environments. 
Effectively it implies defining a representative set of landmarks within that continuous 
genotypic space that are used as reference for future predictions. The use of genomic 
predictions for classifying and selecting representative environments has been proposed 
(Heslot et al., 2013b). However, the approach will work as long as future conditions are 
indeed reasonably well represented by those reference environments.  

Dealing with a ({𝐺𝐺𝑡𝑡 ,𝐺𝐺𝑢𝑢};𝐸𝐸𝑢𝑢)  scenario raises another important issue that might be 
overlooked when focusing on predicting (𝐺𝐺𝑡𝑡;𝐸𝐸𝑡𝑡)  or (𝐺𝐺𝑢𝑢;𝐸𝐸𝑡𝑡) , and that is the overlap 
between the training and testing/validation environments. Predicting for tested environments 
(𝐸𝐸𝑡𝑡), automatically assures the overlap along the environmental dimension. Of course, the 
same overlapping requirement holds true along the genotype dimension, especially when 
dealing with structured genetic material or multiple populations (Albrecht et al., 2011, 2014; 
Rincent et al., 2012; Guo et al., 2014). In our rather limited 2-year data set, the simple 
temporal partitioning of the environments (1991 versus 1992) resulted in an insufficient 
overlap between training and testing set, and caused the prediction models to fail. However, 
a re-structuring of the training and validation set using external environmental information 
to select representative training environments reverted to relatively high accuracy levels for 
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a complex trait as yield. The sharp increase in accuracy observed, even when dealing with a 
short series of data (two years) was remarkable. It is to be expected that the addition of more 
information should improve the results of the prediction ability of the GE-KE model. For 
example, we still failed to predict environment WA92, which is not surprising, since that 
environment has shown to be quite distinct from the rest. In a previous study, WA92 was the 
only environment where neither of the two major yield QTL on chromosomes 2H and 3H 
showed a significant effect (Malosetti et al., 2004). Again, a good understanding of the major 
drivers of the G×E provides insights on how to enhance the power of the prediction models 
by identifying the most relevant information to add to the existing prediction machinery. In 
other words, while developing the prediction models, it is important to keep in mind the basic 
classical questions regarding G×E and its causes (van Eeuwijk et al., 2015, this issue). 

The inclusion of environmental information in the prediction model brings in as an 
additional important feature the opportunity to enhance the statistical models with biological 
knowledge, moving from purely statistical to eco-physiological prediction models (van 
Eeuwijk et al., 2005). The selection of key environmental covariables at specific crop stages 
as predictors in the statistical model is a first form of incorporating biology into the statistical 
model. That was what our GE-KE model implicitly did. However, that is just the tip of the 
iceberg. A much stronger interaction with biology is possible by integrating crop growth 
modeling in the prediction process of G×E (Cooper et al., 2009; van Eeuwijk et al., 2010). 
Crop growth models (CGM) predict responses via functions of properties of the genotypes 
and the environments, and so, they offer a promising platform for prediction of complex 
non-linear responses over environmental gradients. Examples of the integration of molecular 
markers and CGM to predict complex phenotypic responses have been published (Reymond 
et al., 2003; Yin et al., 2005; Chenu et al., 2009). In all cases, the basic idea was to use QTLs 
to shape CGM parameters that in turn, and in combination with the environmental inputs, 
produced the final predicted phenotype. This can be regarded as a simplified genomic 
prediction model integrated with CGM (the difference being that only few genotypic 
regressors enter the model). Heslot et al. (2013a) did use CGM but only to define 
environmental stress covariables to feed in the prediction model. However, they did not use 
the CGM to obtain predictions directly from it. A general discussion of the integration of 
CGM in genomic prediction can be found in Bustos-Korts et al. (2015), and a first proof of 
the concept in Technow et al. (2015). In the latter, DH lines were simulated in a set up 
analogous to our disconnected design, where 50 DH lines were used to estimate model 
parameters, and 1500 DH lines were predicted in an observed environment (𝐺𝐺𝑢𝑢;𝐸𝐸𝑡𝑡) and in 
a new environment (𝐺𝐺𝑢𝑢;𝐸𝐸𝑢𝑢) . Mean prediction accuracies by their best method, an 
approximate Bayesian computation method (Tavaré et al., 1997), were around 0.8 and 0.6 
for (𝐺𝐺𝑢𝑢;𝐸𝐸𝑡𝑡) and (𝐺𝐺𝑢𝑢;𝐸𝐸𝑢𝑢) respectively, showing the potential of the approach. 
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5.5. Future work 

We regard the integration of CGM as an exciting area of research for prediction of 
complex phenotypes, and foresee it will gain momentum. As a matter of fact, the inherent 
property of CGM of regarding traits as a dynamic system of interconnected components that 
mediates between inputs and the final output broadens even further the possible models to 
explore. Complex traits are indeed a dynamic system that results from the integration of 
processes at different level of biological organization, and those can be described by sets of 
interconnected differential equations (Sun and Wu, 2015). Therefore, prediction models do 
not necessarily need to rely exclusively on covariables related with the DNA sequence, but 
other levels of information could potentially be integrated. The challenges ahead are 
computational on the one side, and more importantly, on making choices of the right level of 
detail of the models to tailor the specific prediction problem (van Eeuwijk, 2015). This is an 
area we are currently starting to explore. Highly related with it, is the research in multi-trait 
and multi-population prediction problems, including the investigation of design issues of 
training sets and the development of computationally efficient alternatives to the standard 
mixed model approach used here. We also see the need of investigating the prediction not 
only of the mean performance, but also of the expected consistency of that performance (i.e. 
stability). That is an important target in plant breeding, especially when targeting 
difficult/harsh environments, where is important to select genotypes that guarantee a 
minimum return. Finally, methods should be moved from the lab to the commercial level 
(both private and public), so an infrastructure to make these methods widely accessible is 
needed. The challenge of that infrastructure is that it should carry the latest developments 
and be user-friendly. We would like to recommend the Integrated Breeding Platform 
(https://www.integratedbreeding.net/) as an interesting option to explore in the search for 
such an infrastructure. 
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6.1. Background 

Barley is the fourth largest cereal crop after maize, rice and wheat (http://faostat.fao.org). 
It is cultivated across a wide range of environments, making it a relevant crop in the context 
of climate change (Dawson et al., 2015; Khoury & Achicanoy, 2016). Besides its importance 
for food security, barley has a historical relevance because, together with wheat, it was a 
founder crop for agriculture in the Fertile Crescent (Mascher et al., 2016). Barley is regarded 
as a model species and therefore, knowledge about barley genetics is relevant to other crops 
(Mayer et al., 2012). Unfortunately, total genetic diversity currently available to breeding 
programmes has been limited by the bottleneck of the selection process of modern varieties 
(Dawson et al., 2015).  

Broadening the genetic basis of field crops is key to increase the chances of developing 
varieties that are adapted to a wide range of production environments (Ellis et al., 2000; 
Tester & Langridge, 2010). An important part of the genetic diversity for barley has been 
preserved in germplasm banks worldwide (Igartua et al., 1998; Knüpffer, 2009; Muñoz-
Amatriaín et al., 2014). However, accessions in germplasm banks are seldom well 
characterised genotypically and phenotypically, hampering their use in modern breeding 
programmes (Muñoz-Amatriaín et al., 2014).  

One strategy for genotypic characterization of large diversity collections is Exome 
sequencing, which was first described by (Mascher et al., 2013) and used recently to examine 
genome wide diversity  across a collection of landraces and wild barley accessions. Exome 
sequencing has the advantage of reducing genomic complexity more than 50-fold, thus 
dramatically reducing the heavy sequencing and analysis load (Mascher et al., 2013; Uauy, 
2017). One of the attempts of intensive genetic characterisation of barley germplasm is shown 
in (Russell et al., 2016), who used exome sequencing to characterise 267 geographically 
diverse barley landraces and wild relatives. In the EU-Whealbi-barley collection presented 
in this paper, the range of diversity that has been genetically characterised with exome 
sequencing by (Russell et al., 2016) has been expanded to more relevant cultivated 
germplasm. The EU-Whealbi-barley collection includes 511 genotypes/accessions ranging 
from wild barley species (H. agriocriton, H. spontaneum), H. vulgare landraces to formally-
bred genotypes chosen by consultation with breeders, gene bank curators and researchers. 
These genotypes originated from a wide range of sites in Europe, Africa, Middle-East and 
Asia (http://www.whealbi.eu/project/strategy/). The unique EU-Whealbi-barley collection is 
the first collection with both detailed genotypic and phenotypic data for a number of basic 
traits like awn length, grain weight, heading date and plant height to address a wide range of 

http://www.whealbi.eu/project/strategy/
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important biological questions that will be addressed by techniques like genome wide 
association analyses and allele mining specific candidate genes. 

Connecting the genotypic and phenotypic information across a range of environments is 
crucial to orient breeders with respect to the identification of adaptive alleles. In this paper, 
we propose to use a top-down approach, starting with a phenotype of interest observed across 
a range of contrasting environments and using genetic analysis to identify candidate genes 
(Ross-Ibarra et al., 2007). Characterising the genetic basis underlying GxE is not 
straightforward, especially not for structured populations like the EU-Whealbi-barley 
collection. Population structure poses a number of statistical methodological challenges to 
identify genomic regions that are potentially regulating the target traits (Hoffman, 2013; 
Korte & Farlow, 2013; Vilhjálmsson & Nordborg, 2013). Furthermore, the genotype to 
phenotype modelling has to deal with the levels of organisation of the barley genome, 
revealed by the availability of exome sequence, and with complex gene interactions and 
context-dependencies (Cooper et al., 2009). One approach to integrating genotypic 
information across genome organisation levels is to assess the impact of gene haplotypes 
instead of single SNPs (Cockram et al., 2007; Maurer et al., 2016).  Such an approach is also 
used in the supervised test for the joint effects of multiple variants on a phenotype (SKAT 
method in human genetics, Wu et al., (2011)). The relevance of haplotypes for breeding has 
to be interpreted in the context of the environmental conditions in which barley is expected 
to grow (the target population of environments, TPE). Here, we characterise alleles of the 
EU-Whealbi-barley collection in relation to contrasting environments in Europe and Eurasia. 
The combined genotypic and phenotypic analysis would allow prioritising genomic regions 
for further inspection in crosses, relating the diversity of genomic regions to the geographical 
information of the sites of origin and genotype breeding history. Main objectives In this paper 
are i) characterise adaptation patterns of the EU-Whealbi-barley collection, containing 
formally-bred genotypes and landraces using a range of GxE models, and ii) identify genomic 
regions and candidate genes that drive genotypic differences for awn length, grain weight, 
plant height and heading date across a number of environments. 

6.2. Materials and Methods 

6.2.1. Germplasm 

Germplasm belonged to the EU-Whealbi-barley collection, which represents an important 
range of world-wide barley genetic diversity (http://www.whealbi.eu/). Barley genotypes 
included in the EU-Whealbi barley collection consist of wild barley species (H. agriocriton, 
H. spontaneum) and cultivated barley (H. vulgare). The set of cultivated barley genotypes 

http://www.whealbi.eu/
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was highly diverse in terms of flowering time habit, row type and country of origin. 
Phenotypic, passport data and geographical information about the sites of origin can be found 
at www.whealbi.eu/science/whealbidatabase/. From the 511 genotypes belonging to the EU-
Whealbi-barley collection, 403 were successfully characterized with high-quality exome 
sequence data. From the 403 genotypes, we restricted ourselves to the H. vulgare genotypes, 
leading to 381 genotypes (wild genotypes were not considered in the statistical analysis 
presented in this paper). From the 381 H. vulgare genotypes with sequence data, we removed 
those that did not have high-quality phenotypic information, arriving at 371 genotypes with 
high quality genotypic and phenotypic data that were used for the statistical analysis. 

6.2.2. Exome sequencing 

Library preparation and sequencing 

Genomic DNA (gDNA) was extracted from barley leaf material from a single plant for 
each genotype. DNA samples were checked with a Genomic DNA ScreenTape on Agilent 
2200 Tape Station System (Santa Clara, CA, USA) in order to verify gDNA integrity. 
Samples were quantified by Picogreen assay (Thermo Fisher, CA, USA) and normalised to 
20 ng/ul in 10 nM Tris-Hcl (pH 8.0) as suggested in the NimbleGen SeqCap EZ Library SR 
protocol. The gDNA was fragmented to a size range of 180-200 bp using Covaris 
microTUBES and a Covaris S220 Instrument (Covaris, MA, USA) and whole genome 
libraries were prepared according to the Kapa Library Preparation protocol. Libraries were 
quantified using a Nanodrop (Thermo Fisher, CA, USA) and analysed electrophoretically 
with an Agilent 2200 Tape Station System using a D1000 ScreenTape. Libraries were pooled 
in 8-plex and used for the hybridization with the barley SeqCap Ez oligo pool (Design Name: 
120426_Barley_BEC_D04, (Mascher et al., 2013) in a thermocycler at 47°C for 48 h. 
Capture beads were used to pull down the complex of capture oligos and genomic DNA 
fragments and unbound fragments were removed by washing. Enriched fragments were 
amplified by PCR and the final library was quantified by qPCR and visualised by Agilent 
Tape Station. Sequencing libraries were normalised to 2nM, NaOH denatured and used for 
cluster amplification on the cBot. The clustered flow cells were sequenced on Illumina 
HiSeq2000 with an 8-plex strategy (i.e. 8 samples per HiSeq lane) with a 100 bp paired-end 
run module.  

  

http://www.whealbi.eu/science/whealbidatabase/
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Sequence processing and alignment 

Sequence quality control was assessed with FastQC (Babraham Institute: 
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Raw Illumina reads were then 
quality trimmed to a base quality of 20 from both ends with Trimmomatic version 0.30 
(Bolger et al., 2014).  Only correctly paired reads longer than 50 bp were used for further 
processing. Trimmed reads were then mapped to the reference genome (provided by Martin 
Mascher on September 4, 2015: file 150831_barley_pseudomolecules_parts.fasta) with 
BWA version 0.7.5a using the mem algorithm with default parameters (Li & Durbin, 2009). 
In total, about 24 million reads were mapped to the reference genome. The resulting BAM 
files were sorted with Samtools (http://samtools.sourceforge.net/) and duplicate reads marked 
using Samblaster (http://www.htslib.org/). 

SNP calling and validation 

Variant calling and realignment around indels were performed with GATK version 2.7.4 
(https://www.broadinstitute.org/gatk/). All the final BAM files were processed together using 
GATK UnifiedGenotyper with default parameters and minimum base quality of 30. The raw 
variant calls produced were initially hard filtered by requiring QD > 30.0, MQ > 40.0 and 
sample DP >= 10.  

Phenotypic data 

Phenotypic data consisted of measurements of awn length, grain weight, heading date and 
plant height. These traits were chosen because they represent important adaptive traits that 
are commonly considered during the breeding process. The phenotypic data are available  in 
https://wheat-urgi.versailles.inra.fr/Projects/Whealbi. Field trials were sown in Dundee 
(Scotland, winter and spring), Martonvasar, (Hungary, winter and spring), Fiorenzuola 
d’Arda (Italy, winter) and Adana (Turkey). The Turkish trial was irrigated, all other trials 
were rain fed. For more details about environments explored with the field trials, see Table 
1. 

Field trials were set up as augmented partially-replicated designs. In each field trial, a 
subset of the genotypes (about 20%) was replicated twice. This subset was a random draw 
from all genotypes and therefore differed from one experiment to the next. To link the 
experiments and account for spatial effects, two check cultivars were included, the winter 
cultivar Meridian and the spring cultivar Irina. These cultivars were chosen because they 
represent recently released elite cultivars grown across Europe. The check cultivars were 
assigned to eight plots per experiment. To distribute the checks uniformly over the field, the 

http://samtools.sourceforge.net/
http://www.htslib.org/
https://www.broadinstitute.org/gatk/
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full replicate was subdivided into eight incomplete blocks, following the principles of an 
alpha design. The 20% genotypes that were replicated twice were grouped together in another 
two incomplete blocks. Plots consisted of 2 rows of 1.5 m long, with 30 seeds per row. In the 
field, experimental plots were separated from each other by a buffer row with a wheat variety.  

Environmental characterizations for field trials were collected from nearby 
meteorological stations. Photoperiod was calculated for each site of origin and field trial 
using latitude and the day of the year, as proposed by (Sellers W.D., 1965) and implemented 
in the ‘Daylength’ procedure in GenStat 18 (VSN-International, 2016). Environmental 
variables were summarised both for the whole growing season and for the first half of the 
growing season, as described in Table 1. 

Table 1. Environmental characterization of the field trials. Rainfall was calculated as the sum over the growing 

season, Tmean is the mean temperature during the growing season, Thermal time is the sum of degree days during 

the growing season, photop. min and photop max are the minimum and maximum day length during the growing 

season and vern_days is the number of days with vernalizing temperatures (≥4oC and ≤9oC). 

Planting Env Planting 

Date 

 

Location Lat. Long. Rain 

(mm) 

Tmean 

(oC) 

Thermal 

time 

(oCd) 

Photop. 

Min (h) 

Photop. 

Max (h) 

Vern 

days 

Spring BS2JHI 03-03-15 Scotland 56.5 oN 3.1 oW 239 10.70 1213.34 12.95 17.18 4 

 BS3ATK 11-03-15 Hungary 47.3 oN 18.8 oE 105 13.34 1293.55 11.60 15.60 3 

            

Winter BW1CRA 27-10-14 Italy 44.9 oN 9.9 oE 651 8.96 1952.52 8.70 15.12 59 

 BW2JHI 29-10-14 Scotland 56.5 oN 3.1 oW 450 7.14 1741.29 6.82 17.18 75 

 BW3ATK 20-10-14 Hungary 47.3 oN 18.8 oE 315 8.31 2150.25 8.39 15.61 59 

 BW4TUR 12-11-14 Turkey 37.1 oN 35.8 oE 215 6.32 1420.20 9.52 14.45 39 

6.2.3. Phenotype adjusted means 

Adjusted means were calculated after fitting a model using two-dimensional (2D) 
penalised splines (P-splines) for correction of spatial trends and heterogeneity,  following the 
methodology described by (Rodríguez-Álvarez et al., 2016) and in (Velazco et al., 2017) and 
implemented in the SpATS package (https://cran.r-project.org/package=SpATS). The 
following model was used;  

𝑦𝑦 = 𝑓𝑓(𝑢𝑢, 𝑣𝑣) + 𝑍𝑍𝑟𝑟𝑐𝑐𝑟𝑟 + 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑋𝑋𝑔𝑔𝑐𝑐𝑔𝑔 + 𝜀𝜀    (1) 

https://cran.r-project.org/package=SpATS
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In model (1),  𝑓𝑓(𝑢𝑢, 𝑣𝑣) is a smooth two-dimensional trend jointly defined over the row and 
the column directions. The bivariate surface can be decomposed in three different spatial 
components (Lee & Durbán, 2011): (a) a component that contains the smooth main effect 
(smooth trend) along one of rows, (b) a component that contains the smooth main effect 
(smooth trend) along the columns and (c) a smooth interaction component (sum of the linear-
by-smooth interaction components and the smooth-by-smooth interaction component). 𝑍𝑍𝑟𝑟𝑐𝑐𝑟𝑟 
represents a design matrix and independent random effects for the rows, with 𝑐𝑐𝑟𝑟~𝑁𝑁(0,𝜎𝜎𝑟𝑟2), 
while 𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐 does the same for the columns, with 𝑐𝑐𝑐𝑐~𝑁𝑁(0,𝜎𝜎𝑐𝑐2).  𝑋𝑋𝑔𝑔𝑐𝑐𝑔𝑔 represents the design 
matrix and the fixed effects for the 513 genotypes (511 Whealbi genotypes, plus the two  elite 
cultivars used as checks) and 𝜀𝜀 is a residual, 𝜀𝜀~𝑁𝑁(0,𝜎𝜎𝜀𝜀2). To quantify the importance of the 
genotypic variance with respect to the total variance, we calculated so-called generalised 
heritabilities, following again (Rodríguez-Álvarez et al., 2016). 

6.2.4. Population structure 

To characterise population structure, a relationship matrix 𝐴𝐴 was calculated from the 
SNPs following (Patterson et al., 2006), after removing SNPs with minor allele frequency 
below 0.05.  

𝐴𝐴 = 𝑋𝑋𝑋𝑋′

𝑛𝑛𝑚𝑚
 (2) 

The  𝐴𝐴 matrix is of dimensions number of genotypes by number of genotypes and is 
proportional to the genetic covariance among individuals. 𝑋𝑋  is a matrix of dimensions 
number of genotypes by number of SNPs, whose entries are marker scores, coded 0, 1 or 2, 
representing the number of copies of the minor allele. The marker scores were standardised 
as in (Patterson et al., 2006). In (2), 𝑛𝑛𝑚𝑚 is the number of markers. To infer the number of 
subpopulations present in the EU-Whealbi-barley collection, we calculated the number of 
significant principal components after applying a spectral decomposition to the matrix 𝐴𝐴, 
where the significance was assessed following (Patterson et al., 2006). The number of 
subpopulations is then the number of significant components plus one. The calculations were 
done in Genstat 18 (VSN-International, 2016). 

Genotypes were grouped and assigned to subpopulations using a hierarchical clustering 
procedure applied to the significant principal components, following (Odong et al., 2013). 
The cut-off for the dendrogram was chosen such that the number of subpopulations was equal 
to the number of principal components plus one.    
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6.2.5. GxE interaction analysis by AMMI analysis 

To characterize GxE interaction patterns and explore possible adaptations, we fitted the 
Additive Main Effects and Multiplicative Interaction (AMMI) model (Gauch & Zobel, 1997; 
Gauch, 2013; van Eeuwijk et al., 2016). The adjusted means, after spatial correction, were 
organised in a genotype by environment table of means, and the following AMMI model 
fitted, (Equation 3).  

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐸𝐸𝑖𝑖 + 𝐺𝐺𝑖𝑖 + ∑ 𝑏𝑏𝑖𝑖𝑚𝑚𝑧𝑧𝑖𝑖𝑚𝑚𝑀𝑀
𝑚𝑚=1 + 𝜖𝜖𝑖𝑖𝑖𝑖 (3) 

In Equation (3),  𝑦𝑦𝑖𝑖𝑖𝑖 represents the phenotype of the ith genotype in the jth environment, 𝜇𝜇 
stands for the intercept, 𝐺𝐺𝑖𝑖 is the fixed effect of the ith genotype and 𝐸𝐸𝑖𝑖 is the fixed effect of 
the jth environment. The interaction in an AMMI model is described by M multiplicative 
terms. There are many ways for deciding how to choose M (van Eeuwijk et al., 2016), but 
we chose the relatively straightforward method by (Gollob, 1968). Each multiplicative term 
in (3) is formed by the product of a genotypic sensitivity 𝑏𝑏𝑖𝑖𝑚𝑚  (genotypic score) and an 
environmental score 𝑧𝑧𝑖𝑖𝑚𝑚. Finally, 𝜖𝜖𝑖𝑖𝑖𝑖 is a residual term, that contains the part of the two-way 
analysis of variance interaction that is not explained by the AMMI interaction terms and a 
contribution of the plot error, the latter will be ignored  in this paper. GxE interactions, using 
the AMMI model, were visualised in the form  of biplots, which are just scatter plots for 
genotypic and environmental scores. These scores define the coordinates for genotypic and 
environmental vectors, and provide approximations to genetic variances (length 
environmental vectors), genetic correlations (angle between environmental vectors), 
genotypic stabilities (length genotypic vectors), and genotypic adaptations (projections of 
genotypic vectors on environmental vectors).  

6.2.6. GxE interaction analysis introducing genotypic groups 

To study the relevance of groupings of genotypes or identified subpopulations for 
describing genotypic differences and GxE interaction patterns, we fitted various two-way 
mixed models with and without groupings of genotypes to see to which extent the genotypic 
and GxE interaction variance, 𝑉𝑉𝐺𝐺  and 𝑉𝑉𝐺𝐺𝐺𝐺 , was reduced by the introduction of genotype 
groupings. As a kind of null model in which no genotype groups are distinguished we take 
the following model for the phenotype of genotype i in environment j: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐸𝐸𝑖𝑖 + 𝐺𝐺𝑖𝑖 + 𝐺𝐺𝐸𝐸𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖  (3.1) 

where 𝜇𝜇  is an intercept term, 𝐸𝐸𝑖𝑖  the fixed environmental main effect, 𝐺𝐺𝑖𝑖  a random 
genotypic main effect, 𝐺𝐺𝐸𝐸𝑖𝑖𝑖𝑖  a random genotype by environment interaction, and 𝜀𝜀𝑖𝑖𝑖𝑖  a 
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residual term that is confounded with the  𝐺𝐺𝐸𝐸𝑖𝑖𝑖𝑖 term when model (3.1) is fitted to a two-way 
genotype by environment table of adjusted means. Model (3) provides estimates for the 
genotypic and GxE variance, 𝑉𝑉𝐺𝐺 and 𝑉𝑉𝐺𝐺𝐺𝐺 , when no grouping of genotypes is introduced to 
describe GxE interaction. When such terms are introduced, these variances will be reduced.  

Upon introduction of groupings, clusters, or subpopulations for genotypes, the genetic 
variance of 𝐺𝐺𝑖𝑖 and 𝐺𝐺𝐸𝐸𝑖𝑖𝑖𝑖 as occurring in model (3.1) will be partitioned into a part expressing 
the variance between groups for the genotypic main effect and the GxE interaction and 
another part that describes the variation not accounted for by the grouping. Two groupings 
of genotypes that we investigated were one due to subpopulations as obtained from the 
clustering of the kinship principal components and another one due to the contrast between 
two- and six-row barleys, (models 3.2 and 3.3). 

𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘 = 𝜇𝜇 + 𝐸𝐸𝑖𝑖 + 𝑆𝑆𝑘𝑘 + 𝐺𝐺𝑖𝑖𝑘𝑘 + 𝑆𝑆𝐸𝐸𝑖𝑖𝑘𝑘 + 𝐺𝐺𝐸𝐸𝑖𝑖𝑖𝑖𝑘𝑘 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑘𝑘  (3.2) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐸𝐸𝑖𝑖 + 𝑅𝑅𝑖𝑖 + 𝐺𝐺𝑖𝑖𝑖𝑖 + 𝑅𝑅𝐸𝐸𝑖𝑖𝑖𝑖 + 𝐺𝐺𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖  (3.3) 

In model (3.2), 𝑆𝑆𝑘𝑘 is the fixed effect of subpopulations and 𝑆𝑆𝐸𝐸𝑖𝑖𝑘𝑘 is the subpopulation by 
environment interaction. Equation (3.3) considers row type to represent population sub-
structuring, with 𝑅𝑅𝑖𝑖  representing the fixed effect of row type and 𝑅𝑅𝐸𝐸𝑖𝑖𝑖𝑖  the row type by 
environment interaction.  

Model (3.2) can be modified to become a model for a genome wide association scan by 
the introduction of a QTL and a QTLxE term (see section 6.2.9). Effectively, the genotypic 
main effect is then split up in a QTL main effect and a residual genotypic main effect, while 
the GxE interaction term is split in a QTLxE term and residual GxE interaction. Model (3.2) 
contains a correction for population (sub)structure, 𝑆𝑆𝑘𝑘, with respect to the main effect of a 
QTL and a correction for subpopulation by environment interaction, 𝑆𝑆𝐸𝐸𝑖𝑖𝑘𝑘, with respect to 
QTLxE. Examples of applications of model (3.2) are given in (Millet et al., 2016; Thoen et 
al., 2017)  and will also be discussed below. 

In place of the subpopulation factor to correct for population structure in model (3.2), we 
can also use the principal components approximating the kinship structure to partition the 
genotypic main effect and the GxE interaction:  

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐸𝐸𝑖𝑖 + ∑ (𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃
𝑖𝑖=1  𝛽𝛽𝑖𝑖𝐺𝐺) + 𝐺𝐺𝑖𝑖 + ∑ (𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃

𝑖𝑖=1  𝛽𝛽𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺) + 𝐺𝐺𝐸𝐸𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖  (3.4) 

Equation (3.4) is as Equation (3.2), with 𝑆𝑆𝑘𝑘  replaced by ∑ (𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃
𝑖𝑖=1  𝛽𝛽𝑖𝑖𝐺𝐺)   and 𝑆𝑆𝐸𝐸𝑖𝑖𝑘𝑘 

replaced by ∑ (𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃
𝑖𝑖=1  𝛽𝛽𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺), where 𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃 stands for the genotype specific scores on the p-th 
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kinship principal component, with p=1...P, and 𝛽𝛽𝑖𝑖𝐺𝐺  and 𝛽𝛽𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺  the corresponding fixed 
regression coefficients for these principal components correcting for population structure 
with respect to the genotype main effect and the GxE interaction, respectively. Model (3.4) 
provides another way of estimating the effect of population structure on 𝑉𝑉𝐺𝐺 and 𝑉𝑉𝐺𝐺𝐺𝐺. 

Models  (3.2) and (3.4) can be combined to study the contribution of subpopulations and 
row type, after accounting for population structure by kinship principal components, as 
presented in Equations (3.5) and (3.6).  

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐸𝐸𝑖𝑖 + ∑ (𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃
𝑖𝑖=1  𝛽𝛽𝑖𝑖𝐺𝐺) + 𝑆𝑆𝑘𝑘 + 𝐺𝐺𝑖𝑖𝑘𝑘 + ∑ (𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃

𝑖𝑖=1  𝛽𝛽𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺) + 𝑆𝑆𝐸𝐸𝑖𝑖𝑘𝑘 + 𝐺𝐺𝐸𝐸𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖  (3.5) 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐸𝐸𝑖𝑖 + ∑ (𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃
𝑖𝑖=1  𝛽𝛽𝑖𝑖𝐺𝐺) + 𝑅𝑅𝑖𝑖 + 𝐺𝐺𝑖𝑖 + ∑ (𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃

𝑖𝑖=1  𝛽𝛽𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺) + 𝑅𝑅𝐸𝐸𝑖𝑖𝑖𝑖 + 𝐺𝐺𝐸𝐸𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (3.6) 

When the kinship principal components capture the population structure as contained in 
the subpopulation factor well, expressed as 𝑆𝑆𝑘𝑘 and 𝑆𝑆𝐸𝐸𝑖𝑖𝑘𝑘 in model (3.5), we don’t expect any 
additional variation to be explained by those latter terms. 

6.2.7. GxE interaction and adaptation analysis for flowering time 

In addition to an AMMI analysis (section 2.6) and the mixed model analyses (section 
2.7), we investigated adaptation to a given environment by defining it for individual 
genotypes by the difference between their flowering time and a target flowering time in that 
environment (flowering time ideotype/reference). This ideotype was defined as the average 
heading time of a number of modern cultivars considered to be well adapted to the trial 
conditions (Table S1). Adaptation to each of the field trials was compared between the 
following groups using analysis of variance; i) spring-formally-bred cultivars (97 genotypes), 
ii) winter-formally-bred cultivars (26 genotypes) and iii) spring landraces (47 genotypes, 
from which 39 had a known site of origin).  

6.2.8. Genome Wide Association Scans (GWAS) 

Single locus GWAS model 

Models (3.2) and (3.4) in the previous section were modified to become a model for a 
genome wide association scan by the introduction of a QTL and a QTLxE term. Effectively, 
the genotypic main effect is then split up in a QTL main effect and a residual genotypic main 
effect, while the GxE interaction term is split in a QTLxE term and residual GxE interaction. 
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Model (3.2) contains a correction for population (sub)structure, 𝑆𝑆𝑘𝑘, with respect to the main 
effect of a QTL and a correction for subpopulation by environment interaction, 𝑆𝑆𝐸𝐸𝑖𝑖𝑘𝑘, with 
respect to QTLxE. Examples of applications of model (3.2) are given in (Millet et al., 2016; 
Thoen et al., 2017)  and will also be discussed below. 

For our GWAS analyses, we preferred to depart from model (3.4). To Identify genomic 
regions and candidate genes that drive differences between genotypes for awn length, grain 
weight, plant height and heading date across a number of environments, we used the 
following single locus mixed model to scan the genome: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐸𝐸𝑖𝑖 + ∑ (𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃
𝑖𝑖=1  𝛽𝛽𝑖𝑖𝐺𝐺) + 𝐺𝐺𝑖𝑖 + ∑ (𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃

𝑖𝑖=1  𝛽𝛽𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺) + 𝑥𝑥𝑖𝑖𝑆𝑆𝑆𝑆𝑃𝑃𝛽𝛽𝑖𝑖𝑆𝑆𝑆𝑆𝑃𝑃 + 𝐺𝐺𝐸𝐸𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖  (4) 

In comparison to model (3.4), model (4) contains a term for the fixed SNP effect 𝛽𝛽𝑖𝑖𝑆𝑆𝑆𝑆𝑃𝑃, 
while 𝑥𝑥𝑖𝑖𝑆𝑆𝑆𝑆𝑃𝑃 contains the marker information. This means that we fit a QTL that is allowed to 
have an environment specific effect, or, we fitted at each marker position a QTL main effect 
and a QTLxE term simultaneously. The test for 𝛽𝛽𝑖𝑖𝑆𝑆𝑆𝑆𝑃𝑃 being zero in all environments or being 
non zero in at least one environment was a Wald test (Welham & Thompson, 1997; Boer et 
al., 2007). The fixed structure correction terms were not tested for inclusion are tested for, as 
they are supposed to be in the model for an unbiased estimate of the QTL effect. The random 
terms for 𝐺𝐺𝑖𝑖 and 𝐺𝐺𝐸𝐸𝑖𝑖𝑖𝑖 have variances 𝑉𝑉𝐺𝐺 and 𝑉𝑉𝐺𝐺𝐺𝐺 that were restricted to be positive. The error 
term 𝜀𝜀𝑖𝑖𝑖𝑖 was confounded with the 𝐺𝐺𝐸𝐸𝑖𝑖𝑖𝑖 term, a fact that we will ignore. Model (4) was fitted 
in Genstat18 (VSN-International, 2016).  

A significance threshold for testing for marker – trait associations was established using 
a Bonferroni correction based on the number of independently segregating chromosome 
segments (Li & Ji, 2005), where we calculated this number from the local linkage 
disequilibrium (LD) decay extension.  

Local Linkage Disequilibrium (LD) 

To characterise local LD, markers were thinned to one every 25 SNPs. A sliding window 
of 500 thinned SNPs was then used to calculate the local LD corrected by population structure 
for each SNP position, following the method proposed by (Mangin et al., 2012), implemented 
in the LDcorSV R package  (https://cran.r-project.org/package=LDcorSV). Consecutive 
sliding windows had an overlap of 475 out of the 500 SNPs. 

Subsequently, SNPs within a distance of 20000 bp were binned and the 0.95 quantile for 
the population-structure corrected LD was calculated for each bin. To these 0.95 quantiles, a 

https://cran.r-project.org/package=LDcorSV
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cubic spline was fitted that describes the LD decay as a function of the distance between 
markers. The maximum of the spline second derivative was used as an indicator of the 
distance at which LD starts to stabilise. For each sliding window along the genome, the LD 
decay distance was calculated and the median of these distances was used as an estimate for 
genome wide LD decay. From the latter, the number of independently segregating segments 
in the genome was estimated. In addition to this Bonferroni correction, we applied a genomic 
control correction  (Devlin & Roeder, 1999; Kang et al., 2008). 

QTL identification 

After the single locus GWAS scan by the model (3.7) using the above-described testing 
procedure, we identified a number of significant SNPs. All significant SNPs were first 
collated in a long list of QTL candidates. This long list was pruned as follows. First, we  
looked at the highest significant SNP in the total long list. For this SNP, the local LD 
determined a QTL region to the left and right. Next, all SNPs in that region were removed 
from the long list as they were seen as belonging to the same QTL region. Subsequently, in 
the reduced list, once again we looked for the highest significant SNP, a QTL region was 
defined from the local LD and the SNPs in this region were removed from the long list. The 
procedure was repeated until no further SNPs were significant. 

6.2.9. Allele mining 

After identification of QTL regions, using the new genome assembly and annotation 
(Beier et al., 2017; Mascher et al., 2017) the genes inside the QTL position interval were 
registered and potential candidate genes were identified using a range of different approaches 
depending on the trait. Published known candidate genes were used, as well as examining 
homologies to genes in other cereal crops such as rice, maize and wheat. Additionally for 
grain weight, where no candidate genes have been published in barley, searches using the 
recent version of the barley genome accessible through the IPK Barley Blast Server 
(http://webblast.ipk-gatersleben.de/barley_ibsc/) and available gene expression data 
(http://apex.ipk-gatersleben.de/apex/f?p=284:10::::::) were used.  

For those traits that do have published candidate genes (awn length, heading date and 
plant height), we restricted ourselves to the list of genes contained in those publications. 
Thus, a more directed approach was used for these three traits, compared to grain weight, 
where all the candidate genes within the QTL region were assessed.  In the case of awn 
length, the following studies were used:  (Tanaka et al., 2012; Luo et al., 2013; Toriba & 
Hirano, 2014; Gu et al., 2015; Hua et al., 2015; Bessho-Uehara et al., 2016; Jin et al., 2016; 

http://apex.ipk-gatersleben.de/apex/f?p=284:10
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Magwa et al., 2016; Liller et al., 2017), gene function and expression profile, focusing mainly 
on transcription factors involved in plant development and expressed in inflorescence. In the 
case of flowering time, we used (Drosse et al., 2014; Hill & Li, 2016)  as a reference. To 
select candidate genes we based ourselves on (Chen et al., 2009; Jia et al., 2009; Dockter et 
al., 2014; Alqudah et al., 2016; Gruszka et al., 2016; Mikołajczak et al., 2017). We selected 
those annotated genes having a role in hormones signaling/transport/metabolism, plant 
architecture regulation or belonging to gene families already known to regulate mechanism 
related to plant development and growth. 

Inside candidate gene regions, we constructed haplotypes combining all SNPs with 
MAF>0.03 by the method of (Gabriel et al., 2002), as implemented in Haploview (Barrett et 
al., 2005). Briefly, candidate genes are scanned for historical recombination events, 
calculated from the local LD patterns. Then, haplotype blocks are defined as genomic regions 
within genes, over which most of the informative SNP pairs show little evidence of 
recombination (high LD). We will refer to the genomic regions containing those haplotypes 
within genes as haplotype loci (HTLs). As some of the haplotype loci had multiple alleles at 
very low frequencies, we pooled those low-frequency haplotype alleles to achieve a reduced 
number of alleles. In the pooling step, we first calculated the simple matching distances 
among genotypes, based on all the SNPs considered in the haplotype blocks (Sokal, 1958). 
If two haplotypes share exactly the same profile for the underlying SNP alleles, their simple 
matching coefficient would be 1.0 and if all SNPs have the opposite SNP allele, their 
coefficient would be 0.0. For convenience, we applied hierarchical clustering (Ward's 
method) to pool low-frequency haplotypes with the haplotype that is most similar to it. A 
dendrogram cut-off threshold was defined for forming groups such that each class contained 
at least 10 genotypes.  

6.2.10. Multi-locus GWAS model based on haplotype loci 

To evaluate the contribution of haplotype loci (HTLs) to the genotypic main effect and 
the GxE we fitted single and multi-locus models containing terms for the main effect of 
haplotype loci, 𝑥𝑥𝑖𝑖ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝛽𝛽ℎ𝐻𝐻𝐻𝐻𝐻𝐻 and for their interaction with the environment, 𝑥𝑥𝑖𝑖ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝛽𝛽𝑖𝑖ℎ𝐻𝐻𝐻𝐻𝐻𝐻, where 
𝑥𝑥𝑖𝑖ℎ𝐻𝐻𝐻𝐻𝐻𝐻  stands for the ith row (genotype) of a genotypes by alleles matrix containing the 
haplotype allelic information for all genotypes at the      h-th HTL and 𝛽𝛽ℎ𝐻𝐻𝐻𝐻𝐻𝐻  is a vector 
containing the corresponding HTL main effects and  𝛽𝛽𝑖𝑖ℎ𝐻𝐻𝐻𝐻𝐻𝐻 is the jth column (environment) in 
an alleles by environments matrix containing the interaction effects with the environment for 
the h-th HTL. The sets 𝐻𝐻𝐺𝐺 and 𝐻𝐻𝐺𝐺𝐺𝐺 indicate the collection of HTLs with a main effect and 
those with an interaction with the environment, respectively, where the latter set is a subset 
of the first. For the single locus model, those sets contain one and the same HTL.   
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The multi HTL GWAS model is then: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐸𝐸𝑖𝑖 + � (𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃
𝑃𝑃

𝑖𝑖=1
 𝛽𝛽𝑖𝑖𝐺𝐺) + � (𝑥𝑥𝑖𝑖ℎ𝐻𝐻𝐻𝐻𝐻𝐻

ℎ∈𝐻𝐻𝐺𝐺
 𝛽𝛽ℎ𝐻𝐻𝐻𝐻𝐻𝐻) + 𝐺𝐺𝑖𝑖 + 

∑ (𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃
𝑖𝑖=1  𝛽𝛽𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺) + ∑ (𝑥𝑥𝑖𝑖ℎ𝐻𝐻𝐻𝐻𝐻𝐻ℎ∈𝐻𝐻𝐺𝐺𝐺𝐺  𝛽𝛽𝑖𝑖ℎ𝐻𝐻𝐻𝐻𝐻𝐻) + 𝐺𝐺𝐸𝐸𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖   (5) 

The significance of HTLs was established by Wald tests without correction for multiple 
testing. To decide which HTL would be included in model (5), we used a forward selection 
procedure. Here, we started with the most significant HTL from the single-locus HTL model. 
We allowed only one HTL per QTL region to enter the multi HTL model. Thus, all HTLs 
that belonged to the same QTL region as the HTL that was already included in model (5) 
were excluded from the list of candidates to enter the next model term. We continued 
including HTLs until additional haplotypes were no longer significant (p<0.05). 

From the fitted multi-HTL model we calculated the HTL contributions to the genotype 
effects per environment by adding the estimated HTL effects for each environment:  

𝑦𝑦�𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻 = ∑ (𝑥𝑥𝑖𝑖ℎ𝐻𝐻𝐻𝐻𝐻𝐻ℎ∈𝐻𝐻𝐺𝐺  �̂�𝛽ℎ𝐻𝐻𝐻𝐻𝐻𝐻) + ∑ (𝑥𝑥𝑖𝑖ℎ𝐻𝐻𝐻𝐻𝐻𝐻ℎ∈𝐻𝐻𝐺𝐺𝐺𝐺  �̂�𝛽𝑖𝑖ℎ𝐻𝐻𝐻𝐻𝐻𝐻) (6) 

The HTL fitted values 𝑦𝑦�𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻 were used to construct groups of genotypes that show similar 
adaptation patterns across the six field trials. Euclidean distances were calculated and a 
hierarchical clustering (Ward’s method) was used to assign genotypes to adaptation classes.  

