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Abstract 

Shi, W. (2017) Physiological responses of rice to increased day and night temperatures. PhD 
thesis, Wageningen University & Research, Wageningen, The Netherlands. 202 pp. 

A more rapid increase in night-time temperature compared with day-time temperature and the 

increased frequency of heat waves associated with climate change present a serious threat to 

rice (Oryza sativa L.) production and food security. This thesis aims to understand the impact 

of high night-time temperature (HNT) and high day-time temperature (HDT) on rice grain 

yield and grain quality and to examine adaptation strategies to cope with high-temperature 

stresses.  

Grain yield and quality of a susceptible indica genotype (Gharib) and all tested hybrids, 

when exposed to HNT in the field, were significantly reduced across seasons, with less 

average reduction in the dry season than in the wet season, indicating that other 

environmental factors under field conditions may contribute to impacts of HNT on yield. 

Among the different yield components, a reduced number of spikelets m−2 significantly 

contributed to yield loss under HNT followed by the consistently lower single-grain weight 

across all genotypes, while the impact of the decrease in percentage seed-set was less and 

season-specific. Lower grain yield and poorer grain quality in susceptible cultivar Gharib 

were associated with a significant reduction in non-structural carbohydrate translocation after 

flowering, resulting in reduced grain-filling duration. Increased total nitrogen application did 

not alleviate the negative impact of HNT. The proposed model approach showed that there 

were significant differences among cultivars in their changes in source-sink relationships in 

response to HNT. Given that rice grain yield and quality are challenged by a rise in HDT and 

HNT, in particular at flowering and during grain filling, differential impacts of HNT and HDT 

during these critical stages were observed. For the single-grain growth during grain filling, 

HDT either independently or in combination with HNT exerted greater influences than HNT 

on the grain filling dynamics, activities of starch metabolism enzymes, temporal starch 

accumulation patterns, and the process of chalk formation. During flowering, HDT increased 

spikelet sterility in tested hybrids and hybrids were less tolerant to high temperatures than 

high-yielding inbred varieties. Moreover, in contrast with HNT, HDT played a dominant role 

in determining spikelet fertility. Novel observations with a series of snapshots of dynamic 

fertilization processes demonstrated that disturbances in the pre-fertilization phase were the 



primary causes for heat-induced spikelet sterility, indicating the effectiveness of employing 

the early-morning flowering trait for mitigating the impact of heat stress at flowering on rice.  

Keywords: Chalkiness, fertilization, flowering, grain filling, grain quality, grain yield, hybrid 

rice, high day-time temperature, high night–time temperature, non-structural carbohydrate, 

Oryza sativa, rice, source-sink dynamics, starch metabolism enzymes, starch packaging 
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1.1 General background 

1.1.1 Global rice production 

Rice (Oryza sativa L.), one of the most important staple crops, is feeding about half of world 

population for their dietary requirements. Currently, more than 90% of global rice production

and consumption is in Asia-Pacific regions, where rice is a staple food crop for the majority 

of the population, while rice consumption also continues to grow steadily in Africa, United 

States and the European Union because of rapid economic growth and changes in dietary 

diversity (Mohanty et al., 2010). Therefore, the demand for rice production is continuously 

increasing, with a doubled global rice production needed by 2050 (Ray et al., 2013).

In the last century, global rice production has experienced huge leaps with the 

improvement in harvest index and development of hybrid rice by use of heterosis (Zhang, 

2007). For example, hybrid rice, known for its higher yield than best inbred varieties when 

grown in conducive environments (Cheng et al., 2009), is successfully developed in China. 

Since then, hybrid rice has been widely grown in China, where it has played an essential and 

irreplaceable role in sustaining food security. Thereafter, hybrid rice is increasingly proposed 

to be grown in other countries than China to contribute to global rice production (Fu et al., 

2012; Xie et al., 2014). Despite these significant achievements attained in rice production, 

global rice yields may face stagnation in the important rice growing regions (Ray et al., 2012), 

as a result of a combination of factors, including climate-change-related high temperatures 

(Lobell et al., 2011). Therefore, a continuous and strong effort in rice research is needed to 

enable rice production to meet the rapid growing demand with unfavourable climate 

conditions.  

1.1.2 Global warming

The rising concentration of the greenhouse gasses, such as CO2, methane and nitrous oxide,

have been detected throughout the climate system. Their effects are extremely likely to be the 

major cause of observed increasing temperature since the 1950s, which are referred to as 

global warming (IPCC, 2013). Abundant scientific evidence has shown unprecedented 

temperature changes since the 1950s, estimated at 0.13°C increase in global average 

temperature per decade (Lobell et al., 2011). An even more rapid rate of increase is expected 

in the next decades. The global surface temperature is likely to rise 0.3 to 1.7°C in the lowest 

emissions scenario, and a further increase of 2.6 to 4.8°C in the highest emissions scenario
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(IPCC, 2013). In addition to the average temperature rise, more frequent, more intensive and 

longer duration of extreme high temperature have been documented in the past and this 

emerging trend is projected to continue in the future (IPCC, 2013; Mika, 2013). Besides, due 

to less radiant heat loss during night-time (Alward et al., 1999), night-time temperature 

increased at a much faster rate than day-time temperature since the latter half of the last

century (Easterling et al., 1997; Sheehy et al., 2005), leading to a decrease in diurnal 

temperature range (Vose et al. 2005). For instance, annual average day temperature increased 

by 0.35 °C in the Philippines during 1979-2003, while its average night temperature increased 

by 1.13 °C during the same period (Peng et al., 2004).

Although increasing temperature during both day and night have been recorded on a 

global scale between 1951 and 2010, the regional effects are expected to be non-uniform 

around the world (IPCC, 2013). Predictions based on the global climate analysis suggest that 

tropical and subtropical areas of South and Southeast Asia will have greater certainty and

suffer more from the increasing frequency of extreme high temperature (Battisti and Naylor 

2009; Wassmann et al., 2009) compared with other regions. In contrast, night-time 

temperatures show widespread increases across the globe. Such increases in temperatures

have shown to significantly threat food security from reducing rice production.

1.1.3 Global warming and rice

A growing number of studies have attempted to quantify the impacts of unprecedented rise in 

temperature on rice production. Although most regions from all over the world are more 

integrated into global rice markets than they used to be and will be even more over the next 

few decades, it is important to assess rice production under increasing temperatures at a

regional scale (Wassmann et al., 2009; Lobell and Gourdji, 2012). Moreover, the frequency of 

high temperature occurrence is geographically mapped to identify vulnerable rice-growing 

regions with high day temperature (HDT), high night temperature (HNT) or a combination of 

both (Laborte et al. 2012), indicating a large variability in the regional occurrence of heat 

stress across all regions. In this context, rice growing regions in the tropics and subtropics are 

particularly of interest as high temperature stress is emerging as a major constraint to rice 

production, particularly in these regions (Teixeira et al., 2013).

Recent spatial analysis using cropping pattern data has indicated that temperatures

exceeding 36°C usually occur coinciding with critical flowering and grain filling stages in the 
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rice fields across the major area from South and Southeast Asia, such as Bangladesh, eastern 

India, southern Myanmar, and northern Thailand, causing substantial yield loss (Wassmann et 

al., 2009). In China, the major rice-growing area, i.e. the Yangtze River Valley, faced 

frequent high temperatures coinciding with the flowering stage of rice during the past 50 

years, and the latest occurrences of extreme high temperature in 2003 caused approximate 5

million tonnes yield loss in rice (Tian et al., 2009). Similarly, more than 40°C of unusual 

temperatures happened in the summer season in many areas of Kanto and Tokai regions of 

Japan, resulting in 25% spikelet sterility in 2007 (Hasegawa et al., 2011).

Not only heat episodes can lead to severe yield reductions in rice, but also several 

negative impacts on rice grain yield can be found from increased night temperature. It has 

been documented that increased night-time temperature accounted for a larger proportion of

losses under field conditions across South and Southeast Asia than increased day-time 

temperature (Welch et al. 2010). By analysing 12 years (from 1992 to 2003) of historical data 

from field experiments at the International Rice Research Institute (IRRI) Farm, Peng et al. 

(2004) reported that there was a close linkage between rice yield and minimum temperature:

grain yield declined by 10% for each 1°C increase in growing-season minimum temperature.

Similarly, Tao et al. (2008) showed 3.7% yield loss as a result of an increase of 0.8°C in 

minimum temperature in China.

By 2030, 16% of the global rice-growing area would be exposed to at least 5 days of 

temperatures above the critical threshold during the reproductive period (i.e. during the 30-

day window around flowering), with a non-linear increase to 27% by 2050 (Gourdji et al. 

2013). Similarly, from a global heat-risk map for 2071–2100, more than 120 million hectares 

of suitable wetland rice area are projected to be under threat from short episodes of heat stress 

coinciding with the reproductive period (Teixeira et al. 2013). Considering that the current 

and predicted increasing temperatures posing a serious threat to sustain rice production, there 

is a urgent need to explore the underlying mechanism that induced heat response in rice plants.

1.2 Literature review on high temperature effects on rice 

Plant growth and development are controlled by temperature (Barnabás et al., 2008). In rice, 

the optimum temperature for normal growth and development ranges from 27°C to 32°C (Yin 

et al., 1996). Temperature above the range, defined as high temperature stress, could affect 

plant performance, leading to loss in grain yield and economic income (Satake and Yoshida, 



General introduction

5 
 

1978; Lyman et al., 2013). The impact of high temperature stress on plant primarily depends 

on the plants’ sensitivity, and the intensity, duration (short or long), and timing (relative to 

growth and development of plant) of the stress. In the next part, heat stresses occurring during 

either day or night are described in terms of their impacts on rice growth and development.

1.2.1 Warmer nights and grain yield

In 2004, the first significant evidence of a decline in rice grain yield associated with increased 

night-time temperatures has been reported by Peng et al. (2004). Their results indicated a 10% 

decline in grain yield for each 1°C rise in night-time minimum temperature, but that the effect 

of day-time maximum temperature on grain yield was not significant. Subsequently, a

significant decline in grain yield with higher night temperature during the entire reproductive 

stage was recorded in many controlled-environment studies; the yield reduction was attributed 

to spikelet sterility (Cheng et al., 2009; Mohammed and Tarpley 2011), resulting from poorer 

pollen germination. Extremely high night temperature (34°C) during the early phase of grain 

filling dramatically reduced final grain weight by a reducing in grain endosperm size and 

grain growth development (Morita et al., 2005). Additionally, extremely high night 

temperature had little significant impact on photosynthesis (Kanno et al., 2009; Mohammed 

and Tarpley 2009a), but increased night-time respiration rates (Cheng et al., 2009; Kanno et 

al., 2009), and as a consequence, disturbed the carbon budget of the plants (Bahuguna et al., 

2017). Most previous studies were conducted as pot experiments in controlled-environment 

chambers and involved exposure to very high night-time temperatures. Field-level 

information on the impact of high night temperature on rice growth and development is very 

limited. Complex plant traits are strongly affected by environmental conditions, thus research 

findings from controlled environment conditions are sometimes different from those from 

natural field situations (Poorter et al., 2016). Success in breeding for heat-tolerant rice is 

limited, partly because it is difficult to extrapolate the findings from controlled-environment 

studies to the dynamics of rice response to temperature in natural environments (Bahuguna et 

al., 2016). Thus, it is crucial to know how rice plants perceive warmer nights in field 

conditions. Moreover, previous studies have also neglected the interaction between genotype 

and environment as they just used one single variety (cv. IR72, Peng et al., 2004; Cheng et al., 

2009; cv. Cocodrie, Mohammed and Tarpley, 2010). Hence, further systematic understanding 

of the impacts of high night temperatures have to demonstrate genotypic variations in 

response to high night temperature.
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1.2.2 Heat waves and grain yield

Global warming is bringing more frequent and more intense heat waves, besides seasonally

higher night temperature. Heat waves during summer, coinciding with flowering stage of rice 

crops in the field, cause substantial increases in spikelet sterility, thereby pose a major threat 

to maintain rice productivity (Wassmann et al., 2009). So far, efforts have been intensified to 

explore the mechanisms responsible for high day-time temperature tolerance in rice genotypes, 

particularly during flowering stage, which is identified to be the stage most sensitive to heat

stress. The critical threshold temperature for rice at flowering is 35oC (Yoshida 1981), beyond 

which an increase in spikelet sterility can be observed. Exposure to 38oC, even for a few 

hours coinciding with flowering resulted in a significant increase in spikelet sterility (Jagadish 

et al., 2007). Spikelet sterility with high day-time temperature at flowering stage can be 

attributed to (1) lower ability of pollen grains to swell, indehiscence of anthers and poor 

release of pollen grains, leading to decline in the amount of pollen retained by the stigma

(Matsui et al., 2000; Matsui and Omasa, 2002), and (2) lower viability of pollen, resulting in 

decreased pollen germination and pollen tube growth (Satake and Yoshida 1978; Prasad et al., 

2006; Jagadish et al., 2010b). The above studies have mainly focused on the pre-fertilization

phase at the flowering stage, while there are no reports on extending the investigation to early 

fertilization process.

Apart from short duration of heat episodes, prolonged extreme temperatures coinciding

with the critical grain filling stage have been reported in the previous studies (Wassmann et 

al., 2009). Poor seed set and lower grain weight are the major consequences of high 

temperature during grain filling stage. At the process level, Prasad et al. (2006) found that 

reduced seed formation was associated with reductions in photosynthetic rate in the leaves, 

causing an insufficient supply of assimilates to the grains. Exposure to high day temperature 

during grain filling was also correlated with accelerated ontogenetic development, so that 

grain filling rate increased while maturity was reached earlier (shorten grain filling duration). 

The reduced time spent for translocation of assimilates from current assimilate production via 

photosynthesis in leaves and remobilization of the stored assimilates in stem and sheath to the 

grains, leads to partially filled grains (Bahuguna et al., 2014). However, Kim et al. (2011) 

have shown an earlier termination of grain filling in temperate rice under high temperature 

than leaf senescence, indicating that poor grain filling was not the result of lack of assimilates.

At the molecular level, high temperature causes alternations in expression of genes involved 
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in detoxifying enzymes, starch transporter and synthesis, and regulatory proteins, ultimately

resulting in reduced grain weight (Yamakawa et al., 2007; Phan et al., 2013). Questions then

arise with regard to whether and how increased temperatures affect assimilate supply and sink 

activity during grain filling.

1.2.3 High temperatures and grain quality

The impact of high temperature on rice production is not only seen on yield but also on grain 

quality. Chalkiness, a white opaque area in the rice grain, easily causes grains to break during 

the polishing process and thereby reduces the total amount of paddy rice yield (Fitzgerald and 

Resureccion, 2009). Provided chalky grains survive polishing, the market value of chalky

grains is less than half of that of head rice (Koutroubas et al., 2004). In the past, numerous 

studies have confirmed that high temperature during either day or night during the grain 

filling period greatly increases chalkiness in rice (Cooper et al., 2008; Zhao and Fitzgerald, 

2013). During the first few days after flowering, endosperm cells divide and starch granules 

are initiated to accumulate starch. High temperature during this phase disturbs the formation 

of starch granules. In general, irregular and smaller-sized individual starch granules, few 

compound granules with airspaces between granules are found in the chalky areas of rice 

grains (Cheng et al., 2005). The possible mechanisms for chalkiness are insufficient substrate 

supply to the endosperm, and initiation of insufficient starch granules or slower growth of 

granules that interfere with granular organization (Tsukaguchi and Iida, 2008). Thus, a

question can be posed regarding whether there are differences in processes and regulatory 

events leading to chalk in rice if exposed to different temperature treatments (high day and 

night temperature).

1.2.4 Strategies to minimize heat stress impacts

A better understanding of increasing temperatures on rice provides information for 

developing new strategies to cope with the warming world. So far, different mechanisms have 

been identified to minimize high temperature damage during flowering in rice, including heat 

avoidance (panicle cooling by transpiration - Julia and Dingkuhn, 2013), heat escape (time of 

day of anthesis - early morning flowering; Ishimaru et al., 2010; Julia and Dingkuhn, 2012; 

Hirabayashi et al., 2014) and heat tolerance (through involvement of key genes to resilient 

reproductive processes - Jagadish et al., 2010b).
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Speaking of spikelet fertility, it is essential to consider panicle temperature as spikelet 

sterility has been documented to be correlated with panicle temperature, not with air 

temperature (Sathishraj et al., 2016). In rice, panicle temperature is mainly determined by its 

transpiration cooling ability. High transpiration brings about high energy consumption,

leading to decrease of panicle temperature. Thus, transpiration cooling is potentially 

considered an effective adaptive trait to change panicle temperature below the critical 

threshold, and ultimately stabilize spikelet fertility under high temperature exposure

(Weerakoon et al., 2008; Julia and Dingkuhn 2013). Besides, genetic variation in panicle 

cooling capacity through transpiration has been reported (Xiong et al., 2014). Panicle 

temperature is also associated with surrounding climatic conditions, such as air temperature, 

relative humidity and solar radiation (Matsui et al., 2007). In Australia, panicle temperature

was 6°C lower than air temperature under well-irrigated arid climates (Matsui et al. 2007),

while panicle temperature was 4°C higher than air temperature under hot and humid 

conditions in China (Tian et al. 2010), indicating the critical role of relative humidity when 

dealing with tissue temperature.

In general, rice flowering time depends on the climatic conditions, but peak flowering

time when most spikelets flower in a day in most cultivated rice occurs between 10:00 and 

12:00 h, while some species of wild rice flower earlier than this time (Nishiyama and Blanco, 

1980; Sheehy et al., 2005). After systematical phenotyping of the early-morning flowering 

trait from wild rice Oryza officinalis, this trait has been successfully incorporated into popular 

rice cultivars, advancing their flowering time during a day to cooler hours in the morning 

(Ishimaru et al., 2010; Hirabayashi et al., 2014). At high temperature exposure, physiological 

processes including anther dehiscence, pollination and pollen germination, are major causes 

for spikelet sterility during flowering (Matsui et al., 2001; Jagadish et al., 2007). The 

introduction of the early-morning flowering trait can potentially shift the opening and closing

of the flower to relatively cool morning hours, thereby the mentioned high-temperature 

sensitive processes (anther dehiscence, pollination and pollen germination), and skip the later 

high temperature around noon to overcome high-temperature damage. The fertilization 

process occurring within 1.5 to 4.0 h after flower opening (Cho 1956), however, will still be 

vulnerable to high temperature during late morning and early noon. It is necessary to explore 

whether there are high temperature influences on fertilization process in order to test the 

early-morning flowering hypothesis.
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Moreover, breeding strategies to develop rice varieties that can withstand the expected 

increasing temperatures are very important (Jagadish et al., 2010b). To date, rice genetic 

resources in heat-tolerant rice have been identified in both indica and/or japonica types 

(Matsui et al. 1997; Matsui et al. 2001, Prasad et al. 2006; Tenorio et al., 2013; Shi et al., 

2015). By exploring genetic donors for heat tolerance at flowering stage, several heat-tolerant 

quantitative trait loci (QTLs) are identified (Cao et al., 2003; Zhang et al. 2008; Xiao et al. 

2010, Jagadish et al. 2010a; Ye at al., 2012; Lafarge et al., 2017) that could be used for 

marker-assisted molecular breeding for heat-tolerant rice cultivars. Among the identified 

QTLs, the one located on chromosome 4 is most documented across different genetic 

backgrounds (Jagadish et al., 2010a; Xiao et al., 2010; Ye et al., 2012; Lafarge et al., 2017). 

Recent progress in fine mapping of an effective QTL on chromosome 4 (qHTSF4.1), shows

increased spikelet fertility by 15% at 38°C compared to its susceptible parent IR64 during 

flowering (Ye et al., 2015). However, the developed IR64 heat tolerant near-isogenic line has 

not been tested to assess its behaviour using a physiological approach when physiological 

traits related to heat tolerance are identified to be the best available useful handle for genetic 

improvement (Bahuguna et al., 2016).  

Besides the three mechanisms illustrated above, some appropriate crop management

strategies have also been recommended to improve resistance against high temperature stress 

in rice. For example, altering planting dates have been considered as an option to escape from 

high temperature stress during summer season. However, altering planting dates is risky as it 

may cause yield penalty and altered grain quality (Nagarajan et al., 2010). And heat spikes are 

more frequent and last for a day or more, the chance to skip such temperature episodes are 

less and less (Jagadish et al., 2015). Besides, increased crop nutrition is another strategy to 

prevent rice from suffering high-temperature damage. The application of nitrogen has been 

considered as a new strategy to minimize the temperature affects. Increasing the nitrogen 

supply at panicle initiation and/or flowering has been reported to relieve the negative effects 

on grain production, of exposure to short period of high day temperatures before or after 

flowering (Dai et al., 2009; Duan et al., 2013; Yang et al., 2014). It has also been documented 

that nitrogen management could lower the panicle or canopy temperature by building a better 

structure of the rice canopy with higher leaf area index and facilitating higher transpiration 

cooling, thereby reducing high temperature-induced sterility and improving high temperature 

tolerance (Yan et al., 2008). However, whether increasing the amount of applied nitrogen can 

contribute to minimizing the high night-time damage remains unclear.  
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A better understanding and evaluation of these mechanisms provide information for new 

strategies to minimize high-temperature damage and to improve high-temperature tolerance in 

rice. However, systematic studies targeted towards identifying appropriate adaptive strategies

are yet to be investigated. The identified strategies should be actively exploited in future 

breeding programs for developing heat-tolerant rice or directly cope with adverse impact of 

heat under the realistic rice field.

1.3 Research questions and objectives

Based on the review on recent scientific researches, it is noted that rice production has been 

negatively affected by increasing night temperature. It is also clear that the heat stress has 

occurred more frequently and intensely, and more likely coincided with flowering and early 

grain filling in rice growing regions from tropical and subtropical areas of South and 

Southeast Asia. And such changes in night-time temperature and heat episodes are most likely 

to continue in the coming future climate. Although substantial work has been done to 

investigate the responses of rice to increasing temperatures, some critical questions have not 

been fully answered, including the following.

(a) It has been noted that most previous HNT studies were conducted in controlled 

chambers and their studies were restricted to individual cultivars. With much more 

attention being paid to address HNT impacts on rice, what is the real response of rice 

plants exposed to HNT under realistic field conditions? Is there any differential 

mechanism leading to HNT damage under field conditions compared with chamber 

studies?  

(b) Given that rice response to high temperatures varies from genotypes, genetic tolerant

accessions to high temperatures have been identified in both indica and japonica types 

of rice. However, whether the tropical and subtropical hybrid rice currently grown on 

farm has tolerance to the high temperatures, including both HNT and HDT, remains 

unclear. Are there any alternatives for the breeders or producers to select hybrids with 

both high yield potential and heat tolerance for this South and Southeast Asia area,

known to be more vulnerable area to high temperatures?

(c) Rice grain yield and quality are challenged by an asymmetric rise in day and night 

temperatures. Further studies are required to elucidate mechanisms underlying 

differential response of rice plants to HNT and HDT. 



General introduction

11 
 

(d) As different mechanisms or robust crop management have been identified to cope with

heat stress damage on rice, a better analysis to identify appropriate strategies that could 

be integrated in a breeding program to match the changing conditions is necessary.

In this thesis, I aimed to contribute to the knowledge required to answer these questions 

through a comprehensive and integrative understanding of how rice plants respond to high 

temperature stress. Thus, the thesis addresses the impacts of high temperature, including both 

high night and high day temperature on rice production. A detailed analysis of the stress 

physiology and adaptation strategies in terms of germplasm and crop management 

development will be described. 

1.4. Outline of the thesis

This thesis consists of seven chapters. Following a general introduction which identifies the 

main research questions based on the existing literature (Chapter 1), there are five research 

chapters (Chapter 2 to Chapter 6), and a general discussion (Chapter 7).

Unlike earlier studies that all use growth chambers, my study was the first experiment 

carried out using unique field-based higher night-time temperature (HNT) tents (Chapter 2).

Based on a preliminary wide genetic diversity screening for HNT tolerance among 36 

different rice accessions, two genotypes which had contrasting responses to HNT but the 

same phenology were selected for a systematic analysis of HNT response at physiological and 

molecular levels. Non-structural carbohydrate (NSC) translocation from different plant tissues 

into grains at key developmental stages, and their contribution to yield, grain-filling dynamics 

and quality aspects, were evaluated. Proteomic profiling of flag leaf and spikelets at 100% 

flowering and 12 d after flowering was conducted, and their reprogramming patterns were 

explored.

Chapter 3 presents the first effort to assess the response of tropical and subtropical 

hybrid rice to HNT. Thus, we selected the two inbreds which had been used in Chapter 2 and 

six commercial tropical and subtropical hybrid rice cultivars. This chapter also examines

whether other environment factors, day-time temperature and radiation, interact with the HNT 

influence, by conducting the experiments in two growth seasons with different day 

temperature and solar radiation but with the same level of HNT stress.
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From the above studies, it was noticed that grain weight was consistently affected in 

tested genotypes across different growth seasons, and HNT under field conditions affected 

grain weight through reduced non-structural carbohydrate content in grains. This poses 

questions about source-sink dynamics. Whether disturbance in assimilate production (source) 

or assimilate accumulation (sink) contributed to the substantial yield loss under exposure to 

HNT was examined in Chapter 4, using a novel modelling approach that quantifies source-

sink relationships during grain filling. In addition, there have been reports that increasing 

nitrogen application can alleviate the negative impact of high-temperature stress on yield in 

rice. However, little is known about the interactive effect of HNT and nitrogen supply on rice 

grain yield and its underlying source-sink relationships. Thus, I conducted field experiments 

in two growth seasons, in which three cultivars with contrasting responses to HNT were 

grown under two levels of night-time temperature and two levels of nitrogen application.

Grain filling was identified to be seriously affected by HNT in my study and by high day-

time temperature (HDT) in other studies. In Chapter 5, I investigated the impact of HNT,

HDT and a combination of both on grain filling. Different rice genotypes selected from 

previous chapters were exposed to independent and combined HNT and HDT at grain filling 

stage and lab analyses were conducted to explore morphological and physiological traits to 

characterize rice response to high temperature stress. In addition, both IR64 and its heat 

tolerant near-isogenic line (NIL) introgressed with qHTSF4.1 were used to assess if the 

beneficial impact of heat tolerance observed during flowering in the NIL could also reduce 

the impact of post-flowering heat damage, in particular at physiological level.

It has been documented that heat spikes during the flowering process frequently occur,

particularly in tropical and subtropical rice-growing areas where hybrid rice development is 

increasingly contributing to sustainable food security. In Chapter 6, I selected seven 

promising hybrids from these regions to evaluate their resistance to HDT, in comparison with

popular high-yielding inbreds. Moreover, I used a novel and advanced experimental set-up for 

in vivo imaging of double fertilization. Microscopic observations on the dynamics of the 

entire fertilization process inside the intact ovule were performed, thereby specifically filling 

in knowledge gaps in identifying the effect of high temperature on in vivo fertilization. This 

can help to evaluate the effectiveness of the heat escaping mechanism via early-morning 

flowering (EMF) traits in rice plants.
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Chapter 7 provides a general discussion of my studies, in view of the main results and

objectives in this thesis. In addition, suggestions for future high temperature studies are also 

made.
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Abstract  

• High night-time temperatures (HNT) can significantly reduce global rice yield and quality. A 

systematic analysis of HNT response at the physiological and molecular levels was done under field 

conditions.  

• Contrasting rice accessions, N22 (highly tolerant) and Gharib (susceptible), were evaluated at 

22oC (control) and 28oC (HNT). Nitrogen and non-structural carbohydrate (NSC) translocation from 

different plant tissues into grains at key developmental stages and their contribution to yield, 

grain-filling dynamics, and quality aspects were evaluated. Proteomic profiling of flag leaf and 

spikelets at 100% flowering and 12 days after flowering was conducted and their reprogramming 

patterns explored. 

• Grain yield reduction in susceptible Gharib was traced back to the significant reduction in N and 

NSC translocation after flowering, resulting in reduced maximum and mean grain- filling rate, grain 

weight, and grain quality. Combined increase in HSPs, Ca signaling proteins, and efficient protein 

modification and repair mechanisms (particularly at the early grain-filling stage) enhanced N22 

tolerance for HNT.  

• Increased rate of grain-filling and efficient proteomic protection fueled by better assimilate 

translocation overcome HNT tolerance in rice. Temporal and spatial proteome programming alters 

dynamically between key developmental stages and guides future transgenic and molecular analysis 

targeted toward crop improvement.   

 
 
 

Keywords: Flag leaf, grain filling, grain quality, high night-time temperature (HNT), non-structural 

carbohydrate (NSC), proteome, rice (Oryza sativa), spikelets  
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2.1 Introduction  

On a global scale (Vose et al., 2005; IPCC, 2007) and at the farm level (Peng et al., 2004), 

minimum night temperatures are increasing at a much faster pace than maximum day 

temperatures, and this trend is projected to continue into the future (Christensen et al., 2007). 

Controlled environment studies (Cheng et al., 2009; Mohammed and Tarpley, 2009a,b; Kanno 

and Makino, 2010), as well as field experiments (Peng et al., 2004; Nagarajan et al., 2010), 

have recorded a significant negative impact of higher minimum night temperature on rice 

yield. Hence, efforts must be intensified to address this emerging phenomenon in synchrony 

with the progress being achieved in breeding for high day temperature tolerance in rice mega 

varieties (Jagadish et al., 2010; Ye et al., 2012) to induce diurnal temperature tolerance in rice. 

To achieve this target, a diverse set of entries must be tested for their response to high night 

temperatures (HNTs), which is a prerequisite to the identification of contrasting entries in 

order to better understand and explore the physiological and molecular mechanisms that 

induce tolerance. 

The yield penalty under HNT has been attributed to a reduction in the number of panicles 

per square meter (Peng et al., 2004), final grain weight (Morita et al., 2005; Kanno and 

Makino, 2010) and spikelet fertility (Cheng et al., 2009; Mohammed and Tarpley, 2009a, 

2010), which are partly explained by increased respiration rates, membrane leakage 

(Mohammed and Tarpley, 2009b) and reduced pollen germination (Mohammed and Tarpley, 

2009a). However, the majority of the conclusions drawn above are based on individual 

genotype performance – for example, IR72 (Cheng et al., 2009), Cocodrie (Mohammed and 

Tarpley, 2009a,b, 2010) and Akita-63 (Kanno and Makino, 2010); almost all of these studies 

were conducted under controlled environments. Therefore, there is a significant gap in the 

identification of contrasting rice genotypes and their physiological and molecular responses 

on exposure to HNTs under realistic field conditions. 

Temperature at night has been speculated to have an impact on the flowering dynamics on 

the following morning (Kobayashi et al., 2010), but it has not been studied systematically. 

Photoassimilates generated either during grain filling (post-anthesis) or redistributed from the 
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reserve pool of the vegetative tissues (pre-anthesis) determine successful grain filling in rice 

(Yang and Zhang, 2006). Limited information is available on the effect of HNT on dry matter 

production, carbohydrate (sugars and starch) and nitrogen (N) partitioning, and grain filling, 

which are critical determinants of final grain yield. Final grain weight is determined by the 

rate and duration of grain filling in rice. However, the magnitude of change with HNT on the 

rate and duration of grain filling in contrasting rice genotypes has not been estimated. The 

above-mentioned sequence of yield-influencing processes could have a major influence on 

grain quality, which is increasingly becoming an essential determinant of the market price, 

and thus warrants detailed investigation. 

To capture the impact of extreme temperatures and other abiotic stresses at the molecular 

level in rice, the proteomic (two-dimensional gel electrophoresis) approach has been 

effectively employed (Cui et al., 2005; Jagadish et al., 2010b, 2011). However, in the majority 

of the studies, either vegetative (Salekdeh et al., 2002; Yan et al., 2005) or reproductive (Imin 

et al., 2004; Liu and Bennett, 2011) tissues, and generally at a single time point, have been 

used to study proteome changes. Yan et al. (2005), using salt stress-affected rice seedling 

roots, and Kerim et al. (2003), using anthers at different developmental stages, applied the 

two-dimensional proteomic approach and demonstrated the proteome dynamics at different 

time points. To our knowledge, no reports have addressed the proteome changes with HNT 

using both vegetative and reproductive tissues at economically relevant time points, such as 

flowering and early grain filling (EGF). 

Unlike all the above-mentioned studies, our trial was carried out using 

temperature-controlled chambers under field conditions. Preliminary wide genetic diversity 

screening for HNT among 36 different rice accessions using the above-mentioned field 

chambers formed the basis of this experiment, from which the most contrasting entries were 

selected for physiological and molecular characterization. Both field and laboratory analyses 

were undertaken as follows: to estimate the impact of HNT on grain yield and yield 

components between two contrasting rice genotypes under field conditions; to quantify N, 

nonstructural carbohydrate (NSC) and biomass partitioning at key developmental stages in 

response to HNT; to determine the impact of HNT on flowering pattern, rate and duration of 
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grain filling along different sections of the panicle, and grain quality; and to unravel the 

temporal reprogramming of the flag leaf and spikelet proteome exposed to HNT at flowering 

and EGF, and to establish their relevance to physiological responses. 

2.2 Material and Methods 

Field experiment and laboratory analyses were conducted in 2011 at the International Rice 

Research Institute (IRRI), Los Baños (1411N, 12115E, 21 masl), the Philippines.  

2.2.1 Crop husbandry 

Two contrasting rice (Oryza sativa L.) genotypes, N22 with high temperature tolerance and 

Gharib with high temperature sensitivity, were chosen for this study based on data obtained 

from previous genotypic diversity analyses comprising 36 rice accessions, exposed to 26°C 

(HNT) and 22°C (control) (Zhang et al., 2012). Seed dormancy was broken by exposure to 

50°C for 3 d, followed by pre-germination and sowing in seeding trays. Fourteen-day-old 

seedlings were transplanted on 22 June 2011 at a spacing of 0.2 m x 0.2 m with four seedlings 

per hill. Phosphorus (15 kg P ha-1 as single superphosphate), potassium (20 kg K ha-1 as KCl) 

and zinc (2.5 kg Zn ha-1 as zinc sulfate heptahydrate) were applied and incorporated into all 

plots 1 d before transplanting. N fertilizer in the form of urea was applied in four equal splits 

(30 kg ha-1 as basal, 20 kg ha-1 at mid-tillering, 20 kg ha-1 at panicle initiation and 30 kg ha-1 

just before heading). Manual weeding was employed to maintain weed-free plots. Whorl 

maggots (Hydrellia philippina Ferino) during the early vegetative stage and yellow stem 

borers (Scirpophaga incertulas) at the flowering stage were effectively managed by chemical 

spraying. 

2.2.2 HNT chambers and treatment 

Twelve temperature-controlled chambers were specifically designed under field conditions to 

study the impact of HNT. Each chamber (6 m × 3 m × 2 m in length, width and height, 

respectively) were fixed with a 2.8-m interval to ensure adequate ventilation and to avoid 

mutual shading. The framework of the chambers consisted of a series of shed-type pipes 

(Figure A1.1). Each chamber was equipped with an air conditioner (CW-1805V; Matsushita 
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Electric Philippines Corp., Taytay, Rizal, the Philippines) capable of maintaining constant 

temperatures. There were two inlet and two outlet fans installed in the front frame and back 

frame, respectively, to minimize the differences in relative humidity (RH) and CO2 

concentration within the chamber compared with the ambient by constant but mild air 

exchange. Stand-alone sensors were placed above the canopy (at 100 cm above the soil) in 

each of the chambers to measure temperature and RH once every minute and averaged over 

30-min intervals, with all the sensors connected to data loggers (HOBO; Onset Computer 

Corp., Bourne, MA, USA). During the daytime (06:00–18:00 h), the chambers were open, 

exposing the plants to natural conditions. At night (18:00–06:00 h), the chambers were closed 

manually and the air conditioners were programmed to automatically impose control (22°C) 

and stress (28°C) treatments. Six replicate chambers each were used to impose the 

temperature treatments. Nearly 5 cm of standing water was maintained throughout the 

experiment to ensure a leak-proof covering of the chambers for the whole night. Temperature 

treatments started from the panicle initiation stage, c. 31 d after transplanting, and continued 

up to physiological maturity. 

2.2.3 Observations 

Growth analysis  

At key developmental stages after the imposition of heat stress, 12 hills from each replicate 

chamber and variety were taken to determine biomass accumulation. Plants were separated 

into leaves, stem + sheath at panicle initiation and, additionally, panicles at flowering and 15 d 

after flowering (DAF). All plant samples were oven dried at 70°C for 5 d until a constant 

weight was recorded. 