To assess the amount of GxE that was explained by those adaptation classes, we fitted a 
mixed model similar to model (3.5), where the subpopulations are now replaced by 
adaptation classes to give: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘 = 𝜇𝜇 + 𝐸𝐸𝑖𝑖 + ∑ (𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃
𝑖𝑖=1  𝛽𝛽𝑖𝑖𝐺𝐺) + 𝐴𝐴𝑘𝑘 + 𝐺𝐺𝑖𝑖𝑘𝑘 + ∑ (𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃

𝑖𝑖=1  𝛽𝛽𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺) + 𝐴𝐴𝐸𝐸𝑖𝑖𝑘𝑘 + 𝐺𝐺𝐸𝐸𝑖𝑖𝑖𝑖𝑘𝑘 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑘𝑘      (3.7) 

Akaike’s Information Criterion (Akaike, 1973) and the reduction of the magnitude of 𝑉𝑉𝐺𝐺 
and  𝑉𝑉𝐺𝐺𝐺𝐺 were used as criteria to quantify the efficiency of HTLs to describe adaptation. We 
also linked these groups to the geographical information from the sites of origin, assessing 
per site of origin, the proportion of genotypes that belonged to a certain adaptation group. 
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6.3. Results 

6.3.1. Population structure 

The collection of 371 H. vulgare genotypes was highly structured. A spectral 
decomposition of the kinship matrix showed five eigenvalues to be significant. The first 
eigenvector, say principal component, explained 42% of the variation and it separated 
genotypes according to their row type (Figures S1 and S2). The six subpopulations identified 
by cluster analysis on the first five principal components were related to row type, growth 
habit and country of origin for the genotypes (accessions) (Figures 1 and S1). The first 
subpopulation, number 1, contained mainly 6-rowed winter formally-bred genotypes, while 
subpopulation 2 was determined by 2-rowed spring formally-bred genotypes (Figure 1). 
Subpopulation 3 corresponded to 2-rowed landraces from the Near-East and North Africa. 
Subpopulation 4 was dominated by 6-rowed Asian genotypes.  Subpopulation 5  was clearly 
separated from the others and contained 2 and 6-rowed genotypes, with almost all Ethiopian 
landraces included in this group (Figure S3, coinciding with (Muñoz-Amatriaín et al., 2014)). 
Subpopulation 6 had mainly 6-rowed landraces from the Near-East and North Africa.  

 

 

 

 

 

 

 

 

Figure 1. Subpopulations identified with the cluster analysis of the significant Kinship principal components.   
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6.3.2. Environmental conditions at the field trials 

Field trial conditions were clearly different between spring-planted and winter-planted 
trials. Most winter-planted trials (BW1CRA, BW2JHI, BW3ATK) received considerable 
lower rainfall than spring trials (BS2JHI and BS3ATK) with the exception of BW4TUR, 
which had only 215 mm, comparable to spring-planted trials (Table 1). The most humid 
environment was BW1CRA (651 mm) and the driest environment was BS3ATK (105 mm). 
Mean photoperiod was shorter in winter-planted than in spring-planted trials, but the 
photoperiodic range was larger for winter-planted trials (maximum photoperiod was similar 
between spring and winter trials). Winter-planted trials had a much larger number of days 
with vernalizing temperatures when compared to spring-planted trials. (Table 1).   

6.3.3. Phenotypic analysis 

Spring and winter trials showed similar population mean for awn length, grain weight and 
plant height (the arithmetic means were; 9.9 cm for awn length in spring trials, 10.6 cm for 
awn length in winter trials, 52.3 mg g-1 for grain weight in spring trials, 50.0 mg g-1 for grain 
weight in winter trials, 79.7 cm for height in spring trials and 78.2 cm for height in winter 
trials. For heading date, spring trials were clearly earlier than winter trials (77.9 days for 
spring trials and 156.7 days for winter trials, Figure S4, lower left plot). Subpopulations also 
differed in their mean performance across environments. Subpopulation 4 (6-rowed landraces 
and cultivars from Asia, coloured grey on Figure S4) showed shorter awn length and grain 
weight than the other subpopulations (the arithmetic mean for subpopulation 4 was 8.5 
whereas awn length in other subpopulations was between 9.3 and 11.3 cm). Subpopulations 
4 and 5, with a high proportion of 6-rowed genotypes, had a smaller grain weight (grey and 
green on Figure S4). However, subpopulation 1, also with a high proportion of 6-rowed 
genotypes, had a similar grain weight to subpopulations 2, 3 and 6. 

The importance of GxE was quantified as the percentage of GxE with respect to the total 
genetic variance (G and GxE, model 3.1).  None of the four traits analysed showed a large 
GxE; for awn length, grain weight, heading date and plant height, GxE was 45, 39, 37 and 
34% of the total genetic variance, respectively (Tables 3 and 4, model 3.1). We quantified 
the importance of population structure by the difference in genotypic variance, 𝑉𝑉𝐺𝐺, between 
models (3.1) and (3.4). Population structure, represented by the first five kinship principal 
components, reduced the genotypic variance by 37, 31, 38 and 17% for awn length, grain 
weight, heading date and plant height. The GxE variance, 𝑉𝑉𝐺𝐺𝐺𝐺, was reduced by 14, 4, 17 and 
22%, respectively by the introduction of kinship principal components that interacted with 
the environment (Tables 3 and 4, models (3.1) and (3.4)).  Adding row type as an additional 
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fixed term after the kinship principal components hardly changed 𝑉𝑉𝐺𝐺, except for grain weight, 
where 𝑉𝑉𝐺𝐺  was reduced by 34% (Table 4, models 3.4 and 3.6). Similarly, adding a factor for 
subpopulations after the kinship principal components did not change 𝑉𝑉𝐺𝐺  and 𝑉𝑉𝐺𝐺𝐺𝐺 , as 
expected because the kinship principal components are assumed to coincide with the 
subpopulations. 𝑉𝑉𝐺𝐺 was reduced by 3, 5, 1 and 4%, while 𝑉𝑉𝐺𝐺𝐺𝐺 was reduced by 3, 2, 1 and 1%. 
(Tables 3 and 4, models 3.4 and 3.5).   

In general, subpopulations didn’t explain too much of the GxE interaction. This finding 
is clearly reflected in the AMMI biplots (Figures 2, S5, S6 and S7), where a labelling of the 
genotypes by subpopulation membership doesn’t provide visual separation of 
subpopulations. Genotypes that appear close together in biplots share adaptation 
mechanisms, environments that group together share induced stress reactions. For the rules 
to interpret biplots, see (Kempton, 1984; Malosetti et al., 2013; van Eeuwijk et al., 2016). 
For awn length, the subpopulation by environment interaction was somehow associated with 
a positive interaction between subpopulation 4 (6-rowed Asian landraces and cultivars) and 
BW4TUR (Figure S5). The main environmental contrast for heading date was given by the 
spring trials (BS2JHI and BS3ATK) versus the winter trials (Figure 2).  

Subpopulation 2 (2-rowed spring formally-bred) was almost parallel to the AMMI1 axis, 
showing some genotypes that had a positive interaction with the spring trials and other 
genotypes that had a negative interaction with spring trials. Subpopulation 1 (6-rowed winter 
formally-bred genotypes) tended to align parallel to the AMMI2 axis, with some genotypes 
showing a positive interaction with BW1CRA. However, this group was very heterogeneous 
in their distance from the origin in the biplot, indicating different adaptation patterns. When 
analysing heading date from the perspective of adaptation (adaptation understood as 
deviations from the ideotypic flowering time in each environment), spring landraces showed 
an earlier flowering time in spring trials (about four days), compared to the ideotype and 
winter cultivars flowered later (about five days, Figure 3). Spring cultivars showed to be well 
adapted to spring trials, coinciding with the ideotype. For the winter trial BW1CRA, 
genotypes showed considerable variation and all groups achieved heading about four days 
later than the ideotype. Spring landraces were slightly delayed in BW2JHI (about four days). 
In all other winter trials, heading date for the three groups coincided with the ideotype. In the 
case of plant height, a more clear interaction pattern was observed, with subpopulation 3 (2-
rowed landraces from the near-east/North Africa) showing a positive interaction with 
BW1CRA and BW4TUR (Figure S7). 
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Figure 2. AMMI biplots for heading date. In the left panels, colours show the six subpopulations identified with the 
cluster analysis. In the right panels, colours show the genotype classes constructed with the haplotypes for heading 
date genes (same colours as in Figure 9). 
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Figure 3. Boxplot of the heading date deviations from the ideotype (target heading date). Dark blue boxes show 
spring formally-bred cultivars, light blue boxes show winter formally-bred cultivars and red boxes show spring 
landraces. P-values indicate significance of the ANOVA within environments. 

6.3.4. GWAS 

LD stabilised at about 20 Mbp, but it was largely variable between chromosomes and also 
within chromosomes (Figure 4). LD was larger closer to the centromere and it was smaller 
towards the extremes of the chromosome, where LD decayed very rapidly. The only 
chromosome that clearly had a different LD pattern was chromosome 5H, which showed a 
very large LD block covering the first half of the chromosome.  

For awn length, 15 QTLs were detected by a single-locus GWAS scan; 1 at the end of 
chromosome 1H, 3 at the second half of chromosome 2H, 2 at the end of chromosome 3H, 3 
at the end of chromosome 4H, 1 at the beginning of chromosome 5H and 6 in chromosome 
6H, (Figure 5, Figure S8). For most QTLs, their associated markers showed moderate to high 
correlations with each other, even when they belonged to different chromosomes (centre of 
Figure 5, Figure S9). The only exception was the QTL at the end of chromosome 1H, where 
the marker showed a very low correlation with the QTL detected on the other chromosomes. 
QTL additive effects differed across environments, ranging from -2.17 to 1.66 cm (21.6 and 
16.5% of the population mean). In most cases, QTLxE was related to changes in the 
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magnitude of the additive effects, without cross-overs. The only exception was the QTL at 
the end of chromosome 1H, which had a positive effect in BW4TUR and a negative effect in 
the other environments (except in BW3ATK and BS3ATK, where grain weight and awn 
length were not observed).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. LD decay along the chromosome. Grey dots show the LD decay in each of the sliding windows. 
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In the case of grain weight, 11 QTLs were detected (3 on chromosome 1H, one on 
chromosome 2H, four on chromosomes 1H and 4H). Additive effects ranged from -0.82 to 
5.13 mg g-2 (1.6 to 10.2% of the population mean). In contrast to awn length, QTLs for grain 
weight showed crossover type of QTLxE, with all QTLs showing a negative effect in 
BW4TUR and a positive effect in the other environments (except in BS3ATK, where grain 
weight was not observed).  

For heading date, 24 QTLs were detected (2 on chromosome 1H, 13 on chromosome 2H, 
2 on chromosome 3H, 1 on chromosome 4H, 4 on chromosome 5H and 2 on chromosome 
7H, Figure S8). The QTL at the second half of chromosome 1H (SNP at position 515.2 Mbp) 
was only 1.13 Mbp from the causal gene Protein FLOWERING LOCUS T (HvPPD-H2). 
The large QTL close to the HvPPD-H2 locus is in agreement with the contrast between winter 
(short photoperiod) and spring trials (longer photoperiod) that drives most of the GxE 
interactions. Most of the QTLs in chromosome 2H were in large LD with each other, 
suggesting that many of them might be significant just because they were correlated to the 
causal loci, instead of having a direct effect on the phenotype.  

Three of the QTLs on chromosome 2H (SNPs at positions 516.1, 528.8 and 543.4 Mbp) 
were within a large LD block of around  50 Mb that contains HvCen gene, that is the gene 
controlling the well-known early maturity locus Eam6 (Comadran et al., 2012). The large 
number of adjacent QTLs might be the result of high-LD blocks that might have been caused 
by genetic drift (in the case of landraces) or the selection process (in the case of formally-
bred genotypes). In Chromosome 7H (69.5 Mbp), a QTL at about 2 Mb from the 
FLOWERING LOCUS T 1 (Vrn-H3) gene was detected (Faure et al., 2007; Cockram et al., 
2015). An important effect of Vrn-H3 was to be expected because of the difference in the 
number of vernalizing days between winter and spring trials (Table 1), as previously reported 
by (Cuesta-Marcos et al., 2008). However, as the Vrn-H3 gene was not covered by the exome 
sequencing, the QTL detected at 69.5 Mbp might be the result of the LD between the adjacent 
SNPs and the Vrn-H3 gene. Additive QTLxE effects ranged from -3.55 to 4.30 days (2.2 and 
2.7% of the population mean). For heading date, a larger QTLxE was observed compared to 
the other traits, with most of the QTLs showing a cross-over type of interaction, commonly 
driven by the contrast between BS2JHI and the other environments, coinciding with the GxE 
described by the AMMI biplot (Figure 2). 

In the case of plant height, 27 QTLs were detected (1 on chromosome 1H, 4 on 
chromosome 2H, 8 on chromosome 3H, 1 on chromosome 4H, 10 on chromosome 5H, 2 on 
chromosome 6H and 1 on chromosome 7H. Although a large number of significant loci were 
observed in chromosome 5H, the peaks in this region were not very clear and for that reason, 
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it is likely that many of them correspond to loci that are in LD with the actual QTL (Figure 
S5). This was also reflected in a large block of highly correlated QTLs on chromosome 5H 
(Figures 9 and S10) and coincides with the wide LD block in this chromosome (Figure 4). 
Additive effects ranged from -6.55 to 7.01 days (8.3 to 8.9% of the population mean).  Most 
of the QTLs showed little QTLxE interaction, reflected in moderate changes in additive 
effects across environments, without at crossover type of interaction.   

6.3.5. Allele mining 

QTL location and its confidence interval determined by the local LD pattern were used 
to identify candidate genes. A total of 24, 30 and 51 candidate genes were identified for awn 
length, heading date and height. For grain weight, because there have been no reported 
candidate genes, all of the genes identified (1439) within the QTL boundaries were subjected 
to analyses. Only some of the candidate genes were partially or fully covered by the exome 
sequence data and had a good gene model available (24 for awn length, 968 for grain weight, 
23 for heading date and 51 for plant height). As some of the genes that were covered by the 
exome sequence suggested the presence of more than one haplotype block, 26 HTLs were 
tested in Equation (8) for awn length, 1473 for grain weight, 29 for heading date and 50 for 
plant height. From these HTLs, 11 were significant (p<0.05) for awn length, 708 for grain 
weight, 23 for heading date and 35 for plant height (Tables S2-S5, Figures 5-8). Additive 
effects for the HTLs were in general larger than those of the QTLs, reflecting the advantage 
of the haplotype analysis with respect to the single SNPs (Figures 5, 6, 7 and 8). 

When combining haplotypes in a multi-locus HTLs model like model (3.7), four HTLs 
were included for awn length, 12 for grain weight, nine for heading date and 11 for plant 
height (Tables S2, S3, S4, S5). The selected HTLs were more effective in explaining 
genotype main effect than genotype by environment interaction. The estimate for the 
genotypic variance was reduced by 18, 43, 30 and 53% for awn length, grain weight, heading 
date and plant height, whereas the GxE interaction variance was reduced by 6, 14, 16 and 
16%, for the traits in the same order (Tables 3 and 4, models 3.4 and 3.8). 

 

  



Chapter 6 

146 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Circos plot for awn length, with chromosome 1 shown in red and chromosome 7 shown in blue 
(clockwise). In the plot centre, orange lines connecting SNPs show absolute SNP correlations between 0.4 and 0.7 
and dark blue lines connecting SNPs show absolute SNP correlations larger than 0.7.  Dots in the first track (grey 
ring) show the –log10(p) values for the SNPs above the threshold of 4.19.  In the second track, blue and red bars at 
the QTL positions show additive effects in each environment estimated with a single-locus-multi-environment 
model (starting from inside; BW4TUR, BW3ATK, BW2JHI, BW1CRA, BS3ATK and BS2JHI). Bar size is 
proportional to the confidence interval around the QTL. In the third track, blue and red bars  show the additive main 
effects of each of the haplotype alleles from the candidate genes. Labels indicate the name of the candidate gene. 
Scale for the additive effects shown in the upper-left corner, with effects ranging from -2.17 to +1.93 cm.  Mean 
awn length was 10.45 cm.  
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Figure 6. Circos plot for grain weight, with chromosome 1 shown in red and chromosome 7 shown in blue 
(clockwise). In the plot centre, orange lines connecting SNPs show absolute SNP correlations between 0.4 and 0.7 
and dark blue lines connecting SNPs show absolute SNP correlations larger than 0.7.  Dots in the first track (grey 
ring) show the –log10(p) values for the SNPs above the threshold of 4.19. In the second track, blue and red bars at 
the QTL positions show additive effects in each environment estimated with a single-locus-multi-environment 
model (starting from inside; BW4TUR, BW3ATK, BW2JHI, BW1CRA, BS3ATK and BS2JHI). Bar size is 
proportional to the confidence interval around the QTL. In the third track, blue and red bars  show the additive main 
effects of each of the haplotype alleles from the candidate genes. Labels indicate the name of the candidate gene. 
Scale for the additive effects is shown in the upper-left corner, with effects ranging from -7.96 to +1.96 mg.  Mean 
grain weight was 49.79 mg.   
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Figure 7. Circos plot for heading date with chromosome 1 shown in red and chromosome 7 shown in blue 
(clockwise). In the plot centre, orange lines connecting SNPs show absolute SNP correlations between 0.4 and 0.7 
and dark blue lines connecting SNPs show absolute SNP correlations larger than 0.7.  Dots in the first track (grey 
ring) show the –log10(p) values for the SNPs above the threshold of 4.19. In the second track, blue and red bars at 
the QTL positions show additive effects in each environment estimated with a single-locus-multi-environment 
model (starting from inside; BW4TUR, BW3ATK, BW2JHI, BW1CRA, BS3ATK and BS2JHI). Bar size is 
proportional to the confidence interval around the QTL. In the third track, blue and red bars show the additive main 
effects of the first five haplotype alleles from the candidate genes. Labels indicate the name of the candidate gene. 
Scale for the additive effects is shown in the upper-left corner, with effects ranging from -6.06 to +5.51 days. Mean 
heading date was 155.37 days. 
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Figure 9. Circos plot for plant height, with chromosome 1 shown in red and chromosome 7 shown in blue 
(clockwise). In the plot centre, orange lines connecting SNPs show absolute SNP correlations between 0.4 and 0.7 
and dark blue lines connecting SNPs show absolute SNP correlations larger than 0.7.  Dots in the first track (grey 
ring) show the –log10(p) values for the SNPs above the threshold of 4.19. In the second track, blue and red bars at 
the QTL positions show additive effects in each environment estimated with a single-locus-multi-environment 
model (starting from inside; BW4TUR, BW3ATK, BW2JHI, BW1CRA, BS3ATK and BS2JHI). Bar size is 
proportional to the confidence interval around the QTL. In the third track, blue and red bars  show the additive main 
effects of each of the haplotype alleles from the candidate genes. Labels indicate the name of the candidate gene. 
Scale for the additive effects is shown in the upper-left corner, with effects ranging from -12.25 to +11.91 cm.  Mean 
plant height was 79.46 cm.  

 

All the alleles of the haplotypes included in the multi-locus HTLs model for awn length 
showed a geographical gradient from east to west, where the most distinctive genotypes 
originate from Japan, Korea and China (Figure S10). Part of the genotypes from Ethiopia, 
Yemen and Fertile Crescent also showed a different type of alleles, especially for 
HORVU4Hr1G085590 in chromosome 4H (Subtilisin-like protease). A gene of the 
subtilisin-protease family has been previously involved in awn development in rice (OsSLP  
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Bessho-Uehara et al., 2016). In Table 2, we show the additive effects across environments of 
two example genes that were included in the multi-locus HTLs model; 
HORVU3Hr1G093310 (the transcription factor bHLH62) and HORVU6Hr1G019700 
(Squamosa promoter-binding-like protein 3). The transcription factor bHLH62 has three 
haplotypes. However, only haplotype b showed a different additive effect, compared to the 
reference haplotype a and the other minor haplotype c in awn length.. The high-value 
haplotype b was most commonly present in subpopulation 4, composed by Asian genotypes 
(Table 2, Figure S10). Similarity searches indicated high similarity to rice gene 
Os01g0915600, identified as OsbHLH90 transcription factor (Li et al., 2006). This gene is 
phylogenetically close to OsbHLH93, also known as An1, that was described to control awn 
length in rice (Luo et al., 2013). HORVU6Hr1G019700 also contained 3 alleles. In this case, 
the effect of allele c was 2.1 cm shorter than allele a (20% of the population mean). Alleles 
a and b had similar effects. HORVU6Hr1G019700 encodes a protein sharing high similarity 
with the one encoded by rice gene OsSPL12. Transcription factors of the SQUAMOSA 
promoter binding protein-like (SPL)  family  play roles in flower development and other plant 
developmental processes (Chen et al., 2010). Similar to the situation of the bHLH 
transcription factor, the trait-increasing allele for Squamosa promoter-binding-like protein 3 
was mostly present in subpopulation 4, reinforcing the idea that Asian genotypes constitute 
a source of different alleles for awn length. 

The most important gene for grain weight was HORVU4Hr1G007040.1 in chromosome 
4H (Transcription factor HvINT-C). This gene did not follow a clear geographical pattern 
(Figure S10), but it matched closely to row type (row type could be predicted correctly from 
HORVU4Hr1G007040.1  for 97% of the genotypes, coinciding with  (Ramsay et al., 2011; 
Muñoz-Amatriaín et al., 2014)). Three haplotypes at this HTL were identified, with 
haplotypes b and c mainly 6 rows and haplotype a for 2 rows (Table 2). The fact that HTL 
alleles b and c have similar additive effects also suggests that HTL alleles b and c are 
functionally equivalent.  

The multi-locus HTLs model for heading date included nine HTLs, mainly known 
flowering time genes, such as the photoperiod-response genes HvPPD-H1 (Pseudo-response 
regulator 7) and HvPPD-H2 (Protein FLOWERING LOCUS T) and the earliness per se locus  
HvCEN  (also called Eam6/Protein TERMINAL FLOWER 1, (Comadran et al., 2012)). The 
HvPPD-H2 locus was not significant in the single-locus HTL model (Table S4). However, it 
was significant (p<0.001) after including the other flowering time genes. HvPPD-H1 
haplotypes showed some geographical distribution patterns, with haplotype a present mostly 
in European genotypes, haplotype f present mostly in genotypes from the Middle-East and 
haplotype g present most commonly in Japan, Korea, Ethiopia and the Fertile Crescent (Table 
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2). In Figure 9, we show the geographical distribution for a limited number of example genes. 
All the genes retained in the multi-HTL model were used to construct the adaptation classes. 
Haplotypes c, e and g had similar effects and reached heading earlier than haplotype a (Table 
2). However, this difference was greater in spring than in winter trials, coinciding with the 
GxE driven by the contrast between spring and winter trials and the more inductive 
photoperiod in spring trials (Table 1, Figure 2, coinciding with (Russell et al., 2016)). The 
haplotype for the HvCEN locus also showed some geographical patterns, with haplotype a 
dominating in higher latitudes, haplotype c mostly in central Asian genotypes and haplotype 
d mostly in African genotypes. Haplotype b was distributed across the whole range of sites 
of origin, but with a lower frequency in higher latitudes (Figure 9). Haplotype b and c were 
similar in their effects and were in general earlier than haplotype a and d, but this difference 
was larger in winter trials than in spring trials (Table 2).  HvPPD-H2 had several alleles, that 
were clustered into three major haplotypes (Table S4). These alleles did not show a clear 
geographical distribution, except for the fact that allele c was not present in Ethiopian 
genotypes. HvPPD-H2 alleles had a smaller effect than HvPPD-H1; allele b was in general 
later than the reference and allele c was in general earlier than the reference, except in 
BW2JHI, where both alleles were earlier than the reference (allele b=-0.8 and allele c=-2.02 
days). The Vrn-H3 gene on chromosome 7H was not covered by the sequence data and for 
that reason, it could not be tested. However, GWAS shows a QTL at about 2 Mb from this 
gene. In the same region of the QTL at chromosome 7H, we tested the MADS-box 
transcription factor 25, which was included in the multi-locus HTLs model. In this case, the 
significance of the MADS-box transcription factor 25 could be due to a direct effect or 
because of its LD with the Vrn-H3 gene.  

In the case of plant height, 11 loci were included in the multi-locus HTLs model (Table 
S5). All of them showed some geographical patterns, with a trend from East to West. The 
sdw1/denso (HORVU3Hr1G090980) and ABSCISIC ACID-INSENSITIVE 5-like protein 2 
are shown as examples in Figure 10. sdw1/denso is known to be responsible of the dwarf 
phenotype in barley (Jia et al., 2009). Gibberellin  20-oxidase 3 showed 3 major haplotypes, 
but 2 out of them had similar effects, associated with taller plants than the reference haplotype 
a. The additive effects of haplotypes b and c were around 10cm, similar across environments, 
except for BS2JHI, where they had a smaller effect (Table 2). The gene ABSCISIC ACID-
INSENSITIVE 5-like protein 2 had 6 haplotypes, from which haplotype b and c were similar 
and had a negative effect across environments (Table 2). Haplotypes e and f were also similar 
to each other and resulted in taller plants than the reference haplotype a, except in BS2JHI, 
where they had a similar effect than the reference haplotype.   
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Table 2. Examples of gene haplotypes, with the proportion of each subpopulation carrying a particular haplotype, additive effects across environments and mean standard 
error. 
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Table 3. Awn length and grain weight Wald statistic and p-value for the fixed model terms, variance components  and standard error for the random model terms in 
seven models differing in the partition of the genotype main effect and genotype by environment interaction. Model terms are indicated as follows; E=Environment, 
PC=Kinship principal components, R=Row number, S=Subpopulations, AC=adaptation classes, SNP=SNP at the QTL position. 

Awn Length 
  Model 3.1 Model 3.2 Model 3.3 Model 3.4 Model 3.5 Model 3.6 Model 3.7 Model 3.8 Model 3.9 

Type Term 
E S+S.E R+R.E PC PC+PC.E+S+S.E PC+PC.E+R+R.E PC+PC.E+AC+EC.E PC+PC.E+HTL+HTL.E PC+PC.E+SNP+SNP.E 

Wald/ 
 𝜎𝜎2 

pval/ 
s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
s.e 

Wald/ 
 𝜎𝜎2 

pval/  
s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
s.e 

Wald/ 
 𝜎𝜎2 

pval/  
s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
 s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
 s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
 s.e 

Fixed Group   151.51  <0.001 6.40 0.10   18.70 0.00 13.56 0.00 76.02  <0.001     
(Wald) Group.E   150.65  <0.001 15.99 0.07   47.08  <0.001 11.37 0.25 78.89  <0.001 130.80  <0.001 178.89  <0.001 

                    
Random Geno 2.14 0.20 1.46 0.14 2.12 0.20 1.36 0.13 1.32 0.13 1.31 0.13 1.09 0.11 1.11 0.12 1.03 0.11 
(Comp) Geno.E 1.74 0.08 1.54 0.07 1.73 0.08 1.50 0.07 1.45 0.07 1.49 0.07 1.40 0.06 1.40 0.06 1.38 0.06 

aic 5400 5146 5368 5025 4941 4987 4880 4872 4824 
N groups / loci     6 2     6 2 4 4 4 

Grain Weight 
  Model 3.1 Model 3.2 Model 3.3 Model 3.4 Model 3.5 Model 3.6 Model 3.7 Model 3.8 Model 3.9 

Type Term 
E S+S.E R+R.E PC PC+PC.E+S+S.E PC+PC.E+R+R.E PC+PC.E+AC+EC.E PC+PC.E+HTL+HTL.E PC+PC.E+SNP+SNP.E 

Wald/ 
 𝜎𝜎2 

pval/ 
s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
s.e 

Wald/ 
 𝜎𝜎2 

pval/  
s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
s.e 

Wald/ 
 𝜎𝜎2 

pval/  
s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
 s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
 s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
 s.e 

Fixed Group   99.82  <0.001 103.85  <0.001   18.79 0.00 147.82  <0.001       
(Wald) Group.E   69.65  <0.001 51.53  <0.001   45.74 0.00 31.47 0.00   595.02  <0.001 291.89  <0.001 

                    
Random Geno 34.98 2.94 26.80 2.35 26.65 2.33 24.18 2.15 23.07 2.08 16.06 1.55 22.71 2.02 13.85 1.4 15.91 1.57 
(Comp) Geno.E 22.64 0.86 21.90 0.84 21.99 0.84 21.77 0.84 21.40 0.83 21.46 0.83 19.77 0.76 18.78 0.76 20.20 0.80 

aic 11253 11050 11060 10920 10765 10708 10687 10013 10231 
N groups / loci     6 2     6 2 6 10 8 
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Table 4. Heading date and plant height Wald statistic and p-value for the fixed model terms, variance components  and standard error for the random model terms in 
seven models differing in the partition of the genotype main effect and genotype by environment interaction. Model terms are indicated as follows; E=Environment, 
PC=Kinship principal components, R=Row number, S=Subpopulations, AC=adaptation classes, SNP=SNP at the QTL position. 

Heading date 
  Model 3.1 Model 3.2 Model 3.3 Model 3.4 Model 3.5 Model 3.6 Model 3.7 Model 3.8 Model 3.9 

Type Term 
E S+S.E R+R.E PC PC+PC.E+S+S.E PC+PC.E+R+R.E PC+PC.E+AC+EC.E PC+PC.E+HTL+HTL.E PC+PC.E+SNP+SNP.E 

Wald/ 
 𝜎𝜎2 

pval/ 
 s.e 

Wald/ 
 𝜎𝜎2 

pval/  
s.e 

Wald/ 
 𝜎𝜎2 

pval/  
s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
s.e 

Wald/ 
 𝜎𝜎2 

pval/  
s.e 

Wald/ 
 𝜎𝜎2 

pval/  
s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
 s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
 s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
 s.e 

Fixed Group   166.98  <0.001 24.21  <0.001   6.71 0.25 2.98 0.40 102.20  <0.001     
(Wald) Group.E   311.05  <0.001 114.04  <0.001   43.71 0.01 48.93  <0.001 355.45  <0.001 756.45  <0.001 497.95  <0.001 

                    
Random Geno 25.93 2.10 17.59 1.47 24.52 1.99 15.95 1.34 15.82 1.34 15.92 1.34 12.49 1.07 10.96 1.00 10.61 0.94 
(Comp) Geno.E 15.35 0.51 13.26 0.44 14.56 0.49 12.68 0.42 12.56 0.42 12.46 0.42 10.70 0.36 10.43 0.37 10.92 0.37 

aic 13094 12627 12908 12406 12264 12298 11939 11348 11847 
N groups / loci     6 2     6 2 4 9 9 

Plant height 
  Model 3.1 Model 3.2 Model 3.3 Model 3.4 Model 3.5 Model 3.6 Model 3.7 Model 3.8 Model 3.9 

Type Term 
E S+S.E R+R.E PC PC+PC.E+S+S.E PC+PC.E+R+R.E PC+PC.E+AC+EC.E PC+PC.E+HTL+HTL.E PC+PC.E+SNP+SNP.E 

Wald/ 
 𝜎𝜎2 

pval/ 
 s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
 s.e 

Wald/ 
 𝜎𝜎2 

pval/  
s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
s.e 

Wald/ 
 𝜎𝜎2 

pval/  
s.e 

Wald/ 
 𝜎𝜎2 

pval/  
s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
 s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
 s.e 

Wald/ 
 𝜎𝜎2 

pval/ 
 s.e 

Fixed Group   67.32  <0.001 22.28  <0.001   19.00 0.00 9.29 0.03 110.80  <0.001     
(Wald) Group.E   452.94  <0.001 166.21  <0.001   33.92 0.11 18.57 0.24 247.81  <0.001 920.10  <0.001 555.94  <0.001 

                    
Random Geno 111.47 8.91 95.9 7.68 106.35 8.51 92.84 7.43 89.26 7.21 91.16 7.33 70.99 5.79 43.52 3.89 45.82 4.01 
(Comp) Geno.E 56.19 1.87 45.42 1.52 51.84 1.73 43.61 1.46 43.39 1.46 43.53 1.46 38.78 1.31 36.73 1.30 39.46 1.36 

aic 15927 15379 15671 15187 15004 15079 14759 13769 14315 
N groups / loci     6 2     6 2 6 11 11 
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6.3.6. Adaptation classes based on the multi-HTL model 

𝑦𝑦�𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻 was used to classify genotypes based on the additive effects of the haplotypes across 
environments. Such a classification is based on the alleles of genes that were shown to have 
an important phenotypic effect and for that reason, it is expected to give more insight about 
the GxE patterns in the field trials, than the subpopulations constructed with genome-wide 
similarity.  

The additive effects of the four genes selected for awn length, suggest the presence of 
four adaptation classes. AC1 was most common in European genotypes, AC2 dominated in 
Indian and Nepalese genotypes, AC3 was typical for genotypes from Japan, Korea and China, 
with a few from India.  AC4 dominated genotypes from the Fertile Crescent and Central Asia, 
with also an important representation in genotypes from the UK (Figure 10). The four 
adaptation classes were more associated to GxE than the six subpopulations, reflected in a 
better fit and a smaller residual genotype main effect and GxE of the models with adaptation 
classes and with explicit haplotypes (Tables 3, models 3.4, 3.8 and 3.9). AC2 and AC3, most 
commonly present in Asian genotypes, showed a positive interaction with BW4TUR, 
whereas AC1 tended to show some interaction with BS2JHI and BW1CRA. 

In the case of grain weight, the additive effects of the 10 HTLs in the multi-HTL model 
(6) suggest the presence of six adaptation classes. In general, all adaptation classes had both 
2- and 6-rowed genotypes, except for AC2, AC5 and AC6 that predominantly had 6-rowed 
genotypes. These groups were constructed considering a number of loci underlying GxE. For 
that reason, the large-main effect locus (Transcription factor HvINT-C) does not have a one 
to one relationship with the adaptation classes and the residual main effect was smaller when 
including the row type, instead of the ACs. In contrast, the residual GxE was smaller when 
considering the adaptation classes instead of the row type (Table 4, models 3.7 and 3.6). The 
reduction of the residual GxE when including the adaptation classes was mainly driven by 
the positive interaction between AC1 (most commonly found in genotypes from Eastern 
Europe and Ethiopia) with BW3TUR and by the positive interaction between AC3 (common 
in the UK) and BW3ATK. A compromise between both models was achieved when explicitly 
including HTLs (Tables 3 and 4, model 3.8). In this model, the first HTL represents row type 
(genotype main effect). The additional haplotypes account for genes with a smaller effect 
contributing to GxE.      
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Figure 10. Haplotypes for four of the HTLs used to construct the adaptation classes for heading date. 

The additive effects of the nine HTLs included in the multi-HTL model for heading date 
suggested the presence of four adaptation classes. AC2 was the most common class 
everywhere, whereas AC1 represented an important proportion of the genotypes in Europe, 
AC2 occurred often in Chinese genotypes, AC4 was common in central-Asian genotypes and 
AC5/AC6 occurred often in the fertile crescent and Middle-East (Figure 11). The adaptation 
classes were effective in capturing 31% of the genotype main effect and 17% of the GxE left 
after the kinship correction (Table  3, models 3.4 and 3.7). The reduction in GxE was driven 
by the contrast between AC1 and AC4/AC5 (Figure 2). AC1 was composed by an important 
proportion of winter formally-bred genotypes and showed a positive interaction with the 
spring trials. In contrast, AC4/AC5 had an important proportion of spring landraces and 
showed a positive interaction with the winter trials. The GxE pattern observed in the AMMI 
biplots in Figure 2 can also be observed when explicitly classifying the genotypes in spring-
landraces, formally-bred winter and formally-bred spring genotypes (Figure 3). In that case, 
the interaction is observed because formally-bred winter genotypes flower earlier than the 
ideotype and spring landraces flower later than the ideotype.  

The 11 loci included in the multi-HTL model for plant height suggested the presence of 
six adaptation classes. These adaptation classes were very effective in capturing part of the 
genotype main effect and GxE (the genotype main effect was reduced by 53% and the 
interaction by 16%, Table 4, models 3.4 and 3.7). AC1 was most common in European 
genotypes, whereas AC4 was most common in genotypes from the Fertile Crescent and 
Africa (Figure 10).   
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Figure 11. Geographical distribution of the adaptation classes (AC) constructed from the multi-HTL model. 

6.4. Discussion 

In this paper, we characterise the genetic diversity of 371 of the 511 genotypes belonging 
to the EU-Whealbi-barley collection, from the perspective of genotype adaptation to 
contrasting environments in Europe and Eurasia. Genetic diversity studies commonly 
consider allele frequency as a measure of fitness, assuming that the most frequent allele in a 
given location contributes most to the adaptation to local conditions (Orr, 2010; Günther & 
Coop, 2013). However, assessing the adaptation to the TPE is a different problem than the 
one of searching for local adaptation to the sites of origin because the allele frequency at the 
sites of origin is not very informative about the value of alleles for adaptation to the TPE. In 
this paper, we explicitly dissect GxE into its underlying genetic components, assuming that 
the environments we explored with the field trials are relevant for the European TPE. In this 
dissection, we used the additive effects of phenotype-related loci as an indication of 
adaptation. A similar approach has been previously used in genomic prediction to 
characterise the structure of genotypes and environments based on genome-wide additive 
effects (Heslot et al., 2013).  

As with most diversity collections, EU-Whealbi-barley is largely structured, posing a 
number of statistical methodological challenges to identify genomic regions regulating the 
target trait. Genotypes that are genetically similar because of population structure share both 
causal and non-causal alleles. Furthermore, the highly repetitive nature of the barley genome 
(Mascher et al., 2017) leads to complex collinearities between different regions in the 
genome, like the one observed for the four traits we analysed (Figures 5-8). These 
collinearities and the population structure potentially lead to spurious marker-trait 
associations  (Korte & Farlow, 2013; Vilhjálmsson & Nordborg, 2013). To reduce the 
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number of false positives, we used a mixed model approach including kinship principal 
components to account for population structure (Price et al., 2006; Hoffman, 2013; Millet et 
al., 2016). The kinship represents the genetic similarities between genotypes and reflects 
population sub-structuring, when it is present, averaged genome-wide (Astle & Balding, 
2009). Unfortunately, any relationship matrix used to correct for population structure is only 
a proxy to the real underlying genetic background (Vilhjálmsson & Nordborg, 2013). It is 
known that loci with an important effect on genotype performance are under stronger genetic 
differentiation than the average SNP. The gene HvINT-C is a clear example of this, (Russell 
et al., 2016), showing that genotypic differentiation is not homogeneous along the genome 
and that this heterogeneity is not reflected in the kinship, where all SNPs are averaged. An 
alternative way of accounting for the background  structure is by selecting a small number of 
SNPs that are associated with the phenotype (causal SNPs or SNPs that are nearby causal 
SNPs, (Listgarten et al., 2011) . Our approach was similar to the method proposed by  
(Listgarten et al., 2011) because we built the final multi-HTL model in a forward procedure 
in which we scan in the QTL region, conditioning on HTL that resulted significant in the 
previous round of testing. Another strategy to deal with the problems of collinearities is by 
simultaneous estimation of genetic variance explained by all SNPs (Bayes-R, Moser et al., 
2015). Unfortunately, the currently Bayes-R method is only available for single-environment 
data. Thus, such an approach would consider an initial single-environment GWAS with 
Bayes-R to select candidate loci, followed by the estimation of the additive effects of those 
candidates across environments in a mixed model like model (3.8). 

A second challenge to identify causal loci is how to deal with the complex genetic 
interactions commonly found in quantitative traits. Examples of these interactions are the 
pleiotropic effects of row type genes (e.g. HvINT-C) on grain weight, grain number and grain 
yield (Liller et al., 2015). Another common interaction occurs between flowering time and 
yield components, as reported by (Maurer et al., 2016; Mikolajczak et al., 2016; Wang et al., 
2016). One alternative to model these interactions is to express explicitly the sensitivity of 
genes to environmental conditions via ecophysiological models, as shown for flowering time 
in barley by (Yin et al., 2005), or via graphical models and structural relations models (Wang 
& van Eeuwijk, 2014; Wang et al., 2015; Alimi, 2016). An alternative is the multi-locus HTL 
model we presented here, which is commonly used in human genetics,  the so called SKAT 
method (sequence kernel association test (Wu et al., 2011)).  SKAT is a supervised test for 
the joint effects of multiple variants in a region on a phenotype. Regions can be defined by 
genes (as we did) or moving windows across the genome. The main difference between our 
method and SKAT is that we used linear mixed models, whereas SKAT models epistatic 
effects within the kernel machine regression framework, showing promise as a tool to deal 
with the complex gene interactions regulating barley traits.  
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In spite of all the challenges posed by a highly structured population, we were able to 
detect promising candidate genes some of which are known to have an important effect on 
the traits included in this analysis. Examples were the flowering time genes HvPPD-H1, 
HvPPD-H2 and HvCEN, which were associated with the contrasting genotypic response to 
spring and winter trials (Turner et al., 2005; Faure et al., 2007; Cuesta-Marcos et al., 2008; 
Comadran et al., 2012; Russell et al., 2016). We also identified the MADS box genes as 
having an important effect on flowering time, showing promise for further investigation of 
the genetic basis of the vernalisation response (Trevaskis et al., 2007). However, as they are 
in the regions neighbouring the Vrn-H3 gene, it is also possible that MADS box genes  are 
significant because they are in LD with the causal loci. The large number of alleles for 
HvCEN identified in our study was in line with the 13 haplotypes reported by (Comadran et 
al., 2012). We used simple clustering methods to reduce the number of alleles with low 
frequency. However, as some of the alleles we identified showed a similar effect on the 
phenotype, further research needs to be conducted to assess their functional equivalence 
(synonymous/ non-synonymous mutations). Other examples of genes were the  AP2-like 
ethylene-responsive transcription factor for heading date (Xue & Loveridge, 2004) and 
sdw1/denso, reported to regulate plant height (Jia et al., 2009). 

The value of a combined genotypic and phenotypic analysis resides in providing the 
means to prioritise genomic regions that might be related to the phenotype and assess which 
groups of genotypes are likely to carry contrasting alleles. The identification of contrasting 
alleles and the adaptation classes also gives insight into which geographical regions are a 
promising source of alleles useful for European breeding programmes, as shown for the 
contrast between awn length alleles between Asian genotypes and the rest. In the awn length 
example, our strategy was able to point out the Asian genotypes as a source of novel alleles, 
in line with what was reported by (Yuo et al., 2012) for the Lks2 gene. Such contrasting 
genotypes can be used for crosses, to search for causal genes (Ellis et al., 2000) and provide 
breeders with pre-breeding germplasm. In such crosses, the availability of high-density 
genotyping like exome sequence data becomes a clear advantage for allele mining research, 
with respect to SNP chips. One strategy to reduce genotyping costs and make allele mining 
more affordable is by characterising the progeny at a lower density and then impute the 
missing SNPs from the high-density exome sequence data (van Binsbergen et al., 2014, 
2016).  
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Figure S1. Scatter plots for principal components representing Kinship matrix of the 371 H. vulgare genotypes. 
Symbol colour represents each of the six subpopulations constructed with the cluster analysis.  

 

 

 

 

 

 

 

Figure S2. Scatter plots for principal components representing Kinship matrix of the 371 H. vulgare genotypes. 
Grey symbols represent 2-rowed barley, blue symbols represent 6-rowed barley, red symbols represent the deficient 
type and orange symbols represent the intermedium type.  
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Figure S3. Scatter plots for principal components representing Kinship matrix of the 371 H. vulgare genotypes. 
Different symbols indicate the counties of origin. 
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Figure S4. Boxplots for awn length, grain weight, heading date and plant height across environments. Symbol 
colours represent the six subpopulations (orange=subpopulation 1, blue=subpopulation 2, black= subpopulation 3, 
grey=subpopulation 4, green=subpopulation 5 and red=subpopulation 6). Environments are presented in the 
following order: BS2JHI, BS3ATK, BW1CRA, BW2JHI, BW3ATK and BW4TUR. 
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Figure S5. AMMI biplots for awn length. In the left panels, colours show the six subpopulations identified with the 
cluster analysis. In the right panels, colours show the adaptation classes constructed with the multi-HTL model 
(same colours as in Figure 9).  
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Figure S6. AMMI biplots for grain weight. In the left panels, colours show the six subpopulations identified with 
the cluster analysis. In the right panels, colours show the adaptation classes constructed with the multi-HTL model 
(same colours as in Figure 9).  
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Figure S7. AMMI biplots for plant height. In the left panels, colours show the six subpopulations identified with 
the cluster analysis. In the right panels, colours show the adaptation classes constructed with the multi-HTL model 
(same colours as in Figure 9).  
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Figure S8. Manhattan plots for the multi-environment GWAS of Awn Length, Grain Weight, Heading date and 
Plant height. Red dots show the QTL positions.  
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Figure S9. Absolute correlation between SNPs at the QTL positions. 
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Figure S10. Geographical distribution for haplotypes of two genes per trait that were included in the multi-locus 
multi-environment model. 
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Table S1. Heading date of the ideotype and of the genotypes used to calculate the target heading date. 

Country Trial Variety Heading 

Scotland spring BS2JHI Ideotype 88 

  
Aurelia (WB017) 86 

  
Irina (WB016) 89 

  
Orphelia (WB018) 89 

Hungary spring BS3ATK Ideotype 76 

  
Vada (WB228) 78 

  
Varunda (WB230) 73 

Italy BW1CRA Ideotype 186 

  
AMILLIS (WB037) 185 

  
ALDEBARAN (WB020) 186 

  
KETOS (WB025) 186 

  
PONENTE (W026) 186 

  
SIXTINE (WB191) 187 

Scotland winter BW2JHI Ideotype 222 

  
Escadre (WB011) 216 

  
KW Capella (WB006) 217 

  
KW Glacier (WB004) 219 

  
Meridian (WB010) 220 

  
KW Tower (WB005) 223 

  
KW Cassia (WB003) 224 

  
Joy (WB008) 226 

  
Saffron (WB007) 226 

  
Wintmalt (WB009) 232 

Hungary winter BW3ATK Ideotype 197 

  
Aldebaran (WB020) 192 

  
Tif[f]any (WB030) 196 

  
Saffron (WB007) 198 

  
Keeper (WB015) 199 

  
Joy (WB008) 201 

Turkey winter BW4TUR Ideotype 183 

    Tarm92 (WB031) 183 
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Table S2. Chromosome, gene position, haplotype block and p-value from the single-locus scan for the haplotypes 
tested for awn length. Haplotypes retained in the multi-locus multi-environment model and used to construct the 
adaptation classes are shown in bold. 

Chr gene GeneStart GeneEnd Annotation block pvalue 

3H HORVU3Hr1G077500 573268831 573269508 Protein BIG GRAIN 1 1 1.97E-11 

3H HORVU3Hr1G093310 641851932 641855001 Transcription factor bHLH62 2 1.37E-09 

3H HORVU3Hr1G093310 641851932 641855001 Transcription factor bHLH62 1 2.21E-08 

6H HORVU6Hr1G019700 53909817 53916886 Squamosa promoter-binding-like 
protein 3 2 1.67E-07 

2H HORVU2Hr1G105960.1 708228357 708231094 Transcription factor bHLH96 1 2.38E-06 

4H HORVU4Hr1G085590 632170302 632174004 Subtilisin-like protease 1 1.11E-02 

2H HORVU2Hr1G088460 632848314 632849588 Auxin-responsive GH3 family 
protein 1 1.71E-02 

2H HORVU2Hr1G087490 628420689 628422821 TRICHOME BIREFRINGENCE-
LIKE 11 1 1.89E-02 

6H HORVU6Hr1G019700 53909817 53916886 Squamosa promoter-binding-like 
protein 3 1 2.28E-02 

6H HORVU6Hr1G074970 517270501 517273811 Ethylene-responsive transcription 
factor 1 1 3.65E-02 

2H HORVU2Hr1G105980.2 708254388 708259197 RING-H2 finger protein ATL51 1 4.98E-02 

2H HORVU2Hr1G106030.2 708355239 708356004 Transcription factor bHLH96 1 1.18E-01 

6H HORVU6Hr1G074810 515985411 515985781 EPIDERMAL PATTERNING 
FACTOR-like protein 9 1 1.42E-01 

1H HORVU1Hr1G091110 547422197 547427207 Isoprenylcysteine alpha-carbonyl 
methylesterase ICME 1 1.45E-01 

3H HORVU3Hr1G077850 575015942 575019199 Calpain-D 1 2.06E-01 

2H HORVU2Hr1G088030 631619646 631620742 proliferating cell nuclear antigen 2 1 2.70E-01 

2H HORVU2Hr1G088030 631619646 631620742 proliferating cell nuclear antigen 2 2 5.12E-01 

6H HORVU6Hr1G075640 520976419 520981459 AP2-like ethylene-responsive 
transcription factor 1 5.64E-01 

4H HORVU4Hr1G082560 622608023 622610981 Two-component response regulator 
ORR22 1 6.99E-01 

3H HORVU3Hr1G093110 640891989 640894135 EPIDERMAL PATTERNING 
FACTOR-like protein 9 1 7.36E-01 

1H HORVU1Hr1G091110 547422197 547427207 Isoprenylcysteine alpha-carbonyl 
methylesterase ICME 2 8.91E-01 

4H HORVU4Hr1G082560 622608023 622610981 Two-component response regulator 
ORR22 2 9.16E-01 

3H HORVU3Hr1G078330 577713926 577718729 MORC family CW-type zinc finger 
protein 3 1 9.48E-01 
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Table S3. Chromosome, gene position, haplotype block and p-value from the single-locus scan for the 50 most 
significant haplotypes tested for grain weight. Haplotypes retained in the multi-locus multi-environment model and 
used to construct the adaptation classes are shown in bold. 
Chr gene GeneStart GeneEnd Annotation block pvalue 
4H HORVU4Hr1G007020.2 17438157 17446158 Transmembrane Fragile-X-F-associated 

protein 
1 2.08E-23 

4H HORVU4Hr1G007050.2 17916120 17919867 Phytanoyl-CoA dioxygenase domain-
containing protein 1 

1 1.07E-20 

4H HORVU4Hr1G007040.1 17599034 17600737 HvINT-C 1 4.32E-17 
2H HORVU2Hr1G103490.27 700173292 700181605 Disease resistance protein 3 1.61E-16 
2H HORVU2Hr1G103580.13 700387353 700398095 SIT4 phosphatase-associated family protein 

isoform 5 
1 1.64E-16 

1H HORVU1Hr1G019500.3 73807416 73810946 sucrose-phosphatase 1 1 3.04E-15 
4H HORVU4Hr1G086350.1 633907967 633909731 HXXXD-type acyl-transferase family protein 1 7.92E-15 
1H HORVU1Hr1G019380.2 73145936 73147775 HXXXD-type acyl-transferase family protein 1 2.43E-14 
2H HORVU2Hr1G103490.27 700173292 700181605 Disease resistance protein 1 2.60E-14 
5H HORVU5Hr1G105410.8 621489628 621493731 undescribed protein 1 8.18E-14 
5H HORVU5Hr1G105250.2 621065239 621075464 methionine S-methyltransferase 3 8.18E-14 
1H HORVU1Hr1G077600.2 517975530 517979750 F-box family protein 1 8.87E-14 
4H HORVU4Hr1G088060.4 639213994 639219642 Oxysterol-binding protein-related protein 2A 1 1.31E-13 
1H HORVU1Hr1G077820.10 518614904 518621086 Poly [ADP-ribose] polymerase 3 2 6.25E-13 
5H HORVU5Hr1G103330.3 615398310 615401415 40S ribosomal protein S12 2 7.62E-13 
2H HORVU2Hr1G103330.2 699803417 699806529 Transcription factor GTE7 3 1.09E-12 
2H HORVU2Hr1G103340.2 699805285 699808226 unknown function 1 1.55E-12 
1H HORVU1Hr1G019320.3 72455521 72463987 ankyrin repeat-containing protein 2 1 1.99E-12 
2H HORVU2Hr1G103460.3 700117295 700124639 Disease resistance protein 1 2.48E-12 
1H HORVU1Hr1G007480.1 15304943 15305722 Bowman-Birk type trypsin inhibitor 1 5.18E-12 
1H HORVU1Hr1G017830.1 61356166 61357141 Histone superfamily protein 1 1.16E-11 
1H HORVU1Hr1G017770.2 61271314 61272801 Auxin-responsive protein IAA4 1 1.48E-11 
1H HORVU1Hr1G007600.14 15611399 15615821 E3 UFM1-protein ligase 1 homolog 1 1.65E-11 
1H HORVU1Hr1G019480.1 73571033 73572205 Queuine tRNA-ribosyltransferase 1 2.34E-11 
1H HORVU1Hr1G077900.1 518820575 518824592 Transcription initiation factor IIF, beta subunit 1 2.43E-11 
5H HORVU5Hr1G059030.1 460998110 461000300 Protein kinase superfamily protein 1 4.84E-11 
1H HORVU1Hr1G077710.2 518228534 518231920 FAR1-related sequence 5 1 4.85E-11 
4H HORVU4Hr1G087110.9 636203381 636206530 Fatty acyl-CoA reductase 1 3 5.16E-11 
2H HORVU2Hr1G104170.1 702218400 702219149 Nodulation-signaling pathway 1 protein 1 5.33E-11 
5H HORVU5Hr1G060140.8 470768621 470817144 Endoglucanase 11 3 9.22E-11 
5H HORVU5Hr1G059990.5 468849932 468859086 unknown protein 1 1.08E-10 
2H HORVU2Hr1G103330.2 699803417 699806529 Transcription factor GTE7 2 1.23E-10 
2H HORVU2Hr1G103210.2 699436039 699438796 Beta-lactamase domain-containing protein 2 1 1.25E-10 
2H HORVU2Hr1G103220.3 699442141 699447747 polyamine oxidase 2 1 1.62E-10 
5H HORVU5Hr1G103180.1 615129596 615133117 Ferredoxin--NADP reductase 2 1.92E-10 
5H HORVU5Hr1G060110.16 470603383 470607369 malonyl-CoA decarboxylase family protein 1 2.55E-10 
1H HORVU1Hr1G017900.3 61919204 61923605 Transcription factor PIF3 2 3.90E-10 
4H HORVU4Hr1G007090.1 18336047 18342837 Protein of unknown function (DUF1295) 1 4.28E-10 
5H HORVU5Hr1G103080.2 614933658 614938213 Arv1-like protein 1 4.45E-10 
1H HORVU1Hr1G077560.1 517789252 517792319 L-tyrosine decarboxylase 1 4.52E-10 
5H HORVU5Hr1G059930.6 468282593 468287773 PCI domain-containing protein 2 1 6.45E-10 
5H HORVU5Hr1G060090.2 470353664 470367603 Lysine-specific demethylase 3B 1 7.46E-10 
2H HORVU2Hr1G103310.2 699752648 699757948 Nucleoredoxin 1 9.92E-10 
4H HORVU4Hr1G084670.7 629524229 629528665 PLAC8 family protein 1 1.03E-09 
4H HORVU4Hr1G084680.5 629524254 629534446 Homeobox protein knotted-1-like 3 1 1.03E-09 
1H HORVU1Hr1G077680.2 518159277 518160365 Ethylene-responsive transcription factor 1B 1 1.92E-09 
5H HORVU5Hr1G059310.5 463951526 463954263 Elongated mesocotyl1 1 2.18E-09 
5H HORVU5Hr1G060140.8 470768621 470817144 Endoglucanase 11 1 3.98E-09 
4H HORVU4Hr1G007120.2 18550241 18555863 Protein of unknown function, DUF593 1 4.13E-09 
1H HORVU1Hr1G077770.9 518523566 518529444 Outer envelope protein 80, chloroplastic 1 5.07E-09 
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Table S4. Chromosome, gene position, haplotype block and p-value from the single-locus scan for the haplotypes 
tested for heading date. Haplotypes retained in the multi-locus multi-environment model and used to construct the 
adaptation classes are shown in bold. 
chr gene GeneStart GeneEnd Annotation block pvalue 

2H HORVU2Hr1G113880 730027508 730030208 AP2-like ethylene-responsive transcription factor 1 1.2E-25 

2H HORVU2Hr1G072750 523377523 523379139 Protein TERMINAL FLOWER 1 1 4.5E-25 

2H HORVU2Hr1G017020 39326257 39327426 ABSCISIC ACID-INSENSITIVE 5-like protein 3 1 3.4E-24 

5H HORVU5Hr1G114420 643795341 643796978 Pentatricopeptide repeat-containing protein 1 7.9E-21 

2H HORVU2Hr1G080490 583370076 583390546 MADS-box transcription factor 27 1 9.7E-17 

1H HORVU1Hr1G039150 273602090 273604169 CCT motif family protein 1 7.6E-16 

1H HORVU1Hr1G076380 514008170 514016820 Homeobox protein HOX1A 1 3.8E-11 

2H HORVU2Hr1G013400 29123785 29127889 Pseudo-response regulator 7  
(Phd-H1) 

1 1.5E-10 

5H HORVU5Hr1G086780 577242591 577250665 NAC transcription factor 1 1.8E-08 

4H HORVU4Hr1G071420 580566011 580574138 FRIGIDA-like protein 1 4.3E-08 

7H HORVU7Hr1G033820 69932169 69935928 auxin response factor 19 2 2.6E-05 

7H HORVU7Hr1G023940 37608007 37620437 MADS-box transcription factor 25 1 3.7E-05 

2H HORVU2Hr1G113820 729806528 729807892 WUSCHEL related homeobox 4 2 5.7E-05 

2H HORVU2Hr1G065450 449824251 449825110 flowering promoting factor 1 1 9.0E-05 

7H HORVU7Hr1G033820 69932169 69935928 auxin response factor 19 1 3.6E-04 

2H HORVU2Hr1G113820 729806528 729807892 WUSCHEL related homeobox 4 1 7.6E-04 

2H HORVU2Hr1G017270 40107707 40108374 WUSCHEL related homeobox 12 1 1.1E-03 

2H HORVU2Hr1G079220 573587961 573593078 cryptochrome 1 1 1.2E-03 

7H HORVU7Hr1G024000 37888165 37906750 MADS-box transcription factor 25 1 6.1E-03 

1H HORVU1Hr1G076480 514260347 514272318 trehalose phosphate synthase 3 9.1E-03 

1H HORVU1Hr1G076490 514369019 514370593 ovate family protein 4 1 9.2E-03 

1H HORVU1Hr1G076480 514260347 514272318 trehalose phosphate synthase 2 1.4E-02 

2H HORVU2Hr1G087310 627136997 627141298 AP2-like ethylene-responsive transcription factor 2 2.0E-02 

1H HORVU1Hr1G076480 514260347 514272318 trehalose phosphate synthase 1 8.1E-02 

1H HORVU1Hr1G076430 514098183 514100647 Protein FLOWERING LOCUS T   
(Phd-H2) 

1 1.4E-01 

2H HORVU2Hr1G087310 627136997 627141298 AP2-like ethylene-responsive transcription factor 1 3.1E-01 

2H HORVU2Hr1G078880 571078484 571079654 Gibberellin receptor GID1L2 1 3.3E-01 

2H HORVU2Hr1G087260 626863212 626868543 NAC domain containing protein 6 1 3.8E-01 

2H HORVU2Hr1G065450 449824251 449825110 flowering promoting factor 1 2 6.3E-01 
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Table S5. Chromosome, gene position, haplotype block and p-value from the single-locus scan for the haplotypes 
tested for plant height. Haplotypes retained in the multi-locus multi-environment model and used to construct the 
adaptation classes are shown in bold. 
chr gene GeneStart GeneEnd Annotation block pvalue 

3H HORVU3Hr1G069960 529679099 529680512 RING/U-box superfamily protein 1 1.1E-17 

3H HORVU3Hr1G030260 143069684 143079659 Cytochrome P450 superfamily protein 1 5.8E-17 

3H HORVU3Hr1G033740 178816679 178819800 WRKY family transcription factor 1 1.6E-16 

3H HORVU3Hr1G090980 634078038 634081600 sdw1/denso 2 9.3E-16 

6H HORVU6Hr1G028790 115444384 115446574 WRKY family transcription factor 1 5.9E-15 

3H HORVU3Hr1G084360 607244129 607247713 ABSCISIC ACID-INSENSITIVE 5-like protein 2 1 7.2E-15 

2H HORVU2Hr1G072750 523377523 523379139 Protein TERMINAL FLOWER 1 1 9.7E-15 

3H HORVU3Hr1G032230 163938676 163943047 Auxin response factor 1 1 2.3E-14 

5H HORVU5Hr1G014300 50382307 50386200 Auxin-responsive protein IAA30 1 4.1E-14 

7H HORVU7Hr1G034180 70963343 70964797 UDP-Glycosyltransferase superfamily protein 1 3.8E-10 

6H HORVU6Hr1G030080 124451142 124455037 HvCO7 1 1.4E-08 

3H HORVU3Hr1G031800 159598302 159604013 elongation defective 1 protein / ELD1 protein 1 2.6E-07 

7H HORVU7Hr1G034170 70870250 70870660 UDP-Glycosyltransferase superfamily protein 1 1.2E-06 

5H HORVU5Hr1G000510 2177242 2178665 Protein FANTASTIC FOUR 3 1 6.3E-06 

5H HORVU5Hr1G001090 3762210 3766599 BEL1-like homeodomain 6 2 4.5E-05 

5H HORVU5Hr1G000010 248988 254172 sucrose transporter 4 1 6.5E-05 

3H HORVU3Hr1G031020 152428027 152430096 Cytochrome P450 superfamily protein 1 9.2E-05 

5H HORVU5Hr1G014290 49955790 49957183 Auxin-responsive protein IAA31 1 1.5E-04 

5H HORVU5Hr1G013990 47175174 47177224 Cytochrome P450 superfamily protein 1 3.2E-04 

5H HORVU5Hr1G013880 47057115 47059536 Cytochrome P450 superfamily protein 1 3.9E-04 

2H HORVU2Hr1G112280 725520002 725524192  AP2-like ethylene-responsive transcription factor 1 4.0E-04 

3H HORVU3Hr1G084450 607796718 607799782 Cytochrome P450 superfamily protein 1 5.5E-04 

3H HORVU3Hr1G027430 116881300 116883595 Cytokinin dehydrogenase 2 1 8.3E-04 

3H HORVU3Hr1G026300 106052467 106053272 NAM-like protein 1 9.0E-04 

3H HORVU3Hr1G027590 119252012 119255903 Protein FLOWERING LOCUS T 1 1.3E-03 

7H HORVU7Hr1G033230 67727548 67732222 sucrose synthase 4 3 1.9E-03 

6H HORVU6Hr1G031510 133941022 133941817 Auxin transporter-like protein 3 1 2.7E-03 

7H HORVU7Hr1G033230 67727548 67732222 sucrose synthase 4 4 4.1E-03 

3H HORVU3Hr1G031460 156625895 156629839 Auxin-responsive protein IAA17 1 4.6E-03 

7H HORVU7Hr1G033230 67727548 67732222 sucrose synthase 4 1 5.1E-03 

2H HORVU2Hr1G112280 725520002 725524192  (AP2-like ethylene-responsive transcription factor 2 5.4E-03 

3H HORVU3Hr1G026990 113025336 113033485 Homeobox-leucine zipper protein family 1 6.0E-03 

3H HORVU3Hr1G090980 634078038 634081600 gibberellin 20-oxidase 3 1 7.8E-03 

5H HORVU5Hr1G001090 3762210 3766599 BEL1-like homeodomain 6 1 2.3E-02 

3H HORVU3Hr1G083820 605272081 605273358 NAC domain protein 1 3.1E-02 
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7.1. Introduction 

With the availability of cheaper molecular markers, genomic prediction has become a 
promising tool to increase the number of genotypes considered for selection (Poland et al., 
2012; Crossa et al., 2013; Hickey et al., 2014). In genomic prediction, additive and non-
additive effects for the target trait (e.g. yield) are estimated in a training set of genotypes, 
which has genotypic and phenotypic observations. Those estimates are used to predict the 
phenotypes of the collection of genotypes for which no phenotypic information is available, 
the so called test set (Meuwissen, 2007). For predictions to be accurate, training and test sets 
must belong to the same target population of genotypes (TPG) (Albrecht et al., 2014; Bustos-
Korts et al., 2016a). The TPG contains all possible genotypes that could be considered as 
selection candidates (Jannink et al., 2010; Schulz-Streeck et al., 2012; Albrecht et al., 2014). 
In the same way as for the TPG, the environments where genotypes were phenotyped should 
represent well the target population of environments (TPE). The TPE delineates the future 
growing conditions of the genotypes in the TPG (Comstock & Moll, 1963; Cooper & 
Hammer, 1996; Cooper et al., 2014a). Breeders aim to identify those genotypes in the TPG 
that are best adapted to the TPE, where adaptation can be understood as a better performance 
than a reference genotype in a defined environmental range (van Eeuwijk et al., 2016). The 
adaptation patterns of the TPG across the TPE during the growing season are also called ‘the  
landscape of trait dynamics’ (Chapman et al., 2003; Hammer et al., 2005; Messina et al., 
2011; Cooper et al., 2014b,a; Technow et al., 2015). 

Complex target traits like yield show low genomic prediction accuracy because they 
frequently suffer from low heritability and are regulated by a large number of loci with small 
effects (Crossa et al., 2013; Sorrells, 2015). Complex traits can be decomposed into a number 
of underlying genetically-correlated traits, called ‘intermediate traits’ (Yin et al., 2004), 
‘indicator traits’ (Calus & Veerkamp, 2011), ‘secondary traits’ (Rutkoski et al., 2016) or 
‘components’ (Porter & Gawith, 1999) that might have a simpler genetic basis and larger 
heritability than the target trait (Yin et al., 2004; Tardieu & Tuberosa, 2010; Cabrera-Bosquet 
et al., 2016). For simplicity, we will use ‘intermediate traits’ to refer to all the traits that are 
genetically correlated to yield. As genetically-correlated traits are informative with respect 
to each other, modelling yield and its intermediate traits simultaneously allows to achieve 
larger yield genomic prediction accuracy, compared to single-trait genomic prediction 
(Dekkers, 2007; Jia & Jannink, 2012; Alimi, 2016; Biscarini et al., 2017; Sun et al., 2017). 
Another condition for multi-trait genomic prediction to show a larger accuracy than single 
trait prediction is that the heritability of the intermediate trait is large (Jia & Jannink, 2012). 
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Phenotyping additional intermediate traits implies an investment that does not always pay 
off by a larger prediction accuracy. Therefore, it is crucial for breeders to estimate in advance 
whether their phenotyping strategy for intermediate traits is likely to increase prediction 
accuracy of the target trait. This is especially relevant for high throughput phenotyping 
(HTP). HTP makes the phenotyping of additional traits affordable but may suffer from large 
measurement error. A large measurement error reduces trait heritability and prediction 
accuracy of the target trait (Cabrera-Bosquet et al., 2012; Araus & Cairns, 2014; Yang et al., 
2014; Haghighattalab et al., 2016; Rutkoski et al., 2016).  

A strategy to evaluate the potential of phenotyping strategies is by combining crop growth 
models and statistical-genetic models to characterize trait correlations and heritability over 
time (Cooper et al., 2002). APSIM is an example of widely-used crop growth models, which 
characterizes system performance over time with an equal emphasis on crop, weather, soil 
and agronomic management (Wang et al., 2002; Keating et al., 2003; Holzworth et al., 2014). 
The algorithms in APSIM predict yield as a nonlinear combination of intermediate 
phenotypes, which are calculated indirectly from environmental conditions and from a 
number of physiological parameters (Wang et al., 2002; Keating et al., 2003; Holzworth et 
al., 2014). APSIM parameters correspond to basic mechanisms, at the bottom of trait 
hierarchy, that modulate crop response to the environmental conditions and can be regarded 
as constant across environments (Cooper et al., 2002). APSIM parameters involve 
development, capture and use efficiency of environmental resources and biomass partitioning 
to the different plant organs. Genotypes can differ in their APSIM parameter values, leading 
to phenotypic differences for yield and intermediate traits across environments. Examples of 
phenotype prediction across environments using APSIM with genotype-dependent 
parameters can be seen in (Chapman et al., 2003; Chenu et al., 2009, 2011, 2013, Zheng et 
al., 2012, 2013). More discussion about the combination of crop growth models and 
statistical models can be found in Bustos-Korts et al.,  (2016b).  

Simulated data of intermediate and target traits during the growing season is a useful 
resource to evaluate; i) multi-trait prediction using traits measured during the whole growing 
season and ii) yield predictions from traits measured early in the growing season. In both 
scenarios, intermediate traits can be measured at a single time point, or they can be monitored 
at multiple time points during the season to describe their dynamics. Characterizing trait 
dynamics allows to better capture the genotypic response to the environmental conditions 
integrated over the growing season and therefore might be more informative about genotypic 
performance than single-time point measurements (Malosetti et al., 2006; van Eeuwijk et al., 
2010; Hurtado et al., 2012; Hurtado-Lopez et al., 2015).  Simultaneous modelling of data 
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points over time is also a strategy to reduce the measurement error and to increase the 
heritability of traits measured with HTP (Rutkoski et al., 2016). 

In this paper, we propose a decision support tool based on the combination of statistical-
genetic and crop growth models to design an effective phenotyping schedule across the 
Australian TPE for wheat. We will compare different strategies to integrate traits over time 
(i.e. penalized splines and nonlinear regression model), using an Australian wheat panel 
simulated with APSIM to grow over a sample of 40 environments representing water deficit 
patterns present in the Australian TPE. 

7.2. Methods 

7.2.1. Genotypic data 

Data consisted of 199 genotypes characterized with 4,002 polymorphic SNPs with less 
than 1% missing data. Missing markers were replaced by imputed genotypic data using the 
missForest package in R, following the methodology explained in (Bogard et al., 2014). 
SNPs with minor allele frequency below 0.05 were removed.  These 199 genotypes are a 
sample of the Australian TPG constructed to represent the range in flowering time variation 
for Australian genotypes (Australian Wheat Flowering time Association Mapping panel, 
AWFAM). Most of the AWFAM genotypes have been used in previous research about 
phenotype prediction in Australian environments (Zheng et al., 2013; Bustos-Korts et al., 
2016a). To characterise AWFAM population structure, a relationship matrix 𝐴𝐴  was 
calculated from the SNPs following (Patterson et al., 2006). 

𝐴𝐴 = 𝑋𝑋𝑋𝑋′

𝑛𝑛𝑚𝑚
 (1) 

The  𝐴𝐴 matrix is of dimensions number of genotypes by number of genotypes and is 
proportional to the genetic covariance among individuals. 𝑋𝑋  is a matrix of dimensions 
number of genotypes by number of SNPs, whose entries are marker scores, coded 0, 1 or 2, 
representing the number of copies of the minor allele. The marker scores were standardised 
as in (Patterson et al., 2006). In (1), 𝑛𝑛𝑚𝑚 is the number of markers. To infer the number of 
subpopulations present in AWFAM, we calculated the number of significant principal 
components after applying a spectral decomposition to the matrix 𝐴𝐴, where the significance 
was assessed following (Patterson et al., 2006). The number of subpopulations is then the 
number of significant components plus one. The calculations were done in Genstat 18 (VSN-
International, 2016). 
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Genotypes were grouped and assigned to subpopulations using a hierarchical clustering 
procedure applied to the significant principal components, following (Odong et al., 2013). 
The cut-off for the dendrogram was chosen such that the number of subpopulations was equal 
to the number of significant (p<0.05) principal components plus one.    

7.2.2. Phenotypic data 

Phenotypic data consisted of the adjusted means for yield and heading date of the 199 
genotypes belonging to the AWFAM panel observed in eight environments across the 
Australian wheat belt (Figure S1). The experimental design was a row-column design with 
two replicates. Adjusted means were calculated with the following mixed model:  

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘) = 𝜇𝜇 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 + 𝑅𝑅𝑖𝑖 + 𝐶𝐶𝑖𝑖(𝑘𝑘) + 𝐺𝐺𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘) (2) 

In model (2), 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘) is the phenotype of genotype i in replicate k, row j and column l 
within replicate k. 𝜇𝜇 is the intercept, 𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘  is the fixed effect of replicate k, 𝑅𝑅𝑖𝑖 is the random 
effect of row j, 𝐶𝐶𝑖𝑖(𝑘𝑘) is the random effect of column l within replicate k, 𝐺𝐺𝑖𝑖 is the fixed effect 
of genotype i.  𝜖𝜖𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖  is the vector of spatially correlated residuals modelling the local trend, 
with distribution 𝜖𝜖𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖~𝑁𝑁(0,𝑅𝑅) . 𝑅𝑅  represents the Kronecker product of first-order 
autoregressive processes across rows and columns and 𝜎𝜎𝑒𝑒2  is the residual variance 
(𝑅𝑅~𝜎𝜎𝑒𝑒2(𝐴𝐴𝑅𝑅1⨂𝐴𝐴𝑅𝑅1)). 

7.2.3. Environments 

APSIM-Wheat simulations were carried out for a TPE represented by four sites (Emerald, 
Narrabri, Yanco and Merredin) and 21 years (1993-2013), corresponding to a subset of the 
environments used in (Chenu et al., 2013; Casadebaig et al., 2016). This subset was chosen 
to represent the most common conditions at important wheat growing areas in the Australian 
wheat belt. Sowing settings corresponded to control conditions in (Casadebaig et al., 2016), 
chosen to mimic local farming practices. Sowing date was set at 15th of May for all 
environments.  More details about the sowing settings can be seen in Table 1 and in 
(Casadebaig et al., 2016).  
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Table 1. Characteristics of the locations, soils and management regimes representing the target population of 
environments considering the period 1983-2013. Plant available water capacity (PAWC) is indicated for each soil, 
as well as the level of initial soil water used in the simulations, following (Casadebaig et al., 2016). Applied nitrogen 
doses are indicated by ‘a/b/c’, with the fertilization applied at sowing (a), at the stage of ‘end of tillering’ (b) and at 
the stage ‘mid-stem elongation, (c). Seasonal data considered the growing period between 15 of May and the 
maturity date averaged across genotypes. 

 Variable Emerald Merredin Narrabri  Yanco 

Latitude (degree) -23.53 -31.50 -30.32 -34.61 

Longitude (degree) 148.16 118.22 149.78 146.42 

Rainfall pattern summer dominant winter dominant summer dominant  evenly distributed 

Annual rainfall (mm) 585 313 644 406 

Seasonal rainfall (mm) 89 181 202 193 

Daily mean temperature (Celsius) 17.5 12.9 13.5 11.9 

Daily mean radiation (MJ.m-2) 16.7 14.4 15.0 13.6 

Soil type black vertosol shallow loamy duplex grey vertosol brown sodosol 

PAWC (mm) 133.5 101.1 217.5 190.8 

Sowing date 15/May 15/May 15/May 15/May 

Sowing PAWC (mm) 132 39 175 99 

Initial nitrogen (kg ha-1) 30 30 30 50 

Applied nitrogen (kg ha-1) 50/0/0  20/20/30 130/0/0 40/40/40 

7.2.4. Simulated phenotypic data 

Phenotypic data was simulated in the following steps; 1) generate genotype-specific 
values for 12 APSIM parameters, regulating phenology, capture of environmental resources, 
resource use efficiency and biomass partitioning. These APSIM parameters were regulated 
by 300 SNPs with additive effects sampled from a Gamma distribution (See Figure 1 and 
section 2.4.1), 2) calculate yield and biomass at harvest from APSIM simulations for the 
whole TPE (section 2.4.2), 3) select a sample of the TPE that represents environments that 
contrast in their GxE (section 2.4.3), 4) run APSIM simulations for the sample of the TPE, 
saving phenology, yield at harvest and the daily output for biomass (section 2.4.3) and 5) add 
plot and measurement error to the APSIM output (section 2.5). The data generated after step 
5) was used as input for multi-trait genomic prediction (section 2.6).  For a schematic 
representation of these simulation steps, see Figure 1. 
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7.2.4.1. Genotype-specific parameters 

The AWFAM panel was assumed to segregate for 12 of the APSIM parameters (Table 
2). These parameters were chosen because they have an important impact on grain yield, as 
shown by global sensitivity analysis (Casadebaig et al., 2016). The range of the parameter 
values was set to match the ranges that are commonly shown by wheat populations grown in 
Australia and that have been reported in the literature (Table 2). We estimated SNP effects 
on real phenotypic data for heading date and yield across the Australian wheat belt, using a 
single-environment GWAS model (Equation (3)). 

𝑦𝑦𝑖𝑖 = 𝜇𝜇 + 𝑥𝑥𝑖𝑖𝑘𝑘𝛼𝛼𝑘𝑘 + 𝐺𝐺𝑖𝑖 + 𝜖𝜖𝑖𝑖  (3) 

In model (3),  𝑦𝑦𝑖𝑖  stands for the phenotype of genotype i, 𝜇𝜇 is the intercept, 𝑥𝑥𝑖𝑖𝑘𝑘 is a vector 
that represents information of genotype i at marker k (0, 1, or 2 for the number of minor 
alleles) and 𝛼𝛼𝑘𝑘  is the additive QTL effect (fixed) for marker k. 𝐺𝐺𝑖𝑖 represents a polygenic 
effect for genotype i,   with distribution  𝐺𝐺𝑖𝑖~𝑁𝑁(0,𝐴𝐴𝜎𝜎𝑔𝑔2).  𝐴𝐴 is the additive genetic relationship 
matrix calculated from the molecular marker information as in (Rincent et al., 2014). In this 
method, a specific 𝐴𝐴 is calculated for each linkage group by excluding the markers on that 
particular linkage group.  𝜖𝜖𝑖𝑖 is the residual (𝑅𝑅𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑒𝑒2)). The estimated marker additive 
effects  (𝛼𝛼𝑘𝑘) of heading date and yield across the Australian wheat belt were used to were 
used to define Gamma distributions for the QTL effects underlying individual traits. The 
estimation procedure was done by maximum-likelihood using the DISTRIBUTION directive 
in Genstat 18 (VSN-International, 2016). As the distribution parameters (shape and rate) 
slightly differed between environments, we used the median of the Gamma shape and rate 
across environments. 

The univariate distributions for physiological parameters were turned into a multi-variate 
distribution by considering the physiological evidence for correlations between some of the 
APSIM parameters. Most of the parameters were assumed to be uncorrelated, except for the 
transpiration efficiency coefficient and radiation use efficiency (r= -0.40),  the number of 
grains per gram of stem at flowering and maximum grain size (r=-0.50) and maximum grain 
size and potential grain filling rate (r=+0.45). These correlations were set to match 
physiological constraints that have been observed in real experiments (Slafer & Savin, 1994; 
Monneveux et al., 2006; Sadras & Lawson, 2011; Bustos et al., 2013).  
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Figure 1. Simulation steps to generate phenotypes for a set of genotypes across environments. Bottom left; an 
Australian wheat panel is defined as a sample of the target population of genotypes (TPG). For this sample of 
genotypes, phenotypic data have been collected as well as SNP data. The phenotypic data are associated with SNP 
data in univariate GWAS analyses. From these analyses, empirical distributions  for the additive effects of QTLs 
underlying these phenotypes are obtained. Physiological knowledge on trait correlations is used to define genetic 
correlations between APSIM parameters (𝑦𝑦𝑖𝑖𝑃𝑃). These correlations are included in a multi-variate description of the 
QTLs underlying APSIM parameters. From this distribution, genotype specific APSIM parameters (𝑦𝑦𝑖𝑖𝑃𝑃)  are 
generated and assigned to a subset of SNPs. Bottom right; we have historical environmental data defining the target 
population of environments (TPE). We use APSIM to identify environment scenarios (water deficit patterns). The 
environmental data of the selected scenarios and the genotype-dependent APSIM parameters are used to generate 
intermediate traits over time (𝑦𝑦𝑖𝑖𝑖𝑖𝐼𝐼 ). In a breeding programme, these intermediate traits are unknown, but we can 
approximate intermediate traits by high throughput phenotyping techniques, where the intermediate traits will come 
with plot (𝑅𝑅𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝)  and measurement error (𝑅𝑅𝑖𝑖𝑖𝑖𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑝𝑝) . The target trait (𝑦𝑦𝑖𝑖𝑖𝑖𝑇𝑇 )  is modelled as a function of 
intermediate traits. For a detailed explanation of each step, see the section numbers written in blue font. 

To impose parameter correlations, 300 additive SNP effects were sampled with copulas. 
We set the number of QTLs to 300 to achieve an average distance between QTLs of about 
10 cM. Briefly, the dependence between parameter additive effects is determined by a 
uniform distribution and then, the marginal Gamma distribution for the additive effects is 
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imposed on the dependence structure (Nelsen, 2013). Effects were sampled with the R 
package ‘copula’ (R Core Team, 2016). Since the Gamma distribution always takes positive 
values, 50% of the additive effects for each parameter was randomly assigned a negative sign 
(Pérez-Enciso et al., 2017). Sign allocation was done independently for each parameter, but 
an exception was made for the following pairs of correlated parameters; a) transpiration 
efficiency coefficient and radiation use efficiency, b) grains per gram of stem and maximum 
grain size and c) maximum grain size and potential grain filling rate. In these three 
exceptional cases, the sign was assigned jointly for a proportion of the additive effects, 
instead of independently, as for the other parameters. If the parameter correlation was 
positive a negative sign was assigned jointly to 60% of the loci chosen at random (i.e. 
negative sign was assigned jointly to the following pairs of parameters; a) transpiration 
efficiency coefficient and radiation use efficiency and c) maximum grain size and potential 
grain filling rate). If the target correlation was not achieved by this random allocation, we 
repeated the sampling for sign allocation until the target correlation was achieved.  For all 
interactions, the percentage of negative signs was equal to 60%. If the correlation was 
negative (in the case of pair grains per gram of stem and maximum grain size), opposite signs 
were assigned randomly to a 60% of the additive effects. This means that 60% of the loci 
would get a negative sign for one parameter and a positive sign for the other parameter, 
iterating until the negative correlation was achieved. 

Additive effects per trait were allocated to a random sample of 300 SNPs out of the 4.002 
SNPs available for the AWFAM panel. Because of the random nature of the sampling 
process, some SNPs were more related to population structure than others. For that reason, 
SNPs with additive effects differed in their Fst values (corresponding to a neutral genetic 
architecture, following Pérez-Enciso et al., 2017). Additive effects were assigned at random 
to the 300 SNPs, except for the largest additive effects regulating photoperiod sensitivity and 
vernalization requirements. In this case, the largest additive effects were assigned to SNPs at 
the position of nine known flowering time genes/QTLs, which showed moderate to large Fst 
(between 0.11 and 0.72 with a median of 0.5). We used the 300 SNPs and their additive 
effects to generate genotype-specific APSIM parameter values for each genotype (𝑦𝑦𝑖𝑖𝑃𝑃 ), 
Equation (4). These genotype-specific parameters are constant across environments. 

𝑦𝑦𝑖𝑖𝑃𝑃 = 𝜇𝜇𝑃𝑃 + ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝛼𝛼𝑖𝑖𝑃𝑃
𝑄𝑄
𝑖𝑖=1  (4) 

Where 𝜇𝜇𝑃𝑃 is the mean of the range for APSIM parameter P, 𝑥𝑥𝑖𝑖𝑖𝑖  is an indicator variable with 
values -1, 0 and 1 that represents information of genotype i at marker q.  𝛼𝛼𝑖𝑖𝑃𝑃 is the additive 
QTL effect (fixed) for marker/QTL q and parameter P.  
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Table 2. APSIM genotype-specific parameters, with the shape (k) and scale (b) of the marginal Gamma distribution 
of the additive effects, lower and upper limit for the simulated population and trait increasing allele for the selective 
SNPs. For all traits, the marginal Gamma distribution followed k=1.299 and b=13.6, except for photop_sens, 
tt_floral_initiation and vern_sens, for which k=0.700 and b=13.6. When units are indicated with [ ], it means that 
the parameter is dimensionless. 