Grain yield and yield components  

At physiological maturity, a central 2 m2 area (50 hills) in each chamber was sampled for 

grain yield analysis and the data were adjusted to the standard moisture content of 0.14 g H2O 

g-1.  

Twelve hills (0.5 m2) were taken from each plot to determine the above-ground total dry 
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weight and yield components. The panicle number was counted in each hill to determine the 

panicle number per square meter. Plants were separated into straw and panicles. Panicles were 

hand-threshed and the filled spikelets were separated from unfilled spikelets by submerging 

them in tap water. Three subsamples of 30 g of filled spikelets and 2 g of empty spikelets and 

all of the half-filled spikelets were taken to count the number of spikelets (Peng et al., 2010). 

The dry weights of straw, rachis and filled and half-filled spikelets were determined after oven 

drying at 70°C to constant weight. The above-ground total dry weight was the combined dry 

matter of straw, rachis, and filled, half-filled and empty spikelets. The number of spikelets per 

panicle, number of spikelets per square meter, seed set% (100 × (number of filled spikelets + 

number of halffilled spikelets) / total number of spikelets) and 1000-grain weight were 

calculated. 

Flowering pattern  

The main tillers of four plants, from each replicated chamber for N22 and Gharib exposed to 

HNT and control, were tagged to record the daily flowering pattern starting from the day of 

anthesis (at least one spikelet with protruding anthers) and continuing for three consecutive 

days. On each day, the number of spikelets undergoing anthesis was recorded every 30 min, 

starting from 08:30 h to 14:00 h, following cumulative counts to avoid manual interference. 

NSC and N content  

Plant samples were taken at 05:00 h just before the chambers were opened at panicle initiation, 

flowering, 15 DAF and at physiological maturity for NSC and N content estimation following 

Yoshida et al. (1976) and Bremner & Mulvaney (1982), respectively. To avoid confounding 

factors across early and late tillers in a hill, four main tillers from each hill (each hill had four 

seedlings) were selected with four replicates for each chamber. Tillers were separated into 

leaves, stems + sheaths and panicles, and immediately treated with a heat burst in the 

microwave for 1 min (Pelletier et al., 2010), and then dried at 70°C for 48 h. The samples 

were then ground and taken for NSC and N estimation (0.1 g each). 
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Rate and duration of grain filling  

About 60 panicles on the main tillers that headed on the same day were tagged for each 

treatment. Starting at 100% anthesis, five tagged panicles were sampled randomly; the 

process was repeated once every 4 d until maturity. The panicles were divided into three equal 

parts (top, middle and bottom) based on panicle length. All grains, except the unfertilized 

spikelets, were weighed after oven drying at 70°C for 72 h to obtain constant dry weight. The 

grain-filling rate of the top, middle and bottom sections of the panicle were fitted using the 

logistic equation y = K/(1 + ea -bx) (Brdar et al., 2008; Huang and Zou, 2009), where y 

represents the observed grain dry weight, x is the time after flowering, K is the estimate of the 

final grain weight, and a and b are parameters of the equation with only mathematical 

meaning, which were used to calculate the secondary parameters of grain-filling processes as 

mentioned below. R2, which is the correlation coefficient of the equation, was also estimated. 

The initial grain-filling rate, GR0 = Kbea/(1 + ea)2, maximum grain-filling rate, GRmax = Kb/4, 

mean grain-filling rate, GRmean = Kb/(a- loge(100/99-1)), time to reach the maximum 

grain-filling rate, Tmax = a/b, and the active grain-filling duration (D), were estimated with y at 

95% of K and solving for X using the following equation: D = [X =(2.944 + a)/b]. 

Grain quality parameters  

Eight replicate samples of seeds from each treatment and genotype were separated and 

analyzed for amylose content, protein content, chalkiness (0–10%, 10–25%, 25–50%, 50–75% 

and > 75%), grain length and width at the Grain Quality and Nutrition Center, IRRI, 

Philippines. The physical characteristics of the grain were measured using the 1625 Grain 

Inspector (DK-3400 Hillerod, Foss, Denmark). To measure amylose, polished grains were 

ground to pass through a 0.5-mm sieve in a cyclone mill (Udy Cyclone Sample Mill 3010-030; 

Fort Collins, CO, USA). Amylose concentration was measured as described previously 

(Juliano, 1971). In addition, 125 g of seeds were used to estimate the brown rice (after 

removing the hull), head rice yield (percentage of grains with ≥ 3/4 the size of the original 

grain size) and percentage milled rice (head rice yield + broken grains) (Cooper et al., 2006). 
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Two-dimensional polyacrylamide gel electrophoresis (PAGE)  

Total soluble proteins were extracted from flag leaves and spikelets (after careful exclusion of 

the rachis and pedicle) from three replicates collected over two time points (100% flowering 

and 12 DAF) from both control and HNT-treated plants by the trichloroacetic acid 

precipitation method (Salekdeh et al., 2002). For spikelets collected at 12 DAF, which were at 

the early grainfilling stage, 2 M thiourea was added to the lysis buffer in addition to urea to 

solubilize the proteins thoroughly. All further processes, including protein quantification, 

isoelectric focusing and sodium dodecylsulfate (SDS)-PAGE, were carried out as described by 

Jagadish et al. (2010); 150 μg of proteins were loaded/rehydrated in pH 4–7 (length, 17 cm) 

immobiline pH gradient (IPG) strips and separated during the first dimension by isoelectric 

focusing (GE Healthcare, Wisconsin, USA). Proteins were further separated on the basis of 

their molecular weight on 12% SDS-PAGE gel. 

Image acquisition, data analysis and protein identification  

Silver-stained gels were scanned using an ImageScanner-III (GE Healthcare, Wisconsin, USA) 

with a resolution of 600 pixels and 16 bits per inch. Image visualization, spot detection and 

protein quantification were carried out using the Image Master 2D Platinum Version 6.0 (GE 

Healthcare, Wisconsin, USA). After automated detection and matching, manual editing for 

individual spots was carried out. The percentage volume of each spot was estimated and the 

abundance ratio (% volume of spot under stress/% volume spot under control; Yan et al., 2005; 

Jagadish et al., 2010a, 2011) was calculated. Internal molecular markers were used to 

determine the experimental pI (isoelectric point) and molecular weight for the proteins of 

interest. The percentage volume from three replicates of HNT gels was used to check for 

significant variation in expression compared with data obtained from the same number of gels 

for the control. Protein spots changing by > 1.5-fold or more, and with statistical significance 

at 5% (P < 0.05) between control and temperature-treated tissue, were used for matrix-assisted 

laser desorption / ionizationtime of flight (MALDI-TOF) analysis. Peptide sequences obtained 

from MALDI-TOF MS were searched in MASCOT (www.matrixscience.com) and Profound 

(http://prowl.rockefeller.edu/) databases to identify proteins. The searches showing the highest 
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MASCOT score with maximum sequence coverage were taken into account. Later, the protein 

sequences obtained from the database were searched in the TIGR database using the protein 

BLAST tool (http://rice.plantbiology.msu.edu/analyses_search_blast.shtml), and their 

respective functions in rice were obtained. 

2.2.4 Statistical analysis 

Growth parameters, flowering pattern, yield and yield components, grain quality parameters, 

and NSC and N content were analyzed using Genstat 14th edition (Rothamsted Experimental 

Station, Harpenden, UK). The grain-filling rate and other associated parameters were 

estimated by nonlinear equation fitting using Microsoft Excel solver. Protein abundance (% 

volume) values across treatments and replications obtained from Image Master 2D Platinum 

software were analyzed as a completely randomized design using Genstat 14th edition. 

2.3 Results 

2.3.1 Temperature and RH 

The temperatures in the chambers were close to the set targets of 22°C (actual, 22.1°C; SD = 

± 0.67°C) and 28°C (27.7°C; SD = ± 0.81°C), and RH in the 22°C chambers was 97.2% (± 

2.18%), whereas that in the 28°C chambers was 88.6% (± 3.11%). The temperature and RH 

during the day were similar to those in outside natural conditions – 28.1°C (± 2.57°C) and 

87.3% (± 7.79%) in the 22°C chambers, and 28.6°C (± 2.19°C) and 85.9% (± 7.12%) in the 

28°C chambers. 

2.3.2 Flowering pattern, yield and yield components 

The flowering pattern in both the tested entries showed no significant variation with HNT (P > 

0.05) across three consecutive flowering days (Figure A2.2). However, the two entries 

behaved differently with regard to the number of spikelets opening at peak anthesis: N22 

recorded a smaller number of open flowers, whereas Gharib had more open flowers with HNT 

compared with the control, but these were not significantly different (P > 0.05). Yield and 

yield components and total dry weight at flowering and maturity were significantly different 
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among the two genotypes (P < 0.05 to P < 0.001; Table 2.1). HNT induced significant 

differences with regard to grain yield, spikelets per square meter, seed set, 1000-grain weight, 

total dry weight and plant height at maturity (P < 0.05 to P < 0.01). Temperature and genotype 

interaction was significant only with grain yield (P < 0.05), seed set and 1000-grain weight (P 

< 0.001). Specifically, HNT reduced grain yield, 1000-grain weight and total dry weight at 

maturity by 21.8%, 7.9% and 13.5%, respectively, in the sensitive Gharib, whereas N22 was 

not affected. However, HNT decreased the number of spikelets per square meter by 14.6% 

and increased seed set by 7.6% in N22; these traits were not affected in Gharib. 

2.3.3 Grain quality parameters 

All grain quality traits, including the brown, milled and head rice yields, were influenced 

significantly by genotype (P < 0.001; Table 2.2). The effects of temperature and the 

interaction between genotype and temperature were significantly different in all the traits (P < 

0.05 to P < 0.001), except for head rice yield and amylose content (Table 2.2). An inherently 

low head rice recovery was observed in Gharib. HNT reduced the brown and milled rice 

yields by 2.0% and 4.0%, respectively, in Gharib compared with control; in N22, these two 

traits were unaffected. Similarly, grain width and protein content followed the same trends, 

with a reduction of 2.7% and 4.8%, respectively, in Gharib. N22 recorded a significant 

increase in grain length, which was the only measured trait not affected by HNT in Gharib. 

Although the chalk content in grains was not affected with different categories up to 50%, 

Gharib under HNT recorded a 56.6% decrease in chalk content with the 50-75% category, but 

showed a 36.4% increase in chalkiness with the > 75% category (Table 2.2). 

2.3.4 Biomass, N and NSC partitioning 

Although biomass, N and NSC for the different plant parts, including leaves, stem + sheath 

and panicles, were recorded at different key stages (panicle initiation, flowering, 15 DAF and 

physiological maturity), we have focused on the data obtained from the last two stages as the 

former two were unaffected by temperature (Figure A2.3). Overall (leaf + stem + panicle) 

NSC (P < 0.05) and N (P < 0.05) contents in Gharib were reduced significantly at 15 DAF and 

at physiological maturity, whereas they were relatively unaffected (P > 0.05) in N22 (Figure   
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2.1). A similar pattern was observed with biomass. The percentage NSC content in the 

panicles at 15 DAF was higher at 28°C than at 22°C in both entries (10% with N22 and 22% 

with Gharib), with N content following the same trend – N22 and Gharib accumulated 2% 

and 13% higher N, respectively, with HNT compared with control. However, the exact 

opposite in NSC and N accumulation in the panicles of both entries exposed to 28°C was 

recorded during physiological maturity; panicle biomass followed the same pattern. 

Comparatively, N and NSC contents in the stems in both entries were reduced with HNT at 15  

 

 

 
 
 
 

Figure 2.1 Biomass, nitrogen (N), and non-structural carbohydrate (NSC) partitioning in rice 
(Oryza sativa) accessions N22 (a) and Gharib (b) at 15 d after flowering (DAF) and 
physiological maturity (PM) stage under control and high night temperature (HNT) treatment. 
Numbers within bars indicate percent content. NSC content in the leaves was <5% at both 15 
DAF and at physiological maturity in both entries. Values of N, NSC, and biomass “content” 
are obtained from four main tillers of a hill averaged over four replicates from each chamber 
(i.e., 24 replicate samples). 
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DAF, with the reduction being consistent with stem biomass, whereas the content in the stems 

was higher with HNT compared with 22°C at physiological maturity. 

2.3.5 Rate and duration of grain filling 

Using the logistic equation, most of the variation with grain weight during the grain-filling 

process (R2 = 0.95–0.99) across varieties and temperatures was accounted (Table 2.3). In N22, 

the initial, maximum and mean grain-filling rates were increased substantially with HNT 

compared with the control, whereas it was only the initial grain-filling rate that recorded an 

increase with Gharib. With HNT, the maximum grain-filling rate was reduced substantially 

(20.3%) among the spikelets located in the bottom one-third of the panicle in Gharib. 

Although the mean grain-filling rate increased slightly in spikelets located at the top of the 

panicle, it was considerably reduced among spikelets located at the middle (2.2%), and 

particularly in those at the bottom (12.7%), of the panicle compared with the control in 

Gharib (Figure A2.4, Table 2.3). The time taken to reach the maximum grain filling rate in 

N22 was shortened by 1.2–1.7 d across the panicle, whereas, in Gharib, the range was smaller 

(0.3–0.7 d). The active grain-filling duration in N22 was reduced by 15.6–15.9% under HNT, 

irrespective of the location of the spikelets on the panicle. Gharib showed a similar response 

with grain-filling duration, but the effect was much smaller and restricted to the top (4.8%; 

0.8 d) and middle (3.2%; 0.6 d) portions of the panicle. The spikelets at the bottom one-third 

had a much longer grain-filling duration (9.1%; 2 d). 

2.3.6 HNT-responsive flag leaf and spikelet proteins 

Two-dimensional gel electrophoresis was carried out on flag leaves and spikelets at two 

developmental stages, 100% flowering and 12 DAF (EGF), for both tolerant N22 and 

susceptible Gharib under control and HNT conditions in order to display and compare 

differentially expressed proteins. Protein profiling revealed c.400–500 reproducible protein 

spots using silver staining over a pH range of 4–7 with a molecular weight ranging from 10 to 

90 kDa (Figures 2.2, A2.5). Protein spots showing significant differential expression in N22 

were also identified in Gharib, and their abundance ratio was documented, and vice versa with 

spots differing from Gharib (Table 2.4). In addition, the differentially regulated spot  
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Figure 2.2 Representative two-dimensional gels showing differentially expressed protein 
spots in rice (Oryza sativa) flag leaves (a, c at 100% flowering and 12 d after flowering 
(DAF), respectively) and spikelets (b, d at 100% flowering and 12 DAF, respectively) 
exposed to high night temperatures (HNT) of 28°C. Their actual abundance ratios, obtained 
from the sampled developmental stage, and their earlier or later stage ratios, depending on the 
actual sampling stage, are presented in Table 2.4. The gels shown are from HNT-stressed N22 
tissues, and a panel of gels from tissues exposed to control temperature (22°C) is presented in 
Supplementary Figure A2.5. Gels generated from spikelets at 12 DAF were slightly streaked 
in both entries, which was mainly caused by excess starch accumulation in the spikelets at the 
early grain-filling stage. 
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expression pattern at a later or earlier stage, depending on the actual sampling stage at either 

100% flowering or 12 DAF, respectively, was also recorded to ascertain the developmental 

stage reprogramming of the proteomes (Table 2.4). One hundred and three protein spots were 

differentially regulated in both tissues, including both the developmental stages across N22 

and Gharib. Of the 103 spots, 36 spots showing > 1.5-fold change and statistical significance 

(P < 0.05) in their abundance ratio were excised from N22 gels and analyzed by MS. 

Among the differentially expressed proteins, 71% and 67% were up-regulated in flag 

leaves and spikelets of N22 and Gharib, respectively, with all significantly changing spots 

from the spikelet samples up-regulated in both genotypes at 100% flowering (Table 2.4a). The 

same set of spots, when visualized from gels obtained from samples at 12 DAF, showed a 

clear trend, with the flag leaf spots increasing in intensity and the highly up-regulated spikelet 

spots down-regulated in N22. The pattern was not clear with the susceptible Gharib. Only 7% 

and 25% of flag leaf and spikelet spots, respectively, identified at the 100% flowering stage, 

were not detected in gels at the 12-DAF stage (Table 2.4a). From tissues obtained from the 

12-DAF stage, that is coinciding with the EGF stage, 42% and 56% of the significantly 

changing spots were up-regulated in both flag leaves and spikelets of N22 and Gharib, 

respectively (Table 2.4b). The direction of change with both the up- and down-regulation of 

spots was identical in both N22 and Gharib, whereas the intensity of change in both directions 

differed, being stronger in N22 across all significantly changing spots, except for EGFP3, 6, 

11 and 14. An examination of spots at the earlier developmental stage (100% flowering), 

which were actually extracted and sequenced at 12 DAF, revealed that 75% and 44% of the 

spots were undetected in N22 and Gharib, respectively. 

In total, 36 differentially regulated proteins in response to HNT stress were grouped into 

seven categories according to their putative physiological functions: heat shock proteins 

(HSPs) and other molecular chaperones; proteins involved in signaling; proteins involved in 

sugar metabolism; proteins involved in nucleic acid/protein modification and repair; 

ribosomal proteins; proteins involved in phytohormone biosynthesis and signaling; and others 

(Table 2.5). Specific HSPs, proteins involved in calcium signaling and in nucleic acid/protein 

modification and repair were highly up-regulated in the case of N22 (as compared with  
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Table 2.4 Abundance ratio (AR = % volume under stress / % volume under 
control) of differentially expressed protein spots in rice (Oryza sativa) accessions 
N22 and Gharib at 100% flowering (a) and 12 DAF (b).   