Parameter APSIM name Units Default 

APSIM 

low_lim high_lim References 

Fraction of leaves 
senescing per main 
stem node  

fr_lf_sen_rate [ ] 0.035 0.028 0.042 (Christopher et al., 
2016) 

Number of grains 
per gram of stem at 
flowering 

grains_per_gram_stem grains 𝑔𝑔𝑚𝑚𝑝𝑝𝑒𝑒𝑚𝑚−1 25 20 25 (Dodig et al., 2012) 

Lower limit for 
water uptake 

ll_modifier [ ] 1 0.9 1.1 Manschadi et al 
(2006) 

Maximum grain 
size 

max_grain_size mg 0.041 0.03 0.06 (Groos et al., 2003) 

Sensitivity to 
photoperiod 

photop_sens [ ] 2 1.5 3 (Zheng et al., 2012) 

Potential grain 
filling rate 

potential_grain_filling_rate g grain-1 d-1 0.0025 0.0016 0.0026 (Wang et al., 2009) 

Transpiration 
efficiency 
coefficient 

transp_eff_cf [ ] 0.006 0.0045 0.0065 (Schoppach & 
Sadok, 2013) 

Thermal time 
required to reach 
floral initiation 

tt_floral_initiation oC d 555 455 555 Within the range of 
(Zheng et al., 2013) 

Sensitivity to 
vernalization 

vern_sens [ ] 1.5 1.5 2.5 (Zheng et al., 2012) 

Canopy extinction 
coefficient 

y_extinct_coef [ ] 0.45 0.4 0.6 (Isidro et al., 2012) 

Biomass 
partitioning to leaf 

y_frac_leaf [ ] 0.6 0.55 0.65 (Álvaro et al., 2008) 

Radiation use 
efficiency 

y_rue g MJ-1 1.24 1.01 1.4 (Acreche et al., 
2009) 
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7.2.4.2. APSIM simulations 

The 12 parameters showing variation for the 199 genotypes were used to simulate 
intermediate traits using model (5).  

𝑦𝑦𝑖𝑖𝑖𝑖𝐼𝐼 = ∫ 𝑓𝑓�𝒚𝒚𝑖𝑖𝑃𝑃;  𝒛𝒛𝑖𝑖� 𝑑𝑑𝑑𝑑 (5) 

In model (5), 𝑦𝑦𝑖𝑖𝑖𝑖𝐼𝐼  is the intermediate trait of genotype i and environment j, which is 
modelled as a function of multiple APSIM parameters 𝒚𝒚𝑖𝑖𝑃𝑃 (12 of them are genotype-specific 
and multiple environmental inputs, 𝒛𝒛𝑖𝑖 integrated over time (Figure 1). A description of the 
ranges  of the genotype-dependent APSIM parameters can be seen in Table 2. For a more 
detailed description of APSIM see the user manual (http://www.apsim.info/). The function f 
( ; ) embodies the algorithms that transforms APSIM parameters and environmental inputs 
into intermediate phenotypes (e.g. biomass). In APSIM, the target trait (yield) for genotype i 
in environment j (𝑦𝑦𝑖𝑖𝑖𝑖𝑇𝑇 ) is modelled as a function of intermediate traits (e.g. biomass, grain 
number, grain weight) and the environment over time, following Equation (6);  

𝑦𝑦𝑖𝑖𝑖𝑖𝑇𝑇 = ∫ 𝑓𝑓�𝑦𝑦𝑖𝑖𝑖𝑖𝐼𝐼 �𝑑𝑑𝑑𝑑  (6)   

APSIM simulations were run first for a large sample of the TPE (four locations between 
1993-2013), saving only yield and biomass at harvest. These phenotypes were used to 
characterise the GxE patterns and identify the most important environments driving GxE 
(Figure 1, bottom right). Once a limited set of environments driving GxE was identified, we 
ran a more detailed APSIM simulation. The output of this detailed APSIM simulation 
consisted of phenology, biomass and yield of each genotype, environment and day during the 
whole growing season and was used to add plot and measurement error and for the genomic 
prediction steps.  

7.2.5. Characterization of the TPE and selection of environments for phenotyping 
over time 

APSIM yield and biomass at harvest simulated for the 199 genotypes,  21 years and four 
locations were used to characterize the GxE patterns in a sample of the TPG and TPE. The 
main goal of the characterization of GxE is to select a limited number of environments 
exhibiting the most important GxE patterns. One way of characterising GxE is by fitting and 
interpreting an Additive Main Effects and Multiplicative Interaction (AMMI) model (Gauch 
& Zobel, 1997; Gauch, 2013; van Eeuwijk et al., 2016).   
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𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐸𝐸𝑖𝑖 + 𝐺𝐺𝑖𝑖 + ∑ 𝑏𝑏𝑖𝑖𝑚𝑚𝑧𝑧𝑖𝑖𝑚𝑚𝑀𝑀
𝑚𝑚=1 + 𝜖𝜖𝑖𝑖𝑖𝑖 (7) 

In model (7),  𝑦𝑦𝑖𝑖𝑖𝑖 represents the phenotype of the ith genotype in the jth environment, 𝜇𝜇 
stands for the intercept, 𝐺𝐺𝑖𝑖 is the fixed effect of the ith genotype and 𝐸𝐸𝑖𝑖 is the fixed effect of 
the jth environment. The interaction in an AMMI model is described by M multiplicative 
terms that consist of products of the genotypic sensitivity 𝑏𝑏𝑖𝑖𝑚𝑚  (genotypic score) and an 
environmental score 𝑧𝑧𝑖𝑖𝑚𝑚. Finally, 𝜖𝜖𝑖𝑖𝑖𝑖 is a residual term, that contains the part of the two-way 
analysis of variance interaction that is not explained by the AMMI interaction terms and a 
contribution of the plot error. Genotypic and environmental scores allow visualising the GxE 
interaction patterns in the form of biplots. We used an AMMI-2 biplot (scatter plot of the 
first two multiplicative terms) to identify groups of environments that induce similar stress 
reactions on the genotypes. These groups were identified by assessing the angle between the 
environmental vectors; if the angle is small, those environments can be interpreted as 
belonging to the same environmental group (Kempton, 1984; Malosetti et al., 2013; van 
Eeuwijk et al., 2016). 

We also characterized GxE by quantifying the contribution of locations and years to the 
GxE variance.   

𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘 = 𝜇𝜇 + 𝐸𝐸𝑖𝑖 + 𝐺𝐺𝑖𝑖 + 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 + 𝐺𝐺𝐺𝐺𝑖𝑖𝑘𝑘 + 𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖𝑘𝑘    (8) 

In model (8), 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘 is the phenotype (yield or biomass) for genotype i in location j and year k, 
𝜇𝜇 stands for the intercept, 𝐸𝐸𝑖𝑖 is the fixed effect of environment j, 𝐺𝐺𝑖𝑖 is the random effect of 
genotype i, 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖  is the random interaction between genotype i and location j, 𝐺𝐺𝐺𝐺𝑖𝑖𝑘𝑘  is the 
random interaction between genotype i and year k and 𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖𝑘𝑘  is a random term that contains 
the residual GxE. In this case, no extra error term was added to the model because as APSIM 
is fully deterministic, all the residual variance corresponds to GxE. 

Besides the implicit environment characterization based on phenotypes across 
environments, we also used explicit environmental information about the dynamics of water 
deficit patterns during the growing season. To calculate the water deficit patterns, we ran 
APSIM for a genotype that had the average population value for each parameter (𝜇𝜇𝑃𝑃).  We 
saved the water supply/demand ratio generated by APSIM to provide an explicit 
representation of the water availability in the soil, as perceived by the crop (Chenu et al., 
2011, 2013). The water supply/demand ratio indicates the degree to which the soil water 
extractable by the roots (‘water supply’) is able to match the potential transpiration (‘water 
demand’). The water demand (mm) corresponds to the amount of water the crop would have 
transpired in the absence of soil water constraint and is estimated daily based on the amount 
of crop growth on that day (g mm–2), and the atmospheric saturation vapour pressure deficit 
(kPa).  
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We used the AMMI biplot, the variance components calculated from model (8) and the 
supply/demand ratio across the TPE to select three scenarios that represent well the most 
important GxE patterns. These three scenarios will be used for further analysis, assessing the 
convenience of phenotyping additional traits (biomass) and integrating them into the genomic 
prediction for yield. In those selected environments, we quantified for each day the 
contribution of GxE to the total phenotypic variance for biomass. 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐸𝐸𝑖𝑖 + 𝐺𝐺𝑖𝑖 + 𝐺𝐺𝐸𝐸𝑖𝑖𝑖𝑖    (9) 

Model (9), was fitted for each day independently. Here,  𝑦𝑦𝑖𝑖𝑖𝑖 is the biomass for genotype 
i in environment j, 𝜇𝜇 is the intercept, 𝐸𝐸𝑖𝑖 is the fixed effect of environment j, 𝐺𝐺𝑖𝑖 is the random 
effect of genotype i and 𝐺𝐺𝐸𝐸𝑖𝑖𝑖𝑖 is the random GxE. For each environment, we also quantified 
the autocorrelation for biomass over time. The autocorrelation was calculated as the Pearson 
correlation coefficient between biomass lagged by 15 days (biomass at day t and day (t-15)).  

7.2.6. Plot and measurement error 

The three environment scenarios representing the range of GxE patterns present in the 
TPE were used to simulate a field trials in which biomass dynamics are characterized with 
HTP. To simulate field biomass, we added an experimental and a measurement error to the 
APSIM output. This is a necessary step to achieve realistic phenotypes because APSIM is a 
fully deterministic model.  

Experimental error 

To calculate the experimental (plot) error, we considered a heritability of 0.50 for yield 
and 0.70 for biomass. Heritability was calculated as in Equation (10).  

𝐻𝐻2 = 𝜎𝜎𝑔𝑔2

𝜎𝜎𝑔𝑔2+𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
2  (10) 

The genotypic variance (𝜎𝜎𝑔𝑔2) was assumed to be equivalent to the variance of APSIM 
biomass for a given day. The APSIM yield and biomass genotypic values do not contain error 
because APSIM is a fully deterministic model. Therefore, phenotypic differences in the same 
environment can be interpreted as been genetic. The experimental error (𝜎𝜎𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝2 ) was sampled 
jointly for yield and biomass from a multivariate normal distribution with a covariance of 
0.70 and a variance of 1.00. The relatively high covariance for the error of yield and biomass 
was defined to preserve the large phenotypic correlation for these traits commonly observed 
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in experimental data (Reynolds et al., 2007; Bustos et al., 2013). The phenotypic value for 
genotype i and day j (𝑦𝑦𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑚𝑚𝑒𝑒𝑑𝑑𝑝𝑝) was calculated with Equation (11): 

𝑦𝑦𝑖𝑖𝑖𝑖
(𝐼𝐼,𝑑𝑑𝑖𝑖𝑚𝑚𝑒𝑒𝑑𝑑𝑝𝑝) = 𝑦𝑦𝑖𝑖𝑖𝑖𝐼𝐼 + 𝑅𝑅𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝   (11) 

Where 𝑦𝑦𝑖𝑖𝑖𝑖𝐼𝐼  is the APSIM phenotype for an intermediate trait I, genotype i and day j and 
𝑅𝑅𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝  is the experimental (plot) error for genotype i and day j.  As biomass genotypic variance 

changes over time, we rescaled the size of the plot error (𝑅𝑅𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝) to keep heritability constant 

and equal to 0.70 during the growing season. To achieve this constant heritability, 𝑅𝑅𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 was 

rescaled according to the phenotypic variance at a particular day during the growing season 
(systematic error), maintaining the heritability constant. 

Homogeneous measurement error over time 

Besides the experimental (plot) error, we added a measurement error that simulates the 
HTP approximation of 𝑦𝑦𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑚𝑚𝑒𝑒𝑑𝑑𝑝𝑝;  

𝑦𝑦𝑖𝑖𝑖𝑖
(𝐼𝐼,𝐻𝐻𝑇𝑇𝑃𝑃) = 𝑦𝑦𝑖𝑖𝑖𝑖𝐼𝐼 + 𝑅𝑅𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 + 𝑅𝑅𝑖𝑖𝑖𝑖𝑚𝑚 (12) 

In model (12) 𝑦𝑦𝑖𝑖𝑖𝑖
(𝐼𝐼,𝐻𝐻𝑇𝑇𝑃𝑃) is the phenotype measured by HTP, 𝑦𝑦𝑖𝑖𝑖𝑖𝐼𝐼  and 𝑅𝑅𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 are the same as 
in model (11) and 𝑅𝑅𝑖𝑖𝑖𝑖𝑚𝑚 is the measurement error for genotype i and day j. Measurement error 
(𝑅𝑅𝑖𝑖𝑖𝑖𝑚𝑚) was sampled independently for each environment, trait and day (random error). We 
examined eight levels of measurement error size. The size of 𝑅𝑅𝑖𝑖𝑖𝑖𝑚𝑚 was defined to achieve an 
R2 between the 𝑦𝑦𝑖𝑖𝑖𝑖

(𝐼𝐼,𝐻𝐻𝑇𝑇𝑃𝑃)and  𝑦𝑦𝑖𝑖𝑖𝑖
(𝐼𝐼,𝑑𝑑𝑖𝑖𝑚𝑚𝑒𝑒𝑑𝑑𝑝𝑝) of 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80 and 0.90. For 

each of these measurement error levels, the relative size of the measurement error with 
respect to the variance of  𝑦𝑦𝑖𝑖𝑖𝑖

(𝐼𝐼,𝑑𝑑𝑖𝑖𝑚𝑚𝑒𝑒𝑑𝑑𝑝𝑝)  was constant over time. We combined these eight 
measurement error levels (R2) with five levels of measurement intervals (every 5, 10, 15, 20 
and 25 days) in a factorial way. Thus, for each environment, we obtained 40 phenotyping 
schedules differing in their measurement error size and measurement interval. 

Measurement error as a function of canopy growth 

In the previous section, we assumed that HTP has a homogeneous measurement error 
over time and across genotypes. However, HTP measurement error size usually changes over 
time, depending on crop dynamics like canopy closure, i.e. the error gets larger as canopy 
closes and it gets reduced again with the onset of senescence. These dynamics can be taken 
into account when simulating measurement error. In this paper, we assumed that the highest 
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R2 between HTP phenotyping and direct/destructive phenotyping would be 0.60, with a 
canopy cover of 10%, as reported by (Grieder et al., 2015). We assumed a quadratic R2 
reduction as a function of canopy cover (Figures 2a and 2b). When combining this R2 
function with the green canopy cover output from APSIM, the R2 between the HTP 
measurement and the direct biomass measurement followed a genotype-specific curve, as 
shown for five genotypes in Figure 2c.  

 

 

 

 

 

Figure 2. R2 between the HTP and direct measurement of biomass as a function of green canopy cover (a), Green 
canopy cover dynamics for a random sample of five genotypes (b) and genotype-specific R2 between HTP and direct 
measurement during the growing season (c).  

7.2.7. Statistical Modelling of phenotypes over time 

The HTP data simulated above was used to compare prediction accuracy calculated from 
a single-trait (yield) or from multiple traits modelled simultaneously (biomass dynamics and 
yield). In this section, we describe the statistical models for phenotypes over the growing 
season.  

Logistic regression 

A logistic function was fitted independently to the biomass HTP data of each genotype.  

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝐿𝐿
1+𝑒𝑒−𝑘𝑘(𝑝𝑝−𝑝𝑝0)   (13) 

In model (13),  𝑦𝑦𝑖𝑖𝑖𝑖 is the biomass for genotype i at day t, 𝐺𝐺 is the curve’s maximum value 
(asymptote), 𝑘𝑘 is the slope and 𝑑𝑑0 is the day at which biomass stops growing exponentially 
(inflexion point). The curve fit was done with the nls  function of the stats package in R (R 
Core Team, 2016). 

b) a) c) 
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P-Splines 

Mixed model P-splines were fitted to the time series data for biomass during the growing 
season (Eilers & Marx, 1996; Eilers et al., 2015). The biomass inflexion point was calculated 
as the moment at which the daily biomass change is maximum. The timing of the inflexion 
point and the phenotypic value at that point were calculated and further used as correlated 
traits for genomic prediction. 

Spline fitted values were calculated with the following model:  

𝑦𝑦𝑖𝑖𝑝𝑝 = 𝑏𝑏0 + 𝑏𝑏𝑖𝑖𝑑𝑑𝑝𝑝 + ∑ 𝑣𝑣𝑘𝑘𝐵𝐵𝑘𝑘(𝑑𝑑𝑝𝑝) + 𝐺𝐺𝑖𝑖 + 𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛𝑖𝑖𝑝𝑝 + ∑ 𝛼𝛼𝑘𝑘𝑖𝑖𝛽𝛽𝑘𝑘(𝑑𝑑𝑝𝑝)𝑘𝑘 + 𝑅𝑅𝑖𝑖𝑝𝑝𝑘𝑘  (14) 

In Equation (14), 𝑦𝑦𝑖𝑖𝑝𝑝  is biomass of genotype i at time point t, 𝑏𝑏0 is the intercept, 𝑏𝑏𝑖𝑖𝑑𝑑𝑝𝑝 is a 
term representing the linear trend over time for the population mean, ∑ 𝑣𝑣𝑘𝑘𝐵𝐵𝑘𝑘(𝑑𝑑𝑝𝑝)𝑘𝑘  is the non-
linear trend for the population mean over time, with 𝑣𝑣𝑘𝑘 indicating the effects for the B-splines 
with 25 segments (k=1,2,…25).  𝐺𝐺𝑖𝑖 stands for the effect of genotype i, 𝐺𝐺𝐺𝐺𝐺𝐺𝑛𝑛𝑖𝑖𝑝𝑝 is the linear 
deviation of genotype i from the population mean at time point t, and ∑ 𝛼𝛼𝑘𝑘𝑖𝑖𝛽𝛽𝑘𝑘(𝑑𝑑𝑝𝑝)𝑘𝑘  is the sum 
of non-linear (smooth) deviations for genotype i over all B-spline segments.  𝑅𝑅𝑖𝑖𝑝𝑝  is the 
residual. 

Heritability for the logistic parameters and spline inflexion point was calculated as the R2 
between the curve characteristics (logistic parameters /spline inflexion point) with and 
without error.   

7.2.8. Genomic prediction 

7.2.8.1. Single trait predictions (yield) 

Single trait genomic prediction for yield was carried out with the GBLUP model 
(Equation 14). 

𝑦𝑦𝑖𝑖 = 𝜇𝜇 + 𝐺𝐺𝑖𝑖 + 𝑅𝑅𝑖𝑖  (15) 

In Equation (15), 𝑦𝑦𝑖𝑖  is yield of genotype i, 𝜇𝜇 is the intercept, 𝐺𝐺𝑖𝑖 stands for the random 
genotype effects that follow a distribution 𝐺𝐺𝑖𝑖~𝑁𝑁(0,𝐴𝐴𝐴𝐴𝐴𝐴𝜎𝜎𝑔𝑔2). 𝐴𝐴𝐴𝐴𝐴𝐴 is the additive relationship 
matrix, following (Astle & Balding, 2009). The predictions were calculated using GenStat 
18th edition (VSN-International, 2016) 
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Multi-trait predictions (yield and biomass dynamics) 

Multi-trait models considered either two traits or multiple traits. For two-trait models, we 
used yield and one of the biomass characterizations from the fit of logistic curves or P-splines. 
For the logistic curves, these characterizations were; asymptote, inflexion day and maximum 
growth rate. For the spline approximation of biomass we used; spline fitted values at 
flowering, spline fitted values at maturity, spline inflexion point, spline maximum growth 
rate.  Multi-trait models used yield and a combination of the logistic curves or spline fits. All 
traits were standardized before entering the genomic prediction models. Predictions were 
made with the following model: 

𝑦𝑦𝑖𝑖𝑘𝑘 = 𝜇𝜇 + 𝐺𝐺𝑖𝑖 + 𝐺𝐺𝐺𝐺𝑖𝑖𝑘𝑘 + 𝑅𝑅𝑖𝑖𝑘𝑘  (16) 

In model (16), 𝑦𝑦𝑖𝑖𝑘𝑘 is the phenotype for genotype i and trait k, 𝜇𝜇 is the intercept, 𝐺𝐺𝑖𝑖 is the 
main effect of genotype i, following a variance-covariance 𝐺𝐺𝑖𝑖~𝑀𝑀𝑀𝑀𝑁𝑁(0,𝐴𝐴𝐴𝐴𝐴𝐴𝜎𝜎𝑔𝑔2), were 𝐴𝐴𝐴𝐴𝐴𝐴 
is the additive relationship matrix (Astle & Balding, 2009). 𝐺𝐺𝐺𝐺𝑖𝑖𝑘𝑘  is the genotype by trait 
interaction, with a variance-covariance structure 𝐺𝐺𝐺𝐺𝑖𝑖𝑘𝑘~𝑀𝑀𝑀𝑀𝑁𝑁(0, 𝐼𝐼𝜎𝜎𝑔𝑔𝑘𝑘2 ). 𝑅𝑅𝑖𝑖𝑝𝑝 is the residual.  

Early predictions (use early biomass to predict final yield) 

For early predictions, we used the P-spline fitted values for biomass accumulated between 
20 days after sowing and flowering. The measurement intervals were the same as for the 
biomass measurements during the whole season (i.e. every 5, 10, 15, 20 and 25 days). Yield 
predictions from spline fitted values for biomass at flowering were done with a single trait 
model (15). 

7.2.9. Prediction accuracy 

Prediction accuracy was calculated as the Pearson correlation coefficient between the 
APSIM phenotypes (genotypic value) and the predicted phenotypes (Meuwissen et al., 
2001), considering a training set of 130 genotypes and a validation set of 69 genotypes. 50 
training sets were constructed with the uniform sampling method described by (Jansen & van 
Hintum, 2007; Bustos-Korts et al., 2016a). We calculated mean predictive ability and 
standard error across 50 training set realizations. To comply with the normality assumption, 
correlations were analysed on a transformed scale using Fischer’s z transformation, 𝑧𝑧 =
1
2

 �𝐺𝐺𝑛𝑛 �1+𝑚𝑚
1−𝑚𝑚

��    and means were back transformed using 𝑟𝑟 = exp(2𝑧𝑧)+1
exp(2𝑧𝑧)−1

 before reporting them.  
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7.3. Results 

7.3.1. Population structure and genotype-specific parameters 

A spectral decomposition of the kinship matrix showed four eigenvalues to be significant, 
suggesting the presence of five subpopulations. The first eigenvector, explained 36.8% of the 
variation (Figure 3). In general, population structure explained a low to moderate proportion 
of the variation of the APSIM parameters. In general, APSIM parameters showed low to 
intermediate correlation with population structure. Correlations with PC1 ranged from -0.46 
(ll_modifier) to +0.31 (vern_sens). Correlations with PC2 ranged from -0.27 (y_rue) to +0.69 
(transp_eff_cf) and correlations with PC3 ranged from -0.51 (max_grain_size) to +0.40 
(grains_per_gram_stem), Figure 3. The intermediate size of the proportion of explained 
variation of APSIM parameter values by the population structure is in line with the fact that 
SNPs with additive effects were sampled at random and some of them had moderate to large 
Fst.  

 

Figure 3. Population structure as revealed by principal components extracted from the matrix of marker scores. 
Directions of greatest change for a set of physiological parameters have been projected on the biplots to help in 
interpretation. The length of the physiological parameter representations is proportional to the amount of variation 
explained by the kinship principal components. 
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7.3.2. Represent GxE patterns with a sample of the TPE 

We used the APSIM-simulated yield of the 199 genotypes grown across a large sample 
of the TPE (4 locations and 21 years, 1993-2003) to identify a subset of environments that 
represent the most important growing conditions driving GxE. In the simulated sample of the 
TPE, yield GxE was almost three-quarters of the total phenotypic variance (Table 3). The 
largest proportion of the GxE (81%) was driven by 𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖𝑘𝑘, followed by 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖  (33% of the 
GxE variance) and 𝐺𝐺𝐺𝐺𝑖𝑖𝑘𝑘  with a 17% of the GxE variance. The GxE patterns observed in the 
AMMI biplot (Figure 4) are closely related to the water deficit dynamics (Figure 5). GxE is 
driven to a large extent by the contrast between environments that have no/mild water deficit 
(e.g. most of the environments in Yanco) and those that suffer from severe drought starting 
before flowering (e.g. most of the environments in Emerald and Merredin). The AMMI biplot 
also allows examining the contribution of each location to 𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖𝑘𝑘 . This contribution can be 
observed as the changes in the AMMI environment scores for locations across years (Figure 
4). Narrabri showed to be an important contributor to 𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖𝑘𝑘 . For example, yield in 
Narrabri_2005 is more correlated to the less dry environments like Yanco_2010, whereas 
Narrabri_1997 is more correlated to the dry environments like Emerald_1993. The 
environmental conditions also modified mean yield and biomass across environments. 
Locations that commonly suffered from drought and that have soils with a lower plant 
available water capacity, like Emerald and Merredin, showed a lower yield and biomass than 
Narrabri and Yanco (Figures 5 and S2, Table 1).  

 

 

 

 

 

 
 
Figure 4. AMMI biplot for grain yield in Emerald, Merredin, Narrabri and Yanco during 1993-2013. White circles 
represent genotype scores and blue squares represent environment scores. Selected environments for further analysis 
are: Emerald_1993 (orange square), Narrabri_2008 (black square), Yanco_2010 (cyan square). 
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Figure 5. APSIM simulated water supply-demand ratio (stress index) for a genotype with average parameter values 
growing in Emerald, Narrabri, Merredin and Yanco during 2003-2013. Supply-demand dynamics shown in colours 
represent the environments used to evaluate the phenotyping strategies (orange=Emerald_1993, 
black=Narrabri_2008, blue=Yanco_2010). 

 

Table 3. Variance components and standard error as estimated by mixed model analysis of the APSIM output of 
yield and biomass of the 199 genotypes in the 84 environments used to characterize the TPE (Emerald, Merredin, 
Narrabri and Yanco between 1993 and 2013).  

  Yield   Biomass 

Component Variance s.e.   Variance s.e. 

Genotype  (𝐺𝐺𝐺𝐺) 43.89 5.66   349.76 41.94 
Genotype.Location (𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖) 41.44 2.58  246.40 14.68 
Genotype.Year (𝐺𝐺𝐺𝐺𝑖𝑖𝑘𝑘) 21.01 0.85  55.51 2.07 
Genotype.Location.Year (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑘𝑘) 62.20 0.81   138.43 1.80 
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After assessing the GxE patterns and the water deficit dynamics, we selected the 
following environments that represent common water deficit types driving GxE; a) 
Emerald_1993 (very dry environment, with drought starting early in the growing season), b) 
Narrabri_2008 (intermediate post-anthesis drought) and c) Yanco_2010 (no drought). These 
environments were used for a more detailed phenotyping and genomic prediction (Table S1).  

7.3.3. APSIM trait dynamics and correlations 

The GxE observed for yield across the three selected environments can be further 
characterised by assessing the correlations between yield (the target trait) and intermediate 
traits at the end of the growing season (biomass, grain weight and grain number at harvest) 
and phenology (flowering time). In the three selected environments, yield showed 
intermediate to high correlation with biomass at harvest. However, this correlation was larger 
in the environments that did not suffer from severe drought (Figure 6). The correlation 
between yield and biomass at harvest was largest in Yanco_2010 (r=0.90), followed by 
Narrabri_2008 (r=0.72) and Emerald_1993 (r=0.37). Water deficit patterns also modified the 
correlation between yield, grain weight and grain number at harvest. In Yanco_2010 and 
Narrabri_2008, yield was mostly correlated to grain number and less to grain weight 
(Yanco_2010; r=0.91 for grain number and r=0.30 for grain weight. Narrabri_2008; r=0.62 
for grain number and r=0.37 for grain weight). In contrast, in the dry environment 
Emerald_1993, yield was more associated to grain weight than to grain number (r=0.71 for 
grain weight  and r=0.18 for grain number). Flowering time also contributed to the different 
performance of genotypes across environments. In Emerald_1993, yield was negatively 
correlated to flowering, in line with the well-known mechanisms of stress avoidance by 
escape to final drought. In contrast, when drought was mild/absent, a longer cycle allowed to 
achieve more biomass and therefore, a larger yield.  

The way in which GxE is build up during the growing season can also be assessed by 
observing the trait correlations over time. Figure 7a shows the correlations between biomass 
during the growing season and final yield. In Yanco_2010, correlation of biomass and yield 
is large during the whole season (~0.75), with a small increase after flowering. In 
Narrabri_2008, the correlation of biomass shows a larger change throughout the season, 
starting in ~0.30, to reach ~0.65 after flowering (Figure 7a). Emerald_2009 shows the largest 
change in the correlation between biomass and yield. Here, yield is negatively correlated to 
biomass during the beginning of the growing season (~-0.40), has a correlation close to zero 
around flowering and reaches ~0.35 during grain filling. The inspection of the correlations 
between biomass and yield over time suggests that biomass can be used for early selection 
using correlated traits in humid/mild-stress environments, but not in dry environments.  
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Figure 6. Trait correlations between APSIM yield, biomass, grain weight, grain number and flowering date 
simulated in Emerald_1993 (very dry environment, with drought starting early in the growing season), 
Narrabri_2008 (intermediate post-flowering drought) and Yanco_2010 (no drought). 

 

 

 

 

 

 

 

-  

Figure 7. a) Correlation between biomass as measured at individual days and final yield. In both panels, arrows 
indicate mean flowering date for individual environments. b) Within environment autocorrelation (lag=15 days) of 
biomass in Emerald_1993 (very dry environment, with drought starting early in the growing season, orange lines), 
Narrabri_2008 (intermediate post-flowering drought, black lines) and Yanco_2010 (no drought, blue lines). Grey 
line gives GxE as fraction of the total phenotypic variance for biomass at individual days. 

 

a) b) 
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Examining the autocorrelation of intermediate traits like biomass helps to identify critical 
moments during which genotypic changes occur. The importance and frequency of these 
changes in genotypic ranking influence the degree of success of using early measurements 
of intermediate traits to improve the predictions for the target trait. In general, biomass 
autocorrelation was moderate to large for all the environments that we analysed (Figure 7b). 
However, the early drought-stress environment Emerald_1993 showed a lower biomass 
autocorrelation during the first part of the growing season, coinciding with the onset of water 
stress. For the environment Narrabri_2008 with mild after flowering stress, biomass 
autocorrelation was reduced after flowering, also coinciding with the start of drought stress 
in this environment. In the non-stressing environment Yanco_2010, biomass autocorrelations 
were large and almost constant  (around 0.95) during the whole growing season (Figure 7). 
This means that, in Yanco_2010, biomass accumulation curves for all genotypes run almost 
parallel. Therefore, biomass in the non-stress environment Yanco_2010, measured early 
during the growing season, shows promise as an intermediate trait for yield prediction. 
Changes in biomass genotype ranking over time is related to the partitioning of the variance 
components over time. Figure 7b shows that GxE for biomass is largest at the beginning of 
the growing season (more than 50% of the phenotypic variance) and it is slightly reduced 
around flowering, oscillating at around 40% of the phenotypic variance. 

7.3.4. Dynamics and QTLs for biomass accumulation  

The shapes of biomass accumulation curves were different across environments; in 
Emerald_1993, biomass followed a symmetric curve, with a long asymptotic phase that was 
reached at about 10 days after flowering for most genotypes (Figure 8, upper panels). Most 
of the small irregularities in the biomass accumulation curve occurred before flowering, 
coinciding with the lower autocorrelation observed in this period (Figure 7b). The early start 
of the asymptotic phase in agreement with a very dry grain filling period that limited biomass 
accumulation. In Narrabri_2008, biomass accumulation over time also followed a symmetric 
curve. However, the linear biomass accumulation period was longer than in Emerald_1993, 
with a short asymptotic phase starting about 20 days after flowering. Biomass accumulation 
over time was more asymmetric  in Yanco_2010, compared to Emerald_1993 and 
Narrabri_2008. Here, biomass had a longer initial lag-phase, followed by a delayed 
exponential phase and a short asymptotic phase starting at about 20 days after flowering.  

To characterize the genetic basis of biomass dynamics during the growing season, we did 
a GWAS for the daily biomass observations in each environment. In Figure 8 (bottom 
panels), QTL profiles coincide with the within-environment changes in biomass ranking 
during the growing season shown in Figure 8 (upper panels) and Figure 7. Although most of 
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the QTLs shown in Figure 8 coincide across environments, their effects change during the 
growing season. In environments with lower autocorrelation, like Emerald_1993, QTL effect 
sizes at the beginning of the growing season are different from the QTL effect sizes at the 
end of the growing season. Changes in the size of QTL additive effects for biomass can also 
be interpreted as different intermediate traits and parameters being relevant for different 
combinations of phenological stages and environmental conditions. In Yanco_2010 (non-
stress environment with a large biomass autocorrelation), the QTL effects were more stable 
over time. An intermediate situation was observed for Narrabri_2008, where the QTL effects 
were large at the beginning of the season, and got slightly less important towards maturity.  

 

 

 

 

 

 

 

 

Figure 8. In the upper panels; APSIM output for the biomass of individual genotypes during the growing season in 
Emerald_1993 (very dry environment, with drought starting early in the growing season), Narrabri_2008 
(intermediate post-flowering drought) and Yanco_2010 (no drought, upper panel). In the lower panel, QTL additive 
effects for biomass estimated from the GWAS for the APSIM output for the biomass during the growing season. 
QTL additive effects are expressed as a percentage of the population mean at a given environment and day. Arrows 
show mean flowering date. 

We compared the effects of biomass QTLs with the effects of the same QTLs on APSIM 
parameters. The co-localization of QTLs for biomass and APSIM parameters allows to 
identify which mechanisms (basic traits/APSIM parameters) underlie biomass genotypic 
differences over time. The biomass variance explained by the QTL was up to 11% in each of 
the three environments that we analysed and the largest effects were up to 15% of the 
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population mean (Figure 8, Yanco_2010). The same QTLs had a similar importance on some 
of the individual parameters, explaining up to 9% of the variance, Table S2).  Most of the 
QTLs that were relevant for biomass in all environments also regulated radiation use 
efficiency (y_rue), canopy extinction coefficient (y_extinct_coef) and biomass partitioning 
to leaf (y_frac_leaf). These parameters represent mechanisms/traits that are known to 
increase biomass accumulation across a wide range of environmental conditions.  

Besides the QTLs that were in common across the three environments, we also identified 
some environment-specific QTLs. Those QTLs that were specific for water limited 
environments (Emerald_1993 and Narrabri_2008), were always related to either the lower 
limit for water uptake (ll_modifier, e.g. mk3765, Table S2) or to the transpiration efficiency 
coefficient (transp_eff_cf, e.g. mk3982, Table S2). QTLs for the lower limit for water uptake 
(ll_modifier) co-localized with QTLs that were most relevant during the whole growing 
season in Emerald_1993 and Narrabri_2008 (mk1140 and mk3768). These QTLs were 
absent in Yanco_2010 (no water stress). QTLs co-localizing with the transpiration efficiency 
coefficient were most relevant for biomass accumulation after flowering and were specific 
for Emerald_1993 (strong drought starting early in the growing season).  

7.3.5. Summarizing phenotype dynamics as measured by HTP 

We simulated HTP measurements for biomass by adding a plot and a measurement error 
to the biomass APSIM output. We evaluated different measurement error size in a factorial 
combination with phenotyping interval (expressed as the number of days between two 
consecutive measurements). The simulated HTP data were fitted with a logistic curve or with  
P-splines to evaluate strategies for a better characterization of biomass accumulation over 
time from HTP data. In this section, we describe the H2 for parameters of the logistic curve 
and for parameters defined on the basis of the fitted P-spline function. H2 for biomass related 
parameters is an indicator for the potential of that parameter to predict yield 

The H2 for the parameters of the logistic curve fitted to  HTP biomass data over time was 
larger in Emerald_1993 and Narrabri_2008, where biomass curves were more symmetric. In 
Yanco_2010, biomass accumulation over time was most asymmetric (Figure 9) and H2 for 
the parameters of the logistic curve was therefore low in this environment. In the three 
environments, H2 increased with more frequent (smaller interval between two consecutive 
measurements) and with more precise measurements at individual time points (R2 between 
the direct phenotypic measurements, Equation 11, and  HTP, Equation 12). However, H2 
increased more in Emerald_1993 and Narrabri_2008 than in Yanco_2010 (Figure 9). When 
comparing the H2 of the three parameters of the logistic curve fitted to biomass accumulation 
over time, we observed that the asymptote and the inflexion point showed a more flat H2 
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surface, indicating that good estimates of these parameters can still be obtained after reducing 
measurement frequency and precision. For example, in Emerald_1993, the same H2 estimate 
for the asymptote can be obtained (H2~0.6) from a HTP technology that delivers a precision 
of 0.5 or with one that has a precision of 0.8. The same applies for measurement intervals; if 
multiple time points are measured simultaneously, the same H2 can be obtained measuring 
every 5 or every 15 days. This highlights the convenience of integrating measurements over 
time, compared to using single time points independently. In contrast, maximum growth rate 
for biomass was more difficult to estimate, requiring very frequent and precise measurements 
to obtain a large H2. This is especially the case in Yanco_2010, where biomass accumulation 
over time was asymmetric, the maximum growth rate had a very low H2.   

We also used splines to integrate HTP measurements for biomass over time. In this case, 
similar H2 was obtained for curve characteristics across environments (Figure 10), showing 
that P-splines are more flexible tools than the logistic curve, allowing to better accommodate 
asymmetries of the biomass accumulation curve. The H2 achieved for the spline fitted values 
was also larger than the H2 of the logistic curve and the H2 surface was more homogeneous 
(Figures 9 and 10). The more homogeneous H2 surface indicates that splines are better than 
the logistic curve when it comes to remove part of the measurement error by integrating 
information throughout the season. In practice, this means that, when using a spline to 
integrate the HTP measurements for biomass, measurements can be done at a lower 
frequency (larger intervals) and lower precision (lower R2 between HTP and APSIM 
biomass) to still obtain large H2. We characterized the splines as fitted to the HTP 
measurements for biomass by the following parameters; biomass fit and at flowering, 
maximum biomass accumulation rate and the inflexion point of biomass accumulation. The 
largest H2 was obtained for biomass fit at maturity and flowering (H2~0.9). The H2 of 
maximum rate was slightly lower (H2~0.6-0.7) and the lowest H2 was observed for the 
inflection point (H2~0.1-0.2).  

7.3.6. Multi-trait predictions considering the whole growing season  

We used the parameters of logistic curves or spline fitted values for HTP measurements 
of biomass accumulation during the growing season as correlated traits for yield genomic 
prediction. In general, multi-trait genomic prediction models showed a larger accuracy than 
single-trait models (Figure 11). However, prediction accuracy of multi-trait models was 
highly dependent on the quality (heritability) of the correlated trait; more frequent and more 
precise HTP measurements showed larger accuracy, compared to less frequent and less 
precise measurements.  
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Figure 9. Heritability of the parameters from a logistic curve fitted to the dynamics of biomass accumulation 
for the collection of genotypes, measured with HTP. The following parameters were calculated; asymptote (a, 
b, c), biomass inflection day (d, e, f) and maximum biomass accumulation rate (g, h, i). The x-axis indicates the 
interval, expressed as the number of days between two consecutive HTP measurements. The z-axis (precision) 
indicates the quality of the HTP measurement, quantified as the R2 between the direct phenotypic measurements 
(APSIM biomass plus plot error, Equation 11) and  HTP (APSIM biomass plus plot and measurement error, 
Equation 12). The heritability that is shown is the average across 50 training sets.  

 

 

 

c) b) a) 

f) e) d) 

i) h) g) 
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Figure 10. Heritability of splines, fitted to the dynamics of biomass accumulation for the collection of genotypes, 
measured with HTP. The following values were calculated; fitted values at flowering and maturity (a, b, c), 
maximum biomass accumulation rate (d, e, f), biomass inflection day (g, h, i) and day at which the maximum 
biomass accumulation rate is produced (j, k, l).The x-axis indicates the interval, expressed as the number of days 
between two consecutive HTP measurements. The z-axis (precision) indicates the quality of the HTP measurement, 
quantified as the R2 between the direct phenotypic measurements (APSIM biomass plus plot error, Equation 11) and  
HTP (APSIM biomass plus plot and measurement error, Equation 12). The heritability that is shown is the average 
across 50 training sets. 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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Homogeneous measurement error over time 

We assessed genomic prediction models that included the parameters of logistic curves 
fitted to HTP biomass measurements. In the best genomic prediction model, accuracy 
increased from 0.35 to 0.51 in Emerald_1993, from 0.69 to 0.73 in Narrabri_2008 and from 
0.49 to 0.65 in Yanco_2010 (Table 4). However, not all parameters from the logistic curve 
fitted to the biomass HTP data over time were equally useful to increase genomic prediction. 
The best predictions in Emerald_1993 and in Narrabri_2008 were obtained with a model that 
included the asymptote and the inflexion point for biomass as correlated traits (Table 4). 
Similar prediction accuracy was obtained for the model including only the asymptote as 
correlated trait, indicating that the inflexion point did not add much additional information to 
improve yield predictions. A different situation was observed for Yanco_2010, where adding 
the inflexion point as a correlated trait (in addition to the asymptote) had a lower prediction 
accuracy than the two-trait prediction using the asymptote only. The maximum biomass 
accumulation rate did not show to be a useful logistic parameter to increase the prediction 
accuracy of grain yield in any of the environments, in agreement with the low H2 observed 
for the maximum growth rate (Figure 9). 

Table 4. Yield prediction accuracy in Emerald_1993, Narrabri_2008 and Yanco_2010 calculated with a prediction 
model considering a single trait (yield), two traits (yield and one of the parameters of the logistic curve fit to HTP 
biomass over time) and multiple traits (yield and more than one of the parameters fit to HTP biomass over time). 
Trait combinations showing the best prediction accuracy for each environment are indicated in bold and are also 
shown in Figure 11, upper panel. 

  Single trait   2 traits   Multi-trait 

Environment Yield  Yield + asymptote Yield + inflexion day Yield + max rate  
Yield + 

asymptote + 
inflexion day 
+ max rate 

Yield + 
asymptote + 
inflexion day 

 Mean se  Mean se Mean se Mean se  Mean se Mean se 

Emerald_1993 0.35 0.02   0.50 0.01 0.44 0.01 0.26 0.01   0.42 0.01 0.51 0.01 

Narrabri_2008 0.69 0.02  0.72 0.01 0.67 0.02 0.49 0.03  0.66 0.01 0.73 0.01 

Yanco_2010 0.49 0.02   0.65 0.01 0.22 0.02 0.05 0.02   0.26 0.02 0.39 0.01 

We also used parameters defining the spline fitted functions of HTP biomass over time 
as correlated traits in a multi-trait genomic prediction model; fitted values at maturity, fitted 
values at flowering, maximum biomass accumulation rate and inflexion point. The largest 
yield prediction accuracy in Emerald_1993 was observed for a multi-trait genomic prediction 
model using biomass fit at flowering, biomass fit at maturity, inflexion point and the 
maximum biomass accumulation rate (0.54 vs. 0.35, Table 5). In Narrabri_2008, the best 
prediction accuracy was observed for a two-trait model with the maximum biomass 
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accumulation rate (0.76 vs. 0.69). In Yanco_2010, the largest prediction accuracy was 
observed with a model using biomass fit at maturity and flowering and the maximum biomass 
accumulation rate (0.73 vs. 0.49). For all environments, the best prediction accuracy using 
spline information as correlated trait was larger than the best prediction accuracy obtained 
using the parameters of a logistic curve fitted to biomass HTP measurements over time, 
indicating the advantage of a more flexible model to integrate biomass HTP over time. 

Table 5. Yield prediction accuracy in Emerald_1993, Narrabri_2008 and Yanco_2010 calculated with a prediction 
model considering a single trait (yield), two traits (yield and biomass over time fitted with a spline) and multiple 
traits (yield and biomass accumulation fitted with a spline). Trait combinations showing the best prediction accuracy 
for each environment are indicated in bold and are also shown in Figure 11, lower panel. 

  Single trait   2 traits   Multi-trait 

Environment Yield  Yield + 
fit flowering 

Yield + 
fit maturity 

Yield + 
  inflexion day 

Yield + 
Max rate 

 
Yield + 

 fit flowering +  
fit maturity 

yield + 
 fit flowering + 
fit maturity  +  

inflexion day  + 
max rate 

yield + 
 fit flowering + 
 fit maturity + 

max rate 

 Mean se  Mean se Mean se Mean se Mean se  Mean se Mean se Mean se 

Emerald_1993 0.35 0.02   0.49 0.01 0.48 0.01 0.51 0.01 0.49 0.01   0.49 0.01 0.54 0.01 0.46 0.01 

Narrabri_2008 0.69 0.02  0.64 0.01 0.70 0.01 0.63 0.01 0.76 0.02  0.71 0.01 0.70 0.01 0.69 0.01 

Yanco_2010 0.49 0.02   0.62 0.01 0.66 0.01 0.10 0.01 0.64 0.02   0.67 0.01 0.70 0.01 0.73 0.01 

When assessing the effect of measurement error size on prediction accuracy, we observed 
that larger prediction accuracy was observed for biomass HTP measurements with a smaller 
measurement error (Figure 11). However, prediction accuracy showed to be more stable 
across measurement error sizes when correlated traits for genomic prediction are calculated 
with a spline, instead of with a logistic curve. When using parameters of a logistic curve fitted 
to HTP biomass data, the multi-trait models in Emerald_1993 were better than the single 
trait, when the measurement precision was larger than 0.2. In the other environments 
(Narrabri_2008 and Yanco_2010), multi-trait genomic prediction models had larger accuracy 
than single-trait when measurements had a precision of at least 0.6. In contrast, when using 
the spline fitted values as a correlated trait multi-trait genomic prediction models had larger 
accuracy than single trait, even if precision was as low as 0.2 (Figure 11). This indicates that 
using splines to integrate biomass HTP measurements over time is better than using a logistic 
curve, especially when biomass accumulation curves are not symmetric, like in Yanco_2010. 
Measurement interval also had a large effect on prediction accuracy, with larger accuracy 
observed for more frequent measurements (Figure 11). The minimum measurement 
frequency required for a multi-trait model to show a larger accuracy than a single trait model 
depended on the environment. In Emerald_1993,  where biomass showed symmetric biomass 
accumulation curve, all measurement frequencies had a similar prediction accuracy. 
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However, in Narrabri_2009 and Yanco_2010, measuring every 25 days was clearly worse 
than schedules with a higher measurement frequency (Figure 11). This indicates that when 
the trait dynamics are more irregular, more frequent measurements are required.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. Yield prediction accuracy. Upper panels show multi-trait genomic prediction models that use phenotypic 
information for yield and for the parameters from a logistic curve fitted to simulated biomass HTP data. Lower 
panels show multi-trait genomic prediction models that combine phenotypic information for yield and for spline 
fitted values of simulated biomass HTP data. The x-axis indicates the quality of the HTP measurement, quantified 
as the R2 between the direct phenotypic measurements (APSIM biomass plus plot error, Equation 11) and  HTP 
(APSIM biomass plus plot and measurement error, Equation 12). Symbol colour  indicates the interval, expressed 
as the number of days between two consecutive HTP measurements. Horizontal line indicates prediction accuracy 
for single-trait genomic prediction model (yield). 
 
 
 

Multi-trait prediction: Yield and  parameters from biomass accumulation, fit with a logistic curve 

Multi-trait prediction: Yield and biomass spline fitted values 
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Measurement error as a function of canopy growth 

In previous section, we presented accuracy for multi-trait genomic prediction models that 
used traits that were calculated from data that had a homogeneous measurement error over 
time. Here, we present the results of models that use biomass measured with an error 
depending on crop dynamics like canopy closure, i.e. the error gets larger as canopy closes 
and it gets reduced again with the onset of senescence. Prediction accuracy using biomass 
with heterogeneous error size was not very different from prediction accuracy using biomass 
with constant error size (Tables 5 and 7). The similar accuracy obtained when using traits 
with homogeneous vs. heterogeneous error shows that splines are able to remove the transient 
large measurement error after canopy closure, reinforcing the advantages of the integration 
of information over time.  

7.3.7. Predictions from biomass measured early in the growing season  

The last genomic prediction scenario that we assessed considered yield prediction from 
biomass measured earlier in the growing season. The quality of these early predictions was 
heavily dependent on the correlation of early biomass and yield. This correlation was very 
low (even negative) in  Emerald_1993 (very dry environment, with drought starting early in 
the growing season), intermediate in Narrabri_2009 (intermediate post-flowering drought) 
and large in Yanco_2010 (no water stress, Figure 7a). In Emerald_1993, prediction accuracy 
was very low, in agreement with the negative correlation between yield and biomass during 
pre-flowering (Table 6).  The largest (negative) correlation was observed for biomass fit at 
half of the flowering period (day 40), coinciding with the day with the lowest correlation 
between biomass and yield (Figures 7b and 12). A slightly better prediction accuracy was 
observed for Narrabri_2008, where yield was predicted from spline fitted values for HTP 
biomass at flowering.  In this environment, prediction accuracy was between 0.2-0.4 (Figure 
12). Yanco_2010 was the only environment in which early yield predictions from the spline 
fit to biomass HTP measurements had a similar prediction accuracy as single trait yield 
predictions from yield phenotypic data (horizontal line in Figure 12). In the three cases, no 
clear trend was observed across frequencies and measurement errors, suggesting that, for 
early yield predictions from HTP biomass measurements,  the most limiting factor is the trait 
correlation, instead of the H2.  
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Table 6. Yield prediction accuracy in Emerald_1993, Narrabri_2008 and Yanco_2010 calculated with a prediction 
model considering the spline fitted values of pre-flowering biomass over time (no yield phenotypic information 
was used). These biomass fitted values were calculated at specific moments, either one time (single trait) or multiple 
times (multi-trait). Biomass fit showing the best prediction accuracy for each environment is indicated in bold and 
is also shown in Figure 12 

  Single trait (biomass)   Multi-trait (biomass) 

Environment fit 1/4 flowering  fit 2/4 flowering  fit 3/4 flowering  fit at flowering  4 time points 

 Mean se  Mean se  Mean se  Mean se  Mean se 

Emerald_1993 -0.19 0.02   -0.24 0.02   -0.19 0.02   0.18 0.02   -0.18 0.02 

Narrabri_2008 0.06 0.01  -0.02 0.01  0.06 0.01  0.27 0.01  -0.01 0.02 

Yanco_2010 0.44 0.01   0.39 0.01   0.44 0.01   0.49 0.01   0.47 0.02 

Table 7. Yield prediction accuracy in Emerald_1993, Narrabri_2008 and Yanco_2010 calculated with a prediction 
model considering spline fitted values fitted to HTP biomass data over time. HTP was assumed to have a 
measurement error that is a function of canopy growth. 

  Single trait   2 traits   Multi-trait 

Environment Yield  Yield + 
fit flowering 

Yield + 
fit maturity 

Yield + 
inflexion day 

Yield + 
max rate 

 
Yield + fit 

flowering + 
fit maturity 

yield + 
 fit flowering 
+ fit maturity 

+  inflexion 
day + max 

rate 

yield + 
fit 

flowering + 
fit maturity 

+ 
max rate 

  Mean se   Mean se Mean se Mean se Mean se   Mean se Mean se Mean se 

Emerald_1993 0.35 0.02   0.37 0.01 0.39 0.01 0.51 0.01 0.49 0.01   0.39   0.01 0.47 0.01 0.30 0.02 

Narrabri_2008 0.69 0.02  0.60 0.01 0.64 0.02 0.63 0.02 0.76 0.01  0.64 0.02 0.65 0.01 0.64 0.01 

Yanco_2010 0.49 0.02   0.63 0.01 0.66 0.01 0.10 0.02 0.64 0.01   0.66  0.01 0.69 0.01 0.72 0.01 

Table 8. Yield prediction accuracy in Emerald_1993, Narrabri_2008 and Yanco_2010 calculated with a prediction 
model considering the parameters of a logistic curve fitted to HTP biomass data  over time. HTP was assumed to 
have a measurement error that is a function of canopy growth. 

  Single trait   2 traits   Multi-trait 

Environment Yield  
Yield + 

 asymptote  
Yield + 

 inflexion day  
Yield +  

Max rate  

Yield + asymptote 
+ inflexion day + 

Max rate  

Yield + 
asymptote + 
inflexion day 

 Mean se  Mean se  Mean se  Mean se  Mean se  Mean se 

Emerald_1993 0.35 0.02   0.44 0.01   0.50 0.01   0.28 0.01   0.41 0.01   0.50 0.01 

Narrabri_2008 0.69 0.02  0.72 0.01  0.66 0.01  0.44 0.01  0.67 0.01  0.73 0.01 

Yanco_2010 0.49 0.02   0.64 0.01   0.24 0.02   -0.02 0.02   0.24 0.02   0.51 0.01 
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Figure 12. Prediction accuracy for yield predicted from pre-flowering biomass. Multi-trait genomic prediction 
models that uses phenotypic information for yield and for spline fitted values of simulated biomass HTP data. In 
the left panel, yield was predicted from biomass measured during the whole pre-flowering period, but fit at the first 
half of the pre-flowering period (when biomass was most correlated to yield, Figure 7a). In the central and right 
panels, yield was predicted from biomass measured during the whole pre-flowering period, but fit at flowering. The 
x-axis indicates the quality of the HTP measurement, quantified as the R2 between the direct phenotypic 
measurements (APSIM biomass plus plot error, Equation 11) and  HTP (APSIM biomass plus plot and measurement 
error, Equation 12). Symbol colour  indicates the interval, expressed as the number of days between two consecutive 
HTP measurements.  Horizontal line indicates prediction accuracy for single-trait genomic prediction model. 

 

7.4. Discussion 

In this paper, we illustrate that the APSIM crop growth model with genotype-dependent 
parameters allows to evaluate the potential of intermediate traits measured with HTP to 
improve yield genomic prediction accuracy. We used an HTP approximation of biomass as 
a correlated trait in a multi-trait genomic prediction model. We compared phenotyping 
schedules across environments varying in their water deficit patterns and statistical models 
to fit development over time (i.e. splines and logistic model). In our illustration, we used a 
diversity panel that represents well the spectrum of genotypes that is adapted to Australian 
environments. We based ourselves on previous research done by (Chenu et al., 2011, 2013; 
Zheng et al., 2013; Casadebaig et al., 2016) to select a number of environments that represent 
well the Australian TPE. Similar approaches to characterize the adaptation landscape and 
identify traits that are useful for selection in different environment types have been previously 
discussed by (Podlich & Cooper, 1998; Chapman et al., 2002; Hammer et al., 2002, 2005). 
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7.4.1. Multi-trait predictions 

Multi-trait predictions for yield, using biomass as a correlated trait showed in general a 
larger prediction accuracy than single trait predictions. The exceptions were those cases in 
which the measurement error was very large or when the curve did not fit well to the biomass 
data (especially the logistic curves). To avoid the reduced prediction accuracy for yield when 
biomass contained a large error, an alternative approach would be to use selection indices, 
giving a larger weight to the target trait than to the intermediate traits (Hazel, 1943; Lande & 
Thompson, 1990; Dekkers, 2007).  

We also evaluated yield predictions from biomass measured early during the growing 
season. The degree of success of these predictions was largely affected by the correlation 
between early biomass and yield. As these correlations were associated to the environmental 
conditions (low for dry environments and medium-sized for humid environments), the 
phenotyping and prediction strategy needs to consider the type of environments in which 
genotypes are evaluated. Our modelling approach allows to estimate a priori whether the 
traits are likely to be correlated with the target trait, allowing to assess the potential of 
intermediate traits for making predictions.   

The third scenario that we evaluated was using biomass that had a measurement error 
dependent on canopy growth, as most commonly encountered in real experiments (Grieder 
et al., 2015; Magney et al., 2016). In that way, the error is dynamic over time 
(heteroscedastic). We used the spline fitted values or the parameters calculated from the 
logistic curve as correlated traits. These biomass approximations showed similar results, 
compared to the approximations obtained using a homoscedastic error.  

7.4.2. Simultaneous modelling of traits measured with HTP during the growing 
season  

We modelled biomass as measured with HTP during the growing season. We compared 
the use of logistic functions and splines to characterize biomass dynamics over time. Both, 
splines and the logistic curves, increased the heritability of biomass, showing that modelling 
multiple time points simultaneously is a good strategy to reduce the measurement error. 
Similar results have been observed when using splines to model canopy temperature and 
NDVI measurements in real wheat experiments (Sun et al., 2017). We observed that splines 
show a larger heritability than the logistic curve because they can accommodate better the 
irregularities in the biomass accumulation.  
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The advantage of using simulated data, is that we can evaluate error sizes and 
measurement frequencies, allowing to provide recommendations for a phenotyping schedule. 
In our simulations, we covered a range of phenotyping scenarios, varying in their 
measurement precision and interval. Prediction accuracy for multi-trait models using biomass 
information during the whole growing season, or using early biomass measurements to 
predict final yield, was in line with results obtained for real phenotypic data (Sun et al., 2017). 
Some of the levels we chose for measurement precision are probably too optimistic, given 
that biomass approximations with technologies like NDVI usually have R2 of maximum 0.6 
(Marti et al., 2007; Grieder et al., 2015; Magney et al., 2016). Our results indicated that when 
integrating the information during the growing season, similar prediction accuracy is 
obtained when using  HTP technologies that deliver an R2 of 0.6 than of 0.8. This suggests 
that, in principle, if we use the currently available technologies, more can be gained from the 
integration of multiple observation during the growing season, than from reducing the error 
of single observations. The next step in terms of integration of HTP data into phenotype 
prediction might be combining the information from proximal sensing of field trials (e.g. 
NDVI measured from a drone or helicopter (Chapman et al., 2014)) with remote sensing 
from the actual wheat production environments (e.g. satellite measurements of wheat 
paddocks (Perry et al., 2014)).  

In section 3.4, we characterize the change of additive effects for biomass QTLs during 
the growing season. We also quantify how those QTLs relate to each of the APSIM 
parameters, in an attempt to understand the underlying cause of biomass accumulation over 
time and across environments. The analysis of QTLs that co-localize certainly provides 
useful insight about the importance of the APSIM parameters during the growing season. 
The QTL co-localization analysis allowed us to identify traits that have shown to be related 
to biomass accumulation in general (Calderini et al., 1997; Sadras & Lawson, 2011) and in 
water-limited environments (Rebetzke et al., 2012). However, a more elegant and complete 
representation of the relationship between QTLs, APSIM parameters, intermediate and target 
traits can be achieved with a network representation (Neto et al., 2010; Alimi, 2016). Best, 
if multiple layers of information (QTLs, APSIM parameters and final traits) are modelled in 
a multi-level network (Wang & van Eeuwijk, 2014; Wang et al., 2015).  

7.4.3. Characterization of the TPG and the TPE 

The GxE patterns and partitioning of the phenotypic variance observed for this simulated 
combination of TPG and TPE samples, are comparable to the ones reported for real field 
trials (Cullis et al., 2000; Chenu et al., 2011). The large 𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖𝑘𝑘  and the clear impact of water 
deficit patterns on GxE supports the convenience of focusing on the analysis of environment 
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types (water-deficit patterns) in place of environments defined by years and locations 
(Chapman et al., 2002; Chenu et al., 2011, 2013; Hammer et al., 2014). The similar GxE 
patterns between simulated and real wheat data indicate that the APSIM simulations with 
genotype-dependent parameters are a useful tool to characterize phenotyping and breeding 
strategies across the Australian TPE.  

We selected a small sample of environments that represent the different environment 
types commonly encountered across the most important wheat growing areas in the 
Australian wheat belt. This sample was consisted of three locations and different years. 
However, in practice, breeders are restricted to decide how to best cover the whole range of 
environmental conditions that pertain to the TPE, sampling locations within the present year. 
The adequate selection of locations for phenotyping is especially relevant when investing in 
facilities that cannot be easily transported from one location to another (e.g. LemnaTec Field 
Scanalyzer). As the Australian year to year variation (𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖𝑘𝑘  and 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖) is large, there is some 
risk that, for some years, the locations selected for the field trials might not represent well 
the whole range of environmental conditions. In our simulated example, this would occur for 
example for Narrabri. This location does not show a consistent contribution to GxE across 
years; in some years, it shows no/small drought like Yanco_2010 and in others, it shows a 
strong post-anthesis drought. The use of APSIM with genotype-dependent parameters allows 
to assess the potential of locations to represent well the range of the TPE across years, helping 
to define the phenotyping network. 

7.4.4. Combination of statistical and APSIM models 

We based our selection of parameter ranges on information from the literature. The 
selection of parameter ranges is one of the most critical steps, having a large impact on the 
GxE patterns observed in the APSIM output, where also the TPG is important. The sample 
of the TPG defines a set of traits and trait ranges that are adaptive across the TPE. Flowering 
time is one of the most important examples of trait ranges that are specific for the TPE; in 
some environments, only some flowering time values allow a successful completion of the 
growing cycle. Examples and discussions on how the relationship between TPG and TPE 
relates to trait ranges can be found in (Slafer, 2003; Slafer et al., 2005; Zheng et al., 2012, 
2013). In our simulations, we also assessed whether the flowering time ranges from the 
simulations were comparable to those observed in the real phenotypic data and adjusted the 
parameters accordingly. For example, a slightly larger range of vern_sens, photop_sens and  
tt_floral_initiation was explored in Zheng et al. (2013). We restricted ourselves to a smaller 
range for photop_sens (we used 1.5 to 3.0 instead of 1.5 to 4.0 as in Zheng et al. (2012) and 
for tt_floral_initiation (we used 455 to 555, instead of 455 to 1025 as in Zheng et al. (2013) 
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because otherwise we would obtain too late flowering dates, leading to crop failure in dry 
environments. Thus, the sample of the TPG that we constructed had a smaller flowering time 
range than the range explored by Zheng et al., (2012), matching the phenology that is usually 
observed in well-adapted genotypes to dry Australian environments.  

Combining crop growth models with statistical-genetic models also showed how 
biological epistasis can arise when scaling up from basic traits (APSIM parameters) to traits 
that show a larger level of integration of biological processes, like the intermediate or the 
target traits.  Biological epistasis is said to take place when the phenotypic differences among 
individuals are influenced by other traits via physiological mechanisms (Cheverud & 
Routman, 1995; Cooper, 2004).  If the relationship between the underlying component traits 
is non-additive, epistatic effects can occur at the phenotypic level of complex traits even if 
the gene action is purely additive  (Holland, 2001; Cooper et al., 2002; Hammer et al., 2006; 
Technow et al., 2015). For example, all APSIM parameters regulating canopy growth were 
additive. However, the intermediate trait ‘canopy cover’ showed a nonlinear response, 
leading to changes in genotypic ranking during the season (Figure 2). Similar scenarios, in 
which nonlinear responses arise from crop growth model parameters produced with purely 
linear statistical models can be seen in (Technow et al., 2015).  
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Supplementary Material 

 

Figure S1. Geographical position of the eight Australian environments with phenotypic data for yield and 
heading date used to estimate the distribution of the additive effects.  
 

 

 

 

 

 

 

 

 

 

 

Figure S2. Histograms and observed correlations for the 300 additive effects underlying the 12 APSIM parameters. 
These effect were sampled with copulas to impose the following correlations on the additive effects of parameters 
indicated with a coloured frame: a) transpiration efficiency coefficient and radiation use efficiency (r= 0.40, blue), 
b)  number of grains per gram of stem at flowering and maximum grain size (r=0.50, red) and c) maximum grain 
size and potential grain filling rate (r=0.45, green). All other correlations are lower than 0.20. The shape and rate for 
each parameter are indicated in Table 2.   
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Figure S3. Histograms and correlations for the genotype-dependent APSIM parameters. These parameters were 
generated from 300 loci with additive effects. We imposed the following correlations on some pairs of parameters: 
a) transpiration efficiency coefficient and radiation use efficiency (r= -0.40, blue), b)  number of grains per gram of 
stem at flowering and maximum grain size (r=-0.50, red) and c) maximum grain size and potential grain filling rate 
(r=+0.45, green). Differences between the imposed and realized correlations are product of the sampling process. 
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Figure S4. Yield and biomass for 84 environments (Emerald, Merredin, Narrabri and Yanco during 1993-2013). 
Environments selected to evaluate the integration of biomass as an intermediate trait to improve the quality of yield 
are shown in coloured boxes (orange=Emerald_1993, black=Narrabri_2008 and blue=Yanco_2010). 

 

Table S1.  Summary of the environmental conditions in the selected environments over three phenological periods, 
following the phenology of a genotype with average parameter values. 

Period Environment MinT MaxT Radn Rain vp Day length 

(oC) (oC) (MJ m-2) (mm) (hPa) (h) 

Sowing- Emerald_1993 11.93 24.53 14.11 25.3 12.7 11.6 

stem elongation Narrabri_2008 6.8 20.1 12.0 48.4 10.3 11.2 

  Yanco_2010 5.2 15.1 9.3 95.7 9.8 10.9 

Stem elongation- Emerald_1993 11.38 24.73 15.64 12.9 11.6 11.8 

flowering Narrabri_2008 3.1 18.1 14.9 62.4 8.4 11.8 

 Yanco_2010 5.7 14.9 12.1 103.3 10.5 12.0 

Flowering- Emerald_1993 12.9 26.8 19.3 132.7 13.3 12.6 

maturity Narrabri_2008 10.8 24.6 20.0 101.7 12.1 13.1 

  Yanco_2010 8.4 21.3 21.2 130.7 12.5 13.8 
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Table S2. Percentage of the APSIM parameter variance explained by the SNPs that were significant for biomass 
during the growing season.  
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Abstract 

A good statistical analysis of genotype by environment interactions (GxE) is a key 
requirement for progress in any breeding program. Data for GxE analyses traditionally come 
from multi-environment trials. In recent years, increasingly data are generated from managed 
stress trials, phenotyping platforms, and high throughput phenotyping techniques in the field. 
Simultaneously, and complementary to the phenotyping, more elaborate genotyping and 
envirotyping occur. All of these developments further increase the importance of a sound 
statistical framework for analyzing GxE. This paper presents considerations on such a 
framework from the point of view of the choices that need to be made with respect to the 
content of short academic courses on statistical methods for GxE. Based on our experiences 
in teaching statistical methods to plant breeders, for specialized GxE courses between three 
and five days are reserved. The audience in such courses includes MSc students, PhD 
students, postdocs and researchers at breeding companies. For such specialized courses, we 
propose a collection of topics to be covered. Our outlook on GxE analyses is two-fold. On 
the one hand, we see the GxE problem as the building of predictive models for genotype-
specific reaction norms. On the other hand, the GxE problem consists in the identification of 
suitable variance-covariance models to describe heterogeneity of genetic variance and 
correlations across environments. Our preferred class of statistical models is the class of 
mixed linear-bilinear models. These statistical models allow us to answer breeding questions 
on adaptation, adaptability, stability, and the identification and subdivision of the target 
population of environments. By a citation analysis of the literature on GxE, we show that our 
preference for mixed linear-bilinear models for analyzing GxE is supported by recent trends 
in the types of methods for GxE analysis that are most frequently cited.    

 

 

Keywords: adaptation, adaptability, bilinear model, environmental covariable, factorial 
regression, genotype by environment interaction, genotypic covariable, genotypic sensitivity, 
heterogeneity of genetic correlation, heterogeneity of genetic variance, mega-environments, 
mixed models, phenotypic prediction, plasticity, reaction norm, stability, target population of 
environments, variance-covariance structure
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8.1.1. Setting up a course on GxE 

Motivation  

About 15 years ago, the prediction of phenotypes from high-density marker information 
was recognised as a potential game changer in animal breeding (Meuwissen et al., 2001). In 
plant breeding, the current development of high throughput genotyping techniques alongside 
with similar techniques for phenotyping and envirotyping (Cobb et al., 2013; Araus and 
Cairns, 2014; Cooper et al., 2014b) provides opportunities for large scale phenotypic 
predictions of new, and therefore, untested genotypes in new environments under a wide 
spectrum of genotype by environment interaction (GxE) scenarios (Burgueño et al., 2008; 
Dawson et al., 2013; Heslot et al., 2013; Jarquín et al., 2013; Bustos-Korts et al., 2016; 
Malosetti et al., 2016, this issue). The increased volumes of phenotypic, genotypic and 
environmental data give a stimulus to the development of new statistical approaches for more 
precise description and prediction of GxE phenomena. A better modelling of GxE will 
undeniably contribute to a higher efficiency of breeding programs. In the light of the current 
developments, it is obvious that the study of GxE will become even more important in the 
near future than it was already in the past. Future generations of students and researchers in 
plant breeding will require substantial training in the statistical aspects of GxE. In this paper, 
we present and discuss our views on the topics that need to be covered in a course on GxE as 
well as some ideas about how to teach such a course.  

From our experience, for specialized courses about the statistical aspects of GxE, 
typically a period between three to five days is reserved. The population of students for such 
courses covers the spectrum from MSc students to researchers in plant breeding companies, 
with in-between PhD students and postdocs. For this paper, we base ourselves on the 
following experiences. We gave various courses as part of the Integrated Breeding Multi-
Year Course (IB-MYC, 2012-2014, https://www.integratedbreeding.net). The students in 
these courses came from Africa and Asia and ranged from PhD students in plant biology to 
experienced plant breeders in charge of breeding programs. A course with MSc students from 
the Mediterranean area was part of the MSc Plant Breeding program at the Mediterranean 
Agronomic Institute of Zaragoza (http://masters.iamz.ciheam.org/en/plantbreeding/). Further 
courses were given to MSc and post-doctoral students in plant breeding at Wageningen 
University (http://www.wageningenur.nl/biometris) and to MSc students in applied statistics 
at Leiden University (http://en.mastersinleiden.nl/programmes/statistical-science-for-the-
life-and-behavioural-sciences/en/introduction). Finally, various in-house courses were 
organized for employees of international plant breeding companies.  
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Prerequisites  

The target audience for our courses consists of plant breeding students who should be 
familiar with the following areas and concepts:  

• quantitative genetics (estimation of genetic and environmental variances,  
heritability, genetic correlation, response to selection, correlated response) 

• statistical design of plant breeding trials (obligatory: completely randomized 
designs, randomized complete block designs,  incomplete block designs; desired: 
resolvable designs, cyclic designs, row-and-column designs, p-rep designs, augmented 
designs, split plot designs) 

• statistical analysis of plant breeding trials (one-way and two-way analysis of 
variance (ANOVA), development and testing of contrasts and interactions, regression, 
analysis of covariance, one- and two-way linear mixed models, inference for fixed and 
random terms)  

Preferentially, students have followed a course on the design and analysis of individual 
plant breeding trials before going to a GxE course. On the design side, students should be 
able to choose an appropriate design for plant breeding experiments given particular 
objectives (e.g., estimation of heritability versus comparison of a small number of genotypes) 
and limitations (number of replicates, rows, and columns, spatial variation, trends). On the 
analysis side, students should be able select an appropriate model for an experiment, making 
choices on which terms to take fixed and which to take random, and assessing the necessity 
to include individual model terms by F-tests / Wald tests for fixed terms and log-likelihood 
ratio / deviance tests for random terms.  

Familiarity with quantitative trait locus (QTL) mapping is useful, because it allows GxE 
analyses to be connected directly to QTL by environment (QTLxE) analyses. For QTL 
mapping, it is best, when both linkage and linkage disequilibrium mapping have been 
discussed, for single and multiple traits and environments, preferentially within a mixed 
model framework. Simple examples of genome-enabled prediction methods can be included 
in a QTL mapping course as well. From our perspective, an important objective of QTL 
analysis is the identification of the genetic basis of GxE in the form of QTL by environment 
interaction (QTLxE).  

To finish off the quantitative education of plant breeding students, a course in decision 
support is desired in which students learn how to integrate information from statistical 
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analyses and formulate breeding strategies. Specific topics in such a course are marker 
assisted back crossing, gene pyramiding, marker assisted selection, genomic selection, and 
various types of index selection. A GxE course will benefit from knowledge on decision 
support, although a decision support course is not an absolute prerequisite for a GxE course. 

In our three-to-five day course on GxE, the emphasis is on the formulation and building 
of genotype-to-phenotype prediction models. From the identified genotype-to-phenotype 
models, we estimate genotype-specific statistics for mean performance under general and 
specific environmental conditions besides genotype-specific stability and risk measures. 
Selection strategies for genotypic means, sensitivities, stability variances and risks can be 
part of the GxE course as long as they concern phenotypic selection. We would prefer to 
discuss marker assisted selection strategies for such GxE related statistics in a separate 
decision support course.   

8.2. GxE concepts and perspectives 

Before we describe the statistical-technical details of our proposal for a statistical course 
on GxE for future plant breeders, we want to introduce a number of breeding concepts that 
are useful for a better communication between plant breeders and statisticians. These 
concepts help to define pertinent breeding questions in terms that allow unequivocal 
translation to statistical models and parameters. We acknowledge that the definitions of the 
breeding concepts below may look biased toward the direction of statistical clarity at the 
expense of biological width. We have on purpose narrowed down breeding definitions to 
guarantee one-to-one relations to statistical parameters. 

Target population of genotypes and target population of environments 

As a preliminary to models for GxE and breeding concepts related to GxE (adaptation, 
adaptability, stability, etc.), it is useful to introduce the concepts of target population of 
genotypes (TPG) and target population of environments (TPE). The TPG and TPE define the 
set of genotypes and environments for which we want our inference and predictions to be 
valid and precise. The TPG contains all possible genotypes we hope to develop and grow the 
coming years. Statistically speaking, we aim at coincidence of the TPG and the genetic design 
space of our prediction models. In the genomic selection literature, the target population of 
genotypes coincides with the notion of the set or population of selection candidates (Jannink 
et al., 2010; Schulz-Streeck et al. 2012; Albrecht et al. 2014). The TPE delineates the future 
growing conditions of the genotypes in the TPG (Comstock, 1977; Cooper and Hammer, 
1996; Cooper et al., 2014b). The TPE can be defined by geography, soil and meteorological 
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conditions, management choices, and the incidence of biotic and abiotic stresses. We want 
the TPE to be reflected in the environmental design space of our prediction models.   

As the phenotype is an integrated outcome of interactions between genetic and 
environmental factors during development, TPG and TPE cannot be chosen as to be 
independent. To give an example for abiotic stress, if we define a TPE on a geographical 
basis that includes drought and well-watered conditions, we wish to develop genotypes that 
perform well under both drought stress and well-watered conditions, or, in other words, the 
TPG consists of genotypes with wide adaptation. However, if we want to interpret drought 
stressed conditions as a TPE by itself, the composition of the TPG will have to change in 
reaction to the redefinition of the TPE. Therefore, the width of the TPE has consequences for 
the definition of the TPG and vice versa. For biotic stresses, the same arguments will hold 
when we replace the drought stress in the above example with infection pressure for a 
particular disease.  

Reaction norm 

For individual genotypes, we want to describe their phenotypic behavior across the full 
TPE and therefore we introduce the concept of the reaction norm: the genotype-specific 
functional relationship between phenotype and environmental gradient(s) (Woltereck, 1909; 
DeWitt and Scheiner, 2004). In practice, environmental gradients are sampled in a limited 
number of experiments. The observations made in those discrete environments are called 
character states (Schlichting and Pigliucci, 1998; Pigliucci, 2001).  

For phenotypic prediction across a range of environmental conditions, we need to fit 
statistical models that represent the reaction norms of individual genotypes, that is, the main 
environmental drivers for phenotypic differences need to be identified together with suitable 
functional forms for the reaction norms. Phenotypic data can come from a series of field trials 
that represent a draw from the TPE. Such a draw from the TPE is often equivalent to or part 
of a multi-environment trial (MET) (Smith et al., 2001, 2005; van Eeuwijk et al., 2010). More 
informative data for modelling reaction norms can come from managed stress trials (Cooper 
et al., 2014a) and phenotyping platforms (Tardieu and Tuberosa, 2010; Cobb et al., 2013; 
Araus and Cairns, 2014; Kuijken et al., 2015). 

Adaptedness and adaptation 

Within the framework of reaction norms, a genotype shows adaptedness when its reaction 
norm is superior to that of a standard genotype or when it is close to that of an ideotype (van 
Oijen and Höglind, 2015). In the plant breeding literature, adaptedness, a state, is not always 
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distinguished from adaptation, a process. For example, it is common to talk about wide 
adaptation for genotypes showing adaptedness across the full TPE, versus narrow adaptation 
for genotypes showing adaptedness for part of the TPE (Ceccarelli, 1989, 1996; Braun et al., 
1996; Cooper and Hammer, 1996; Cooper, 1999; Araus et al., 2008; Sadras and Rebetzke, 
2013). Below, we will use both terms to some extent interchangeably, but our intention is to 
refer to a state, so adaptedness would be the more correct term to use.  

Adaptation and adaptedness usually pertain to yield or biomass. Traits different from 
yield itself are instrumental for realizing adaptation in yield, a very important one being 
phenology or earliness. The development of a genotype should match with the timing of 
resource availability and the absence or low incidence of stresses in its environment. The 
reaction norm for yield depends on the reaction norms for the yield components. The joint 
reaction norm of yield and yield components is a multivariate function of phenotypes that 
mutually affect each other and genetic and environmental inputs. For interesting elaborations 
of this multi-trait idea of reaction norms for plant breeding purposes, see Podlich and Cooper 
(1999) Messina et al. (2011), Cooper et al. (2014a), Cooper et al. (2014b), Harrison et al. 
(2014).  A good understanding of the processes leading to adaptedness and GxE requires 
observations on yield together with its main component traits as a function of 
(developmental) time. As multi-trait developmental data are still rare, GxE analysis methods 
for single traits observed at single time points dominate the literature.   

Adaptability and sensitivity 

A reaction norm defines a genotype-specific function that translates environmental inputs 
into a phenotype. GxE occurs when the reaction norms are not parallel, i.e., they intersect, 
diverge or converge, compare Figure 1a and 1b on the one hand with Figure 1c, 1d, 1e and 
1f on the other hand. GxE forces phenotypic prediction models to become more elaborate 
and to contain genotype-specific parameters; intercepts, slopes and curvatures. These 
genotype-specific parameters are called sensitivity and adaptability parameters in the plant 
breeding literature and they facilitate the modelling of non-parallelism of reaction norms to 
account for GxE (Finlay and Wilkinson, 1963; Bänziger et al., 1997; Bradshaw, 2006; Sadras 
and Lawson, 2011; Slafer et al., 2014). Sensitivity applies to situations with single and well- 
identified explicit environmental gradients (drought stress index, temperature), adaptability 
to less concrete and non-explicit environmental gradients (environmental index based on 
average performance of all genotypes in a trial).  
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Figure 1. Reaction norms for three genotypes that illustrate various forms of plasticity and Genotype x Environment 
interaction (GxE). No plasticity in (a) versus plasticity in (b) to (f), no G ´ E in (a) and (b) versus various forms of 
GxE in (c) till (f). 
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Stability and risk 

Observations on realized phenotypes in field trials will vary around the expected reaction 
norm for individual genotypes. This variation can be genotype-specific again and then it 
becomes another expression of GxE, which is captured by stability parameters (Eberhart and 
Russell, 1966; Wricke, 1966; Shukla, 1972; Fischer and Maurer, 1978; Lin et al., 1986; Lin 
and Binns, 1988; Piepho, 1998). Stability is called static (Lin et al., 1986), when the reaction 
norm model does not contain genotype-specific intercept or sensitivity terms and because of 
that does not correct for the general performance of the genotype or the production level of 
the environment. When stability is called dynamic, it is defined in terms of the variance of 
the residuals from more elaborate reaction norm models with genotype-specific parameters. 
In estimating procedures for dynamic stability variances, we need to account for the 
environmental factors shaping the reaction norms. For assessments of managed stress on a 
phenotyping platform, reaction norms are reduced to performance under stress versus control 
conditions and stability variances express variation within and between runs on the 
phenotyping platform. To increase the usefulness of stability measures, predictable or 
repeatable forms of GxE need to be distinguished from non-predictable and non-repeatable 
forms. For example, repeatable genotype by management interactions need to be 
distinguished from non-repeatable genotype by time and genotype by management by time 
interactions. For classical multi-environment trials across locations and years, a similar 
distinction between repeatable and non-repeatable types of GxE can be made (Chapman et 
al., 2000a; b). Lin and Binns (1988) proposed to consider genotype by location interactions 
as predictable and to fit a reaction norm model to such interaction, whereas genotype by 
location by year interactions were considered to be unpredictable and genotype-specific 
stability variances were defined on the basis of the latter three-way GxE interactions.  

Stability parameters are estimated mainly for yield and yield related traits, and to a lesser 
extent for quality traits. The concept of stability overlaps with the concepts of homeostasis, 
(no) plasticity, and resilience, i.e. reverting to equilibrium when perturbed (Lerner, 1954; 
Hanson, 1970; Govindaraju and Dancik, 1987; Debat and David, 2001; Sadras et al., 2009; 
Nicotra et al., 2010).   

When genotypes differ in both reaction norm and stability, it may be worthwhile to 
combine these two concepts in a risk concept: the probability to exceed a threshold yield 
level for part or the whole of the TPE (Eskridge and Mumm, 1992).  
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Environments 

With respect to GxE, the major breeding questions for genotypes concern those related to 
adaptedness, adaptability and stability. For the environments, the major question is whether 
a set of trials, experiments, and conditions can be considered to form a sample from one 
particular target population of environments, or, alternatively, whether to attribute the set of 
trials, experiments and conditions to two or more target populations of environments. When 
trials (experiments) are grouped based on phenotypic or environmental information from the 
trials themselves, such groups are called mega-environments, or, sometimes, adaptation 
zones and ecological zones  (Gauch Jr. and Zobel, 1988; Cornelius et al., 1992; Cooper et al., 
1993; Gauch and Zobel, 1997; Atlin et al., 2000, 2011; Yan et al., 2000; Löffler et al., 2005; 
Chenu et al., 2011, 2013; Zhang et al., 2015). Mega-environments consist of trials and 
conditions that elicit comparable phenotypic responses in certain groups of genotypes. The 
question to the identification of mega-environments is the environmental counterpart of the 
question to genotypic adaptation. Several statistical approaches to GxE problems, like 
bilinear models (Gauch and Zobel, 1997) and bi-clustering (Corsten and Denis, 1990) 
approaches, simultaneously identify groups of genotypes with similar adaptedness patterns 
and groups of environments with similar conditions.   

The identification of mega-environments is relevant for collections of trials that are 
assumed to originate from two or more discrete TPEs. However, even when assuming that 
trials stem from different TPEs, it may still be the case that genetic correlation exists between 
the genotypic performances in these trials. In the latter case, it seems better to speak of a 
subdivided TPE than of different TPEs. When the subdivision of the TPE is geographical, 
we often speak of regions. When trials are strongly heterogeneous, the central breeding 
question is whether to focus on specific adaptation or wide adaptation  (Cooper and 
Woodruff, 1993; Braun et al., 1996; Ceccarelli et al., 1998; Atlin et al., 2000; Yan et al., 
2000; Trethowan et al., 2001; Piepho and Möhring, 2005; Navabi et al., 2006; Chenu et al., 
2011; Windhausen et al., 2012).  If the decision is to go for wide adaptation, the most frequent 
question is how to efficiently combine the information from different regions of the TPE such 
as to maximize genetic gain across the undivided TPE (Atlin et al., 2000; Piepho and 
Möhring, 2005; Windhausen et al., 2012).  

Another common question on the environmental side of GxE problems is that on the 
identification of trial locations that best represent the TPE (Heslot et al., 2013; Cooper et al., 
2014). Representative locations should have a high correlation with the expectation across 
the TPE. Of course, this expectation is often unknown, because we are uncertain about which 
trials to assign to the TPE and which not. Another complicating factor is that genotypes may 
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be strongly unbalanced across trials. When there is certainty about whether trials are from 
the TPE, a possible estimator for the expectation across the TPE is the mean of a set of 
standard or probe genotypes across trials (Mathews et al., 2011). Trials that are chosen to 
represent the TPE should also have good discriminative properties (high heritability).  

8.3. The statistical aspects of a GxE course for plant breeders 

8.3.1. Linear, bilinear, and mixed models 

In our GxE course of a few days to a week, the emphasis should be on data analysis, 
which means model formulation and model building, interpretation of statistical parameters 
in breeding terms and prediction of phenotypic responses to answer breeding questions, all 
as much as possible on real data. The learning objectives involve the expression of breeding 
questions in terms of suitable statistical models and parameters, the successful fitting of such 
models to breeding data, the interpretation of the results of the statistical analysis in breeding 
terms, and the reporting of the main findings in clear non-statistical language with insightful 
tables and figures. Statistical and theoretical issues related to parametrization, and estimation 
and testing procedures are of secondary importance. We believe that the main breeding 
questions above (adaptation, adaptability, stability, identification of TPE, choice of selection 
environments) can effectively be addressed by a combination of linear, bilinear, and mixed 
models. Essentially, the GxE course discusses models that contain linear and bilinear terms 
that can be fixed or random: linear-bilinear mixed models. The estimation procedures are 
typically least squares and REstricted Maximum Likelihood in software packages like SAS 
(SAS Institute, 2015), Genstat (VSN-International, 2015a) and Breeding View (The Breeding 
Management System Version 3.0.8, 2015), ASReml (VSN-International, 2015b), and 
ASReml-R (VSN-International, 2015c). Testing of fixed effects takes place by Wald tests or 
F-tests, while variance components and correlations are tested by likelihood ratio tests (Smith 
et al., 2005; van Eeuwijk et al., 2010; Gumedze and Dunne, 2011). For us, testing is 
predominantly an activity within a model building strategy to identify a prediction model. 