Stage Tissue Actual Re-programmed 

  Spot ID AR (N22) AR (Gharib) AR (N22) at 12 
DAF 

AR (Gharib) at 
12 DAF 

100 % 
flowering (a) 

Flag leaf 100FL1 1.884 ± 0.128 2.189 ± 0.139 6.390 ± 0.247 1.752 ± 0.192 
100FL3 1.471 ± 0.301 1.893 ± 0.547 3.441 ± 0.522 Absent 

 100FL4 1.782 ± 0.508 1.574 ± 0.171 2.264 ± 0.292 Absent 
 100FL5 1.484 ± 0.172 1.216 ± 0.124 2.903 ± 0.168 1.499 ± 0.076 
 100FL6 0.432 ± 0.083 0.349 ± 0.039 0.687 ± 0.132 0.603 ± 0.098 
 100FL7 0.521 ± 0.124 0.256 ± 0.253 0.688 ± 0.114 0.578 ± 0.001 
 100FL8 0.490 ± 0.130 0.479 ± 0.019 0.259 ± 0.040 0.157 ± 0.001 
 100FL11 0.451 ± 0.103 0.537 ± 0.070 Absent Absent 
 Spikelets 100P1 2.151 ± 0.028 1.612 ± 0.191 0.077 ± 0.030 0.570 ± 0.001 
 100P3 2.354 ± 0.768 1.633 ± 0.263 0.365 ± 0.032 0.563 ± 0.087 
 100P4 3.004 ± 0.546 1.560 ± 0.338 2.331 ± 0.143 2.380 ± 0.283 
 100P5 2.158 ± 0.488 1.858 ± 0.157 1.538 ± 0.536 0.863 ± 0.017 
 100P6 2.341 ± 0.266 0.890 ± 0.123 0.510 ± 0.005 1.481 ± 0.004 
 100P7 2.163 ± 0.068 0.785 ± 0.092 0.374 ± 0.114 1.594 ± 0.165 
 100P9 0.838 ± 0.026 1.541 ± 0.091 Absent Absent 

12 DAF (b) Flag leaf EGFL1 0.289 ± 0.185 0.389 ± 0.066 Absent Absent 
  EGFL2 0.241 ± 0.162 0.479 ± 0.000 Absent 0.436 ± 0.079 
  EGFL3 0.316 ± 0.200 0.357 ± 0.231 Absent 0.435 ± 0.068 
  EGFL4 2.158 ± 0.530 1.459 ± 0.016 1.508 ± 0.162 1.685 ± 0.216 
  EGFL11 2.003 ± 0.029 1.512 ± 0.202 0.604 ± 0.149 0.557 ± 0.037 
  EGFL13 0.429 ± 0.281 0.455 ± 0.107 Absent 2.430 ± 0.011 
 Spikelets EGFP1 0.442 ± 0.040 0.539 ± 0.025 Absent Absent 
 EGFP2 1.657 ± 0.588 0.761 ± 0.049 Absent Absent 
 EGFP3 1.830 ± 0.672 2.829 ± 0.287 Absent Absent 
 EGFP4 1.746 ± 0.217 1.134 ± 0.150 Absent Absent 
 EGFP5 1.898 ± 0.642 1.589 ± 0.027 0.863 ± 0.013 0.818 ± 0.017 
 EGFP6 0.272 ± 0.243 0.072 ± 0.032 1.532 ± 0.002 1.978 ± 0.101 
 EGFP7 0.355 ± 0.069 0.979 ± 0.102 0.516 ± 0.017 1.979 ± 0.027 
 EGFP8 0.135 ± 0.096 Absent Absent Absent 
 EGFP9 2.153 ± 0.787 1.518 ± 0.020 Absent Absent 
 EGFP10 0.340 ± 0.099 0.493 ± 0.000 Absent Absent 
 EGFP11 1.578 ± 0.147 1.745 ± 0.200 Absent 1.829 ± 0.142 
 EGFP12 2.323 ± 0.730 1.063 ± 0.123 Absent Absent 
 EGFP13 1.700 ± 0.040 1.515 ± 0.424 Absent Absent 
 EGFP14 1.485 ± 0.226 1.821 ± 0.451 Absent Absent 
 EGFP15 2.411 ± 0.964 2.090 ± 0.424 1.814 ± 0.059 0.523 ± 0.047 

In addition, their expression patterns at earlier (spots identified and sequenced at 12 DAF, that is, early grain filling stage) or 

later (spots identified and sequenced at the 100% flowering stage) developmental stages were identified and their ARs are 

presented in italics (reprogrammed). In both cases, bold and normal font indicate significant and nonsignificant changes, 

respectively. Values with ± SE included.   
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Gharib) in response to HNT stress. Proteins involved in photosynthesis were down-regulated 

in both varieties (Table 2.5). 

2.4 Discussion 

Conclusions drawn from controlled environment experiments have documented an 

HNT-induced increase in respiration rate and decrease in pollen germination (Mohammed and 

Tarpley, 2010) and poor assimilate translocation to grains (Morita et al., 2005; Cheng et al., 

2009; Kanno and Makino, 2010), with a subsequent reduction in seed set and/or grain weight. 

These conclusions are based on individual genotype performance, whereas our study builds 

on the outcome of a wide genetic diversity screening (36 accessions) and tests the most 

contrasting entries from both studies using the same chambers established under field 

conditions. 

A moderate increase in night temperature during the entire reproductive period led to a 

significant decline in grain yield and total dry matter at physiological maturity with the highly 

sensitive Gharib. This decline in yield was mainly attributed to a substantial reduction in 

1000-grain weight, a phenomenon observed by Morita et al. (2005) and Kanno and Makino 

(2010). However, the percentage seed set was unaffected in Gharib, which contrasted with the 

finding of Mohammed and Tarpley (2009a), who noted a 90% reduction in fertility at HNT of 

32° C using cultivar Cocodrie (which could be highly susceptible). Our ongoing controlled 

environment work indicates a similar response from very sensitive varieties exposed to 

temperatures > 30°C, but the tolerant N22, even under 35°C HNT, recorded a < 5% reduction 

in sterility (Coast et al., unpublished; University of Reading, UK). Hence, preliminary 

diversity analysis is essential to avoid an overestimation of the temperature effects. In 

addition, the grain weight of tolerant N22 was unaffected in our field study. However, the 

number of spikelets per panicle was reduced significantly in N22 with HNT, accompanied by 

a higher seed set, demonstrating the plastic response of maintaining yield under HNT. 

Competition for assimilates between the spikelets and the stem during panicle formation has 

been documented, with spikelets being poorer competitors than the stem for available 

assimilates (Fischer and Stockman, 1980). In this competition for assimilates between panicle 
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and stem, the stem in N22 appears to have prevailed over the panicle, as evidenced by a 6.5% 

increase in height and a simultaneous decrease (14.6%) in spikelet number under HNT (Table 

2.1). Moreover, a similar quantitative impact of HNT on spikelet degradation (9.6%) in N22 

was observed in an independent experiment using the same chambers, but such plastic 

responses were not observed with the sensitive Gharib. 

A steady supply of assimilates in the 0–10 and 10–20 d following heading is a crucial 

determining factor for endosperm expansion and grain filling, respectively (Nagata et al., 

2001). Carbohydrates for grain filling could either be assimilated during the ripening period 

or translocated from assimilates accumulated in the leaf sheath and culms before heading 

(Nagata et al., 2001; Lafarge and Bueno, 2009). In our study, a significant decline in N and 

NSC content in the sensitive Gharib throughout the ripening period until physiological 

maturity resulted in assimilate shortage and, with reduced 1000-grain weight and grain yield, 

indicated a greater limitation with source, although sink strength reduction could not be ruled 

out. After accounting for the accumulated N after flowering from the initial content + the 

translocation from the leaves and stem, unaccounted values of 11 mg per hill and 26.2 mg per 

hill N were recorded in N22 and Gharib panicles, respectively, at 22°C, and 14 mg per hill in 

both entries at 28°C, indicating the contribution of direct N uptake or active translocation of N 

stored in the roots during the active grain filling stage (Figure 2.3). Compared with N, NSC 

translocation to the panicle was more pronounced, with a higher contribution from stem NSC 

than from leaf NSC (data not shown), as documented earlier (Fu et al., 2011). Comparison of 

N22 and Gharib across both temperatures independently showed a smaller decrease in NSC 

translocation in Gharib, which could be equated to the HNT effect only, whereas a larger 

decrease in N22 could be caused by a combination of the HNT effect and reduced sink size 

(Figure 2.3). 

Grain filling, the final stage of growth in cereals, is determined by the product of the rate 

and duration of grain growth. A negative relationship between the rate and duration of grain 

filling has been established (Yang et al., 2008). N22, which has considerably higher initial, 

maximum and mean grain-filling rates across the whole panicle, was able to compensate for a 

significant reduction in active grain-filling duration and maintained grain yield (Table 2.3).  
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Interestingly, the plastic behavior of N22 to the deliberate reduction in the number of spikelets 

per square meter probably allowed the remaining spikelets to receive sufficient assimilates 

within the shortened grain-filling duration, a response that was absent in the susceptible 

Gharib. In addition, this response would allow assimilate saving, which otherwise would have 

been utilized for the production of additional nonproductive spikelets. Gharib, however, 

showed a higher initial grain filling rate, but the maximum and mean grain-filling rates were 

decreased greatly, in both middle and bottom portions of the panicles, together with the 

grain-filling duration in the top and middle parts of the panicle, thereby reducing the final 

grain weight. Our results confirm the conclusions of Kobata and Uemuki (2004) that a lower 

yield caused by high temperature during grain filling may be a result of the failure of 

assimilate supply to meet the accelerated grain-filling rate. This was the case with Gharib. 

Further, a significant synergistic correlation between the grain-filling rate and grain weight 

(but not between the grain-filling duration and grain weight) in bread and durum wheat under 

high temperature has been recorded (Dias and Lidon, 2009). Ideally, rice varieties with 

sufficient biomass, equipped with efficient translocation efficiency (high grain-filling rates) to 

compensate for the reduced grain-filling period, could potentially overcome the impact of 

HNT on grain yield. 

HSPs are functionally involved in the repair and renaturation of stress-damaged proteins, 

in addition to protecting the cells against the effects of stress (Wang et al., 2004; Sarkar et al., 

2009; Jagadish et al., 2011). Peptidyl-prolyl cis–trans isomerase (FKBPtype) was particularly 

up-regulated in early grain-filling spikelets in N22 and was down-regulated in the case of 

Gharib, with PPIase (peptidylprolyl isomerase) possibly having a positive role in maintaining 

protein synthesis and trafficking proteins during the active grain-filling stage. This protein is 

known to be induced in floral tissues under heat stress in wheat (Kurek et al., 1999) and 

works in tandem with HSP90 to ensure the correct folding of proteins in Arabidopsis thaliana 

(Hagai et al., 2007). Late embryogenesis abundant protein, which behaves like HSP12 in 

Saccharomyces cerevisiae, was up-regulated in the early grain-filling panicle of both varieties, 

showing its role in grain filling under heat stress and preventing other proteins from 

heat-induced desiccation. Calcium, a universal signaling molecule under heat stress, triggers 
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cytosolic Ca2+ bursts, which are transduced by several Ca2+-binding proteins (CBPs), such 

as calmodulin (CaM), CaM-related proteins, Ca2+-dependent protein kinases (CDPKs), etc., 

that further up-regulate the expression of HSPs (Liu et al., 2003; Yang and Poovaiah, 2003). 

In our study, CBPs, such as CaM-dependent protein kinases, CaM-binding protein and IQ 

CaM-binding motif family protein, were more strongly up-regulated in tolerant N22, whereas 

the first two proteins were unchanged and down-regulated, respectively, in the susceptible 

Gharib panicles. Phosphatidylinositol 3- and 4-kinase family protein, which is involved in 

phosphate signaling in animals, was up-regulated at the 100% flowering stage, but more 

strongly at 12 DAF, indicating its role in high temperature stress signaling in N22, whereas 

the same protein was undetected in susceptible Gharib. Among the proteins involved in sugar 

metabolism, bmannosidase/glucosidase homolog was highly up-regulated only in N22, 

whereas the three other proteins were equally up-regulated in both entries. The CUE 

(coupling of ubiquitin to ER degradation) domain-containing protein, which is involved in the 

degradation of misfolded proteins in the endoplasmic reticulum and protein sorting, was 

up-regulated in both varieties, with a higher level of expression in N22 at the EGF stage. In 

addition, histone acylation by GCN5 (general control non-repressed protein 5) and HAC 

(histone acetyl transferase) helps in the transcriptional regulation of HSP70 and HSP17 genes, 

which are actively involved in correct protein folding and sequestration under high 

temperature stress (Bharti et al., 2004; Han et al., 2008). Maturase K could assist in splicing 

its own and other chloroplast group II introns, showing more active transcription of heat 

stress-responsive gene up-regulation in N22 (but down-regulation in Gharib). Proteins 

involved in the biosynthesis of RuBISCo were down-regulated in both genotypes, which 

could result in reduced photosynthetic rate with a pre-exposure to HNT, a phenomenon 

documented in wheat (Prasad et al., 2008). The majority of the significantly changing proteins 

at the 100% flowering stage were detected at 12 DAF in both flag leaves and spikelets, 

whereas those that were sequenced from tissues at 12 DAF were undetected at 100% 

flowering. This indicated dynamic proteome programming with different tissues at key 

developmental stages in rice when exposed to HNT. The combined increase in HSPs and Ca 

signaling proteins, and the better nucleic acid/protein modification and repair in tolerant N22 
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at the EGF stage, could have allowed for better enzymatic activity in the conversion of 

sucrose to starch. 

Rice market prices are largely determined by milling quality outcomes and appearance, 

that is, higher chalk or brokens reduce rice prices dramatically. The significant reduction in 

milled rice yield and the increase in chalk content (with the highest chalk category in Gharib) 

are proxy for the negative impact of HNT on grain weight (reduced grain width), leading to 

reduced yield and total milled rice. The decrease in grain width could be associated with a 

reduction in average endosperm cell area observed under HNT (Morita et al., 2005), or with 

abnormal amyloplast packaging, resulting in white core chalk formation (Ishimaru et al., 

2009). From source–sink manipulation studies, a close relationship between assimilate supply 

and milky white chalk formation has been established (Tsukaguchi and Iida, 2008), with 

increasing assimilate supply overcoming chalk formation even under high temperatures 

(Kobata and Uemuki, 2004). In addition, higher maintenance respiration with increasing night 

temperatures could partly be responsible for reduced assimilate supply, as documented by 

Cheng et al. (2009) and Mohammed and Tarpley (2010). Chalkiness was not a problem with 

N22, mainly because of the increased grain-filling rates and little influence on overall biomass, 

even under HNT. Interestingly, chalkiness under the 50–75% category was reduced 

significantly in Gharib with HNT, a feature that could be attributed to better assimilate 

transfer at the initial grain-filling stages, but, with a lack of sustained supply of assimilates, 

this resulted in a 36.4% increase in the > 75% chalkiness category. Moreover, Gharib with a 

comparatively higher biomass than N22 could have a relatively higher demand for 

maintenance respiration, depriving a larger share of assimilates over the 2-month-long HNT 

exposure. 
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Appendix Chapter 2, Supplementary tables and figures 

 

Figure A2.1 Field growth chambers used to study high night-time temperature responses 
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Figure A2.2 Flowering patterns over three consecutive days starting from the first 
day of flowering exposed to control (22oC) and HNT (28oC). Solid symbols and 
line indicate night temperature of 22oC, while the open symbols with dashed lines 
are for 28oC. The average number of open spikelets on the first, second and third 
day are indicated by diamond, square and triangle, respectively. 
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Figure A2.3 Biomass, nitrogen (N) and non-structural carbohydrates (NSC) content 
partitioning at panicle initiation (PI) and flowering stage (FL) in N22 (a) and Gharib (b). 
Numbers presented in the graph are percentage values and in instances where there is not 
sufficient space percentages are placed above the bar.  
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Figure A2.4 Grain-filling rate (GR) in top (a), medium (b) and bottom (c) in N22 and 
Gharib under different night-time temperatures. 
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Figure A2.5 Representative 2D gels showing differentially expressed protein spots in flag 
leaves (A, C at 100% flowering and 12 DAF, respectively) and panicles (B, D at 100% 
flowering and 12 DAF, respectively) in rice under HNT of 28oC. Their actual abundance 
ratios obtained at the sampled developmental stage and their reprogrammed ratios depending 
on their sampling stage are given in Table 2.4. Gels shown below are the control N22 tissues. 
Gels generated from panicles at the EGF were slightly streaked in both the entries which was 
mainly due to the excess starch accumulation in spikelets at the early grain-filling stage. 
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Abstract 

High temperature has a pronounced effect on grain yield and quality in rice. Climate change has 

increased night temperature more than day temperature in many parts of the world. How rice responds 

to high night-time temperature (HNT) is largely unknown. This study presents the first effort to assess 

the response of tropical hybrid rice to HNT. Six commercial tropical hybrid rice cultivars together 

with a tolerant (N22-aus) and a susceptible (Gharib-indica) genotype were evaluated under control 

temperature (23°C) and HNT (29°C) starting from panicle initiation until maturity under field 

conditions at the International Rice Research Institute during the dry (DS) and wet (WS) seasons of 

2013. Overall, HNT significantly decreased grain yield of Gharib and all tested hybrids across both the 

seasons, with less average reduction in the DS (13.4%) than in the WS (18.6%). Among the yield 

components, spikelets m−2 most significantly contributed to yield variation under control and/or HNT 

during both DS and WS followed by grain weight, while the contribution of seed-set was low and 

season-specific. Grain quality in most hybrids was also strongly affected by HNT, with decreased head 

rice yield, increased chalkiness and reduced grain width. Given this vulnerability to HNT, there is an 

urgent need to explore options for improving the adaptation of rice hybrids to increasingly warmer 

nights.  

 

Keywords: Grain quality, grain yield, hybrid rice, high night-time temperature  
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3.1 Introduction 

Global mean surface temperature has increased by 0.85°C over the period from 1880 to 2012 

and is projected to increase further by 1.0–3.7°C by the end of 2100 (IPCC, 2013). There has 

been a faster increase in night-time (daily minimum) temperature than day-time (daily 

maximum) temperature, leading to a global decrease in the diurnal temperature amplitude 

(Easterling et al., 1997). A large yield reduction resulting from high night-time temperature 

(HNT) has been reported from major rice growing areas across South and Southeast Asia 

(Peng et al., 2004; Welch et al., 2010) and the United States (Mohammed and Tarpley, 2014). 

In addition, poor grain quality is caused by warm nights, leading to a huge reduction in 

economic benefits (Lyman et al., 2013). Thus, HNT presents a serious challenge to sustain 

global rice yield and quality under future warmer climates. 