Linear and linear-bilinear models with only fixed terms are of limited use in the analysis 
of GxE data. Mixed models have facilities for modelling heterogeneity of genetic variances 
and correlations between environments as well as for modelling design features and spatial 
trends in individual trials. Furthermore, prediction of phenotypic traits across environments 
and estimation of quantitative genetic parameters as genetic variance and correlation, 
heritability, and responses to direct, indirect and index selection are natural within the context 
of mixed models, whereas they become contrived in the context of models with only fixed 
terms.  
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Nevertheless, for didactical purposes, it is appropriate to start a course on GxE with fixed 
analysis of variance (ANOVA) models. Inferential procedures by standard F- and t–tests may 
be more familiar than Wald tests and likelihood ratio tests. ANOVA can also be used to 
repeat the basics of least squares estimation and testing theory. The ANOVA framework is 
convenient to introduce model building and different forms of interaction. Later, 
generalizations to bilinear models and mixed models are easily made.  

One stage and two-stage GxE analysis with ANOVA 

A good starting point for a GxE course is an ANOVA model for a response at plot level 
in a multi-environment trial (MET) with randomized complete blocks. The model has the 
form: 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝑔𝑔𝑖𝑖 + 𝑒𝑒𝑖𝑖 + 𝐵𝐵𝑖𝑖(𝑖𝑖) + 𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖, with 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 the phenotypic response in block k 
for genotype i in environment (trial) j, 𝑔𝑔𝑖𝑖  the fixed genotypic main effect, 𝑒𝑒𝑖𝑖  the fixed 
environmental main effect, 𝐵𝐵𝑖𝑖(𝑖𝑖)  the fixed effect of block k in environment j, 𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖 the fixed 
GxE term, and 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖 a random normally distributed error. This model is fitted by least squares. 
The students will be using specialized software to fit statistical models, so they do not need 
to be bothered with details of the fitting process. Still, they need to be able to choose least 
squares for fitting fixed regression and ANOVA models and REML for mixed models and 
they should be familiar with the expressions for estimators of statistics that are used to answer 
breeding questions. Familiarity then means that students recognize how the data are used to 
develop the estimator and how the estimator is related to a statistical model for the data.   

In the fixed ANOVA above, the genotypic main effect and the GxE term will be tested 
against the residual mean square, 𝑣𝑣𝑣𝑣𝑣𝑣(𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖)= 𝜎𝜎𝜖𝜖2. The standard errors for contrasts on the 
genotypic main effects and the GxE effect are functions of the residual mean square. It is a 
good exercise for students to formulate and fit the fixed ANOVA two-way model with 
randomized complete blocks for a concrete MET dataset and perform a statistical analysis, 
including diagnostic checks and reporting of results. The analysis can initially concentrate on 
the test for GxE and ways of quantifying the amount of GxE in comparison to the genotypic 
main effect, for example, by comparing the magnitude of the sums of squares for those terms.  
The use of contrasts to investigate the structure of GxE can wait until models for GxE have 
been discussed (see below). We recommend to follow the protocol described by Welham et 
al. (2014) for the preparation of data, ANOVA analysis, identification of a predictive model, 
interpretation of results, and reporting. 

For an analysis of MET data in a two-stage approach, in the first stage perform 
randomized complete block analyses per trial. After checking diagnostics for normality, 
homogeneity of variance and outliers, vectors of genotypic means are formed together with 
vectors of weights for subsequent GxE analysis. These weights are functions of the standard 
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errors of means (Möhring and Piepho, 2009; Welham et al., 2010; Piepho et al., 2012). For 
the students, the two-stage approach offers an opportunity to rehearse the principles of 
ANOVA and mixed models on single trials. In the second stage, they fit a two-way ANOVA 
model without replication to the table of GxE means: 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝑔𝑔𝑖𝑖 + 𝑒𝑒𝑖𝑖 + 𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 . 
Estimation will follow least squares principles again, as in all fixed ANOVA models. The 
error term, 𝜖𝜖𝑖𝑖𝑖𝑖, has a normal distribution, 𝜖𝜖𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝜖𝜖2), and is confounded with the two-way 
interaction. An independent error term can be obtained from the errors of the single trial 
analyses and will allow testing of the GxE term. 

In an introductory GxE course, simple examples of one-stage analyses of GxE data can 
be presented. However, it is convenient to dedicate most of the time to two-stage modelling. 
The reason is that firstly, the statistical differences between one-stage and two-stage analyses 
are small in most cases and certainly when appropriate weighting schemes are used (Welham 
et al., 2010; Piepho et al., 2012), and secondly, the logistics of the two-stage approach are 
more intuitive. In the two-stage approach, the students first concentrate on the phenotypic 
analysis of single trials, taking into account design and spatial trends. Subsequently, the 
students can focus exclusively on the modelling of GxE. The simultaneous handling of large 
numbers of trials at plot level can be confusing, both at the statistical input and output level. 
Fewer things can go wrong in a two-stage approach, as compared with a one-stage approach.  

Mixed models 

The fixed ANOVA model for the MET with randomized complete blocks can be turned 
into a mixed model by treating blocks as random in the one-stage model. For this kind of 
design, this will hardly change interpretations on the comparisons of genotypic means, but 
students will have to realize that the mixed model imposes additional assumptions on the 
parameters in the model that will require checking. In this case, the extra assumption is that 
the block effects come from a normal distribution with a particular variance. Because block 
effects contribute to the variance of observations, the standard error for a genotypic mean 
will be larger in the model with random blocks. In contrast, for the standard error of a 
genotypic difference the block effects cancel out, so that this standard error is the same in the 
fixed and mixed model. Of course, for incomplete block designs, we expect the standard error 
of a difference to be smaller for random blocks than fixed blocks. These points can be brought 
to the attention of the students by asking them to perform analyses of MET data with fixed 
and random blocks and to compare the results. Another point that deserves attention is the 
inspection of ANOVA tables of degrees of freedom, sums of squares, mean squares and F-
tests, versus the inspection of tables of Wald tests for fixed effects and likelihood ratio tests 
for variance components. As a learning objective, students should be able to interpret these 
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tables and use them to build prediction models for GxE data. We return to model building in 
a later section.  

A more drastic change occurs when the genotypes are taken random, in both the one-
stage and the two-stage model. All basic quantitative genetic concepts can be introduced and 
discussed: Best Linear Unbiased Predictor (BLUP), genetic variance, GxE variance, genetic 
correlation, heritability, response to selection, direct response to selection, correlated 
response to selection. We remark that we will use the word ‘genetic’ in a rather loose sense, 
mostly for indicating variance and correlation across genotypes, but also sometimes in a more 
restricted sense for exclusively additive genetic variance or correlation, as in mixed models 
with structured variance-covariance matrices.  

The one-stage model is easier to work with for the presentation of estimators for all of 
these parameters. The students should be made familiar with expressions for quantitative 
genetic parameters. They should learn what the influence is of changing the number of 
environments and replicates on the heritability. A further objective is to learn how to evaluate 
the efficiency of selection in one particular environment (e.g. stress) to that in another (e.g. 
non-stress). For the two-stage modelling, the mixed model for a MET can be defined as 𝑦𝑦𝑖𝑖𝑖𝑖 =
𝜇𝜇𝑖𝑖 + 𝐺𝐺𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 , with 𝜇𝜇𝑖𝑖  the fixed intercept for environment j, and 𝐺𝐺𝑖𝑖𝑖𝑖  the random 
environment-specific genetic effect for genotype i in environment j. The matrix of random 
effects 𝐺𝐺𝑖𝑖𝑖𝑖 will have a multivariate normal matrix distribution with mean zero and variance-
covariance matrix (VCOV) 𝜮𝜮:  {𝐺𝐺𝑖𝑖𝑖𝑖}~𝑀𝑀𝑀𝑀𝑁𝑁(𝟎𝟎,𝜮𝜮) (Cullis et al., 2005). The VCOV, 𝜮𝜮, is 
factorized in a VCOV for the genotypes that defines the correlations between the genotypes 
following from kinship and pedigree, 𝜮𝜮𝑮𝑮 , and another VCOV for the environments that 
expresses heterogeneity of genetic variance and correlations across environments, 𝜮𝜮𝐸𝐸 : 
𝜮𝜮 = 𝜮𝜮𝑮𝑮⨂𝜮𝜮𝐸𝐸, with ⨂ a Kronecker product. A major learning objective for a modern course 
on GxE is the formulation of VCOV structures for the genotypes, 𝜮𝜮𝐺𝐺 , and for the 
environments, 𝜮𝜮𝐸𝐸. For the genotypes, common choices are  𝜮𝜮𝐺𝐺 = 𝑰𝑰 with 𝑰𝑰 an identity matrix 
for segregating biparental offspring populations and  𝜮𝜮𝐺𝐺 = 𝑨𝑨 with 𝑨𝑨 the matrix of additive 
genetic relationships for association panels. For biparental offspring populations, compound 
symmetry, with a common covariance between pairs of genotypes, is another appropriate 
formulation. For association panels and for genomic prediction models,  𝜮𝜮𝐺𝐺 can be based on 
pedigree information,  marker information, or a combination of these two sources of 
information (Burgueño et al., 2012; Crossa et al., 2010). The specification of 𝜮𝜮𝐺𝐺 should be 
based on investigation of the genetic relationships, whereas the specification of 𝜮𝜮𝐸𝐸 should be 
based on inspection of patterns in genotypic variances and correlations across environments. 
We discuss below a number of tools for determining such patterns in the context of the use 
of bilinar models. For 𝜮𝜮𝐸𝐸 a number of well known formulations exist. The most simple model 
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for 𝜮𝜮𝐸𝐸 has a common genotypic variance,  {𝜮𝜮𝐸𝐸}𝑖𝑖𝑖𝑖 = 𝜎𝜎𝐺𝐺2 and a common covariance {𝜮𝜮𝐸𝐸}𝑖𝑖𝑖𝑖′ =
𝜎𝜎𝐺𝐺𝐺𝐺′  across all environments, where {𝜣𝜣}𝑖𝑖𝑖𝑖′ denotes the entry of symmetric matrix 𝜣𝜣 for the 
k-th row and k’-th column. The heterogeneous compound symmetry model has environment-
specific genotypic variances, {𝜮𝜮𝐸𝐸}𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖2  and a common covariance, while the uniform 
correlation model has also environment-specific variances, but a common correlation 
between environments,  {𝜮𝜮𝐸𝐸}𝑖𝑖𝑖𝑖′ �{𝜮𝜮𝐸𝐸}𝑖𝑖𝑖𝑖{𝜮𝜮𝐸𝐸}𝑖𝑖′𝑖𝑖′� = 𝜌𝜌. The unstructured model has unique 
genotypic variances and covariances, {𝜮𝜮𝐸𝐸}𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖2 and {𝜮𝜮𝐸𝐸}𝑖𝑖𝑖𝑖′ = 𝜎𝜎𝑖𝑖𝑖𝑖′. As the latter model 
requires many parameters for estimation, factor analytic models are used as parsimonious 
approximations to unstructured models. Covariances are written as products of 
environmental scores, {𝜮𝜮𝐸𝐸}𝑖𝑖𝑖𝑖′ = 𝜆𝜆𝑖𝑖𝜆𝜆𝑖𝑖′, while variances are sums of squares of environmental 
scores and environment-specific terms, {𝜮𝜮𝐸𝐸}𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑖𝑖2 + 𝛿𝛿𝑖𝑖2. More than one product term can 
be used for the covariances and variances, for example, {𝜮𝜮𝐸𝐸}𝑖𝑖𝑖𝑖′ = 𝜆𝜆1𝑖𝑖𝜆𝜆1𝑖𝑖′  + 𝜆𝜆2𝑖𝑖𝜆𝜆𝑖𝑖2′  and 
{𝜮𝜮𝐸𝐸}𝑖𝑖𝑖𝑖 = 𝜆𝜆1𝑖𝑖2 +𝜆𝜆2𝑖𝑖2 + 𝛿𝛿𝑖𝑖2. In principle, the residual term, 𝜖𝜖𝑖𝑖𝑖𝑖, is confounded with 𝐺𝐺𝑖𝑖𝑖𝑖, but the 
genetic and residual random terms can be separated by imposing a structure on 𝜮𝜮, like 𝜮𝜮𝐺𝐺 =
𝑨𝑨 or by using a factor analytic structure on 𝜮𝜮𝐸𝐸and interpreting the terms 𝛿𝛿𝑖𝑖2 as non-genetic 
residuals. As an alternative to imposing structure on 𝜮𝜮, 𝜎𝜎𝜖𝜖2 can be obtained from single trial 
analyses. For a single stage MET analysis, the problem of having to separate the genetic 
variance from the residual variance will not occur. The students should learn how to identify 
a suitable model for the genetic VCOV, 𝜮𝜮 , preferentially by log-likelihood ratio tests 
(Gumedze and Dunne, 2011). If these tests cannot be applied, because the VCOV models are 
not nested, then information criteria like AIC or BIC  may be used (Verbeke and 
Molenberghs, 2009; Müller et al., 2013).  

The students need to interpret the structure of 𝜮𝜮𝐸𝐸 for conclusions about the heterogeneity 
of the sample of environments included in the MET. This is an excellent moment to discuss 
the concept of TPE and investigate the question of whether there are indications that the MET 
contains trials from more than one TPE, or, whether different mega-environments can be 
distinguished. To identify different mega-environments in the mixed model context, various 
types of cluster analysis can be applied to the estimate for 𝜮𝜮𝐸𝐸, as explained in Cullis et al. 
(2010). Mixed model theory as developed by Piepho and Möhring (2005) will help to 
establish the gain of subdividing the TPE in different groups or regions. We recommend to 
analyze not just yield or biomass, but, if possible, also traits related to phenology. As yield is 
the primary trait of interest, mega-environments should foremost address yield. Nevertheless, 
inspecting VCOV models for yield and yield components will contribute to the physiological 
interpretation of mega-environment assignments.  

Closely related to the delineation of mega-environments, investigating the structure of 𝜮𝜮𝐸𝐸 
also helps in answering questions about the presence of crossover interactions (Crossa et al., 
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2004; Yang, 2007; Burgueño et al., 2008). Environments or trials with high genetic 
correlations will have few crossover interactions.  

From the identified model for the MET data, predictions for genotypic performance can 
be made in each of the environments. Subsequently, adaptation of genotypes can be studied 
in the very limited sense of which genotypes do best in individual environments. 
Environments in which the same genotype or subset of genotypes do best may be members 
of a common mega environment. Questions on adaptability and stability cannot be answered 
straightforwardly from models without implicit (bilinear) or explicit (factorial regression) 
genotypic and environmental covariables. 

Interaction in linear models 

The two-way ANOVA can serve to introduce the concept of interaction in linear models. 
A plot of estimates of GxE means, �̂�𝜇𝑖𝑖𝑖𝑖 versus environmental main effects, �̂�𝑒𝑖𝑖, or, equivalently, 
environmental means,  �̂�𝜇𝑖𝑖, can help in diagnosing non-parallelism of genotypic responses 
across environments and thereby visualize the presence of GxE. Actually, GxE can equally 
be inspected via a plot of the genotype by environment means, �̂�𝜇𝑖𝑖𝑖𝑖, versus the genotypic 
means, �̂�𝜇𝑖𝑖 , although it is more natural to plot GxE means versus environmental means, as 
this is the basis for the Finlay Wilkinson regression (Yates  and and Cochran, 1938; Finlay 
and Wilkinson, 1963). Plots of GxE means versus an environmental characterization as the 
environmental mean can be used to come back to the concept of the reaction norm within the 
context of ANOVA. When reaction norms are non-constant, genotypes show plasticity, see 
Figure 1a versus 1b to 1f (Allard and Bradshaw, 1964; DeWitt and Scheiner, 2004; Sadras 
and Lawson, 2011; Slafer et al., 2014). To elaborate this point statistically, plasticity points 
to the existence of an environmental main effect. When reaction norms show plasticity and 
are non-parallel, we have GxE, see Figure 1c to 1f. When reaction norms are non-parallel, 
but do not intersect, we speak of quantitative interaction or non-crossover interaction, see 
Figure 1c and 1d. When the reaction norms do intersect, we speak of qualitative interaction 
or crossover interaction, see Figure 1e and 1f. This latter type of GxE has more severe 
consequences for breeders, as it will change the rank order of genotypes as a function of the 
environmental conditions.  

A formal test for GxE interaction in a two-way ANOVA on GxE means requires an 
estimate for the error, 𝜎𝜎𝜖𝜖2. Such an error estimate can come from the analysis of single trials. 
Independent of any formal testing, the ANOVA partitioning of the phenotypic variation into 
genotypic and environmental main effect and GxE gives a rough indication of the importance 
of GxE, judged by sum of squares, mean squares or F-values. We prefer the use of variance 
components in random and mixed models over sums of squares partitioning in fixed 
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ANOVAs to quantify the contributions of genotype, environment and GxE to the phenotypic 
variation, even more so when genotypes and environments contain crossed and/or nested 
factorial structure. The variance components can be expressed on the scale of coefficients of 
variation to facilitate their interpretation (Gelman, 2005). 

Estimation and inference for two-way ANOVA is straightforward for complete GxE 
tables. For ANOVA interaction parameters, under sum to zero constraints the classical 
estimator for GxE interaction residuals is 𝑔𝑔𝑒𝑒�𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖 + 𝑦𝑦�, where the bar indicates 
averaging over subscripts that are omitted. Such simple looking estimators do not exist for 
non-orthogonal GxE data. A number of adaptation and stability parameters have been 
proposed that are functions of these interaction residuals (Wricke, 1962). However, the 
biological reality and usefulness of such estimators depends on the extent to which the sum 
to zero identification constraints can be biologically justified (Denis, 1991).   

Crossover interactions 

In a course on GxE, attention should be given to methods for detecting crossover 
interactions. The importance of crossovers depends on the magnitude of these interactions 
and the genotypes and environments involved. The identification of crossovers is a first step 
in the exploration of the genetic and physiological factors underlying genotypic differences 
that are conditioned by the environment. Crossover tests make sense for GxE tables with 
limited numbers of cultivars of contrasting adaptation (tolerant or resistant versus susceptible 
or sensitive) that are tested under contrasting environmental conditions (e.g., stress versus 
non-stress). However, for these situations more powerful a priori crossover contrasts can be 
defined and tested by standard t-test procedures. To emphasize the continuity between 
ANOVA and mixed models, tests for a priori crossover contrasts should also be demonstrated 
for mixed models. Students will need to learn to first identify the right fixed or mixed linear 
model and then answer specific breeding questions by imposing the appropriate contrasts on 
the levels of genotypic and environmental factors. When a suitable mixed model is identified 
and specified, mixed model software like ASReml, Genstat and SAS offers the possibility to 
define and test contrasts that then will automatically have the correct standard errors.   

The literature on GxE shows a certain obsession with the identification of crossover 
interactions. The two-way ANOVA model provides a plain setting to address the issues of 
the identification of crossover interactions and the assessment of their importance and 
interpretation. A simple post hoc procedure for testing individual crossover interactions first 
identifies pairs of genotypes, i and i’, and pairs of environments, j and j’, for which either the 
condition �𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖′𝑖𝑖� > 0  and �𝑦𝑦𝑖𝑖𝑖𝑖′ − 𝑦𝑦𝑖𝑖′𝑖𝑖′� < 0  is fulfilled, or the condition �𝑦𝑦𝑖𝑖𝑖𝑖 −
𝑦𝑦𝑖𝑖′𝑖𝑖� < 0  and �𝑦𝑦𝑖𝑖𝑖𝑖′ − 𝑦𝑦𝑖𝑖′𝑖𝑖′� > 0 . Subsequently, the interaction sum of squares for the 
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contrast 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖′𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖′ + 𝑦𝑦𝑖𝑖′𝑖𝑖′ is calculated with a conservative correction for multiple a 
posteriori testing according to Scheffé’s test for simultaneous inference (Kuehl, 2000). More 
powerful tests for testing crossovers are the Azzalini-Cox  test (Azzalini and Cox, 1984) and 
the Gail – Simon test (Gail and Simon, 1985). See Baker (1988) for their application to plant 
breeding examples.  

Model building 

Two-way GxE models are generalized to multi-way models when either or both of the 
genotypic and environmental factor contains itself factorial structure. For example, the 
genotypic factor may be the factorial product of an earliness classification and a stress 
tolerance classification. The environmental factor can be a product of location and year, or 
of management and year. In addition, multi-way factorial structure on the environments is 
easily imaginable when multiple management factors (drought/irrigated x high/low nitrogen) 
are crossed with years and/or locations. For analyzing multi-way GxE tables in ANOVA (all 
factors fixed) a recommended strategy first tests the highest order interaction  (Welham et 
al., 2014, section 8.3.1). When this interaction is significant, the model for prediction will 
include all model terms up to the highest interaction. We then need to inspect the 
corresponding multi-way table of means and calculate contrasts on that table for interpreting 
the interactions. When the highest order interaction is not significant, the corresponding 
interaction term will not be included in the prediction model and we continue testing the next 
highest order interactions (Welham et al., 2014, section 11.2.3).  

For mixed models, the strategy described by Welham et al., (2014) carries over to the 
table of fixed terms given that the random structure is kept constant, i.e., the random model 
is the same for all fixed terms. Testing is done by Wald tests or their F-test equivalents. For 
mixed models, the situation is complicated by the fact that for individual terms a decision 
needs to be motivated whether they are fixed or random. This is a subject for which the 
literature is not very clear and students (and teachers) get easily confused. Choices for 
whether genotypic, environmental and GxE terms should be fixed or random depend on the 
question that requires an answer, but also on the assumptions that one is willing to make. 
Assuming that a term is random imposes additional constraints on the VCOV for the 
observations and requires verification of the distribution of the corresponding effects. A 
number of characteristic situations can be presented with the question to formulate reasons 
for choosing individual model terms as fixed or random and discuss the consequences of 
choosing particular terms as fixed or random. For METs with segregating populations that 
will be used for QTL mapping or association mapping, we prefer to take the main effects for 
genotypes and GxE terms random. If the genotypes consist of a limited set of genotypes late 
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in the breeding program or of a set of candidate cultivars in an official variety testing cycle, 
then the genotypic main effects best are chosen fixed. For the environments, managed stress 
treatments can be treated as fixed when they refer to (hopefully) repeatable environmental 
conditions. Similarly, repeatable GxE for a small number of genotypes under various levels 
of a well-defined managed stress factor will be fixed. For locations and years, we prefer to 
take the main effects, which are a kind of intercept terms, fixed, where the year main effects 
may be taken random when it concerns many years. For the GxE interactions, the genotype 
by location interaction is fixed for repeatable locations and selected genotypes 
(Annicchiarico, 1997; Annicchiarico et al., 2005). The GxE interactions with years are all 
random. Testing of fixed genotype by management and genotype by location interactions 
will happen against a background of random genotype by management by year and genotype 
by location by year interactions. Therefore, tests for these repeatable GxE interactions in 
mixed models will differ from similar tests in an ANOVA as will standard errors of 
differences for contrasts. Students will need a series of practical examples and exercises to 
learn how to define appropriate mixed models and arrive at sound breeding conclusions.   

Partitioning GxE in pattern and noise by grouping genotypes and environments 

Imposing a categorization or grouping on genotypes and environments allows a 
partitioning of the initial GxE into an interaction between genotype groups and environment 
groups and a GxE residual, a deviation from the grouping term: 𝑦𝑦𝑖𝑖(𝑖𝑖)𝑖𝑖(𝑙𝑙) = 𝜇𝜇 + 𝑔𝑔𝑖𝑖 + 𝑒𝑒𝑖𝑖 +
𝑣𝑣𝑟𝑟𝑖𝑖𝑙𝑙 + 𝛿𝛿𝑖𝑖(𝑖𝑖)𝑖𝑖(𝑙𝑙) + 𝜖𝜖𝑖𝑖(𝑖𝑖)𝑖𝑖(𝑙𝑙)  with 𝑣𝑣𝑟𝑟𝑖𝑖𝑙𝑙  the interaction between the genotype group k and the 
environment group l (rows and columns, respectively of the two-way GxE table).  The term 
𝛿𝛿𝑖𝑖(𝑖𝑖)𝑖𝑖(𝑙𝑙) is a deviation from the row by column group interaction model that can be considered 
to represent a random normal variable with zero mean and proper variance. The random term  
𝜖𝜖𝑖𝑖(𝑖𝑖)𝑖𝑖(𝑙𝑙) is confounded with 𝛿𝛿𝑖𝑖(𝑖𝑖)𝑖𝑖(𝑙𝑙) in a two-stage analysis of GxE means, but an estimate 
for its variance can be obtained from intra-trial analyses. The grouping of genotypes and 
environments is then tested against the mean square for the deviations of the interaction 
model by an F-test (ANOVA) or Wald test (mixed model) (van Eeuwijk et al., 1996; Kuehl, 
2000; Welham et al., 2014). The mean square for the deviations is tested against the estimate 
for the error, 𝜎𝜎𝜖𝜖2 . The choice of testing the groupings against the deviations from the 
groupings, changes an ANOVA model implicitly in a mixed model. Groupings of the levels 
of environmental factors can also be included in more complex mixed models with multiple 
environmental factors, in which some factors and GxE interactions are fixed and others 
random. For example, in a MET with fixed genotypes and multiple trials across fixed 
locations and random years, we may want to cluster the locations for the fixed genotype by 
location interaction, but not the years in the random genotype by year interaction. As a 
learning objective, students should identify and specify relevant groupings of genotypes and 
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environments and test these groupings in both ANOVAs and mixed models. Correct 
specification in ANOVA and mixed model software will lead to the desired F- and Wald 
tests, respectively. 

The success of groupings of genotypes and environments depends on the amount of 
variation that is described by the interaction between the groupings, the significance of the 
test on the groupings and the test on the deviations from the groupings. Strong significance 
of the test for groupings and no significance for the deviations indicate that the pattern in the 
GxE is captured by the genotype and environment groupings, leaving noise for the deviations 
from the groupings. The part of the GxE that is covered by genotype and environment 
groupings is the part that qualifies for being repeatable. Predictions from models with 
genotype and environment groups are delivered at the level of the groups and not at the level 
of individual GxE combinations. Partitioning the GxE into a part described by groupings and 
another part by deviations from grouping reflects a very general principle to reduce the 
complexity of GxE interactions. Many types of genotypic and environmental groupings can 
be proposed. Students should become capable of defining and constructing promising 
groupings from physiological and breeding knowledge. Groupings obtained from exploratory 
analyses like bi-clustering (Corsten and Denis, 1990) and the application of additive main 
effects and multiplicative interaction models (Gauch, 1992, 2013) can be inserted in ANOVA 
models and mixed models to test their contribution to the GxE. Some correction for data 
snooping and multiple testing is necessary. Again, Scheffé’s simultaneous test for a posteriori 
contrasts is a conservative possibility.  

Partitioning GxE in pattern and noise by genotypic and environmental covariables 

Grouping of genotypes and environments can be interpreted as the introduction of 
qualitative covariables on the levels of genotypes and environment. Similarly, quantitative 
covariables on genotypes and environments can be included to investigate the nature of the 
GxE. We consider the skillful introduction of covariables for investigating GxE patterns to 
constitute a major learning objective in a course on GxE. Inclusion of quantitative covariables 
in models for GxE is equivalent to the definition of contrasts to study interactions in classical 
ANOVA and mixed models. Various statistical textbooks contain insightful chapters on the 
use of contrasts to study factorial interactions. We recommend Kuehl (2000) and Welham et 
al. (2014). In the plant breeding literature, models for GxE using covariables are called 
factorial regression models. Some papers giving theory and applications of factorial 
regression are Denis (1988), van Eeuwijk et al. (1996), Vargas et al. (1999), Voltas et al. 
(1999a), Malosetti et al. (2004), van Eeuwijk et al. (2005). Some nice recent examples of 
factorial regression can be found in Crossa et al. (2015) and Vargas et al. (2015).  
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Factorial regression, a single environmental covariable 

For a factorial regression model that contains a single environmental covariable, to 
describe GxE,  the fixed GxE term in ANOVA and mixed models, 𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖, is partitioned into a 
regression part, 𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖 , with a genotype-specific slope or sensitivity, 𝛽𝛽𝑖𝑖, to the environmental 
covariable,  𝑧𝑧𝑖𝑖 ,  and a residual or deviation from the regression model,  𝛿𝛿𝑖𝑖𝑖𝑖: 𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖= 𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖 +
 𝛿𝛿𝑖𝑖𝑖𝑖. Thus, the double indexed GxE term 𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖, which does not permit predictions to new 
environments, is replaced by a separable formulation, 𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖 , with single indexed values for 
the genotypic parameter and the environmental covariable, that does offer the possibility for 
predictions to new environments for genotypes whose sensitivities have been estimated.  

It should be emphasized that it is the heterogeneity of the slopes that is of importance for 
GxE. A sensitivity to an environmental covariable that is constant across genotypes partitions 
a fixed environmental main effect, 𝑒𝑒𝑖𝑖 =  𝛽𝛽𝑧𝑧𝑖𝑖 +  𝛿𝛿𝑖𝑖 , but not a fixed 𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖  term, so the 
environmental covariable would be responsible for plasticity without GxE. A formal test for 
whether the covariable 𝑧𝑧𝑖𝑖  ‘explains’ a significant proportion of 𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖 can be constructed from 
testing the mean square for the heterogeneity of the genotypic sensivities over the mean 
square for the deviations from the factorial regression. In ANOVA, the degrees of freedom 
for the regressions are I-1 for the heterogeneity of slopes and (I-1)(J-2) for the deviations 
from the regression.  

Factorial regression with multiple environmental covariables 

Above, we introduced the concept of factorial regression for a single environmental 
covariable. However, typically more than one environmental covariable or characterization 
is required to arrive at an acceptable description of the pattern in the GxE. The factorial 
regression model can contain multiple environmental covariables that are elements of the 
environmental covariable set EC,  𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖 = ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖∈𝐸𝐸𝐸𝐸  + 𝛿𝛿𝑖𝑖𝑖𝑖 , or polynomial forms of 
environmental covariables, 𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖 = 𝛽𝛽1𝑖𝑖𝑧𝑧𝑖𝑖+𝛽𝛽2𝑖𝑖𝑧𝑧𝑖𝑖2 + 𝛿𝛿𝑖𝑖𝑖𝑖. Further elaborations of the factorial 
regression approach include standard non-linear curves as the logistic, Richards and 
Gompertz function (Butler and Brain, 1993). For fixed GxE terms, the maximum number of 
environmental covariables that can be included is equal to the number of environments minus 
1, J-1. When more than J-1 environmental covariables are included, some form of 
penalization or dimension reduction is required, as in reduced rank regression (Denis (1988), 
van Eeuwijk (1992)) and partial least squares (Aastveit and Martens, 1986; Vargas et al., 
1999, 2015). Recently, interesting suggestions were made to include large numbers of 
environmental covariables in mixed model factorial regressions where these covariables 
define an environmental relationship matrix that imposes structure on random 𝐺𝐺𝑖𝑖𝑖𝑖 terms. As 
before, we assume that the matrix of random 𝐺𝐺𝑖𝑖𝑖𝑖 effects has a multivariate normal matrix 
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distribution:  {𝐺𝐺𝑖𝑖𝑖𝑖}~𝑀𝑀𝑀𝑀𝑁𝑁(𝟎𝟎,𝜮𝜮)  with  𝜮𝜮 = 𝜮𝜮𝑮𝑮⨂𝜮𝜮𝐸𝐸 , but now environmental covariables 
define the environmental VCOV 𝜮𝜮𝐸𝐸 (Jarquín et al., 2013; Bustos-Korts et al., 2016; Malosetti 
et al., 2016; Pérez-Rodríguez et al., 2015). 

Selecting environmental covariables 

Classical examples of environmental covariables are soil and meteorological variables. 
To choose environmental covariables in factorial regression models, standard variable subset 
selection (forward and stepwise regression) can be demonstrated to students. Nowadays, 
automatic environmental monitoring protocols produce measurements at short time intervals. 
It is not immediately obvious how to select from a multitude of short interval measurements 
the most relevant ones. Routine variable selection procedures will not work well with large 
numbers of variables to select from. Alternative statistical variable selection methods like 
penalized and sparse regression methods for high dimensional regression like the Lasso 
(Tibshirani, 1996; Meinshausen, 2007; Taylor et al., 2012) look interesting, but have not been 
extended yet to screen large sets of covariables for interaction terms. However, an attractive 
alternative to statistical selection methods seem integrations over time of multiple 
environmental variables by crop growth models (Chapman, 2008; Chenu et al., 2011, 2013; 
Heslot et al., 2013) to produce a limited set of environmental characterizations known to be 
biologically relevant. Students in a GxE course will benefit from an introduction to the 
concept of integration of environmental information over time with crop growth models. 
Instead of running a simple crop growth model to obtain environmental characterizations, 
students may also be provided with environmental characterizations from earlier crop growth 
model runs.  

Factorial regression with genotypic covariables 

Factorial regression under inclusion of genotypic covariables is another useful approach 
to identify the patterns driving GxE and to search for separable models. The formulation of 
the model for multiple genotypic covariables, of the type 𝑥𝑥𝑙𝑙𝑖𝑖, that are all elements of the 
genotypic covariable set GC, in the case of fixed GxE is  𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖 = ∑ 𝑥𝑥𝑙𝑙𝑖𝑖𝛼𝛼𝑙𝑙𝑖𝑖𝑙𝑙∈𝐺𝐺𝐸𝐸 + 𝛿𝛿𝑖𝑖𝑖𝑖, with the 
number of genotypic covariables limited to maximally I-1. Again, more genotypic 
covariables can be included, but analogous to the situation for environmental covariables 
above some form of dimension reduction or penalization should be imposed. Genotypic 
covariables for yield can be measurements made under managed conditions, including 
phenotyping platforms, on traits like disease resistances and biotic stress tolerances. The 
parameters 𝛼𝛼𝑙𝑙𝑖𝑖 then express the severity of the disease or abiotic stress in the experiment j. 
When the genotypic covariables are functions of marker genotypes, the factorial regression 
model above immediately becomes a model for multiple quantitative trait loci (QTLs) with 



Modelling of GxE and Prediction of Complex Traits 

241 
 

the QTLs interacting with the environment (Malosetti et al., 2004, 2013; Boer et al., 2007; 
van Eeuwijk et al., 2010). For genomic prediction under GxE, the full set of markers can be 
used to define a genomic relationship matrix on the genotypes. This genomic relationship 
matrix can be combined with an environmental relationship matrix to produce genomic 
predictions for new genotypes in new environments (Bustos-Korts et al., 2016; Malosetti et 
al., 2016). 

Linear-bilinear models; an overview 

Where factorial regression models contain multiplicative formulations for GxE that use 
explicit genotypic and environmental covariables, linear-bilinear models use implicit 
covariables. For our purposes, the essence of analyses by linear-bilinear models is that they 
generate ideas for groupings and covariables that can be further tested in ANOVA and mixed 
models. For recent papers on linear-bilinear models, see Gauch et al. (2008),  Crossa et al. 
(2010b), Crossa, (2012) and Gauch (2013). Linear-bilinear models have their name from the 
fact that in addition to linear terms for genotype and/or environmental main effects they 
contain bilinear terms for GxE or for combinations of a main effect and GxE. Bilinear terms 
are separable products of parameters, like 𝑣𝑣𝑖𝑖𝑟𝑟𝑖𝑖, with 𝑣𝑣𝑖𝑖 for the sensitivity of genotype i and 𝑟𝑟𝑖𝑖 
for the characterization of environment j, that both need to be estimated from the phenotypic 
data. The name comes from the fact that fixing the genotypic parameter 𝑣𝑣𝑖𝑖 in 𝑣𝑣𝑖𝑖𝑟𝑟𝑖𝑖 makes the 
model linear in 𝑟𝑟𝑖𝑖 and vice versa. A well known member of the linear-bilinear class of models 
is firstly, the Finlay Wilkinson model (Yates and Cochran, 1938, Finlay and Wilkinson, 
1963). A second linear-bilinear model is the additive main effects and multiplicative 
interaction effects model (AMMI; Gauch Jr., 1988; Gauch, 1992). Thirdly, we mention the 
Genotype main effects and Genotype by Environment interaction effects model (GGE model; 
Yan and Kang, 2002). This model is also known in the GxE literature as the site regression 
model (Crossa and Cornelius, 1997). Actually, the GGE model is equivalent to principal 
components analysis of the GxE two-way table of means and all theory on principal 
components carries over to GGE analysis (Gabriel, 1971; Jolliffe, 2013). More linear-bilinear 
models have been developed and are used for GxE analysis, but would fall outside a GxE 
course of 3 to 5 days, see for example Cornelius and Seyedsadr (1997) and Crossa (2012).  

  



Chapter 8 

242 
 

Finlay Wilkinson model 

For a table of two-way GxE means the fixed Finlay Wilkinson model is 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑟𝑟𝑖𝑖 +
𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖. In comparison with the two-way ANOVA model we rewrite the linear terms 𝑒𝑒𝑖𝑖 +
𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖 as 𝑣𝑣𝑖𝑖𝑟𝑟𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑖𝑖. In the Finlay Wilkinson  model, a single environmental characterization is 
used, 𝑟𝑟𝑖𝑖, that either is equal to the average performance of all genotypes in an environment, 
as in the paper by Finlay and Wilkinson (1963), or is very close to it, as in Mandel (1969). 
For the latter case, a genotypic intercept term and the genotypic and environmental scores, 𝑣𝑣𝑖𝑖 
and 𝑟𝑟𝑖𝑖 , respectively, are found from minimizing by least squares the expression: 
∑ �𝑦𝑦𝑖𝑖𝑖𝑖 − (𝜇𝜇𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑟𝑟𝑖𝑖)�2𝐼𝐼,𝐽𝐽
𝑖𝑖,𝑖𝑖 . Estimates for the scores are obtained from a singular value 

decomposition (SVD) of the matrix of GxE means corrected for the genotypic main effect: 
SVD (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖 ) (Gabriel, 1978). Thus, genotypes are characterized by an intercept 
parameter, 𝜇𝜇𝑖𝑖, for general performance and a slope or sensitivity or adaptability parameter, 
𝑣𝑣𝑖𝑖, with unit mean. A large value for the intercept and a sensitivity close to 1 point to a widely 
adapted genotype. The recommended way for interpreting the results of a Finlay Wilkinson 
analysis is first to check whether a significant and relevant part of the GxE is explained by 
the heterogeneity of the slopes and whether the residuals from the model do not show 
shortcomings of the model. Next the predicted values can be calculated, 𝑦𝑦�𝑖𝑖𝑖𝑖 = �̂�𝜇𝑖𝑖 + �̂�𝑣𝑖𝑖�̂�𝑟𝑖𝑖, and 
the fitted regression lines plotted to identify the superior genotypes for specific environments. 
Predictions for new environments are possible in so far new environments can be recognized 
as being similar to trials already included in the set of trials to build the model. The Finlay 
Wilkinson model is a candidate model for relatively simple environmental configurations in 
which the environments are homogeneous and differ in a single dimension. For example, the 
environments may represent optimal conditions except for the level of a limiting factor. When 
the environments have a more complicated factorial structure, Finlay Wilkinson terms can 
be embedded in mixed models. For example with a fixed location and a random year factor, 
a fixed bilinear Finlay Wilkinson term can be proposed that regresses genotype by location 
means on location means, to study adaptability, while the genotype by year and the genotype 
by location by year interactions are chosen random. The deviations from the Finlay 
Wilkinson regression will then be tested over the three-way genotype by location by year 
interaction. Another generalization of fixed Finlay Wilkinson models are mixed bilinear 
models in which random bilinear terms are included to describe GxE   (Gogel et al., 1995; 
Nabugoomu et al., 1999): 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝐺𝐺𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖  and {𝐺𝐺𝑖𝑖𝑖𝑖}~𝑀𝑀𝑀𝑀𝑁𝑁(𝟎𝟎,𝜮𝜮)  with 𝜮𝜮 = 𝜮𝜮𝑮𝑮⨂𝜮𝜮𝐸𝐸 
and 𝜮𝜮𝐸𝐸 having a factor analytic structure; the variance for environment j is 𝜆𝜆𝑖𝑖2 + 𝛿𝛿𝑖𝑖2 and the 
covariance between environments j and j’ is  𝜆𝜆𝑖𝑖𝜆𝜆𝑖𝑖′, with 𝜆𝜆𝑖𝑖 a score for environment j that 
defines covariances with other environments and the basis for a shared part of the genetic 
variance, while 𝛿𝛿𝑖𝑖2 stands for an environment-specific genetic variance part.  
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The Finlay Wilkinson model is the most frequently used model for the analysis of GxE 
according to a citation analysis using the Web of Science (see later paragraph). For that 
reason, it deserves some time dedicated to it in any course on GxE. However, its applicability 
is limited. Within the class of fixed bilinear models more flexible models are available that 
allow more than just one bilinear term to be included for a description of GxE. For larger 
numbers of genotypes, mixed bilinear models seem a more viable modelling option than fixed 
bilinear models as the Finlay Wilkinson model.  

The original Finlay Wilkinson model that aims at an analysis of adaptation and 
adaptability was extended by Eberhart and Russell (1966) with a stability analysis. To that 
end, they defined genotype-specific stability variances based on the deviations from the 
Finlay Wilkinson regression lines. With Gauch (2013) we share some doubts about the utility 
of stability analyses. First, when calculating stability statistics across a set of trials, it should 
be verified that these trials belong to a single TPE or mega environment. Second, the analysis 
of GxE should emphasize the identification of adequate models for the reaction norms and 
minimization of the deviations from the reaction norms, i.e., minimization of stability 
variances. When reaction norm models show a good fit to the data with clear genotypic 
differences for the reaction norm parameters, it is unlikely that simultaneously biologically 
relevant variation for stability variances will be present (see Kraakman et al., 2004). For 
historical and didactical reasons, in a GxE course, Finlay Wilkinson regression and 
Eberhart Russell  stability should be presented as early models that connected statistical 
parameters with breeding concepts such as adaptation, adaptability and stability. A learning 
objective for students is how to evaluate the merits of classical Finlay Wilkinson and 
Eberhart Russell approaches in comparison to recent more elaborate fixed and mixed bilinear 
models. 

AMMI models 

Fixed bilinear models are and have been very popular for the analysis of GxE. With the 
Finlay Wilkinson model, the AMMI model, (Gauch Jr., 1988; Gauch, 1992) deserves 
considerable attention in any GxE course. In the AMMI model, we write the GxE as  𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖 =
∑ 𝑣𝑣𝑎𝑎𝑖𝑖𝑟𝑟𝑎𝑎𝑖𝑖𝐴𝐴
𝑎𝑎=1 + 𝛿𝛿𝑖𝑖𝑖𝑖, with the 𝑣𝑣𝑎𝑎𝑖𝑖’s genotypic scores or sensitivities and the 𝑟𝑟𝑎𝑎𝑖𝑖’s environmental 

scores or characterizations. The full AMMI model is 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝑔𝑔𝑖𝑖 + 𝑒𝑒𝑖𝑖 + ∑ 𝑣𝑣𝑎𝑎𝑖𝑖𝑟𝑟𝑎𝑎𝑖𝑖𝐴𝐴
𝑎𝑎=1 +

𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖. For fixed two-way GxE tables, estimates for genotypic and environmental scores 
are obtained from an SVD of the ANOVA interaction residuals, 𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖 . The SVD of the 
interaction is equivalent to finding the environmental characterizations that best discriminate 
between genotypes following a least squares criterion.  



Chapter 8 

244 
 

In an introductory course on GxE it is enough to mention that the multiplicative scores 
are obtained by minimizing  ∑ �𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖 − ∑ 𝑣𝑣𝑎𝑎𝑖𝑖𝑟𝑟𝑎𝑎𝑖𝑖𝐴𝐴

𝑎𝑎=1 �2𝐼𝐼,𝐽𝐽
𝑖𝑖=1,𝑖𝑖=1  . The number of terms, A, for 

‘adequate’ description of the GxE can be assessed in a number of ways (Cornelius, 1993; Bro 
et al., 2008; Josse and Husson, 2012), but for an introductory course, the F-test approximation 
by Gollob (1968) will do. This approach allocates (I+J)-(1+2a) degrees of freedom to the 
sums of squares explained by a-th term to convert it into a mean square. Analogous to earlier 
partitionings of the GxE, the mean square corresponding to the AMMI model can be tested 
against deviations from that model, while the deviations are tested against an independent 
estimate for the error from within trial analyses.  

After assessing the dimension of the AMMI model, i.e., establishing the number of 
multiplicative terms to retain, A, adaptation can be investigated by plotting and comparing 
the environment centred predictions for individual genotypes, 𝑦𝑦�𝑖𝑖𝑖𝑖 = �̂�𝜇 + 𝑔𝑔�𝑖𝑖 + ∑ �̂�𝑣𝑎𝑎𝑖𝑖�̂�𝑟𝑎𝑎𝑖𝑖𝐴𝐴

𝑎𝑎=1 . 
The predicted reaction norms may be used to find out which environments are similar or part 
of a mega-environment by comparing the best genotypes (Gauch et al., 2008). The genotypes 
can further be characterized by the genotypic main effect, 𝑔𝑔𝑖𝑖, a measure of wide adaptation, 
and the genotypic sensitivities, 𝑣𝑣1𝑖𝑖, 𝑣𝑣2𝑖𝑖,..., 𝑣𝑣𝐴𝐴𝑖𝑖. These genotypic sensitivities can be used to 
identify groups of genotypes with similar GxE.  

The sum of squares of the genotypic scores,   𝑆𝑆𝑖𝑖 = ∑ 𝑣𝑣𝑎𝑎𝑖𝑖2𝐴𝐴
𝑎𝑎=1 , is an approximation to the 

sum of squares for interaction in a fixed two-way ANOVA, which is equivalent to Wricke’s 
stability statistic (Wricke, 1962): 𝑊𝑊𝑖𝑖 = ∑ 𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖2

𝐼𝐼,𝐽𝐽
𝑖𝑖=1,𝑖𝑖=1 . The AMMI genotypic scores need to 

be scaled appropriately for this approximation to work (Gauch et al., 2008). Still, although 
stability parameters can be defined in fixed ANOVA, we prefer to estimate stability 
parameters as genotype-specific variances in mixed models.  

In the AMMI model, environments have as characteristics the general quality, 𝑒𝑒𝑖𝑖, and the 
specific qualities 𝑟𝑟1𝑖𝑖, 𝑟𝑟2𝑖𝑖,..., 𝑟𝑟𝐴𝐴𝑖𝑖. Comparable to the genotypes, environments can be grouped 
on the basis of their environmental scores. To test the contributions of these groupings, 
contrasts in ANOVA or mixed models can be defined. Another possibility is to apply tests 
for multiplicative interactions as described by Milliken and Johnson, (1989).  

AMMI approaches are remarkably popular. Good predictive properties have been 
attributed to AMMI models (Gauch, 2006; Gauch et al., 2008). Surely, AMMI predictions 
will be useful for many breeding purposes, but if bilinear models for GxE can be embedded 
in mixed models, we would create predictions from the latter. Another asset of AMMI 
models, and bilinear models in general, is their possibilities to display GxE patterns 
graphically in biplots (Gauch and Zobel, 1997; Yan et al., 2000; Yan and Rajcan, 2002). For 
A=2, an AMMI biplot contains genotypes with coordinates (𝑣𝑣1𝑖𝑖, 𝑣𝑣2𝑖𝑖 ) and environments with 
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(𝑟𝑟1𝑖𝑖, 𝑟𝑟2𝑖𝑖). AMMI biplots are highly useful tools to explore GxE patterns. Outlying genotypes 
and environments can readily be detected, as can groupings of genotypes and groupings of 
environments. Even, adaptation can be investigated in AMMI biplots. A GxE course will 
need to reserve time for students to learn the interpretation rules for various types of biplots, 
but AMMI models should be used primarily for exploration of GxE patterns, with formal 
testing of GxE structure in mixed models. Recent developments in Bayesian bilinear models 
(Crossa et al., 2011; Perez-Elizalde et al., 2012; Josse et al., 2014) alleviate the inferential 
restrictions on bilinear models, but Bayesian bilinear models  would fall outside the scope of 
an introductory GxE course.  

GGE models 

In the GGE model, the ANOVA terms 𝑔𝑔𝑖𝑖 + 𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖 are written as ∑ 𝑣𝑣𝑝𝑝𝑖𝑖𝑟𝑟𝑝𝑝𝑖𝑖𝑃𝑃
𝑝𝑝=1 + 𝛿𝛿𝑖𝑖𝑖𝑖, with P 

bilinear terms, leading to the model 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + ∑ 𝑣𝑣𝑝𝑝𝑖𝑖𝑟𝑟𝑝𝑝𝑖𝑖𝑃𝑃
𝑝𝑝=1 + 𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖  (Yan and Kang, 

2002). With Finlay Wilkinson models and AMMI models, GGE models enjoy a large 
popularity in the applied literature on GxE. A first reason is that the GGE model produces 
biplots that cover both the genotypic main effect and the GxE, while AMMI biplots focus on 
GxE solely. As a second reason, we mention that a particular feature of GGE biplots appears 
to allow the identification of mega-environments (Yan et al., 2000). The GGE biplot is mostly 
shown in two dimensions, as more dimensions are difficult to work with. The quality of the 
two dimensional GGE biplot for inference on genotypic adaptation (predicted values of GGE 
model, equivalent to lengths of projections of genotypic vectors on environmental vectors), 
genotypic sensitivities (genotypic scores), genetic variances (squared lengths of 
environmental vectors), and genetic correlations (angles between environmental vectors) 
depends on the amount of variation that is represented by the first two dimensions of the 
GGE model. As the first axis of GGE models tends to mimic the genotypic main effect, which 
is not present in an additive form in the GGE model, a two dimensional GGE biplot will 
cover about as much GxE variation as an AMMI model with one bilinear term. Therefore, in 
two dimensional GGE biplots, less GxE pattern will be shown than in two dimensional 
AMMI biplots. In a GGE biplot, an average environment axis can be constructed as the 
average of the vector representations of the environments. Genotypic projections on this 
average environment axis approximate the genotypic main effect. The distance between a 
genotype representation in the GGE biplot, (𝑣𝑣1𝑖𝑖𝑣𝑣2𝑖𝑖) , and its projection on the average 
environment axis is assumed to give an estimate for stability (Yan and Kang, 2002). This 
type of stability in the GGE biplot will be close to the stability based on the first genotypic 
score in an AMMI biplot. Various discussions have been published about the comparison of 
AMMI and GGE model analyses (Gauch et al., 2008; Yang et al., 2009; Gauch, 2013), 
without the authors getting to an agreement. We feel that both AMMI and GGE are very 
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useful techniques to explore GxE interactions. There is little reason to prefer one to the other. 
GGE biplots present a view on the totality of genotype related variation, 𝑔𝑔𝑖𝑖 + 𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖, whereas 
AMMI biplots show more detail for the GxE part of the phenotypic variation, 𝑔𝑔𝑒𝑒𝑖𝑖𝑖𝑖. 

GGE or principal component biplots are excellent ways to explore genetic variances and 
correlations. The biplot with optimal scaling for the environments can be used alongside with 
scatterplots matrices for the phenotypic responses across environments to develop ideas 
about the variance-covariance structure of the data. Hypotheses with respect to patterns in 
the genetic variances and correlations can be tested in mixed models with likelihood ratio 
tests.  

Delineation of mega-environments based on winning genotypes in individual 
environments (Yan et al., 2000) in GGE models seems risky (Yang et al., 2009). Suggestions 
for defining mega-environments, or subdivisions of the TPE, can be obtained in many ways, 
but we would like to insist on testing the efficiency of such subdivisions in a suitable mixed 
model, following protocols as described by Piepho and Möhring (2005). 

8.3.2. Crop growth models, multi-trait reaction norms and networks 

The phenotypes that are analyzed to answer questions with respect to GxE are mostly 
complex traits, as yield itself. From a statistical perspective, complex traits are traits for 
which multiple QTLs can be identified with additive, dominance and epistatic effects that 
can interact with the environment. For complex traits, in a GxE course students learn how to 
fit suitable models with genotypic and environmental covariables to describe GxE. In our 
statistical approaches to GxE little attention is given to the fact that phenotypes are products 
of genetic, physiological and environmental interactions over time. A good way to introduce 
the developmental aspects of phenotypes is via crop growth models. In this section, we 
present a statistical-physiological framework for better understanding GxE. Let us label the 
phenotype we want to predict as the target trait, or focus trait, 𝑦𝑦𝑖𝑖𝑖𝑖

𝑓𝑓. The target trait is now a 
response trait in a crop growth model, with as inputs a vector of genotype dependent 
component traits, 𝒚𝒚𝑖𝑖𝑐𝑐 , and a vector of environmental variables, 𝒛𝒛𝑖𝑖   (Yin et al., 2000a; 
Chapman et al., 2002; Snape et al., 2007; Chenu et al., 2009; Malosetti et al., 2016; Technow 
et al., 2015; van Eeuwijk, 2015). Component traits are related to resource capture (e.g., leaf 
area index, root architecture), conversion efficiency (e.g., light use efficiency, water use 
efficiency) and biomass allocation to yield (e.g., harvest index), while environmental 
variables represent the amount of resource (e.g., light, water, nutrients) and  conditions as 
temperature and CO2  (Ceccarelli et al., 1991; Slafer and Andrade, 1993; Cooper and 
Hammer, 1996; Slafer et al., 2014, 1996; Yin et al., 2000b; Reynolds et al., 2009, 2011; 
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Nicotra and Davidson, 2010; Foulkes et al., 2011; Parry et al., 2011; Sadras and Calderini, 
2014). The component traits are integrated over time with the environmental inputs to form 
the target trait:  𝑦𝑦𝑖𝑖𝑖𝑖

𝑓𝑓 = ∫𝑓𝑓�𝒚𝒚𝑖𝑖𝑐𝑐; 𝒛𝒛𝑖𝑖� 𝑑𝑑𝑑𝑑 + 𝜀𝜀𝑖𝑖𝑖𝑖 (Chenu et al., 2009; Yin and Struik, 2010; Bustos-
Korts et al., 2016). ∫𝑓𝑓�𝒚𝒚𝑖𝑖𝑐𝑐;  𝒛𝒛𝑖𝑖� 𝑑𝑑𝑑𝑑 represents the integral over time of the function 𝑓𝑓�𝒚𝒚𝑖𝑖𝑐𝑐;  𝒛𝒛𝑖𝑖� 
that converts the inputs 𝒚𝒚𝑖𝑖𝑐𝑐 and 𝒛𝒛𝑖𝑖 into the target trait, 𝑦𝑦𝑖𝑖𝑖𝑖

𝑓𝑓. The term 𝜖𝜖𝑖𝑖𝑖𝑖 is an error term.  

A crop growth model is a complex reaction norm model that describes how to convert 
component traits and environmental inputs into the target trait yield. Equally, crop growth 
models can be seen as devices for the dynamic modelling of multiple traits. An interesting 
extension of classical physiological crop growth models includes DNA marker variation as 
underlying phenotypic variation in component traits. Effectively this means that the 
phenotypic values for the component traits are replaced by predictions from QTL models or 
genomic prediction models  (Yin et al., 2000a, 2003, 2005; Reymond et al., 2003; Tardieu et 
al., 2005; van Eeuwijk et al., 2005; Chenu et al., 2009; Bogard et al., 2014; Malosetti et al., 
2016; Technow et al., 2015).   

Alternative approaches for modelling target traits as functions of component traits in their 
joint development over time are given by Sun and Wu (2015). These authors propose a 
differential equation framework for modelling the dynamics of multiple traits in systems 
genetics, where the constants in the differential equations are themselves modelled as linear 
functions of underlying QTL genotypes.  

The prediction of phenotypes can be improved by modelling intermediate levels of 
biological variation in between the DNA level (SNPs and sequence information) and the final 
phenotype (target trait): gene expression, proteins, metabolites, methylation, etc.. Network 
models are a popular type of model for combining the variation of different types of traits at 
multiple levels of biological organization, including target phenotypic traits at the highest 
level (Welch et al., 2003, 2005; Neto et al., 2008, 2010; Scutari et al., 2014; Wang and van 
Eeuwijk, 2014; Wang et al., 2015). Network models show the behavior of multiple traits in 
their dependence on each other. Variation in genetic correlations between traits across 
environmental conditions is an important form of GxE (Malosetti et al., 2008; Alimi et al., 
2013). Network models can make such changes visible in a biologically meaningful way.  

We see the multi-trait and dynamical modelling perspective offered by crop growth and 
differential equation modelling with genetic, genomic and environmental inputs as a 
benchmark for biologically meaningful modelling of GxE. In this framework GxE arises as 
an emerging property of the model system as all inputs and/or parameters are exclusively 
indexed by either genotypes or environments, but not by both (Cooper et al., 2002; Hammer 
et al., 2005, 2006). This exclusive dependence of the phenotype on either genotype or 
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environment is referred as separability (Gregorius and Namkoong, 1986; Cornelius et al., 
1992). In our statistical approaches to GxE, we aim at identifying predictive models that 
approach as close as possible this ideal of separability. 

Reaction norms as crop growth models and differential equations systems are biologically 
realistic by the emphasis they place on the multi-trait and dynamic aspects of the phenotype. 
In a 3 to 5 day course on statistical approaches to GxE, little attention can be given to explicit 
dynamic (Malosetti et al., 2006; Wu and Lin, 2006) and multi-trait modelling approaches. 
However, simultaneous univariate analyses of traits, especially yield and phenology, can 
shed light on trait dependencies, while the dynamic behavior of traits can be represented by 
slope and curvature parameters of reaction norms (Van Eeuwijk et al., 2007; van Eeuwijk et 
al., 2010; Hurtado-Lopez et al., 2015). 

8.4. GxE models in the literature 

8.4.1. Designing a GxE citation index 

Previous sections gave an overview of our choices for statistical approaches to model 
GxE as to be presented in a course on GxE. We recommended an approach departing from 
concrete breeding questions and think mixed models with linear, bilinear and factorial 
regression terms are most suitable for a three to five day course. As a closing section of our 
paper, we compare our choices for particular methods to popularity of methods for GxE 
analysis in the literature. We analysed the Web of Science citation reports between 1965 and 
2015 (Thomson Reuters, 2015). Our search for keywords related to GxE showed a total of 
2275 references. We focused on two groups of references; those that had 20 or more citations 
(highly cited), and those that were published between 2013 and 2015 (recent literature). 
Based on our subjective judgement, we found that out of the 447 highly cited papers, 302 
corresponded to applications and 175 to methodological papers, discussion papers and 
reviews. Papers could belong to more than one category. Methodological papers were, again 
subjectively, classified in 11 categories, depending on the model used (Figure 2). Most of the 
11 categories corresponded to models discussed in previous sections; e.g. mixed models, 
AMMI, GGE, ANOVA, stability measures. However, other categories were added, like, for 
example, papers that contained informal GxE analyses without fitting mixed models with 
different GxE terms, but that simply compared results of single environment QTL analyses. 
Of course, such an approach allows to obtain an impression about environment-dependent 
QTL effects, but ideally one would like to fit a mixed model for simultaneous multi-
environment QTL detection (Boer et al., 2007; Alimi et al., 2013).  
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For Bayesian models and approaches, these papers look at the estimation of genotypic 
and environment-specific variance components by Bayesian methods (Yang et al., 2007), or 
propose Bayesian methods to quantify uncertainty for genotypic or environmental scores in 
AMMI analysis (Josse et al., 2014). Thanks to their heavy use in genomic prediction methods, 
Bayesian methods are rapidly gaining in popularity in single-environment genetic analysis 
(Crossa et al., 2010a; Jia and Jannink, 2012; Spindel et al., 2015). For GxE analysis, Bayesian 
methods are still less frequent (Figure 1).  

8.4.2. Results of GxE citation analysis 

When evaluating the use of model categories over time, the number of citations obtained 
by GxE papers was relatively stable between 1965 and 2003, and it rapidly increased 
afterwards (Figure 2). Papers using stability measures, fixed Finlay Wilkinson models, 
ANOVA or simple linear regression models showed the largest number of citations during 
the last part of the 20th Century.  However, the ranking of model use changed with the increase 
in GxE research starting in 2003. Between approximately 2000 and 2005, citations were still 
dominated by stability measures, Finlay Wilkinson and ANOVA, but alternative linear-
bilinear models like AMMI, GGE, SHMM, and SREG models (Crossa, 2012) increased in 
popularity. After 2005, the impact of mixed models and crop growth models rapidly grew, to 
become the dominant category in recent years.  

Recently published papers are less likely to have a large number of citations, making it 
difficult to predict their impact. However, the number of methodological papers that proposes 
a certain class of models gives an indication of the direction current GxE research is taking 
and about the possible future impact of these model types. The rapid increase in the number 
of citations obtained by mixed models and crop growth models (Figure 2), together with the 
large number of papers proposing these methods that were published in the last three years 
(Figure 3), suggest that in the near future GxE methods will rely less on linear-bilinear models 
and more on mixed models, crop growth models and Bayesian models. Therefore, our choice 
in GxE courses for mixed models with bilinear and factorial regression terms for GxE seems 
to be a good reflection of the current trends in the literature.  
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Figure 2.  Number of citations per year between 1965 and 2014 of 175 highly cited methodological GxE papers, 
classified by the model that was used. Lines show the fit of a quadratic smoothing spline with three knots. 

 

Figure 3. Number of papers published between 2013 and 2015 for several types of analysis on Genotype x 
Environment interaction. 
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9.1. Introduction 

A major objective of plant breeders is to create and identify genotypes that are well-
adapted to the target population of environments (TPE, Cooper & Hammer, 1996). The TPE 
corresponds to the future growing conditions in which the varieties produced by a breeding 
program will be grown (Chapter 8, Comstock & Moll, 1963; Cooper & Hammer, 1996; 
Cooper et al., 2014a).  All possible genotypes that could be considered as selection candidates 
for a specific TPE are said to belong to the target population of genotypes, TPG (Jannink et 
al. 2010; Schulz-Streeck et al. 2012; Albrecht et al. 2014). A well-adapted genotype can be 
described as having a better performance than a reference genotype in an environmental 
range that spans part or whole of the TPE (Chapter 8, van Eeuwijk et al., 2016). The changes 
in trait configurations in relation to adaptation patterns for the TPG across the TPE over a 
growing season are referred to as ‘the adaptation landscape’ (Chapman et al. 2003; Cooper 
2004; Hammer et al. 2005; Messina et al. 2011; Cooper et al. 2014b, a; Technow et al. 2015). 
The adaptation landscape is a further elaboration of the ‘fitness landscape’, originally 
proposed in ecology, which relates phenotypes to fitness in a more static way (Wright 1932, 
1984; Kauffman 1993). In the landscape metaphor, elevations represent regions with high 
fitness, and depressions represent regions of low fitness (Gavrilets 2004). In the context of 
plant breeding, high fitness can be interpreted as a genotype having a high probability of 
being selected, often equivalent to having a high yield (Cooper 2004).   

The identification of genotypes that are well-adapted to the TPE depends critically on the 
quality of phenotype predictions. These predictions can be made with models that consider a 
mixture of statistical, genetic and physiological elements. The general objective of this thesis 
was to propose and evaluate models to predict complex traits across multiple environments. 
To achieve this goal, we used statistical models like single locus genome-wide association 
(GWA) models (Chapters 2, 3, 6 and 7), and multi-locus GWA models (Chapter 6) and 
genomic prediction models (Chapters 2, 3, 5 and 7). We also discussed and used crop growth 
models (APSIM-wheat, www.apsim.info) and combined crop growth models with genomic 
prediction and GWA models (Chapters 2 and 7).   

Crop growth models like APSIM are useful to characterize the dynamics of traits over 
time. These traits can be classified into basic traits and intermediate traits, as we did in 
Chapter 7. We defined basic traits as primary physiological mechanisms that are relatively 
insensitive to the environment and that allow the integration and modulation of 
environmental information over time. These basic traits correspond often to crop growth 
model parameters. Examples of basic traits are sensitivity to photoperiod or water uptake 
capacity. For each genotype, we assumed the basic traits to be constant over time and across 



Chapter 9 

256 
 

environments and to be regulated by a limited number of QTLs. In contrast to basic traits that 
are environment insensitive, we defined intermediate traits as moderately environment 
sensitive and reflecting a partial integration of a series of basic genotype dependent traits 
with environmental inputs. An example of an intermediate trait is biomass, which can be 
measured at multiple times and in multiple environments. A similar distinction between basic 
and intermediate traits was proposed by Hammer et al. (2016), who define basic traits (crop 
growth model parameters) as having a short phenotypic distance from their genetic basis 
because they scale directly from a molecular level to organism. On the other hand, 
intermediate traits result from the interplay of a larger number of processes, showing a larger 
level of integration.  Intermediate traits can be described as having a larger phenotypic 
distance from their genetic basis (Hammer et al. 2016). In a modelling context, the number 
of traits and the degree of detail used to model the trait hierarchy is also described as 
‘granularity’ (Hammer et al. 2006). 

In Chapter 8, we provide an overview of concepts and models for genotype adaptation, 
presented in form of a schedule for a course about GxE for plant breeding students. In the 
following sections of this Chapter, we will discuss the advantages and challenges of the most 
important model classes used in this thesis, how these modelling approaches can be 
implemented given the different sources of genotypic and phenotypic data, and how to design 
statistical genetic studies to achieve an improved accuracy in phenotype prediction.  

9.2. Models for phenotype prediction 

9.2.1. QTL models 

QTL models aim at identifying genomic regions that are responsible for phenotypic 
variation in the trait of interest. QTL models can be used for bi-parental populations (Rebai 
et al. 1995; Lynch and Walsh 1998), multi-parental populations (Cavanagh et al. 2008; 
McMullen et al. 2009; Garin et al. 2017) or for diversity panels (McCarthy et al. 2008; Huang 
et al. 2010). QTL mapping is a technique for identifying genomic regions that contain causal 
genes and is suitable for traits regulated by a small number of loci with relatively large effect 
size (Kraakman et al. 2004; Malosetti et al. 2007; Donnelly 2008; Pasam et al. 2012; 
Varshney et al. 2012; Hoffman 2013). The main difference between QTL detection in bi-
parental populations and diversity panels is that, in bi-parental populations, QTL detection 
relies on genetic linkage and segregation of alleles within the family. In contrast, QTL 
detection in diversity panels, or genome-wide association scans/studies (GWAS), correlates 
markers with phenotypes across a population (based on linkage disequilibrium, Korte & 
Farlow, 2013).  
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In this thesis, we use diversity panels for barley, maize, rice and wheat. Therefore, the 
QTL results that we present in Chapters 3 and 6 are exclusively examples of GWAS. In both 
of these Chapters, GWAS showed to be a more promising technique for traits that have a 
simple genetic basis, like flowering time, compared to grain yield or grain weight, that have 
a more complex genetic basis. Although GWAS allows overcoming the limitations given by 
the reduced allelic diversity and the low recombination rate typical for QTL mapping in bi-
parental populations, it introduces a number of other challenges (Korte and Farlow 2013; 
Vilhjálmsson and Nordborg 2013; Xu et al. 2017).  

The first challenge is the confounding between the causal loci and the genetic background 
(Vilhjálmsson and Nordborg 2013). In diversity panels, genotypes are, in general, not equally 
related, unlike in bi-parental families. Genotypic relationships in diversity panels are 
typically shaped by domestication, natural and artificial selection and drift (Ross-Ibarra et al. 
2007; Flint-Garcia 2013). The outcome of these processes is typically modelled by terms for 
population structure, complemented by terms for more recent ancestral relationships. 
Population structure can be represented by a small number of principal components of the 
genotype by markers matrix. More recent ancestral relationships result in a small number of 
individuals that are very closely related to each other and unrelated to the rest. Recent 
ancestral relationships cannot be captured by a small number of principal components. They 
are modelled via a relationship (kinship) matrix (Hoffman 2013). 

In this thesis, we used two different types of correction for genetic relatedness; the first 
one is by modelling the residual genetic variance via the relationship matrix that accounts for 
the similarity between individuals (Listgarten et al. 2011; Yang et al. 2014, Chapters 3 and 
7). The second type of correction that we used was by including the principal components of 
the relationship matrix as fixed effects (Chapter 6, Price et al., 2006; Listgarten et al., 2011; 
Tucker et al., 2014). The main difference between these two methods is that when using the 
full relationship matrix to model the covariance between pairs of individuals, we account for 
spurious associations due to the structure and the genetic relatedness, whereas when using 
the first principal components (like in Chapter 6), we mostly correct for the population 
structure. A hybrid model, including fixed principal components and a relationship matrix 
(kinship), has been proposed (Zhang and Pan 2015). Although such a model seems useful to 
reduce the number of false positives, it contains a certain redundancy because the same 
information is used to model the fixed and the random terms. Besides, fitting both model 
terms resulted to be computationally prohibitive. For that reason, we used the first five 
principal components, plus genomic control a posteriori to correct for inflation that we did 
not capture by the principal components (Devlin and Roeder 1999). Using the principal 
components to correct for inflation has been shown to be highly effective, reducing the false 
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positives and false negatives (Price et al. 2006; Tucker et al. 2014). However, it is not 
immediately clear how this type of correction works in multi-environment models. Further 
research is needed to better understand how to account for genetic relatedness when 
information from multiple environments is combined.  

A second issue that deserved further attention are the methods to characterize population 
structure. Population structure is heterogeneous along the genome, as shown for the Fst 
variation in barley (Russell et al. 2016), and rare variants can be typically more stratified than 
common variants (Mathieson and McVean 2012). The relationship matrix is only an 
approximation of the relationship between genotypes, averaged across the whole genome. 
For that reason, existing methods like the incorporation of the relationship matrix might not 
provide the adequate genome-wide correction for genetic relatedness. One alternative 
approach to overcome the loss of power due to the correction for genetic relatedness and the 
excess of false positives without using an explicit model term for correction is to calculate a 
relationship with only those SNPs that show the strongest linear correlation with the trait 
(Listgarten et al. 2011; Lippert et al. 2013). By conditioning on SNPs that are related to the 
phenotype, we reduce the noise in the assessment of the association. In Chapter 6, we 
followed a forward selection procedure to define a multi-locus haplotype model. To add 
additional SNPs to the multi-locus  model, we conditioned on previously selected loci with a 
large effect, in line with what was proposed in Listgarten et al., (2011) and Yang et al., 
(2014). 

The third challenge for GWAS is that rare variants might be in strong association with 
many other rare variants along the genome, creating spurious associations between genotypes 
and phenotypes (Dickson et al. 2010). This is exactly what we observed in the EU-Whealbi-
barley collection, where QTLs that are far apart in the genome and even on different 
chromosomes were correlated. For that reason, there was no unique solution to the 
identification of a multi-locus model and many multi-locus combinations would provide 
similar results in terms of explained phenotypic variance. One strategy to reduce this 
collinearity problem is by simultaneous estimation of genetic variance explained by all SNPs 
(Bayes-R, Moser et al. 2015). In this technique, only those loci with the largest effect, given 
the other loci, are selected as QTLs.   

Although there are several techniques to reduce the problem of spurious associations in 
GWAS panels, the complexity of their population structure, especially in such diverse 
collections like the EU-Whealbi-barley, reduces the chances of finding causal SNPs. In spite 
of this technical challenge, GWAS and diversity collections are still very useful as a first 
approach to narrow down the search for the causative SNPs. The second step, after 
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identifying the largest QTLs in the GWAS, would be to design crosses between genotypes 
carrying contrasting alleles at those most promising genomic regions. In diversity panels, it 
is likely that more than one allele is present and therefore multi-parent populations like 
MAGIC would be preferable for such crosses (Cavanagh et al. 2008; Sannemann et al. 2015). 

9.2.2. Genomic prediction 

Genomic prediction models aim at predicting genotypic performance, without focusing 
on the identification of potentially causal loci underlying the trait of interest. For that reason, 
the most important difference between QTL and genomic prediction models is that in the 
latter, no explicit SNP selection step is applied (Meuwissen et al. 2001). Prediction quality 
can be assessed by the prediction accuracy, which corresponds to the correlation between the 
predictions and the true genetic value of the individuals (Meuwissen et al. 2001), or by the 
predictive ability, which corresponds to the correlation between the predicted and the 
observed phenotypic values (Burgueño et al. 2012). As a large number of loci are included 
simultaneously, genomic prediction delivers higher prediction quality than GWAS. For that 
reason, complex traits like grain yield or biomass, benefit most from switching from a QTL 
model to a genomic prediction model.  

In this thesis, we used linear models that account for additive marker effects, like QTL 
and GBLUP models, or a combination of both (QGBLUP, Chapter 3). For all traits and crops 
that we analysed, models considering a larger number of SNPs, like GBLUP and QGBLUP, 
always had a larger predictive ability, compared to the QTL model. The phenotype of 
complex traits often results from epistatic interactions, in addition to the additive effects 
(McKinney and Pajewski 2012; Langer et al. 2014). Two-locus epistatic effects can be 
modelled via the adaptive LASSO (Wang et al. 2011). When multiple epistatic interactions 
occur, the use of Reproducible Kernel Hilbert Space models is a convenient approach 
(RKHS, Gianola and van Kaam 2008; de los Campos et al. 2009). The RKHS model is a non-
parametric model that allows for additive by additive epistatic interactions of various degree 
(Jiang and Reif 2015). In Chapter 3, we used a RKHS model to predict several traits in wheat, 
maize and rice and compared it with QTL and GBLUP models. The RKHS model led to 
larger predictive ability than the other models, coinciding with previous evidence showing 
that models with non-linear components, like in RKHS and neural networks, consistently had 
larger accuracy than linear models (Crossa et al. 2010; González-Camacho et al. 2012).  

Modelling traits simultaneously allows to achieve larger genomic prediction accuracy for 
the target trait, compared to single-trait genomic prediction (Dekkers 2007; Jia and Jannink 
2012; Alimi 2016; Biscarini et al. 2017; Sun et al. 2017). The benefit from multi-trait 
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genomic prediction using the target and intermediate traits simultaneously, relative to single 
trait prediction using the target trait exclusively depends on the trait correlations and trait 
heritability (Walsh and Lynch; Jia and Jannink 2012), in the same way as discussed in 
Chapter 4 for the correlated selection response when measuring the same trait in two different 
regions (Atlin et al. 2000; Piepho and Möhring 2005). 

𝐶𝐶𝐶𝐶
𝐷𝐷𝐶𝐶

= 𝑟𝑟𝑔𝑔�
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖/𝑏𝑏𝑖𝑖𝑏𝑏𝑖𝑖𝑏𝑏
2

𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖
2    (1) 

In Equation (1), response to selection when selecting on the correlated (intermediate or 
basic) trait, CR, will be larger than direct selection on the target trait, DR, when the correlation 
between both traits is large and when the heritability of the intermediate or basic trait is larger 
than the heritability of the target trait. Basic traits, in general, tend to have a larger heritability 
than intermediate or target traits. However, the correlation between basic and target traits is 
lower than the correlation between intermediate and target traits, because the phenotypic 
distance between basic and target trait is necessarily bigger than the phenotypic distance 
between intermediate and target trait. Assessing a priori whether it will be convenient to do 
direct selection on a target trait or to incorporate additional basic and intermediate traits in 
the phenotype prediction process is challenging. In Chapter 7, we proposed a flexible 
modelling approach that allows evaluating the potential of basic and intermediate traits to 
improve prediction accuracy for the target trait.  

Different models for multi-trait prediction can be used. In Chapter 7, we used a compound 
symmetry variance-covariance structure, giving the same weight to yield and biomass 
measurements. An alternative approach would be to use selection indices, giving a larger 
weight to the target trait than to the intermediate traits (Hazel 1943; Lande and Thompson 
1990; Dekkers 2007). The use of indices may avoid the contamination of the target trait with 
error from the intermediate trait, avoiding the reduction in prediction accuracy that we 
observed for some cases in Chapter 7.   

9.2.3. Combining crop growth models and QTL or genomic prediction models 

In this thesis, we also discussed and evaluated a third modelling strategy for phenotypic 
prediction; the combination of statistical and crop growth models (Chapters 2 and 7). Crop 
growth models can range from a simple factorial regression model with QTLs modulating 
the genotypic sensitivity to the environment, along with more elaborate models like genotype 
specific growth curves following a logistic model, up to a system of equations that modulates 
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the genotypic responses over time, like in APSIM. Examples of factorial regression-type of 
models can be seen in Malosetti et al. (2004) and Boer et al. (2007). The factorial regression-
type of models presented by Malosetti et al. (2004) and Boer et al. (2007) present the 
phenotype as a static variable measured at the end of the growing season. A more elaborate 
example of factorial regression was presented by Millet (2016), who modelled the number of 
grains in a maize population as a function of explicit environmental covariables, like the 
temperature during the night, radiation interception and soil water potential, during different 
growth stages of each genotype. Considering the developmental stages and other 
physiological characteristics allowed to calculate environmental characterizations that are 
genotype and environment specific and explain more GxE than classical environmental 
characterizations that are based on environment specific averages of soil and meteorological 
information across the growing season (Millet 2016). 

If traits are measured at multiple time-points during the growing season, phenotypic 
values over time are likely to be correlated. For that reason, prediction of phenotypic values 
over time benefits from explicit modelling of the response at various time points in a repeated 
measures framework (Macgregor et al. 2005; Lund et al. 2008). A simpler and more effective 
alternative is to use mathematical functions that describe trait dynamics, also called 
‘function-valued trait modelling’ (Stinchcombe and Kirkpatrick 2012). The combination of 
QTLs and mathematical functions that models the QTL effects over time is often called 
‘functional mapping’ (Wu and Lin 2006; Li and Sillanpää 2015). Functional mapping allows 
to characterize the differences in growth dynamics between genotypes, distinguishing 
between ‘permanent QTLs’ (expressed equally during the whole growing season), ‘early 
QTLs’ (expressed only during the beginning of the growing season), ‘late QTLs’ (expressed 
only at the end of the growing season) and ‘inverse QTLs’ (a change in the trait-increasing 
allele during the growing season). An example of time-dependent QTL effects was presented 
for biomass in Chapter 7, Figure 8. In Chapter 7, a number of QTLs regulate APSIM 
parameters that have a constant value for each genotype over time and across environments. 
These constant APSIM genotype-dependent parameters are translated into dynamic biomass 
curves, allowing to distinguish between time-independent QTLs for physiological parameters 
and time-dependent parameters for biomass and yield. 

The advantages of identifying the genetic basis for curve parameters, instead of for single 
time points, relies on the fact that curve parameters are closer to the biological principles 
underlying trait dynamics, compared to single time points. A second, and a more statistical 
advantage is related to the estimation of fewer parameters when considering the trait 
dynamics as a whole, instead of as single time-points. For that reason, functional mapping 
has increased statistical power to detect QTLs (Ma et al. 2002; Wu and Lin 2006). For 
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example, Bac-Molenaar et al. (2015)  showed that combining multiple time-points for plant 
size through an exponential curve for drought responses in Arabidopsis allowed to increase 
the number of detected QTLs, compared to single time points.  

One of the aspects that influences QTL detection power is the goodness of fit of the curve 
selected to characterize trait dynamics. Common mathematical functions used to describe 
trait dynamics are the logistic growth function (Chapter 7, Ma et al., 2002; Wu et al., 2002; 
Malosetti et al., 2006) and exponential curves (Bac-Molenaar et al. 2015). Although logistic 
or exponential functions fit well most of the biomass dynamics, some traits require a more 
flexible curve shape. In that respect, the use of Legendre polynomials represents an advantage 
compared to exponential or logistic curve functions because they allow fitting curves of any 
shape (Macgregor et al. 2005; Yang et al. 2006; Yang and Xu 2007). A more straightforward 
approach that also allows a large degree of curve flexibility, are splines (Eilers and Marx 
1996; Eilers et al. 2015). One example for the use of splines in the literature can be found in 
Hurtado et al. (2012), who modelled the dynamics of QTLs for haulm senescence in potato 
using generalized linear models with genotype-dependent slopes. In the context of genomic 
prediction, Sun et al. (2017) used splines to model the dynamics of canopy temperature and 
NDVI, integrating them into a multi-trait genomic prediction model, in a similar way as we 
did in Chapter 7. We compared the use of logistic functions and splines to characterize 
biomass dynamics over time (Chapter 7). We observed that functions derived from fitted 
splines and parameters of a logistic curve showed higher heritability than observations at 
single time points, thereby proving that the simultaneous modelling of multiple time points 
helps to reduce the measurement error of high-throughput phenotyping (HTP , Figures 9 and 
10, Chapter 7). Spline derived functions had higher heritability than logistic curve parameters 
because they accommodate better the irregularities in the biomass accumulation. The larger 
heritability for spline derived functions led to a larger prediction accuracy, indicating the 
potential of HTP to improve prediction accuracy of the target trait by including information 
of intermediate traits (Chapter 7). In all the examples presented above, the characterization 
of trait dynamics and the QTL detection (or genomic prediction) were done in a two-step 
approach. Estimation of the curve parameters and QTL effects can be done in a one-step 
approach using hierarchical Bayesian methods, as proposed by Sillanpää et al. (2012) and 
applied to flowering time in rice by Onogi et al. (2016).  The main advantage of a single-step 
is that it leads to a more flexible estimation of time-independent QTLs and to a larger 
prediction accuracy than the two-step approach. 

Biological organizational levels in genotype to phenotype models can be integrated 
further by the simultaneous modelling of multiple traits via networks (Cooper 2004). 
Networks can consider processes belonging to the same level of organization, as genes and 
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gene expression (Mochida et al. 2011; Torres-Sosa et al. 2012; Liseron-Monfils and Ware 
2015), or they can model processes belonging to more than one level of biological 
organization. Examples of the relationship between QTLs and a single level of phenotypic 
organization can be seen in Neto et al., (2010) and Alimi (2016). If the aim is to characterize 
the genetic basis for multiple levels of phenotypic organization, multi-level directed networks 
are necessary. For example, Wang and van Eeuwijk (2014) and in Wang et al. (2015) used 
multi-level directed networks to characterize the relationships between QTLs, metabolites 
and sensory traits in tomato. 

Networks are a valuable tool to characterize the dependencies between traits and QTLs.  
In the directed networks, dependencies are inferred from the conditional QTL genotype 
probabilities, without considering the time dimension (Neto et al. 2010). Longitudinal 
networks are a strategy to consider the time dimension for multiple traits. Although 
longitudinal networks have shown promise in other fields of science (De Vos et al. 2017), 
they haven’t been yet assessed in the context of plant breeding, making them worthwhile for 
exploration in further research. 

An increasingly popular approach to explicitly model the functional relationships 
between plant physiology and the environment is by using dynamic crop growth models (Yin 
et al. 2000; Tardieu et al. 2005). There is a large range of crop growth models with different 
levels of complexity and parameterization. Widely-used crop growth models are APSIM (as 
we used in Chapter 7, Keating et al. 2003; Holzworth et al. 2014), CERES (Ritchie 1985) 
and DSSAT (Jones et al. 2003). An overview of the models developed at Wageningen can 
be seen in Bouman et al. (1996) and van Ittersum et al. (2003). Crop growth models can have 
different uses in the breeding process; to characterize the TPE, as a decision support tool to 
assess breeding strategies (Cooper et al. 2002; Messina et al. 2011) and for phenotype 
prediction (Zheng et al. 2013). In Chapter 7, we used the APSIM crop growth model to 
characterize the TPE. Here, we expanded on the work previously carried out by Chenu et al. 
(2011, 2013), through the incorporation of an explicit genetic basis for the APSIM 
parameters. This genetic basis consisted of exclusively additive effects. However, we did 
observe that trait dynamics show nonlinearities during the growing season (e.g. Figure 2, 
Chapter 7). These nonlinearities arise as a result of interactions between physiological 
mechanisms, called ‘physiological epistasis’ (Cheverud and Routman 1995; Cooper 2004). 
We also used APSIM to evaluate the potential of biomass measured with different HTP 
schedules as a correlated trait to improve yield prediction accuracy. In these approaches, we 
scale up through the levels of organization, from APSIM parameters that represent basic 
mechanisms with a constant genetic basis over time and environments, to final yield. These 
parameters modulate the adaptation of genotypes to the wide range of environmental 
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conditions, where the main environmental driver is the contrast in water deficit patterns. In 
this approach, GxE arises as an emerging property resulting from the integration of different 
levels of organization and over time (Cooper et al. 2002; Cooper 2004; Hammer et al. 2006).  