Development of heat-tolerant cultivars is identified as a major priority to overcome the 

projected heat stress damage (Battisti and Naylor, 2009; Challinor et al., 2014). Studies have 

been carried out to quantify the genetic variation in heat tolerance of indica and/or japonica 

inbred rice in response to increased day-time temperature (Prasad et al., 2006; Jagadish et al., 

2008; Shi et al., 2014) and night-time temperature (Zhang et al., 2013), and combined day and 

night temperature (Shah et al., 2014). In comparison, few studies have evaluated the response 

of hybrid rice to high day-time temperature (Hu et al., 2012). Compared with inbred cultivars, 

hybrid rice has superior yield potential. Hybrid rice currently occupies more than 60% of total 

rice area in China and is being extended into South and Southeast Asian countries (mainly 

Bangladesh, India, Indonesia, The Philippines, and Vietnam), as well as the United States (Fu 

et al., 2012; Xie et al., 2014). However, in China, it has been reported that extreme high 

temperature in farmers’ fields, especially in the Yangtze River Valley, resulted in significant 

yield loss due to reduced seed-set in hybrid rice cultivars (Tian et al., 2009; Fu et al., 2012). In 

addition, recent research studies have indicated that over 80% of tested hybrids of rice are 

more vulnerable to extreme day-time temperature than inbred rice (Tian et al., 2009; Hu et al., 

2012; Madan et al., 2012; Fu et al., 2015). Clearly, warming climate is increasingly becoming 

a threat to hybrid rice production and can potentially create a bottleneck for further adoption 

in tropical and subtropical environments, where more frequent heat episodes and warmer 
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nights are expected (IPCC, 2013).  

Studies on the response of hybrid rice to HNT are even more limited compared with those 

on hybrid rice responses to high day-time temperature. Interestingly, differential impacts of 

increases in night temperature and day temperature have been reported under field conditions 

(Shi et al., 2013; Jagadish et al., 2014). Earlier studies determining hybrids’ responses to HNT 

were conducted either in greenhouses (Mohammed and Tarpley, 2014) or the focus of the 

study was restricted to the post-flowering phase in a field-based study (Rehmani et al., 2014). 

Therefore, we conducted field experiments, in which HNT was imposed during the entire 

reproductive phase (from panicle initiation to maturity) involving commercial tropical hybrid 

rice cultivars and known checks contrasting for HNT response. The major objectives of our 

studies were (i) to evaluate the performance of selected rice hybrids to HNT in terms of grain 

yield and grain quality under realistic field conditions and (ii) to determine the major yield 

component traits that contribute to yield variation due to HNT. 

3.2 Materials and methods 

The field experiments were conducted in the lowland farm at the International Rice Research 

Institute (IRRI), Los Baños (1411N, 12115E, 21 m asl), Philippines, during the dry season 

(DS) and the wet season (WS) of 2013. Both the DS and WS experiments had four 

independent replications and two temperature treatments. 

3.2.1 Crop management 

Six promising tropical hybrid rice cultivars were used in this study, of which three were 

obtained from a private company (H1, H2, H3) and the other three from IRRI’s Hybrid Rice 

Development Consortium (HRDC) (H4-Mestizo 1, H5- Mestizo 3, H6- Mestizo 21). Two 

inbred rice cultivars were selected as checks, based on their contrasting responses to HNT (cv. 

N22, an aus variety from India, known to be tolerant to HNT; cv. Gharib, an indica from Iran, 

known for its susceptibility to HNT) as reported in Shi et al. (2013). 

Seeds were exposed to 50°C for three days to break dormancy, and pre-germinated seeds 

were sown in seeding trays. Fourteen-day-old seedlings were manually transplanted on 
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February 5 during the DS and on July 11 in the WS, at a spacing of 0.2 × 0.2 m with two 

seedlings per hill. In the DS, phosphorus (30 kg P ha-1 as single superphosphate), potassium 

(40 kg K ha-1 as KCl), and Zinc (5 kg Zn ha-1 as zinc sulfate heptahydrate) were manually 

applied one day before transplanting. Nitrogen fertilizer in the form of urea was applied in 

four splits (45 kg ha-1 as basal, 30 kg ha-1 at mid-tillering, 45 kg ha-1 at panicle initiation, and 

30 kg ha-1 at heading). All fertilizers for the WS were supplied in half the amount of that in the  

DS, as per IRRI’s recommendations (Peng et al., 2010). The standing water in the field was 

kept at about 2 cm at transplanting and about 5 cm from crop establishment till maturity. 

Manual weeding was done whenever required. Whorl maggots (Hydrellia philippina Ferino) 

during the early vegetative phase and sheath blight (Rhizoctonia solani Kühn) at booting and 

flowering stages were effectively controlled by chemical spraying. 

3.2.2 Temperature treatment 

Temperature treatments started from panicle initiation stage and continued up to maturity 

covering the whole reproductive stage, which has been identified to be negatively affected by 

HNT (Shi et al., 2013). HNT during the vegetative stage has shown to have no significant 

negative effects or even positive effects on growth (Wei et al., 2010a; Laza et al., 2015). The 

treatments were initiated based on the panicle initiation date of the tolerant inbred check N22 

as reference, which occurred around 30 days after transplanting in both seasons and was on 

average 8 - 14 days earlier than the panicle initiation of the tested hybrids in both seasons.  

Crops were exposed to 29°C (HNT) or 23°C (control) by using the unique field-based 

tents at IRRI. The details of the set-up of the tents have been published in Shi et al. (2013). 

Briefly, the tents were fully open and exposed to natural conditions during day-time, and were 

manually closed at 18:00 h every day and re-opened at 6:00 h in the morning of the next day, 

exposing the plants to 12 hours of temperature treatments, and 12 h of day length in both the 

DS and the WS. Air-conditioners were automatically programmed to start controlling the 

temperature inside the tent to impose the night-time temperature treatment. Air temperature 

and relative humidity in each tent were measured every minute and averaged over 30 minute 

intervals by sensors (12-bit temperature/RH Smart Sensor-S-THB-M002, Onset computer 
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Corp., Bourne, MA, USA) placed at the crop canopy level, with all the sensors connected to 

HOBO Micro Station Data Loggers (HOBO, Onset computer Corp., Bourne, MA, USA) for 

data recording. Radiation was recorded by the IRRI’s wetland weather station, which was less 

than 100 m from the experimental plots. 

3.2.3 Measurements 

Grain yield and total aboveground biomass  

At maturity, grains from 25 hills (1 m2) were harvested to determine grain yield and grain 

weight was adjusted to a standard moisture content of 0.14 g H2O g-1. Plants from twelve hills 

were harvested randomly to determine total aboveground biomass, yield components and 

harvest index. Specifically, the number of panicles per hill was counted to calculate the 

number of panicle m-2, then plants were separated into straw and panicles. Panicles were 

hand-threshed, and filled and unfilled grains were separated by submerging them in tap water; 

a seed blower was used to separate half-filled and empty grains. Sub-samples were taken to 

manually count the total number of filled, half-filled and empty grains to assess spikelets m-2 

and seed-set (percentage of number of filled and half-filled grains over the total number of 

spikelets). In addition, grain weight was estimated from filled grains. Total aboveground 

biomass was determined from the dry weight of straw, rachis, filled, half-filled and empty 

grains after oven-drying at 70°C until constant weight. Harvest index was calculated as 

percentage of dry weight of filled grains over the total aboveground biomass. 

Grain quality 

Representative samples of about 250 g of filled grains collected from each cultivar and 

treatment were analyzed for grain quality at the Grain Quality and Nutrition Center, IRRI, 

Philippines. After dehulling and polishing 125 g rough rice, head rice (with length ≥ 3/4 of its 

total grain length) was weighed and used to calculate head rice yield. Physical traits such as 

chalkiness, grain length and width were measured by a Cervitec Grain Inspector 1625 (Foss, 

Denmark). The standard iodine colorimetry method described in ISO 6647-2-2011 

(International Standardization Organization, 2011) was used to measure amylose content.  
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Statistical analysis 

To test the significance of cultivars, night-time temperature treatment, and their interaction 

effect on all the parameters, i.e., grain yield, yield components, and grain quality, data was 

statistically analyzed using a two-way analysis of variance (ANOVA) with Genstat (GenStat 

16th Edition, Rothamsted Experimental Station, Harpenden, UK); means were compared 

based on the least significant difference (LSD) test. The relationship between grain yield and 

key yield components (spikelets m-2, seed set and grain weight) was determined by using 

stepwise regression in Genstat.  

3.3 Results 

3.3.1 Climate and treatment conditions 

Average night-time (18:00-06:00 h) temperature during the entire period of treatment (from 

panicle initiation to maturity) was 23.0°C (standard deviation SD = 0.2) for the control and 

29.1°C (SD = 0.5) in HNT tents during the DS (Figure 3.1). In the WS, temperature in control 

and HNT tents were 23.1°C (SD = 0.4) and 28.5°C (SD = 0.5), respectively. The temperature 

remained consistent at the target level throughout the exposure period. Ambient night-time 

temperatures during the treatment period were 25.4°C (SD = 0.8) and 24.9°C (SD = 0.8) 

during the DS and the WS, respectively. The relative humidity during the treatment period 

was 96.1% (SD = 1.7) in the control treatment, 81.7% (SD = 2.5) in the HNT during the DS, 

and 98.1% (SD = 0.7) in the control treatment, and 85.0% (SD = 2.4) for HNT in the WS 

(data not shown). Day-time temperature during the DS was 30.7°C (SD = 1.3) which was 

higher than 28.4°C (SD = 1.6) in the WS (Figure 3.1). The average radiation across the whole 

crop cycle was 17.5 MJ m-2 day-1 in the DS and 12.9 MJ m-2 day-1 during the WS. 

3.3.2 Grain yield and aboveground biomass 

Grain yield significantly differed among cultivars and temperature treatments for both DS and 

WS (P<0.01 or 0.001; Tables 3.1 and 3.2). Gharib, the susceptible check, recorded 

significantly lower grain yield when exposed to HNT in both the DS (12.8%) and the WS 

(18.7%), while the tolerant check N22 had significantly lower yield (11.3%) during the WS  
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Figure 3.1 Time-course of ambient day temperature (open circles) and solar radiation 
(filled circles) from transplanting to maturity, night-time control temperature (23°C - 
black inverted triangles) and higher night-time temperature (29°C - open triangles) 
from panicle initiation to maturity stage during dry (DS) and wet (WS) seasons of 
2013. 

 

only. HNT induced a significant reduction in grain yield for all selected hybrids during both 

the DS and the WS. Comparatively, the average grain yield had a higher reduction during the 

WS (18.6%) than in the DS (13.4%). In the DS, H4 (18.7%) had the largest reduction in grain 

yield followed by H1 (15.7%); larger reductions in grain yield were observed in H6 (36.4%) 

followed by H5 (23.7%) during the WS. Thus, the ranking of the hybrids in grain yield in 

response to the HNT depended on the season. Total aboveground biomass was significantly 

affected by HNT in both the DS (P<0.001) and the WS (P<0.01) (Figure 3.2). HNT had no 

obvious effects on harvest index in the DS, while significant effects were noticed during the 

WS. 

3.3.3 Yield components 

Among the yield components, the number of panicles m-2 was not affected by temperature 

treatment during either the DS or the WS (P>0.05), while spikelets m-2 and grain weight were 

significantly influenced by the HNT in both seasons (P<0.01 or 0.001; Tables 3.1 and 3.2). 

HNT reduced seed-set significantly only during the WS (P<0.05). Across both seasons, the 

spikelet number was significantly reduced for all hybrids except for H6 during the DS and for  
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Figure 3.2 Total aboveground biomass and harvest index of checks (N22 and Gharib) and six 
hybrids exposed to control (23°C) and higher (29°C) night-time temperature (HNT) from 
panicle initiation to physiological maturity in the dry (DS) and wet (WS) seasons of 2013. 
Bars are mean value ± standard error. Level of significance is expressed as **, *** and ns for 
P<0.01, P<0.001 and P>0.05, respectively for cultivar (C) and temperature treatment (T) and 
their interactions. 
 
H5 in the WS. By contrast, the number of spikelets m-2 of the two inbred checks, N22 and 

Gharib, were not affected by HNT. In the WS, a significant decrease in seed-set was recorded 

in susceptible check Gharib and hybrids except in H2 and H4. HNT largely and significantly 

decreased grain weight for all tested cultivars in both the DS and the WS except for N22 

during the DS. The number of spikelets m-2 was strongly (P<0.001) associated with grain 

yield and explained 40.2% - 62.4% of the variation in grain yield across night-time 

temperature treatments in both the DS and the WS (Table 3.3). In contrast, only 6.9% - 13.7% 

of the total variation in grain yield was explained by grain weight. On the other hand, seed 

sethad a smaller (< 3.5%) and non-significant contribution to grain yield particularly under 

HNT across both the seasons. Hence, the number of spikelets m-2 and grain weight were the 

two major components associated with yield loss under HNT for the hybrids. 
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Table 3.3 Relative contribution (partial [contribution of the parameter] and model 
[cumulative contribution] R2), F value and probability of three major yield components 
(spikelets m-2, seed set and grain weight) in predicting grain yield in control and HNT 
treatment during dry season (DS) and wet season (WS) by the stepwise regression analysis. 
15% level of significance was used as criterion for retaining a predictor in the model. 

 

Season Treatment Variable entered 
Partial 

R2 
Model 

R2 
F value P value 

DS Control Spikelets m-2 0.624 0.624 49.740 <.0001 
 Control Grain weight 0.069 0.693 6.480 0.017 
 Control Seed set 0.035 0.728 3.620 0.068 
 HNT Spikelets m-2 0.498 0.498 28.800 <.0001 
 

      
WS Control Spikelets m-2 0.402 0.402 20.170 <.0001 

 Control Grain weight 0.137 0.539 8.610 0.007 
 HNT Spikelets m-2 0.430 0.430 22.580 <.0001 
 HNT Grain weight 0.112 0.541 7.040 0.013 
 HNT Seed set 0.034 0.575 2.210 0.148 

 

3.3.4 Grain quality 

The HNT induced significant damage to grain quality (Tables 3.4 and 3.5). Head rice yield 

showed a significant (P < 0.01 in both the DS and the WS) decline by HNT in most of the 

tested hybrids, while inbred check Gharib was not affected. Head rice yield of N22 was not 

estimated because of technical difficulties encountered due to its short grain length (Madan et 

al., 2012). With exceptions of a slight decrease in H1 during the DS and H3 in the WS, a 

significant increase in H5 during both the DS and the WS, hybrids recorded a significant 

reduction in head rice yield. Hybrids H2 and H4 recorded the largest decline during the DS 

and the WS, respectively. The lower head rice yield was accompanied by higher chalkiness 

(P<0.001 and 0.05 in the DS and the WS, respectively), except for H5 in the DS, and N22 and 

H6 during the WS. Gharib, a waxy variety, had more waxy grains under HNT and increased 

in chalkiness that fell within the >75% category (Table A3.1). Grain length was not affected 

by HNT in the two seasons, whereas grain width was strongly affected by HNT (P < 0.001) in 

both seasons for all tested entries except for H3 in the DS. In contrast, amylose content was 

only affected (P < 0.01) in Gharib, H3, H4, H6 during the DS while it was not influenced by 

HNT in the WS. 
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3.4 Discussion 

Exploring and developing hybrid rice with combined high yield potential and heat stress 

tolerance will help expand the planting area of hybrid rice under current climate and sustain 

the food supply in the future warmer climate (Tian et al., 2009). Our study, therefore, aimed to 

test the response of tropical hybrid rice cultivars to elevated night-time temperature (HNT), 

especially when applied during the entire reproductive stage under field conditions. All 

selected tropical hybrids in our studies showed a decline in grain yield (average 13.4% and 

18.6% decrease in the DS and the WS, respectively) when they were exposed to HNT (Tables 

3.1 and 3.2). In summary, studies involving hybrid rice either from China, USA or Philippines 

(and those included in our study), tested either in the greenhouse or under field conditions, 

recorded large yield reductions under HNT exposure (Mohammed and Tarpley, 2014; 

Rehmani et al., 2014). These findings reiterate rice hybrids to be highly sensitive to HNT and 

hence warrant the urgent need to develop heat tolerant hybrid rice. 

In addition, the reduction in grain yield was larger in the WS than in the DS although the 

temperature treatment was similar for both seasons. Such nigh-time temperature effects may 

also be associated with other environmental factors, such as day temperature (Ziska and 

Manalo, 1996) and solar radiation (Bell et al., 1992). The day-time temperature and solar 

radiation during the WS were relatively lower than during the DS, which could lead to a 

decrease in assimilate production and accumulation, thus inducing larger yield loss in the WS. 

In line with our results, Wei et al. (2010b) found different effects of HNT on grain yield of 

double season (early and late season in China) rice although they used different cultivars for 

the two seasons. HNT imposed during the WS resulted in no diurnal amplitude temperature 

difference, i.e. between day and night temperatures, which has been documented to have 

stronger negative impact than an increase in night temperature under large diurnal amplitudes 

(Bueno et al., 2012). This phenomenon is poorly understood across crops and could be 

another factor resulting in a larger decline in yield in the WS than in the DS. Thus, the 

seasonal variation in the responses to HNT needs more research as HNT may result in a 

reduced diurnal temperature amplitude. 
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We observed significant effects of HNT on the number of spikelets m−2 and these were 

mostly associated with grain yield under both control and HNT conditions. This finding is 

supported by a previous report indicating a negative relationship between the number of 

spikelets m−2 and daily minimum temperature based on long-term experimental records 

(1992–2003) involving the high-yielding inbred cultivar ‘IR72’ (Peng et al., 2004). Moreover, 

a stronger negative impact on spikelet differentiation and a significant increase in spikelet 

abortion have been documented in hybrids exposed to HNT (Wei et al., 2010b). However, a 

decrease in the number of spikelets in response to HNT has not been reported in other studies 

that included hybrids, either in greenhouse experiments (Mohammed and Tarpley, 2014; 

Peraudeau et al., 2015) or experiments under field conditions focused on post-flowering stress 

exposure (Rehmani et al., 2014). In comparison with the above studies, our treatment started 

from the panicle initiation stage, a key developmental stage that determines sink size, i.e., 

spikelet number. The stage of floral meristem and spikelet differentiation appears to be 

vulnerable to HNT. Detailed observations to ascertain the cause of damage during this phase 

are needed, especially for high-yielding hybrid rice with a large sink size that contributes to 

the high yield advantage. 

Grain weight was reduced under HNT in all tested hybrids and this has also been proven 

by recent studies with inbred rice (Shi et al., 2013; Dong et al., 2014; Shah et al., 2014). 

Possible mechanisms responsible for the reduced grain weight under HNT may be the limited 

amount of assimilates supplied during the grain filling phase (Shi et al., 2013) as a result of 

higher respiration rate (Cheng et al., 2009; Mohammed and Tarpley, 2009b), reduced size of 

endosperm cells (Morita et al., 2005), and the loss of sink activity and the activities of key 

enzymes of starch synthesis, such as ADPG-PPase, starch synthase and the starch-branching 

enzyme (Dong et al., 2011). In addition, seed-set was negatively (but weakly, P < 0.05) 

affected by HNT only during the WS. Recent field surveys in Laos and southern India, by 

Ishimaru et al. (2015), showed spikelet sterility to be highly correlated with maximum day 

temperature during flowering and not with minimum temperature, confirming that heat stress 

during day time is the primary cause of spikelet sterility. The relatively weak impact of HNT 

on the seed-set during the WS could possibly be driven by the huge sink size of H5 and H6, in 
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which a proportion of the spikelets could be inherently sterile, independent of stress exposure. 

In general, sink size is in excess under optimum conditions and can result in up to 30% of 

unfilled spikelets (Sheehy et al., 2001). These findings confirm that seed-set may not be 

among the major determinants of HNT-induced yield loss under field conditions (Shi et al., 

2013; Jagadish et al., 2014). 

As for grain yield, total aboveground biomass was affected by HNT (Figure 3.2). The 

importance of the availability of assimilates is confirmed by our study: changes in the HI 

were observed during the WS while no significant changes were recorded during the DS. This 

result also suggests a seasonal variation in responses to HNT. Higher proportion of stored 

assimilates during the pre-flowering stage, translocated to the spikelets during grain filling is 

shown to contribute to the higher HI in hybrids (Song et al., 1990). Our result for the lower HI 

under HNT could be partly due to poor translocation and partitioning of assimilates to grains, 

thereby accounting for the decreased seed-set in the WS. 

In our studies, HNT induced not only yield losses but also poor grain quality. Reduction 

in head rice yield, increase in grain chalkiness, decrease in grain width, and changes in 

amylose content were observed in most hybrids (Tables 3.4 and 3.5) except in H5 recording 

higher head rice yield under HNT. Such unusual responses could be driven by seasonal and 

cultivar differences and physiological mechanisms inducing positive responses remain unclear 

and would require further investigation. The results confirm observations of Ambardekar et al. 

(2011) and Rehmani et al. (2014). Certain stages during the period of grain filling, i.e., milk 

and soft dough stages, have been identified as the stages most sensitive to HNT leading to the 

formation of chalky grain (Ambardekar et al., 2011). Night-time temperature during grain 

filling has pronounced effects on enzymatic activity (Cooper et al., 2008; Fitzgerald and 

Resurreccion, 2009), resulting in irregular packing of starch granules resulting in increased 

chalkiness (Ashida et al., 2009). Changes in grain shape and cooking quality under HNT are 

still poorly understood. 

3.5 Conclusions 

For the first time our study has tested the responses of commercial tropical hybrids to HNT 
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under field conditions and ascertained their degree of resilience and their ability to withstand 

the predicted increase in night temperature in the future. Our results illustrate the 

susceptibility of tropical hybrid rice to HNT, with an average grain yield reduction of 13.4% 

and 18.6% during the DS and the WS, respectively. The reduction in yield and the poor grain 

quality observed in most hybrids reinforce the need to initiate additional efforts to develop 

hybrids with both high yield potential and heat tolerance. At the same time, research focus 

should not be restricted to only flowering and grain-filling stage, as the pre-flowering stage 

(from panicle initiation to flowering) also appears to be vulnerable to HNT. Hence, 

investigations to explore mechanisms behind the spikelet differentiation and degeneration 

under HNT are recommended. 
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Appendix Chapter 3, Supplementary tables and figures 

Table A3.1 Five categories of chalkiness (0-10, 10-25, 25-50, 50-75, >75) and number of 
waxy grains (in the sample) in Gharib exposed to control and high night-time temperature 
(HNT) from panicle initiation to maturity. Mean value ± standard error 

    Category of chalkiness (%) No. of  
waxy 
grains  Season Treatment 0-10 10-25 25-50 50-75 >75 

DS 
Control 0.6 ± 0.3 1.8 ± 0.9 2.7 ± 0.7 17.6 ± 4.2 77.4 ± 5.0 53 ± 6 

HNT 0.6 ± 0.3 1.2 ± 0.7 0.5 ± 0.3 1.0 ± 0.6 96.7 ± 0.5 81 ± 2 

WS  
Control 1.4 ± 0.8 2.5 ± 1.3 2.9 ± 1.4 47.4 ± 6.9 45.9 ± 8.9 26 ± 8 

HNT 0.5 ± 0.2 1.1 ± 0.4 1.3 ± 0.5 21.4 ± 1.8 75.7 ± 2.3 53 ± 3 
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Abstract 

High night-time temperature (HNT) disturbs processes of both assimilate production (source) and 

assimilate accumulation (sink), and as a result substantially reduces yields of cereal crops. There have 

been reports that increasing nitrogen application can alleviate the negative impact of high-temperature 

stress on yield in rice (Oryza sativa L.). However, little is known about the interactive effect of HNT 

and nitrogen (N) supply on rice grain yield and its underlying source-sink relationships. We conducted 

two field experiments at the International Rice Research Institute in both the dry (DS) and wet (WS) 

season of 2012, in which three cultivars with contrasting responses to HNT were grown under two 

levels of night-temperature and two levels of N application. HNT significantly decreased grain yield 

of Gharib at both N levels and in both seasons, while grain yield of PSBRc4 was significantly reduced 

by HNT at the higher N level only. Among the yield components, grain weight was consistently 

reduced by HNT for three cultivars across two seasons while spikelets m−2 and seed-set were affected 

by HNT during DS and WS, respectively. In most cases, higher N application reduced grain yield and 

its components. Thus, in our study, increasing the total N fertilizer did not alleviate the adverse effects 

of HNT on rice yield. Using a novel modeling approach that quantifies source-sink relationships 

during grain-filling, we found that increased nitrogen did not alleviate the negative impact of HNT on 

source-sink interactions during grain growth across cultivars and seasons. Nevertheless, the model 

showed that there were significant differences among cultivars in grain-filling duration, rates and total 

sink size, modulated by their source-sink relationship in response to HNT, suggesting that breeding 

programs should select for sink-related traits to improve rice tolerance to HNT. 

 

Keywords: Grain quality, grain yield, high night-time temperature, source-sink dynamics 
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4.1 Introduction  

While global climate models predict mean temperature increases of 1.0 to 3.7oC by 2100 

(IPCC, 2013), a greater increase in night-time minimum temperature than day-time maximum 

temperature is an increasingly common global phenomenon (Easterling et al., 1997; Vose et 

al., 2005). Night-time temperature is predicted to increase further, by up to 3°C by 2050 

(Chotabonsak et al., 2011), thereby reducing the diurnal temperature amplitude. At a smaller 

geographic scale, this trend has been detected across major rice-producing countries such as 

the Philippines (Peng et al., 2004), China (Tao et al., 2006), and India (Rao et al., 2014). 

Large reduction in rice yield resulting from increasing night temperature has been 

documented across South Asia, Southeast Asia and in the US (Welch et al., 2010; Mohammed 

and Tarpley, 2014), resulting in significant economic losses (Lyman et al., 2013). 

 Grain yield in rice depends on both the supply of assimilates (source) and the capacity of 

the grains to accumulate available carbohydrates (sink), and critical yield-determining 

components spikelets per panicle, spikelet fertility and individual grain weight are mainly 

determined between panicle initiation and maturity. The yield losses under high night 

temperature (HNT) have been attributed to a reduction in final grain weight under realistic 

field conditions (Shi et al., 2013; Jagadish et al., 2014) and in spikelet sterility from studies 

carried out under controlled environmental conditions (Cheng et al., 2009; Mohammed and 

Tarpley, 2009a, 2010). The latter conclusion on reduced spikelet fertility is documented for 

response to extremely high night-time temperature (≥ 32oC), which is similar to the level of 

high-day-temperature but not comparable to levels of night temperature experienced by rice 

grown in different geographical locations. Hence, the major conclusion drawn from these 

controlled environment conditions studies on HNT induced yield losses through increased 

spikelet sterility is hard to be justified under realistic field conditions. Therefore, caution 

needs to be taken while comparing HNT impacts across field and controlled chamber studies 

(Jagadish et al., 2014). Across these studies, different mechanisms for yield reduction under 

HNT have been indicated, i.e. poor seed-set (Cheng et al., 2009; Mohammed and Tarpley, 

2009a, 2010), limited amount of assimilates (deficiency of carbohydrates) supplied as a result 

of higher respiration rate and drop in photosynthesis (Cheng et al., 2009; Mohammed and 

Tarpley, 2009b), or lower translocation efficiency of assimilates during grain-filling phase 

(Shi et al., 2013). On the other hand, reduced sink size, i.e. endosperm cell size (Morita et al., 
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2005) and sink activity, i.e. activities of key enzymes of starch synthesis (Dong et al., 2011) 

have also been identified to cause lower grain weight under HNT.   

 There have been reports that crop management approaches can be used to minimize yield 

reduction under high-temperature stress. Appropriate nitrogen management can (partially) 

alleviate the negative impact of high-temperature stress in plants (Waraich et al., 2012). 

Increasing the nitrogen supply at panicle initiation and/or flowering has been reported to 

relieve the negative effects on grain production, on exposure to short period of high day 

temperatures before or after flowering (Dai et al., 2009; Duan et al., 2013; Yang et al., 2014). 

It has also been documented that nitrogen management could lower the panicle or canopy 

temperature by building a good structure of rice canopy with higher leaf area index and 

facilitating higher transpiration cooling, thereby reducing high temperature-induced sterility 

and improving high-temperature tolerance (Yan et al., 2008). These reports suggest that 

nitrogen management could modulate both source and sink parts of the crop. However, the 

effects of nitrogen in combination with HNT exposure on source-sink ratios and rice yield 

under field conditions have not been investigated. 

 Source or sink limitation on grain-filling in cereals is often inferred from experiments in 

which the source-sink ratio is manipulated by shading, defoliation or grain removal. However, 

interpretation of this type of experiments is usually hard, considering the possibility that a 

physical removal of a plant part could lead to plant response to a shock and does not 

necessarily reflect responses to a gradual change in the source-sink relationships in intact 

plants. In addition, the dynamics of source activity is commonly quantified by measuring 

time-dependent instantaneous net canopy photosynthesis. Such measurements are time 

consuming and require gas-analyzer facilities. Yin et al. (2009) have created a quantitative 

model by using dynamics of grain weight and flag leaf area during grain-filling period to 

quantify the source-sink relationships. However, precise source-sink relationship during 

grain-filling often depends on the temporal changes in grain weight in response to assimilates 

availability per grain during the grain-filling period (Borrás et al., 2004). Thus, a new model 

methodology is needed to easily and accurately quantify source-sink relationships by using 

grain-filling dynamics and associated plant biomass produced during grain-filling, as dry 

weight is relatively easy to measure. Such an approach may help to quantify the factors 

involved in the reduction of grain yield under HNT and its impact on source-sink limitations. 

A quantitative understanding of source-sink relationships especially under field HNT 
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conditions could be used to identify physiological or agronomic traits suitable for improving 

rice grain yields by targeted breeding efforts.  

 In our study we aim to unravel the responses in grain yield to increased N supply under 

HNT in rice under realistic field conditions. To that end, we extend the model of Yin et al. 

(2009) into a novel modelling framework to more precisely and easily quantify changes in the 

balance between source supply and sink demand under HNT. 

4.2 Materials and methods 

Field experiments were conducted in the 2012 dry season (DS) and wet season (WS) in the 

lowland farm at the International Rice Research Institute (IRRI), Los Baños (1411N, 

12115E, 21 m asl), Philippines. A randomized complete block design was used for these 

experiments, N levels used as main plot, with temperature as split plots and cultivar as split-

split plots. 

4.2.1 Crop management     

Three rice cultivars with relatively similar phenology (days from transplanting to panicle 

initiation) and contrasting responses to high night temperature, i.e. N22 with high night-

temperature tolerance (Coast et al., 2015) and Gharib with high night-temperature sensitivity 

(Shi et al., 2013; Zhang et al., 2013) together with PSBRc4 (a high-yielding cultivar released 

in the Philippines with unknown high night-temperature tolerance), were chosen for our 

studies. Seed dormancy was broken by exposing seeds to 50oC for 3 days, followed by pre-

germination and sowing in seeding trays. Fourteen-day-old seedlings were transplanted on 16 

January during the DS and 4 July in the WS at a spacing of 0.2 × 0.2 m with four seedlings 

per hill to compensate for the poor tillering ability of N22 and Gharib and to ensure uniform 

plant density under conditions where golden apple snails are a problem during early seedling 

stage. The fields were flooded at 5–10 cm water depth until physiological maturity. Weeds 

were removed manually and chemicals were applied to control pest and diseases. Whorl 

maggots (Hydrellia philippina Ferino) during the early vegetative stage, yellow stem borers 

(Scirpophaga incertulas) and sheath blight (Rhizoctonia solani Kühn) at flowering stage were 

effectively managed by chemical spraying. 
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4.2.2 Treatments 

Two levels of N fertilizer in the form of urea were applied, 150 kg N ha-1 (N1) and 250 kg N 

ha-1 (N2) in the DS and 75 kg N ha-1 (N1) and 125 kg N ha-1 (N2) during the WS. 150 and 75 

kg N ha-1 are IRRI’s recommended levels of N fertilizers for DS and WS, respectively. Basal 

nitrogen was applied at 30% of total amount and incorporated in all plots a day before 

transplanting, and remaining nitrogen was split-applied at mid-tillering (20%), panicle 

initiation (30%) and heading stage (20% of total amount), respectively. In addition, 30 kg P 

ha-1 (single superphosphate), 40 kg K ha-1 (KCl), and 5 kg Zn ha-1 (zinc sulfate heptahydrate) 

were applied in the DS and 15 kg P ha-1, 20 kg K ha-1, and 2.5 kg Zn ha-1 were used in the WS 

as basal fertilizers.  

 Sixteen temperature-controlled chambers were used to impose HNT stress under field 

conditions. The details of the set-up of the chambers were published in Shi et al. (2013). 

Briefly, during day-time (06:00–18:00 h), the chambers were kept open, exposing the plants 

to natural conditions. Chambers were manually closed at 18:00 h every day and re-opened at 

6:00 h in the following morning; meanwhile, air conditioners (CW–1805 V, Matsushita 

Electric Philippines Corp., Taytay, Rizal, Philippines) were programmed to automatically 

maintain constant control temperature (22ºC) and HNT (28ºC) inside the chambers. HNT 

treatments of 28ºC were based on our previous experiments (Shi et al., 2013, 2016) and the 

current experiment, in which the ambient night temperatures on average ranged between 24 

and 25ºC during the growing season and with a +3ºC increase predicted under future 

scenarios with warmer nights (Chotamonsak et al., 2011). Higher night-time temperature can 

potentially impact rice yields on a global scale, encompassing the entire crop cycle unlike the 

short episodic occurrence of day heat spikes (Jagadish et al., 2015). Hence, our treatments 

were initiated from panicle initiation, approximately 27 days after transplanting in both 

seasons with the phenology of cultivar N22 as reference and continued up to maturity. In this 

way, the stress coincided with the critical yield-determining reproductive phase, which has 

been proven to be most sensitive period to high night-time temperature stress (Zhang et al., 

2013). Sensors (12-bit temperature/RH Smart Sensor-S-THB-M002, Onset computer Corp., 

Bourne, MA, USA) placed at the crop level were used to measure temperature and relative 

humidity once every 30 min, with all the sensors connected to data loggers (HOBO, Onset 

computer Corp., Bourne, MA, USA). 
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4.2.3 Observations on grain yield and yield components  

At physiological maturity, grains from a central 1 m2 area (25 hills) were sampled for 

determining grain yield and the data was adjusted to the standard moisture content of 0.14 g 

H2O g-1. Twelve hills were taken to determine yield components. Panicle number was counted 

in each hill to determine panicle number m-2. Plants were separated into straw and panicles. 

Panicles were hand-threshed and filled spikelets were separated from unfilled spikelets by 

submerging them in tap water, and a seed blower was used to separate half-filled grains and 

empty spikelets. Three subsamples of 30 g filled spikelets, 2 g empty spikelets and all half-

filled spikelets were counted manually and used to determine spikelets m-2 (Peng et al., 2010) 

and seed-set (percentage of filled and half-filled grains over the total number of spikelets). 

Grain weight was calculated from filled grains. 

4.2.4 Quantifying source-sink relationships 

To minimize bias in panicle size between tillers chosen at different time points during the 

grain-filling, panicles on the first day of heading were tagged, with not more than two to three 

tillers per hill. Starting from 100% anthesis (all spikelets on a panicle had completed 

flowering), seven tagged tillers with uniform development were randomly sampled from the 

surface of soil at 4 days intervals until maturity. The tillers were divided into vegetative parts 

(i.e. leaf + stem and sheath) and panicles and constant dry weight from both samples was 

obtained after oven-drying at 70°C for 72 h. Then the total number of spikelets from each 

panicle was counted. Weight of the grains for each time point was obtained and biomass per 

grain were calculated to minimize the differences in panicle size for analyzing the source-sink 

relationships during grain-filling. 