Recently, Technow et al. (2015) proposed an alternative strategy, in which phenotypic 
observations are available for a target trait that follows from a number of component 
(intermediate and basic) traits without observations, but with the assumption that the 
component traits obey an additive model at the QTL level. In this case, component traits are 
treated as latent variables for prediction that arise from the propagation of the marker effects 
on yield through the non-linear crop growth model structure. Here, crop growth models were 
used in an Approximate Bayesian computation (ABC) framework, which replaces the 
calculation of a likelihood function with a simulation step. In this approach, the combination 
of crop growth models and genome-wide predictions allows to capture non-additive effects, 
at the target trait level that cannot be captured by models like GBLUP. A promising 
application of the same method was recently shown for real maize data, sown in 
environments contrasting for water deficit patterns (Cooper et al. 2016).  

A central aspect for our conclusions about phenotyping strategies to be valid is the 
assumption that APSIM captures the important properties of the natural system composed by 
the TPG and the TPE. All (crop growth) models are a simplified abstraction of complex 
natural systems. Although the biological mechanisms are not necessarily exactly described 
by the crop growth models, the most relevant aspects of the empirical adaptation landscape 
(i.e. GxE patterns, trait correlations) should be correctly reproduced by crop growth models 
to be useful tool to assess plant breeding strategies (Cooper et al. 2002; Hammer et al. 2006). 
There is a large body of evidence showing that crop growth models are a useful tool to 
characterize the performance of cropping systems over time. However, none of them has 
been parameterized in a single set of experiments (Asseng et al. 1998; Van Ittersum et al. 
2003; Holzworth et al. 2014). In contrast, for most of them, their structure arose as the 
combination of individual equations derived from individual experiments, and additional sets 
of equations (‘modules’) were added a posteriori to the original model structure. Some 
examples of module additions or modifications to APSIM can be seen in Chenu et al. (2009) 
Zheng et al. (2013) and Inman-Bamber et al. (2016). Although there is nothing wrong per se 
in this type of model building process, it doesn't take into account the correlation structure 
between parameters, often leading to overly complex models. The high model complexity 
adds an additional challenge when parameterizing them for specific genotypes. One example 
of alternative approach was recently presented by Lamsal et al. (2017), who used image 
analysis from historical field trials for a simultaneous estimation of crop growth model 
parameters and environmental quality in a soybean breeding programme. The modelling 
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shown by Lamsal et al. (2017) is a good example on how the simultaneous modelling of 
phenotypes, their proxies obtained through image analysis, crop dynamics and genetics can 
be used as a valuable tool to predict genotype adaptation and assist breeding programmes. 

9.3. High-throughput genotyping  

The availability of high-throughput genotyping, particularly sequencing techniques, 
allows to increase the chances of integrating the loci causing the phenotypic differences, into 
the genetic analysis (van Binsbergen et al. 2016; Uauy 2017). In Chapter 6, we used exome 
sequences for a large and diverse barley panel belonging to the EU-Whealbi collection 
(http://www.whealbi.eu/). Exome sequencing is a strategy to reduce genomic complexity, 
dramatically reducing the sequencing load and cost (Winfield et al. 2012; Uauy 2017). With 
the barley exome sequences, we constructed haplotypes within the genes in the QTL regions, 
using single SNPs within annotated genes. The construction of haplotypes is a strategy to get 
closer to the causal variants related to the phenotype by defining alleles that provide 
informative contrasts. These informative contrasts contribute to shorten the phenotypic 
distance between genes and phenotypes by a redefinition of the genetic basis to make it more 
relevant to the phenotype and allow a more direct scaling from the genetic level to the 
phenotypic level (Hammer et al. 2016). 

The use of haplotypes instead of single SNPs led to larger effects and the multi-haplotype 
model showed a larger percentage of explained variance, compared to the multi-SNP model 
(Table 3, Chapter 6). We did not do genomic prediction. However, previous evidence 
suggests that the use of haplotypes in a genomic prediction model might lead to increased 
prediction accuracy (Hayes et al. 2007). The gain in terms of explained variance or prediction 
accuracy when using haplotypes instead of single SNPs depends on the LD in the haplotype 
region. If neighbouring markers are in high LD, single SNP analysis is likely to produce 
similar results for SNPs and haplotypes (Calus et al. 2008). However, in diversity panels like 
the EU-Whealbi collection, the LD decays rather quickly, especially at the end of the 
chromosomes, where most of the QTLs were detected (Figure 4, Chapter 6), justifying the 
evaluation of haplotype effects on the phenotype. Genotypic information could have been 
integrated into an even higher level of organization, assessing the amino acidic composition 
derived from SNP differences between haplotypes. The comparison of haplotypes in terms 
of how they are translated into amino acids represents yet another opportunity to shorten the 
phenotypic distance between the final trait and its genetic basis. 

The availability of (exome) sequence information for such a diverse collection as the EU-
Whealbi-barley collection is a valuable resource that will facilitate the integration of novel 
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alleles into breeding programmes via crosses between parents with complementary alleles. 
The progeny can then be genotypically characterized at a lower intensity and imputation can 
be used to improve marker coverage (van Binsbergen et al. 2014, 2016). The EU-Whealbi 
collection possessed phenotypic information for traits that have been important during the 
barley domestication and adaptation process. The availability of phenotypic information adds 
value to the exome sequence information, allowing for a targeted characterization of the 
genetic diversity of this panel (Ross-Ibarra et al. 2007). 

9.4. High-throughput phenotyping 

After the rapid advancement of genotyping technologies, phenotyping was considered 
until recently to be a limiting factor in plant breeding. During the last years, a large variety 
of phenotyping techniques has been developed (Furbank and Tester 2011; White et al. 2012; 
Chapman et al. 2014). Phenotyping techniques can be applied in facilities under controlled 
conditions, generally not transportable (platforms, Junker et al. 2015; Neumann et al. 2015) 
or can be based on mobile devices for field conditions (e.g. drones, helicopters, mobile 
devices, Chapman et al. 2014; Deery et al. 2014, 2016). In general, there is no clear strategy 
about which types of facilities can best be used in which breeding situations. Here, we 
propose that the hierarchy of the levels of organization from genotype to phenotype might 
provide useful insight on how to make the best use of phenotyping facilities when modelling 
from genotype to phenotype. 

In Chapter 7, we defined basic traits as referring to those mechanisms that modulate the 
genotypic response to the environment at an elementary level and represented them in the 
form of crop growth model parameters (little or no GxE). We defined intermediate traits as 
showing a partial integration of the genotypic response to the environment and as reflecting 
intermediate steps between the basic traits and a target trait (yield). Intermediate traits, in 
general, show a larger GxE, compared to basic traits. The notion of differences in scale (basic 
traits with short phenotypic distance to the genetic basis vs. intermediate traits with larger 
phenotypic distance to the genetic basis) is useful to organize the phenotyping strategy. We 
propose the convenience of using platforms, greenhouses or facilities with more controlled 
conditions for a detailed phenotyping of basic traits, and field phenotyping for the more 
integrative traits.  

A disadvantage of using facilities with controlled conditions to phenotype intermediate 
traits is that genotype by experimental condition interaction can be large (e.g. biomass 
ranking in the greenhouse might not correlate well with biomass ranking in the field). 
Therefore, intermediate traits measured under controlled conditions might fail to predict the 
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performance in the field. Examples for the use of platforms/controlled conditions to 
characterize basic traits are wheat early vigour measured in the greenhouse (Duan et al., 
2016), the root angle in maize and sorghum measured in greenhouse pots as a trait related to 
water uptake (Singh et al. 2010), or the sensitivity to photoperiod, vernalization and earliness 
per se in wheat measured in controlled conditions for photoperiod and temperature (Zheng et 
al. 2013; Sukumaran et al. 2016). Examples for intermediate traits in field conditions are 
airborne measurements for wheat NDVI and canopy temperature (Deery et al. 2016; Rutkoski 
et al. 2016).  

Data from field imaging for integrative traits and from platforms for basic traits /crop 
growth models parameters can be used for predicting target traits. Different approaches are 
possible. A first type of phenotyping network would rely on a central location to intensively 
phenotype basic traits in platforms, with some additional phenotyping of integrative traits in 
the field. As basic traits are commonly difficult to measure, phenotyping could be made on 
few genotypes, predicting the rest of the TPG (Pauli et al. 2016). This strategy is also highly 
attractive for genomic prediction, where the expensive basic trait is measured on a wide 
subset of genotypes and then the rest of the population can be predicted from a HTG data set. 
This is a way to connect HTP and HTG. Under this scheme, prediction of the target trait 
would require a good articulation of statistical and crop growth models.  

The role of statistical models being the prediction of crop growth model parameters from 
the experiment in controlled conditions and the role of crop growth models breaching the 
long non-linear path that connects basic traits, intermediate traits, with eventually the target 
trait. A second, more statistical approach, would employ the phenotyping network to measure 
integrative traits with equal detail in all environments, and directly predict the target trait by 
integrating the information in multi-trait prediction models (e.g. via indices). The 
recommendation of using one or another modelling approach for subsets of traits and 
phenotyping facilities is in direct connection with the notion of phenotypic distances 
proposed by Hammer et al. (2016) and with correlated response to selection theory (Falconer 
and Mackay 1996). If the distances between genotype and phenotype are short, statistical 
models are in general sufficient for good prediction quality. One example of prediction for 
the target trait from an intermediate trait that is at a short phenotypic distance was shown by 
Montesinos-López et al. (2017), who predicted yield from NDVI canopy measurements using 
Bayesian models for GxE. If traits are at a long phenotypic distance, the combination of 
statistical and crop growth models might be preferable.  
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9.5. Structure of the TPG and TPE in relation to multi-environment predictions 

9.5.1. Structure of the TPG 

The identification of well-adapted genotypes typically involves the benchmarking of the 
yield of new genotypes against yield of existing genotypes using multi-environment trials 
(Hammer et al., 2014; van Eeuwijk et al., 2016, Chapter 8). Breeders have access to a sample 
from the TPG, which corresponds to the selection candidates for the breeding programme. 
This sample of genotypes (or part of it) can be regarded as a calibration set for prediction 
models when both phenotypic and marker data are available. The selection candidates usually 
show heterogeneous genetic similarities that arose through the crossing schemes and the 
selection process. To obtain large prediction accuracy, it is convenient to explicitly account 
for this heterogeneity in genetic similarities. This can be done via strategies for training set 
construction methods and via the selection of the prediction model. Different methods for 
training set construction have been proposed; random sampling, stratified sampling and 
uniform sampling. Conventionally, genomic prediction literature uses random sampling as a 
strategy to split the calibration set into a training and a validation set (Burgueño et al. 2012; 
Schulz-Streeck et al. 2012). Although stratified sampling shows larger prediction accuracy 
than random sampling (Albrecht et al. 2014; Guo et al. 2014), better results have been 
observed when uniformly covering the genetic space of the TPG (Chapter 3, Bustos-Korts et 
al., 2016). Similar approaches to represent well the TPG were previously shown by (Rincent 
et al. 2012; Isidro et al. 2015), who proposed that predictive ability can be improved if 
genotypes in the training set are chosen in such a way that the precision of the contrasts 
between each genotype in the validation set and the mean of the calibration set is maximized. 
Prediction accuracy in structured populations can also be improved by allowing for sub-
population specific effects (Schulz-Streeck et al. 2012; Lehermeier et al. 2015; de los Campos 
et al. 2015). In Chapter 3, we evaluated models with subpopulation specific-effects (not 
shown). However, they did not provide a clear advantage, probably because the populations 
we evaluated did not have a very strong structure. The EU-Whealbi-barley panel does show 
a clear structure driven by the row types, which suggests that it would be interesting to 
evaluate models allowing for subpopulation specific effects.  

9.5.2. Structure of the TPE 

The environmental conditions used during the selection process can profoundly affect 
allele frequency in breeding populations and the stress tolerance of elite commercial products 
(Campos et al. 2004). Therefore, a central question for testing of genotypes across multiple 
environments is how to design the network of multi-environment trials in such a way that the 
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selection environments correspond well to the range of growing conditions in the TPE. The 
identification of selection environments involves two problems; first, how to define which 
are the expected environmental conditions for the TPE and, second, how to identify which 
locations in the present year have a genotypic ranking that predicts well the genotypic ranking 
in the TPE. The structure of the TPE can be described focusing on the genotype ranking 
across year-location combinations or focusing on the explicit environment quality (that might 
lead to changes in genotypic ranking). If we focus on the genotypic ranking, we refer to 
‘mega-environments’, which are defined as groups of trial locations that show a reduced 
number of crossovers, compared to the locations without grouping (Cornelius et al. 1993; 
Crossa and Cornelius 1997; Crossa et al. 2004; Atlin et al. 2011). In contrast, ‘environment 
types’ is used for a more explicit representation of the environmental quality (e.g. water 
deficit patterns, Cooper and Fox 1996; Chapman et al. 2000, 2002; Chenu et al. 2011; Cooper 
et al. 2014b). Of course, mega-environments and environment types commonly overlap to a 
large extent (Annicchiarico et al. 2005).  

There is a large body of literature using multiplicative models like AMMI and GGE to 
identify mega-environments based on historical yield data across multiple locations and 
years. To increase response to selection, breeders try to identify repeatable patterns across 
environments. Those repeatable patterns are commonly associated with the growing 
conditions at particular locations (e.g. soil, irrigation, Atlin et al. 2011). The grouping 
patterns of locations and years can be inspected in a biplot (Gauch and Zobel 1997; Gauch 
2006), but biplot inspection becomes a difficult and ineffective task when the number of 
years is large or when there is a large genotype-by-location-by-year interaction. Besides, 
historical multi-environment data are unbalanced across years and commonly used GxE 
models like AMMI require balanced data. Mixed models with a factor analytic structure can 
handle unbalanced data, but they require considerable computational and statistical skills to 
work with them. In Chapter 4, we proposed a strategy based on statistical tools that are 
commonly accessible to breeders (AMMI model and clustering), but that still delivers 
comparable results to the more complex mixed model strategy. A similar approach based on 
clustering of phenotypes of multiple traits was shown by Bassi and Sanchez-Garcia (2017) 
for the ICARDA durum wheat breeding programme. The downside of a strategy based 
exclusively on phenotypic data is that it does not allow to identify the explicit causes 
responsible for the partitioning of environments into groups.  

Environments can also be grouped using explicit environmental information. This 
grouping can be based on purely statistical models or, on the combination of statistical and 
crop growth models (Chenu et al. 2013; Cooper et al. 2014b, Chapter 7). In Chapter 4, we 
relate the mega-environments to explicit information for latitude and longitude. However, 
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the same type of analysis could be done for the thermal gradient from North to South, for 
example. When the environmental quality is structured, we can benefit from concepts 
discussed in Chapter 3 for the genetic space of the TPG. As for the TPG, prediction accuracy 
is likely to benefit from the homogeneous coverage of the environmental conditions of 
interest for the TPE. For the selection of locations that should represent well the TPE, we 
propose to use a set of environmental covariables to construct a similarity matrix for locations 
within each year (‘Kinship of environments’, Chapter 5). Then, uniform sampling would lead 
to a list of locations for each year that represent well the TPE. Those locations that are 
sampled most often across years can be used to do field trials useful to train multi-
environment prediction models.  

The identification of the environmental drivers for GxE has a large influence on whether 
it is convenient to optimize the network of testing sites, relying on the natural year-to-year 
variation to represent the whole range of environmental conditions in the TPE, or whether 
using managed stress environments would be more convenient. One example where managed 
stress trials was proposed to be convenient is presented by Rebetzke et al. (2012) for the 
water deficit patterns in Australia. Field environments in Australia are variable and 
unpredictable, making it convenient to evaluate the most common water deficit patterns 
across the largest wheat breeding areas. The final choice for one or the other strategy will 
depend on how well locations in an average year do represent the whole range of 
environmental conditions (= how often the same locations would be chosen in the sampling 
method proposed above).   

The second factor influencing the choice of multi-environment or managed-stress trials 
is how well do we know which are the environmental variables driving GxE and how well 
can we reproduce them? One strategy to identify which locations represent the whole range 
of environmental conditions is to use a combination of crop growth models and 
meteorological information. Crop growth models allow for a more explicit understanding of 
the underlying causes of the GxE patterns, under the assumption that the crop growth model 
is sensitive enough to all the meteorological information that is relevant for GxE. For 
example, Rincent et al. (2017) proposed an optimization criterion to identify those locations 
that allow for a better prediction of wheat flowering time in other locations. This optimization 
criterion was applied to wheat flowering time data simulated with the Sirius model (Jamieson 
et al. 1998) and validated on real data in field trials across France.  

A similar approach aiming at improving the selection of environments that will act as 
predictors, but from a purely statistical perspective, was presented by Heslot et al. (2013b). 
This paper presents a method to optimize the composition of the training population for 
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predicting performance in the target population of environments (TPE). This method does 
not search to identify mega-environments, but it tries to remove the less predictive 
environments from the set of environments used to train the model (Heslot et al. 2013b). 

If the year-to-year variation is large and there is a high risk of not representing well the 
TPE range, it might be more convenient to rely on managed environment trials. The degree 
of success of these managed environment trials will largely depend on how well do we know 
the environmental drivers of the phenotype and on how easily we can reproduce them in a 
managed environment trial. The easiest example for phenotype prediction across the TPE 
from traits measured in managed environment trials is probably flowering time. This trait has 
a known and relatively simple genetic basis, with clear environment drivers (photoperiod, 
vernalization and thermal time). Flowering time for wheat across the whole wheat belt was 
successfully predicted from one field trial with four treatments that covered the 
environmental range of photoperiod and vernalization in a factorial combination (Zheng et 
al. 2013). Another example was shown for flowering time in barley. In this case,  the managed 
environment trial consisted of climate chambers differing in temperature and photoperiod, to 
predict the flowering time in field trials across four German locations (Uptmoor et al. 2017). 
Here, the growing conditions in the chambers and in the field were very different. However, 
as the chambers allowed for a good-enough estimation of the crop growth model parameters, 
those parameters were useful to predict yield in the field.  Other examples are for maize grain 
yield under drought in the field by Cooper et al.  (2014a), and for drought and N stress (Weber 
et al. 2012).  

9.5.3. Separability and calculation of the covariance structure 

Most of the statistical models treat genotypes and environments as separate sources of 
information that can be modelled independently. The exclusive dependence of the phenotype 
on either genotype or environment is referred to as separability (Gregorius and Namkoong 
1986; Cornelius et al. 1992).  Examples or separable model structures are the genotypic and 
environmental scores in the AMMI model or modelling the variance-covariance between 
pairs of observations as the Kronecker product of a genotypic variance-covariance matrix 
and an environmental variance-covariance matrix. The environmental variance-covariance 
can be estimated from the phenotypic data, or from explicit environmental covariables 
(Jarquín et al. 2013). The genotypic variance-covariance is commonly calculated from the 
molecular markers across the whole genome (Astle and Balding 2009), whereas the 
environmental variance-covariance matrix is commonly modelled with an unstructured 
model. To facilitate the estimation process, both genotypic and environmental variance-
covariance structures can be simplified. Common approximations for the environmental 
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variance-covariance structure are the factor analytic models (Burgueño et al. 2008; Beeck et 
al. 2010). Environment categories (e.g. water deficit patterns) could also be used to group 
environments into a smaller number of classes. These more simple representations of the 
genotypic or environmental-variance covariance are also called ‘compressed’ variance-
covariance matrices (Zhang et al. 2010; Huang et al. 2010).  

Although separability has proven useful to characterize the adaptation patterns of the TPG 
across the TPE, it neglects the fact that in the same trial, not all genotypes explore the same 
environmental conditions. Therefore, the effects of genotypes and environments are not 
always fully separable. Crop growth models have been proposed as an alternative to deal 
with the non-separability between genotypes and environments (genotype-specific 
environments). For example, Heslot et al.  (2013a) calculated environmental covariables 
defined for specific environmental stages, following the development of three reference 
genotypes with different phenology (early, intermediate and late flowering). Another 
example can be read in Millet et al. (2016) who expressed yield as a function of its underlying 
components, their genotype-specific sensitivity to the environment and their genotype-
specific environmental characterization. These calculations were possible thanks to the use 
of a set of equations considering genotype development and the relationships between basic 
traits and the environment, added in a sequential way. An alternative has been recently 
proposed by Technow et al. (2015) and Cooper et al. (2016) who used crop growth models 
in an Approximate Bayesian Computation framework. In approaches combining crop growth 
models and statistical models, GxE arises as an emerging property from the interplay between 
crop growth model parameters and environmental information. Therefore, the covariance 
between pairs of observations is not expressed in terms of an explicit variance-covariance 
structure, but as a function of latent underlying biological processes.  

9.6. Using simulations to evaluate breeding strategies 

In Chapter 7, we combined statistical-genetic models and the APSIM crop growth model 
to simulate yield and its underlying traits across a range of Australian environments. We used 
simulated data to evaluate phenotyping strategies in contrasting environments, in the context 
of multi-trait genomic prediction. In this section, we will analyse the limitations of our 
modelling approach and discuss the challenges and opportunities that deserve exploration in 
further research. 

9.6.1. Genetic architecture 

In our simulations, we sampled additive effects using copulas with a Gamma marginal 
distribution. The marginal distribution followed the same shape and rate as the empirical 
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additive effects for wheat yield and heading date estimated in Australian environments. We 
attached the additive effects to a random sample of SNPs, generating genotype-dependent 
APSIM parameters, in a similar way as proposed by Pérez-Enciso et al. (2017). Main 
difference between our simulations and the one discussed by (Pérez-Enciso et al. 2017) is 
that we simulated multiple traits simultaneously. The simultaneous modelling of traits and 
their combination with a crop growth model like APSIM brings in a number of technical 
challenges that we will discuss below.  

The first challenge is to choose, for each APSIM parameter, the allele that will increase 
the parameter value (trait). From our simulations, we learned that the APSIM parameter 
correlations are highly sensitive to the way in which additive effects are assigned to the 
alleles. In single-trait simulations reported in the literature, the trait-increasing alleles are 
commonly assigned to the most frequent allele, via the incidence matrix (Kizilkaya et al. 
2010; Pérez-Enciso and Legarra 2016; Howard et al. 2017). In other simulations, the trait-
increasing allele is allocated at random (Pérez-Enciso et al. 2017). In a random allocation, as 
we did, both alleles have an equal probability of increasing the trait. For a multi-trait 
simulation, as our APSIM parameters, it is not immediately obvious which allele should 
increase which parameter. If for example, the most frequent allele would increase all 
parameters, the parameters would become highly correlated (Figure 1b), even if the 
correlation between the additive effects for different APSIM parameters is low (Figure 1a). 
Random allocation of effects keeps the APSIM parameter correlations low. The APSIM 
parameter correlations can be manipulated at will, by using the same alleles to increase 
multiple APSIM parameters simultaneously (Figure 1c). This simultaneous allocation of 
effects imposes some genetic correlation between traits. Another strategy to impose these 
correlations would be modifying the APSIM algorithms, integrating explicit relationships 
between traits. Although we did not explicitly study it here, our methodology allows to assess 
the response of the target trait to genetic correlations in its underlying traits (APSIM 
parameters). Such a study would allow to distinguish between trait correlations that arise as 
a product of physiological processes, from those that are purely genetic. If trait correlations 
are largely driven by genetics, they could more easily be broken by directed crosses, than 
physiologically-induced trait correlations. In multi-trait simulations, it is also not clear how 
an allele that increases parameter values is translated into an additive effect for yield. The 
final effect on yield of an allele modifying an APSIM parameter depends on the effect of that 
allele on the parameter, the allele frequency in the population, the sensitivity of yield to the 
changes in the parameter value, and on the combinations of parameter values from each 
genotype. Combinations of parameter values indirectly create non-additive effects. A more 
explicit simulation of additive effects was recently proposed by (Howard et al. 2017), who 
used solely statistical models to characterize the yield surface of a population, as a function 
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of additive and epistatic effects. In the example by (Howard et al. 2017), epistasis arises as a 
purely genetic phenomenon, whereas in the combination of statistical and crop growth 
models, epistasis can arise as a product of the genetics and/or of the physiological processes. 

We also learned that the way of selecting the  SNPs that are going to carry the additive 
effects influences the correlation (confounding) between traits (APSIM parameters) and 
population structure. If causal SNPs are sampled at random, (equivalent to the neutral genetic 
architecture proposed by (Pérez-Enciso et al. 2017)), the correlation between APSIM 
parameters and structure will vary between one realization of the TPG and the next, 
depending on the Fst of the SNPs that were used to assign the largest additive effects to. 
Figure 2, upper panels shows how random sampling of SNPs for assigning additive effects 
to changes the correlation between APSIM parameters and population structure; in some 
realizations, parameters are more correlated to the first principal component, whereas in 
others, parameters are more correlated to the second principal component. If selective SNPs 
are used to assign the largest additive effects to, the APSIM parameters become more 
correlated to the population structure, but the correlation is more homogeneous across 
sampling events because we restrict the possible SNPs that can carry additive effects (Figure 
2, middle panels). The larger correlations with population structure reduce the parameter 
space explored by the population, as some parameter combinations might not be present. The 
opposite will occur if we attach additive effects to SNPs with low Fst; the APSIM parameters 
will show a lower correlation with population structure and the APSIM parameter space will 
be explored more homogeneously (Figure 2, lower panels).  

 

 

 

 

 

 

 

Figure 1. (a) Correlations between the additive effects sampled with copulas  with a Gamma marginal, (b) 
correlations of the APSIM parameter values when the trait-increasing allele is the same for all parameters and (c) 
correlations of the APSIM parameter values when the trait-increasing allele differs between parameters (random 
allocation of the trait-increasing allele, except for the correlated parameters). 
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The way in which the simulation covers the parameter space can modify the GxE patterns 
for the final trait. Usually, it is the combination of parameter values, more than the individual 
parameter values which cause GxE to arise. The same holds for real biological traits, where 
an interaction between environmental conditions, plant phenology and other traits is observed 
(Fleury et al. 2010). When such an interaction occurs, the effects of QTLs underling traits 
like water-soluble carbohydrate or osmotic potential on yield depend on flowering time. In 
our simulations, we chose an intermediate situation, with random SNP selection and low to 
intermediate correlations between APSIM parameters and population structure. However, 
these settings can be modified to match the selection history of the TPG. For example, if a 
TPG, product of the selection history, is composed of two subpopulations differing in 
flowering time habit, the APSIM parameters for flowering time would become highly 
correlated with population structure. For our modelling framework to be a realistic 
characterization of the adaptation landscape, the forces driving the selection process should 
be taken into account. In Figure 3 and Table 1, we show the AMMI biplots and variance 
components for a number of realizations of the simulations, differing in the type of SNPs that 
were used to assign the additive effects to (additive effects allocated to random, selective or 
neutral SNPs). In this exploratory analysis, it seemed that GxE patterns for yield are quite 
stable to the changes in genetic architecture and sampling effects. However, here we used the 
same parameter ranges for all sampling realizations. We based ourselves on information from 
the literature to set these ranges, but a more detailed experimental confirmation would be 
needed to make sure that we are fully representing the range of variation present in the 
Australian TPG.  

Genetic architecture for the APSIM parameters did not seem to impact much the shape 
of the GxE patterns (Figure 3 and Table 1). However, it did have a clear impact on the 
effective genetic architecture for yield, the SNPs that appear to affect yield. In Figure 4, we 
show a small example of GWAS in four environments, using a population with a selective 
genetic architecture and another population with a neutral genetic architecture. Both 
populations differ in their level of confounding between the causal SNPs and the population 
structure. The selective genetic architecture led to a stronger confounding than the neutral 
architecture (Figure 2). Therefore, the QTLs in the neutral architecture showed a larger 
significance than those in the selective architecture. Although we did not evaluate it here, we 
expect that a genomic prediction model would show lower prediction accuracy when traits 
follow a neutral genetic architecture because, in that case, the causal SNPs are not as highly 
correlated to the population structure (Kinship matrix) as in the selective genetic architecture. 
The convenience of using either QTL-based models or genome-wide prediction can also be 
assessed via a combined statistical-genetics and crop growth modelling approach, illustrating 
the diverse use of the techniques evaluated in this thesis. 
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The similarity in GxE patterns across realizations allows to suggest that the modelling 
approach combining statistical-genetic models and APSIM is a promising way to characterize 
the adaptation landscape across the TPE. However, here we presented only a limited number 
of sampling realizations. A more intensive sampling scheme and a more formal comparison 
of the environmental variance-covariance structure would be needed to arrive at solid 
conclusions. We would also need to evaluate different sets of genotypes, or crossing schemes, 
as proposed by (Podlich and Cooper 1998) to allow for a broader characterization of the TPG. 

9.6.2. Sensitivity analysis of crop growth models and biological sensitivity 

In our simulation, APSIM parameters differed in the amount of variation (% of change 
across the populations with respect to the default parameters value) and followed a normal 
distribution. These are fundamental differences between our study and a sensitivity analysis. 
We restricted the parameter space to those combinations that are likely to occur given the 
constraints imposed by population genetics. This means that, as extreme values are rare in 
the population, genotypes having extreme values for many parameters simultaneously are 
less frequent. This restricts the possible outcomes of the GxE patterns. In contrast, sensitivity 
analysis homogeneously samples the whole parameter space, allowing to estimate marginal 
parameter effects. In a sensitivity analysis, all parameters also vary in the same amount, 
usually expressed as a percentage of the default value. Sensitivity analysis is useful to identify 
the most impactful parameters, as shown by (Casadebaig et al. 2016), but for biological 
interpretation one should be cautious because some parameter ranges and parameter 
combinations may be biologically implausible. 

Crop growth models like APSIM have shown to be an excellent tool to assess 
management practices across environments (Asseng et al. 1998; Chenu et al. 2011; Chauhan 
and Rachaputi 2014). As we illustrated in this thesis, they also allow to evaluate phenotyping 
strategies, to evaluate the trait correlations and characterize the GxE patters shown by 
samples of the TPG across the TPE. However, the parameterization of crop growth models 
should be eventually reconsidered, customizing it to breeding and physiological research 
(Chenu et al. 2009; Hammer et al. 2010; Zheng et al. 2013). Another reason to re-evaluate 
the structure of crop growth models like APSIM is that most of the traits considered in its 
parameterization are extremely hard to phenotype. Thus, the usage of APSIM in breeding 
programmes would be greatly facilitated if its genotype-dependent parameters were oriented 
towards proxies of traits with easy phenotyping. An alternative would be to use a simplified 
structure of the crop growth models; the emulators. Emulators are statistical models that 
capture the essence of a highly elaborate crop growth model like APSIM (Stanfill et al. 2015). 
Another approach is to focus only on those parts of the crop growth model that are relevant 
to a small set of environments, as shown by (Millet 2016).  
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Figure 2 Population structure as revealed by the first two principal components extracted from the matrix of marker scores. Directions of greatest change for a set of 
physiological parameters simulated using random SNPs (upper panels), selective SNPs (Fst>0.5, middle panels) and neutral SNPs (Fst<0.1, lower panels) have been 
projected on the biplots to help in interpretation. The length of the arrows indicating each physiological parameter is proportional to the amount of variation explained 
by the kinship principal components for that parameter. 
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Figure 3. AMMI biplots for yield of three different realizations of the simulated parameters using random SNPs 
(upper panels), selective SNPs (Fst>0.5, middle panels) and neutral SNPs (Fst<0.1, lower panels). 
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Table 1. Variance components for the 199 genotypes and 40 environments (Merredin, Narrabri and Yanco during 
2003-2013).  

  Random 1   Random 2   Random 3   Random 4   Random 5 

  Comp s.e.   Comp s.e.   Comp s.e.   Comp s.e.   Comp s.e. 

Geno 4.40 0.57  5.64 0.71  4.61 0.62  4.06 0.52  3.45 0.46 

Geno.Loc  3.89 0.26  4.94 0.30  4.80 0.31  3.37 0.22  3.35 0.22 

Geno.Year 1.63 0.10  2.40 0.09  1.72 0.11  1.00 0.07  1.32 0.09 

Geno.Loc.Year 5.99 0.11  6.41 0.08  6.45 0.12  4.69 0.09  5.13 0.09 

Total 15.91   19.40   17.57   13.12   13.24  
  Selective 1   Selective 2   Selective 3   Selective 4   Selective 5 

  Comp s.e.   Comp s.e.   Comp s.e.   Comp s.e.   Comp s.e. 

Geno 4.27 0.51  5.81 0.78  3.42 0.45  4.06 0.52  7.50 0.88 

Geno.Loc  2.57 0.17  6.02 0.39  3.03 0.20  3.53 0.23  3.94 0.26 

Geno.Year 0.98 0.07  1.94 0.12  1.22 0.08  1.32 0.09  1.46 0.09 

Geno.Loc.Year 4.35 0.08  6.94 0.13  5.22 0.10  5.37 0.10  5.59 0.10 

Total 12.17   20.71   12.89   14.28   18.49  
  Neutral 1   Neutral 2   Neutral 3   Neutral 4   Neutral 5 

  Comp s.e.   Comp s.e.   Comp s.e.   Comp s.e.   Comp s.e. 

Geno 3.07 0.42  4.14 0.54  4.45 0.59  4.98 0.63  4.56 0.62 

Geno.Loc  3.28 0.22  3.62 0.24  4.42 0.29  3.84 0.25  4.97 0.32 

Geno.Year 1.52 0.10  1.48 0.10  1.65 0.11  1.64 0.10  1.94 0.12 

Geno.Loc.Year 5.85 0.11  5.73 0.11  6.48 0.12  6.10 0.11  6.81 0.12 

Total 13.72     14.97     17.01     16.56     18.27   

Most of the simulations in the literature are designed for integrative traits and are done in 
a single-trait fashion. We think that the simulation of multiple traits that arise from a common 
genetic basic needs further exploration, especially for issues like which distribution to use 
for the additive effects, how the allocation of the trait-increasing alleles is related to the 
APSIM parameters and to the final traits, and how to deal with LD and population structure 
when allocating the additive effects to specific SNPs.  
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Figure 4. GWAS for yield of 199 genotypes in four locations in 2010. APSIM parameters for the genotypes were 
simulated using a selective genetic architecture (left panels) and a neutral genetic architecture (right panels). Both 
simulations used exactly the same additive effects, but they differed in the SNPs used to carry those effects.  
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Summary  

The main goal of plant breeders is to create and select genotypes that are well-
adapted to the future growing conditions as defined by the meteorological, soil and 
management factors in the growing area of interest. Genotypes commonly show 
different sensitivities to environmental changes and genotype by environment 
interaction (GxE) is observed. GxE can lead to changes in genotypic ranking, 
complicating the breeding process. Usually, GxE patterns are analysed for a set of 
environments that correspond to the future growing conditions of the genotypes 
created by the breeding programme (the target population of environments, TPE). The 
selection strategy chosen by breeders, together with the crossing scheme, shape the 
target population of genotypes (TPG), which corresponds to all possible genotypes 
that the breeding programme for the TPE hopes to develop during the coming years. 
If the phenotypic responses at particular locations have a certain degree of 
repeatability across years, these locations may be classified into ‘mega-
environments’, which correspond to sets of environments of similar quality that show 
a reduced number of cross-over interactions. Within a mega-environment, similar 
genotypes can be recommended, simplifying the selection and the recommendation 
processes for better adapted varieties.  

Selection processes in plant breeding depend critically on the quality of phenotype 
predictions across a sample of target environments. The phenotype is classically 
predicted as a function of genotypic and environmental information. Models for 
phenotype prediction contain a mixture of statistical, genetic and physiological 
elements. In this thesis, we discuss prediction from linear mixed models (LMMs), 
with an emphasis on statistics, prediction from crop growth models (CGMs) and the 
combination of LMMs and CGMs. For LMMs, the genotypic input information 
includes molecular marker variation, while the environmental input can consist of 
meteorological, soil and management variables. Common LMMs for phenotype 
prediction consider QTL and genotypic prediction models. For a second type of 
phenotype prediction, we consider crop growth models. CGMs predict a target 
phenotype as a non-linear function of underlying intermediate phenotypes. The 
intermediate phenotypes are outcomes of functions defined on genotype dependent 
CGM parameters and classical environmental descriptors. Besides the objective of 
phenotype prediction, the combination of LMMs and CGMs can be useful to 
characterize the TPE and to evaluate breeding strategies. Both LMMs and CGMs 
require extensive characterization of genotypes and environments. High-throughput 
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technologies for genotyping and phenotyping provide new opportunities for upscaling 
phenotype prediction and increasing the response to selection in the breeding process. 

The first specific objective of this thesis was to set the scene for prediction 
scenarios that are interesting for breeders and to discuss how either statistical models, 
CGMs or the combination of both types of models can be used to predict phenotypes 
across environments. In Chapter 2, we discuss the following scenarios; prediction of 
unobserved genotypes in observed environments, the prediction of observed 
genotypes in unobserved environments and finally, the prediction of unobserved 
genotypes in unobserved environments. Each of these prediction scenarios are 
discussed from the perspective of the LMMs, CGMs and combination of LMMs and 
CGMs. For each model category and scenario, we show a number of model 
adaptations, discussing and illustrating models with examples from the literature.  

In Chapter 3, we propose a strategy to construct the training set of genotypes, 
improving the prediction accuracy of unobserved genotypes in observed 
environments. The main underlying hypothesis for our proposed training set 
construction method was that a homogeneous representation of the genetic diversity 
(genetic space) in the TPG leads to larger prediction accuracy. We illustrate our ideas 
with data for wheat, maize and rice. Training sets were constructed using uniform 
sampling, stratified-uniform sampling, stratified sampling and random sampling. We 
compared these methods with a method that maximizes the generalized coefficient of 
determination (CD). Several training set sizes were considered. We investigated 
four genomic prediction models: multi-locus QTL models, GBLUP models, 
combinations of QTL and GBLUPs, and Reproducing Kernel Hilbert Space (RKHS) 
models. The results of our proposed method, uniform sampling, were similar to those 
of the CD method, and showed a larger prediction accuracy than that for random or 
stratified sampling. 

The first step for multi-environment predictions is to characterize the structure of 
GxE, quantifying the importance of repeatable versus non-repeatable patterns. In 
Chapter 4, we assessed strategies based on the additive main effects and 
multiplicative interactions model (AMMI) as applied to repeatable genotype by 
location interaction and on mixed models to identify regions that are internally more 
homogeneous. We compared two strategies for grouping trial locations into regions, 
one based on a full mixed model analysis, and one based on  a relatively simple, yet 
robust two-step approach based on fitting AMMI models to within year genotype by 
location tables of means. The AMMI predictions were then used to cluster locations 
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within years. Consistent clustering of locations over years was used to assign locations 
to regions. The mixed model approach uses the parameters of a factor analytic model 
to classify locations in regions. We presented examples for the identification of  
regions in historical multi-environment trials for wheat in Denmark, Germany, The 
Netherlands and the United Kingdom. We identified regions in Denmark, Germany 
and the United Kingdom that coincided with latitudinal and longitudinal gradients.  

Chapter 5 illustrates the concepts discussed in Chapters 2, 3 and 4, applying them 
to a multi-environment genomic prediction context using the ‘Steptoe’ x ‘Morex’ 
barley population. We compared a range of multi-environment genomic models 
differing in the way environment specific genetic effects were modeled. Information 
among environments was modelled by structuring the variance-covariance matrix 
between environments, either implicitly by factor analytic models or explicitly by 
similarities calculated from environmental covariables. We discuss the models not 
only in the light of their accuracy, but also in their ability to predict the different parts 
of the incomplete G×E table. We show the advantage of multi-environment genomic 
models that account for genotype by environment interactions. In addition, for our 
example data set, we show that for prediction in the most challenging scenario of 
untested environments, the use of explicit environmental information is preferable 
over the simpler approach of predicting from a main effects model.  

In Chapter 6, we apply multi-environment mixed models to characterize the EU-
Whealbi-barley germplasm collection as a source of valuable alleles for adaptation to 
European environments. EU-Whealbi was genotypically characterized with exome 
sequence data and phenotypically characterized for awn length, grain weight, heading 
date and plant height in six very diverse environments in Hungary, Italy, Scotland and 
Turkey. We compared the effects of haplotypes with those of single SNPs, adding an 
extra layer of biological complexity to the statistical analysis. Our results show that 
the EU-Whealbi barley collection has a large diversity of promising alleles regulating 
the four traits we analysed.  We also show that haplotypes of genes underlying QTLs 
explain a larger proportion of the phenotypic variance, compared to the single SNPs. 
Other methodological issues related to the identification of the genetic basis for 
adaptation across multiple environments are also discussed. For example, the 
characterization of the heterogeneity of the LD across the genome, how to deal with 
collinearities between SNPs in the context of multi-locus models and the estimation 
of additive effects with multi-environment models. The allelic diversity is also 
discussed in relation to the geographical origin of barley genotypes.  
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Chapters 3 to 6 discuss methods for single-trait phenotype prediction. In Chapter 
7, we move to a multi-trait prediction context. In this chapter, we propose the 
combination of statistical-genetic models and the APSIM crop growth model as a 
strategy to assess the traits and phenotyping strategies to improve the prediction 
accuracy of the target trait. We assess the potential of the combined modelling 
approach to characterize a sample of the TPE and TPG. We also illustrate how trait 
correlations are modified by environmental conditions and by the genetic architecture 
of the sample of the TPG. We contextualize the results for multi-trait genomic 
prediction in relation to the environmental quality. As an illustration, we show how 
biomass can be useful to improve yield predictions in some environments, but not in 
others. We compare different strategies to model biomass measured at multiple time-
points (logistic curves and splines), from the perspective of their heritability and 
impact on prediction accuracy. We also evaluate models for yield prediction from 
biomass measured early in the growing season. 

Many of the concepts and statistical models discussed in Chapters 2 to 7 are 
presented in Chapter 8 from an educational/didactical perspective. In Chapter 8, we 
propose a schedule of topics that should be covered in a GxE course for plant breeders. 
In  addition, we provide an overview of the trends in the usage of different GxE 
models in the literature over time.  

Finally, in Chapter 9, we discuss the convenience and limitations of modelling 
approaches based on statistical models, crop growth models or a combination of 
statistical and crop growth modelling for different breeding situations. We further 
discuss how high throughput genotyping and high throughput phenotyping can be 
used to increase the chances of selecting better-adapted varieties. We present a 
number of technical considerations regarding the combination of statistical-genetic 
and crop growth models to assess breeding strategies. Other topics covered in the 
general discussion are how does the structure of TPE and TPG affect the choice of 
phenotyping strategies and prediction models. We conclude that the physiological 
hierarchy of traits should be the guiding principle when choosing the phenotyping 
strategy and modelling approach. Subsequently, we illustrate the concept of 
separability of genetic and environmental effects from a statistical and physiological 
perspective. Finally, we discuss challenges and opportunities presented by the 
characterization of the TPE and TPG when using simulations based on statistical and 
crop growth models.  
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