 The following sigmoid growth function (Yin et al., 2003) was used to fit the temporal 

dynamics of grain weight after heading: 

𝑊𝑊 = {𝑊𝑊b + (𝑊𝑊max − 𝑊𝑊b) (1 + 𝑡𝑡e−𝑡𝑡
𝑡𝑡e−𝑡𝑡m

) ( 𝑡𝑡−𝑡𝑡b
𝑡𝑡e−𝑡𝑡b

)
𝑡𝑡e−𝑡𝑡b
𝑡𝑡e−𝑡𝑡m       𝑖𝑖𝑖𝑖 𝑡𝑡b ≤ 𝑡𝑡 ≤ 𝑡𝑡e

𝑊𝑊max       𝑖𝑖𝑖𝑖 𝑡𝑡 > 𝑡𝑡e

                       (1) 

where t is days after heading, Wb is the initial grain weight at the moment when growth begins 

(tb), Wmax is the maximum value of W which reaches at te, the time at the end of growth, and 

tm is the time when the maximum growth rate is achieved. The average grain-filling rate 

(𝐶𝐶̅) during the period was calculated from 𝐶𝐶̅= (Wmax-Wb)/te. Based on the logic described by 
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Yin et al. (2003), the maximum grain-filling rate Cm which is achieved at time tm is 

determined by: 

𝐶𝐶m = (𝑊𝑊max −𝑊𝑊b) [
2𝑡𝑡e−𝑡𝑡m−𝑡𝑡b

(𝑡𝑡e−𝑡𝑡b)(𝑡𝑡e−𝑡𝑡m)
] (𝑡𝑡m−𝑡𝑡b𝑡𝑡e−𝑡𝑡b

)
𝑡𝑡m−𝑡𝑡b
𝑡𝑡e−𝑡𝑡m                           (2) 

The sink activity at time t during grain-filling period (Figure 4.1A) is calculated from: 

Sink activity = 𝐶𝐶m (
𝑡𝑡e−𝑡𝑡
𝑡𝑡e−𝑡𝑡m

) ( 𝑡𝑡−𝑡𝑡b
𝑡𝑡m−𝑡𝑡b

)
𝑡𝑡m−𝑡𝑡b
𝑡𝑡e−𝑡𝑡m                           (3) 

Total amount of sink growth, the accumulated biomass in the grains during whole period of 

grain-filling is 

Sink growth =Wmax-Wb                                      (4) 

 In contrast to the dynamics of sink activity (grain growth), source activity to support grain-

filling (S) followed a reversed sigmoid curve (Figure 4.1B), and such a reserved sigmoid 

pattern can be described by (Yin et al., 2009) 

𝑆𝑆 =  {𝑆𝑆max [1 − (1 +
𝑡𝑡e−𝑡𝑡
𝑡𝑡e−𝑡𝑡m

) ( 𝑡𝑡𝑡𝑡e)
𝑡𝑡e

𝑡𝑡e−𝑡𝑡m]                                      𝑖𝑖𝑖𝑖 𝑡𝑡 < 𝑡𝑡e
0                                                                                                𝑖𝑖𝑖𝑖 𝑡𝑡 ≥ 𝑡𝑡e

                  (5) 

where Smax is the maximum value of source activity, which appears at the onset of grain-

filling. The dynamics of S during grain-filling is hard to measure directly. However, S 

available for grain growth can be deducted from the dynamics of the whole-plant biomass 

(Wplant), which can be easily measured. The temporal course of Wplant during grain-filling 

(Figure 4.1C) can be quantified by integrating Eq. (5) with respect to time t: 

𝑊𝑊plant =
{
 

 𝑆𝑆max𝑡𝑡 {1 − [(
1

2𝑡𝑡e−𝑡𝑡m
) ( 𝑡𝑡𝑡𝑡e)

𝑡𝑡e
𝑡𝑡e−𝑡𝑡m] [(2𝑡𝑡e − 𝑡𝑡m − 𝑡𝑡) +

(𝑡𝑡e−𝑡𝑡m)𝑡𝑡
3𝑡𝑡e−2𝑡𝑡m

]} +𝑊𝑊h    𝑖𝑖𝑖𝑖 𝑡𝑡 < 𝑡𝑡e  

𝑆𝑆max
𝑡𝑡e2

3𝑡𝑡e−2𝑡𝑡m
+𝑊𝑊h                                                                                             𝑖𝑖𝑖𝑖 𝑡𝑡 ≥ 𝑡𝑡e

(6) 

where Wh is the initial whole-plant weight at the onset of the grain-filling. A typical time 

course of Wplant is illustrated in Figure 4.1C. Smax, tm, te and Wh can be estimated by fitting Eq. 

(6) to the easily measured data for the dynamics of Wplant, and these parameter values can then 

be used to input to Eq. (5) to calculate the time course of source supply for grain growth.  
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Figure 4.1 A. Time course of sink activity (the growth process of grains) as 
described by Eq. (3); B. a reversed sigmoid curve indicating the corresponding 
source supply (activity) to support grain filling, as described by Eq. (5); and C. 
a typical time course of  per-grain whole-plant weight (Wplant) described by Eq. 
(6), during grain filling phase. See the text for the definitions of the symbols tb, 
tm, te, Cm, Smax and Wh. 
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Total source applied (source capacity) during the whole period of grain-filling is derived from 

the second part of the equation when t ≥ te: 

Source capacity = 𝑆𝑆max
𝑡𝑡e2

3𝑡𝑡e−2𝑡𝑡m
     (7) 

Mathematically it is the area between the curve of Eq. (5) and the t-axis within 0 ≤ t ≤ te (Yin 

et al., 2009).   

 Once sink and source parameters are determined, one can then compare the time course 

of sink and source for grain growth (e.g., if te for sink and source matches) and quantify 

whether or not total sink growth and source activity are in balance. However, this framework 

in quantifying the source-sink balance implicitly assumes that assimilates stored in reserves 

and the structural biomass in harvested organs have the same carbon fraction. A similar 

carbon fraction can be found in cereals or crops like potato, sweat potato and sugar beet, but 

not in crops like soybean and sunflower where the carbon fraction in the grain biomass is 

considerably higher than in reserves, i.e. 0.444 for starch (Penning de Vries et al., 1989). 

Therefore, our method suits best for crops like rice where any difference in the carbon 

fraction in reserves and in grain biomass is negligible. 

4.2.5 Statistical analysis 

Data from two seasons (DS and WS) were analyzed separately as crop growing environment 

and management practices including fertilizer application were different. In addition, seasonal 

variation in rice plants exposed to HNT under the same chambers has been documented in our 

previous studies (Shi et al., 2016). To test the significance of cultivars, treatments and their 

interaction effects on all parameters, i.e., grain yield and yield components, statistical analysis 

was carried out using a three-way analysis of variance (ANOVA) with Genstat (Genstat 16th 

Edition, Rothamsted Experimental Station, Harpenden, UK); least significant difference (LSD) 

test was used to compare the means. Model fitting to estimate parameters related to sink and 

source dynamics was carried out using the least squares nonlinear regression with the GAUSS 

method in PROC NLIN of SAS (SAS Institute Inc., Cary, NC, USA). The SAS codes are 

available from corresponding author Xinyou Yin upon request. 
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4.3 Results 

4.3.1 Climatic conditions and phenology 

Average day-time temperatures throughout the whole crop cycle (from transplanting to 

maturity) were about 29.8°C (standard deviation SD = 1.9°C) and 30.9°C (SD = 1.6°C) 

during DS and WS, respectively (Figure 4.2). The average solar radiation across the whole 

growth period was 16.2 MJ/M2 (SD = 5.3) in DS, and 13.9 MJ/M2 (SD = 4.9) in WS. In 

addition, average night-time (18:00–06:00 h) temperature during the entire period (from 

panicle initiation to maturity) was 22.0°C (SD = 0.2°C) for the control and 27.5°C (SD = 

0.6°C) in the HNT treatment during the DS. In the WS, temperatures in control and HNT 

treatments were 21.8°C (SD = 0.5°C) and 27.6°C (SD = 0.4°C), respectively.  

Days to flowering were not affected by HNT, nor by nitrogen treatments. It took 43 days 

after transplanting (DAT) for N22 and Gharib, and 54 DAT for PSBRc4, to reach flowering 

under both HNT and control conditions in DS. During WS, it took 50 days for N22 and 

Gharib, and 55 days for PSBRc4, to reach flowering. 

4.3.2 Grain yield and yield components 

Grain yield significantly differed among cultivars, nitrogen and temperature treatments, and 

significant interactions occurred between cultivars and nitrogen for both DS and WS  

 

 
Figure 4.2 Time-course of temperature (ambient temperature during day time, night-time 
temperature within control (CK) and higher temperature (HNT) chambers) and solar radiation from 
transplanting to maturity during the dry and wet seasons (DS, WS). Black bars indicate the 
flowering date of each of three cultivars. 
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(P < 0.05, P < 0.01 and/or P < 0.001; Tables 4.1 and 4.2), and between cultivars and 

temperature during DS (P < 0.05). The grain yield of the susceptible check (Gharib) was 

significantly reduced by 34.5% (average of N1 and N2 levels) and by 13.7% when it was 

exposed to HNT in DS and WS, respectively. However, for the tolerant variety (N22), we 

found virtually no influence of HNT on its grain yield. The high-yielding cultivar PSBRc4 

had a significant decrease in grain yield at N2 in both DS and WS (by 8.8% and 5.6%, 

respectively) while there was no significant yield loss induced by HNT at N1 level. Under the 

same temperature treatments, the grain yields of the three cultivars were significantly lower at 

the N2 than at the N1 during DS except for PSBRc4 at control condition, but the situation in 

WS was opposite. 

Among the yield components, HNT significantly decreased the spikelets m−2 (P < 0.05) 

and grain weight (P < 0.001) in DS, while it significantly decreased seed-set (P < 0.01) and 

grain weight (P < 0.001) during WS. The grain weight of the three cultivars were significantly 

reduced under HNT in both nitrogen levels during DS and WS except N22 at N1 level in DS 

and N22 at N2 level in WS. In DS, spikelets m−2 decreased when exposed to HNT except for 

N22 and Gharib at N1 level. During WS, HNT significantly reduced seed-set in N22 and 

PSBRc4, while a significant increase or no change was observed in Gharib. Higher N 

application (N2) had no significant effect on the spikelets m−2 in DS but significantly 

increased spikelets m−2 (P < 0.001) in WS. Compared with N1, N2 significantly reduced the 

seed-set of PSBRc4 and Gharib during DS and of N22 and of PSBRc4 in WS. Grain weights 

were lower at N2 than at N1 in all cultivars in both DS and WS. 

4.3.3 Source-sink relationships 

Eq. (1) accurately described the dynamics of grain-filling of all three rice cultivars at two 

nitrogen levels and two temperature levels (Figure 4.3), and ≥96% of the variation was 

explained by the equation (Tables 4.3 and 4.4). In all cases, the fitting obeyed the constraint 

that tb = 0 as the onset time of grain-filling, in line with the early use of the model (Yin et al., 

2009). The estimated Wmax, representing the final grain weight, differed among cultivars and 

temperature levels. There were no obvious differences between control and HNT in Wmax of 

N22 and PSBRc4, while Wmax was consistently higher at control than at HNT in the 

susceptible cultivar Gharib. Wmax in Gharib, was reduced by 2.7% to 10.5% compared to 

control in DS and WS, respectively. HNT also decreased the estimated te, the time when final 

grain weight is achieved, in cultivar Gharib; but for N22 and PSBRc4, the estimated te  
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was not lower or even higher under HNT compared with the control. In contrast, the 

estimated tm, representing the time at which the maximum growth rate is reached, was lower 

at HNT than at control in all three cultivars except N1 level of PSBRc4 during WS. The 

maximum grain-filling rate Cm, calculated by Eq. (2), was lower at HNT than at CK in N22 

and PSBRc4, except in PSBRc4 at N2 level in DS, whereas the changes in Cm of Gharib were 

not consistent among nitrogen levels. HNT induced higher average grain-filling rates 𝐶𝐶̅ for 

N22 and Gharib for both DS and WS, however, there were decreases in 𝐶𝐶̅ for PSBRc4 under 

HNT conditions. 

As fitting Eq. (1) to data on grain growth was done on a single-grain basis (Figure 4.3), 

the data for whole-plant biomass (Wplant) should also be used on a single-grain basis, so that 

the parameter estimates of fitting Eq. (6) can be directly used to derive the dynamics of the 

source supply to single grain. Note that we only measured aboveground biomass, which was 

used as the proxy to Wplant assuming that the assimilates are exclusively used aboveground 

after anthesis. Eq. (6) described well the time course of the observed Wplant per grain during 

grain-filling (Figure 4.4). The model accounted for ≥94% of the variation in all treatments 

and cultivars (Tables 4.3 and 4.4). The estimated maximum value of source activity at the 

onset of grain-filling, Smax, differed among cultivars and treatments. HNT caused an increase 

in Smax for all cultivars except N22 at N1 level in DS and WS, PSBRc4 at N1 and N2 levels of 

WS. The estimated te for source was relatively higher than that for sink for all cultivars and 

treatments. As expected, te for source was lower under HNT than in CK in most cases, except 

for N22 at N2 level in DS and PSBRc4 at N1 level during WS. 

 Source capacity calculated by Eq. (7), representing overall assimilates produced during 

the whole period of grain-filling, and sink growth calculated by Eq. (4) indicating the total 

accumulated assimilates in the grains during the same period, are compared in Table 4.5. 

There were differences in source capacity between cultivars, treatments including nitrogen 

level and temperature, even between seasons. N22 had higher sink growth under HNT 

compared to control across DS and WS, PSBRc4 and Gharib had lower sink growth at HNT 

than at control except PSBRc4 at N2 level in WS. In DS, the differences between source 

capacity and sink growth (source – sink) in N22 and Gharib had positive values. Any negative 

difference in source and sink, as shown in PSBRc4 (Table 4.5), indicates that part of the 

assimilates for grain growth is contributed by assimilates accumulated before flowering.  
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Figure 4.3 The observed value of grain weight (points) during grain filling phase and 
corresponding fitted grain weight estimated from Eq. (1) (curves) for three rice cultivars (N22, 
PSBRc4, Gharib) at two nitrogen levels (N1, N2) and two temperature treatments (control, HNT) 
during the dry and wet seasons (DS, WS). 

  
During WS, N22 needed to remobilise the pre-flowering assimilates together with PSBRc4 at 

HNT under both N1 and N2 levels, Gharib at both control and HNT under N1 levels. 

 The instantaneous time course of sink growth described by Eq. (3) and that of source 

supply by Eq. (5) are shown for DS and WS in Figures 4.4 and 4.5, respectively. There was 

little difference in the sink dynamics between the seasons, except for PSBRc4 in which sink  
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Figure 4.4 The observed value of per grain whole-plant weight (points) and corresponding fitted 
weight estimated from Eq. (6) (curve) during the period of grain filling, in three rice cultivars 
(N22, PSBRc4, Gharib) at two nitrogen levels (N1, N2) and two temperature treatments (control, 
HNT) during the dry and wet seasons (DS, WS). 

 

growth peaked earlier in DS than in WS. But source activity in most cases declined sharply 

from the onset of grain-filling in DS (Figure 4.5), in contrast to WS during which source 

activity decreased gradually (Figure 4.6). In general, HNT accelerated grain-filling rate and 

the peak of sink growth was observed earlier than in the CK. 



Chapter 4 
 

84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T
ab

le
 4

.3
 E

st
im

at
ed

 p
ar

am
et

er
 v

al
ue

s (
st

an
da

rd
 e

rr
or

s w
ith

in
 b

ra
ck

et
s)

 o
f g

ra
in

 fi
lli

ng
 p

ro
ce

ss
 fo

r s
in

k 
(E

q.
(1

) &
 (2

))
 a

nd
 so

ur
ce

 (E
q.

(6
))

 in
 

N
22

, P
SB

R
c4

 a
nd

 G
ha

rib
 g

ro
w

n 
at

 c
on

tro
l (

C
K

-2
2o C

) a
nd

 h
ig

he
r n

ig
ht

-ti
m

e 
te

m
pe

ra
tu

re
 (H

N
T-

28
o C

) c
on

di
tio

ns
 a

t t
w

o 
ni

tro
ge

n 
le

ve
ls

 (N
1 

an
d 

N
2)

 in
 th

e 
dr

y 
se

as
on

 o
f 2

01
2.

 

 
 

 
Es

tim
at

ed
 p

ar
am

et
er

s v
al

ue
s o

f s
in

k 
  

Es
tim

at
ed

 p
ar

am
et

er
s v

al
ue

s o
f s

ou
rc

e 
  

C
ul

tiv
ar

 
N

itr
og

en
 

Te
m

pe
ra

tu
re

 
W

m
ax

 
W

b 
t m

 
t e 

C
m
 

𝐶𝐶̅  
R2  

S m
ax

 
W

h 
t m

 
t e 

R2  

N
22

 
N

1 
C

K
 

17
.0

8 
(0

.1
4)

 
1.

88
 (0

.4
9)

 
10

.7
2 

(0
.4

5)
 

17
.6

2 
(0

.5
5)

 
1.

42
 

0.
86

 
0.

99
2 

2.
70

 (0
.3

4)
 

8.
63

 (1
.5

6)
 

0 
27

.1
0 

(2
.1

5)
 

0.
99

6 

 
 

H
N

T 
17

.1
8 

(0
.1

9)
 

0.
24

 (1
.2

1)
 

7.
93

 (1
.4

7)
 

18
.4

6 
(0

.9
5)

 
1.

34
 

0.
92

 
0.

98
5 

2.
15

 (1
.0

5)
 

12
.6

6 
(4

.5
7)

 
0 

25
.3

2 
(7

.4
3)

 
0.

94
3 

 
N

2 
C

K
 

15
.9

3 
(0

.1
5)

 
2.

15
 (0

.5
2)

 
10

.5
9 

(0
.3

8)
 

15
.5

1 
(0

.5
9)

 
1.

43
 

0.
83

 
0.

98
8 

1.
53

 (0
.5

1)
 

12
.4

9 
(2

.8
6)

 
14

.5
8 

(1
.7

7)
 

17
.5

9 
(6

.2
2)

 
0.

99
0 

 
 

H
N

T 
16

.0
8 

(0
.1

6)
 

0 
6.

90
 (0

.4
6)

 
18

.0
4 

(0
.6

6)
 

1.
29

 
0.

89
 

0.
98

7 
2.

02
 (0

.4
8)

 
10

.8
4 

(1
.8

5)
 

11
.6

2 
(2

.7
1)

 
17

.9
3 

(2
.1

5)
 

0.
99

9 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
PS

B
R

c4
 

N
1 

C
K

 
21

.4
6 

(0
.3

0)
 

0 
4.

62
 (1

.2
8)

 
32

.2
2 

(1
.5

1)
 

1.
04

 
0.

67
 

0.
98

8 
1.

27
 (0

.4
3)

 
16

.3
5 

(2
.6

4)
 

0 
43

.7
6 

(1
3.

27
) 

0.
96

5 

 
 

H
N

T 
20

.8
8 

(0
.5

2)
 

0 
3.

99
 (1

.9
7)

 
33

.1
7 

(2
.6

1)
 

1.
01

 
0.

63
 

0.
97

6 
1.

62
 (0

.5
8)

 
15

.1
8 

(3
.1

4)
 

0 
33

.8
0 

(8
.2

5)
 

0.
95

7 

 
N

2 
C

K
 

21
.8

3 
(0

.8
0)

 
0 

1.
10

 (2
.2

3)
 

38
.2

2 
(3

.7
0)

 
1.

04
 

0.
57

 
0.

98
8 

1.
39

 (0
.5

8)
 

14
.8

4 
(3

.5
9)

 
0 

45
.3

3 
(1

7.
53

) 
0.

95
0 

 
 

H
N

T 
21

.2
3 

(0
.6

7)
 

0 
0.

00
01

 
37

.6
4 

(2
.2

9)
 

1.
13

 
0.

56
 

0.
97

6 
1.

43
 (0

.5
9)

 
15

.2
0 

(3
.5

0)
 

0 
40

.7
1 

(1
3.

74
) 

0.
94

8 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
G

ha
rib

 
N

1 
C

K
 

24
.2

2 
(0

.5
4)

 
2.

84
 (0

.9
9)

 
13

.3
1 

(0
.7

7)
 

21
.2

5 
(1

.2
2)

 
1.

69
 

1.
01

 
0.

97
7 

2.
34

 (0
.6

1)
 

14
.4

6 
(3

.2
4)

 
0 

34
.8

9 
(7

.1
6)

 
0.

98
3 

 
 

H
N

T 
21

.8
3 

(0
.3

2)
 

2.
32

 (1
.0

4)
 

11
.1

2 
(0

.8
4)

 
18

.8
1 

(0
.9

4)
 

1.
67

 
1.

04
 

0.
97

8 
3.

73
 (0

.6
6)

 
9.

89
 (2

.6
3)

 
0 

22
.7

2 
(2

.2
6)

 
0.

99
3 

 
N

2 
C

K
 

22
.3

9 
(0

.3
7)

 
2.

22
 (0

.9
7)

 
12

.5
1 

(1
.0

7)
 

22
.8

6 
(1

.1
7)

 
1.

37
 

0.
88

 
0.

98
0 

1.
63

 (0
.4

3)
 

18
.5

9 
(2

.4
0)

 
0 

41
.0

7 
(1

0.
18

) 
0.

98
4 

 
 

H
N

T 
20

.0
3 

(0
.3

4)
 

3.
16

 (1
.0

0)
 

11
.7

8 
(0

.8
6)

 
18

.7
2 

(1
.0

9)
 

1.
52

 
0.

90
 

0.
96

7 
2.

44
 (0

.5
5)

 
12

.7
4 

(2
.8

0)
 

0 
32

.2
8 

(5
.2

6)
 

0.
98

6 

Fo
r 

th
e 

si
nk

 p
ar

t:
 W

m
ax

, t
he

 m
ax

im
um

 v
al

ue
 o

f 
gr

ai
n 

w
ei

gh
t 

(m
g 

gr
ai

n-1
), 

W
b, 

th
e 

in
iti

al
 v

al
ue

 o
f 

es
tim

at
ed

 g
ra

in
 w

ei
gh

t 
(m

g 
gr

ai
n-1

) 
, t

m
, t

he
 t

im
e 

at
 w

hi
ch

 t
he

 
m

ax
im

um
 g

ro
w

th
 ra

te
 is

 a
ch

ie
ve

d 
(d

ay
), 

t e,
 th

e 
tim

e 
w

he
n 

m
ax

im
um

 o
f g

ra
in

 w
ei

gh
t i

s 
re

ac
he

d 
(d

ay
), 

C
m
, t

he
 m

ax
im

um
 g

ra
in

-fi
lli

ng
 ra

te
 (m

g 
gr

ai
n-1

 d
ay

-1
), 
𝐶𝐶̅ ,

 a
ve

ra
ge

 
gr

ai
n-

fil
lin

g 
ra

te
 (m

g 
gr

ai
n-1

 d
ay

-1
); 

Fo
r 

th
e 

so
ur

ce
 p

ar
t:

 S
m

ax
, t

he
 m

ax
im

um
 v

al
ue

 o
f s

ou
rc

e 
ac

tiv
ity

 (m
g 

gr
ai

n-1
 d

ay
-1

), 
W

h, 
th

e 
in

iti
al

 v
al

ue
 o

f p
er

-g
ra

in
 w

ho
le

-p
la

nt
 w

ei
gh

t a
t h

ea
di

ng
 (m

g 
gr

ai
n-1

), 
t m

, t
he

 
tim

e 
at

 w
hi

ch
 th

e 
de

cr
ea

se
 o

f s
ou

rc
e 

su
pp

ly
 is

 fa
st

es
t (

da
y)

, t
e, 

th
e 

tim
e 

w
he

n 
so

ur
ce

 a
ct

iv
ity

 is
 z

er
o 

(d
ay

). 

 



Source-sink relationships under HNT combined with two nitrogen levels 
 

 

85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T
ab

le
 4

.4
 E

st
im

at
ed

 p
ar

am
et

er
 v

al
ue

s (
st

an
da

rd
 e

rr
or

s w
ith

in
 b

ra
ck

et
s)

 o
f g

ra
in

 fi
lli

ng
 p

ro
ce

ss
 fo

r s
in

k 
(E

q.
(1

) &
 (2

))
 a

nd
 so

ur
ce

 (E
q.

(6
))

 in
 

N
22

, P
SB

R
c4

 a
nd

 G
ha

rib
 g

ro
w

n 
at

 c
on

tro
l (

C
K

-2
2o C

) a
nd

 h
ig

he
r n

ig
ht

-ti
m

e 
te

m
pe

ra
tu

re
 (H

N
T-

28
o C

) c
on

di
tio

ns
 a

t t
w

o 
ni

tro
ge

n 
le

ve
ls

 (N
1 

an
d 

N
2)

 in
 th

e 
w

et
 se

as
on

 o
f 2

01
2.

 

 
 

 
 

 
Es

tim
at

ed
 p

ar
am

et
er

 v
al

ue
s o

f s
in

k 
  

Es
tim

at
ed

 p
ar

am
et

er
 v

al
ue

s o
f s

ou
rc

e 
  

C
ul

tiv
ar

 
N

itr
og

en
 

Te
m

pe
ra

tu
re

 
W

m
ax

 
W

b 
t m

 
t e 

C
m
 

𝐶𝐶̅  
R2  

S m
ax

 
W

h 
t m

 
t e 

R
2  

N
22

 
N

1 
C

K
 

18
.0

1 
(0

.1
9)

 
1.

80
 (0

.4
5)

 
11

.4
0 

(0
.4

1)
 

18
.5

4 
(0

.5
2)

 
1.

45
 

0.
87

 
0.

99
3 

0.
92

 (0
.8

5)
 

18
.8

4 
(4

.6
9)

 
16

.6
4 

(1
0.

59
) 

22
.7

0 
(1

8.
61

) 
0.

95
9 

 
 

H
N

T 
18

.2
5 

(0
.2

1)
 

0.
59

 (0
.8

4)
 

8.
97

 (0
.9

3)
 

18
.8

6 
(0

.7
4)

 
1.

39
 

0.
94

 
0.

99
1 

0.
82

 (0
.0

9)
 

18
.7

7 
(0

.7
5)

 
18

.9
5 

(2
.1

3)
 

20
.2

9 
(6

.8
3)

 
0.

99
8 

 
N

2 
C

K
 

17
.8

7 
(0

.1
5)

 
1.

52
 (0

.3
8)

 
11

.1
5 

(0
.3

7)
 

18
.7

5 
(0

.4
3)

 
1.

41
 

0.
87

 
0.

99
5 

0.
94

 (0
.2

4)
 

20
.0

9 
(1

.5
3)

 
18

.3
1 

(2
.6

8)
 

23
.7

7 
(6

.4
7)

 
0.

99
5 

 
 

H
N

T 
17

.5
8 

(0
.1

9)
 

0 
7.

35
 (0

.3
8)

 
18

.2
8 

(0
.6

0)
 

1.
39

 
0.

96
 

0.
99

0 
0.

98
 (0

.3
7)

 
19

.5
7 

(2
.1

0)
 

16
.9

2 
(4

.0
7)

 
22

.6
6 

(7
.9

4)
 

0.
99

2 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
PS

B
R

c4
 

N
1 

C
K

 
22

.8
1 

(0
.2

5)
 

0.
37

 (0
.7

8)
 

10
.8

4 
(0

.9
3)

 
23

.6
3 

(0
.8

0)
 

1.
33

 
0.

91
 

0.
99

2 
1.

28
 (0

.1
6)

 
15

.4
6 

(1
.2

2)
 

20
.8

9 
(1

.1
9)

 
25

.6
3 

(3
.9

5)
 

0.
99

8 

 
 

H
N

T 
22

.0
3 

(0
.4

3)
 

1.
20

 (1
.1

2)
 

11
.1

1 
(1

.6
1)

 
25

.2
1 

(1
.5

1)
 

1.
21

 
0.

83
 

0.
98

0 
0.

94
 (0

.1
5)

 
18

.0
0 

(1
.2

5)
 

24
.3

7 
(1

.9
3)

 
30

.1
2 

(7
.4

8)
 

0.
99

6 

 
N

2 
C

K
 

22
.1

3 
(0

.3
2)

 
2.

18
 (0

.6
8)

 
13

.4
5 

(0
.7

1)
 

23
.0

7 
(0

.8
9)

 
1.

22
 

0.
80

 
0.

98
6 

1.
08

 (0
.1

6)
 

17
.7

2 
(1

.2
0)

 
22

.9
0 

(1
.9

1)
 

29
.7

4 
(5

.6
3)

 
0.

99
7 

 
 

H
N

T 
21

.7
2 

(0
.3

9)
 

0 
8.

39
 (0

.7
6)

 
26

.9
0 

(1
.2

3)
 

1.
17

 
0.

81
 

0.
98

4 
0.

77
 (0

.0
9)

 
20

.2
0(

0.
95

) 
23

.1
8 

(2
.2

6)
 

25
.2

0 
(7

.2
0)

 
0.

99
5 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
G

ha
rib

 
N

1 
C

K
 

23
.3

1 
(0

.3
9)

 
2.

84
 (0

.7
2)

 
12

.7
5 

(0
.5

8)
 

20
.8

1 
(0

.9
4)

 
1.

62
 

0.
98

 
0.

98
7 

0.
88

 (0
.0

5)
 

30
.2

3 
(0

.3
3)

 
22

.8
3 

(0
.7

3)
 

28
.9

3 
(3

.6
2)

 
1.

00
0 

 
 

H
N

T 
21

.9
0 

(0
.3

5)
 

3.
25

 (0
.8

1)
 

11
.3

1 
(0

.5
4)

 
17

.4
0 

(0
.8

2)
 

1.
86

 
1.

07
 

0.
98

1 
1.

12
 (0

.2
9)

 
26

.8
7 

(2
.3

3)
 

17
.0

5 
(2

.4
0)

 
18

.5
3 

(6
.9

6)
 

0.
98

7 

 
N

2 
C

K
 

23
.0

7 
(0

.4
1)

 
2.

41
 (0

.9
2)

 
12

.4
0 

(0
.7

3)
 

20
.3

3 
(1

.0
0)

 
1.

67
 

1.
02

 
0.

98
2 

1.
23

 (0
.1

8)
 

27
.9

6 
(1

.4
5)

 
21

.4
4 

(1
.5

9)
 

25
.3

7 
(5

.9
7)

 
0.

99
7 

 
 

H
N

T 
22

.4
5 

(0
.3

0)
 

2.
24

 (0
.8

7)
 

10
.6

8 
(0

.7
4)

 
19

.0
6 

(0
.7

8)
 

1.
66

 
1.

06
 

0.
98

7 
1.

48
 (0

.5
4)

 
23

.5
0 

(3
.4

3)
 

16
.1

1 
(2

.4
0)

 
19

.3
1 

(7
.6

4)
 

0.
98

7 

Fo
r 

th
e 

si
nk

 p
ar

t:
 W

m
ax

, t
he

 m
ax

im
um

 v
al

ue
 o

f g
ra

in
 w

ei
gh

t (
m

g 
gr

ai
n-1

), 
W

b, 
th

e 
in

iti
al

 v
al

ue
 o

f e
st

im
at

ed
 g

ra
in

 w
ei

gh
t (

m
g 

gr
ai

n-1
), 

t m
, t

he
 ti

m
e 

at
 w

hi
ch

 th
e 

m
ax

im
um

 
gr

ow
th

 ra
te

 is
 a

ch
ie

ve
d 

(d
ay

), 
t e,

 th
e 

tim
e 

w
he

n 
m

ax
im

um
 o

f g
ra

in
 w

ei
gh

t i
s r

ea
ch

ed
 (d

ay
), 

C
m
, t

he
 m

ax
im

um
 g

ra
in

-f
ill

in
g 

ra
te

 (m
g 

gr
ai

n-1
 d

ay
-1

), 
𝐶𝐶̅ ,

 a
ve

ra
ge

 g
ra

in
-f

ill
in

g 
ra

te
 (m

g 
gr

ai
n-1

 d
ay

-1
); 

Fo
r 

th
e 

so
ur

ce
 p

ar
t:

 S
m

ax
, t

he
 m

ax
im

um
 v

al
ue

 o
f s

ou
rc

e 
ac

tiv
ity

 (m
g 

gr
ai

n-1
 d

ay
-1

), 
W

h, 
th

e 
in

iti
al

 v
al

ue
 o

f p
er

-g
ra

in
 w

ho
le

-p
la

nt
 w

ei
gh

t a
t h

ea
di

ng
 (m

g 
gr

ai
n-1

), 
t m

, t
he

 
tim

e 
at

 w
hi

ch
 th

e 
de

cr
ea

se
 o

f s
ou

rc
e 

su
pp

ly
 is

 fa
st

es
t (

da
y)

, t
e, 

th
e 

tim
e 

w
he

n 
so

ur
ce

 a
ct

iv
ity

 is
 z

er
o 

(d
ay

). 
 



Chapter 4 
 

86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 T
ab

le
 4

.5
 S

ou
rc

e 
ca

pa
ci

ty
 (c

al
cu

la
te

d 
by

 E
q.

 (7
))

, s
in

k 
gr

ow
th

 (c
al

cu
la

te
d 

by
 E

q.
 (4

))
, a

nd
 th

ei
r n

et
 b

al
an

ce
 d

ur
in

g 
th

e 
gr

ai
n 

fil
lin

g 
pe

rio
d 

in
 th

re
e 

ric
e 

cu
lti

va
rs

 (N
22

, P
SB

R
c4

, G
ha

rib
) g

ro
w

n 
at

 c
on

tro
l (

C
K

-2
2o

C
) a

nd
 h

ig
he

r n
ig

ht
-ti

m
e 

te
m

pe
ra

tu
re

 (H
N

T-
28

oC
) 

co
nd

iti
on

s a
t t

w
o 

ni
tro

ge
n 

le
ve

ls
 (N

1,
 N

2)
 in

 th
e 

dr
y 

an
d 

w
et

 se
as

on
s (

D
S,

 W
S)

 o
f 2

01
2.

 

 
 

 
D

S 
W

S 

C
ul

tiv
ar

 
N

itr
og

en
 

Te
m

pe
ra

tu
re

 
So

ur
ce

 c
ap

ac
ity

 
(m

g 
gr

ai
n-1

) 
Si

nk
 g

ro
w

th
 

(m
g 

gr
ai

n-1
) 

So
ur

ce
 - 

si
nk

 
(m

g 
gr

ai
n-1

) 
So

ur
ce

 c
ap

ac
ity

 
(m

g 
gr

ai
n-1

) 
Si

nk
 g

ro
w

th
 

(m
g 

gr
ai

n-1
) 

So
ur

ce
 - 

si
nk

 
(m

g 
gr

ai
n-1

) 
N

22
 

N
1 

C
K

 
24

.3
5 

15
.2

0 
9.

15
 

13
.6

3 
16

.2
1 

-2
.5

8 
 

 
H

N
T 

18
.1

2 
16

.9
3 

1.
18

 
14

.7
2 

17
.6

5 
-2

.9
4 

 
N

2 
C

K
 

20
.1

1 
13

.7
8 

6.
33

 
15

.2
4 

16
.3

5 
-1

.1
1 

 
 

H
N

T 
21

.2
0 

16
.0

8 
5.

12
 

14
.7

4 
17

.5
8 

-2
.8

4 

 
 

 
 

 
 

 
 

 
PS

B
R

c4
 

N
1 

C
K

 
18

.4
8 

21
.4

6 
-2

.9
8 

23
.9

1 
22

.4
4 

1.
47

 
 

 
H

N
T 

18
.2

9 
20

.8
8 

-2
.5

9 
20

.5
1 

20
.8

2 
-0

.3
1 

 
N

2 
C

K
 

20
.9

9 
21

.8
3 

-0
.8

4 
22

.0
0 

19
.9

5 
2.

05
 

 
 

H
N

T 
19

.4
2 

21
.2

3 
-1

.8
1 

16
.6

2 
21

.7
2 

-5
.1

0 

 
 

 
 

 
 

 
 

 
G

ha
rib

 
N

1 
C

K
 

27
.2

1 
21

.3
8 

5.
83

 
17

.8
8 

20
.4

6 
-2

.5
8 

 
 

H
N

T 
28

.2
6 

19
.5

1 
8.

76
 

17
.8

6 
18

.6
5 

-0
.7

9 
 

N
2 

C
K

 
22

.3
6 

20
.1

8 
2.

19
 

23
.8

0 
20

.6
6 

3.
14

 
 

 
H

N
T 

26
.2

1 
16

.8
7 

9.
34

 
21

.4
6 

20
.2

1 
1.

25
 

 



Source-sink relationships under HNT combined with two nitrogen levels 
 

 

87 

4.4 Discussion 

4.4.1 Grain yield under different night temperatures and different N availabilities 

Previous studies have investigated the combined effects of nitrogen application and high day-

time temperature on rice grain yield (Dai et al., 2009; Duan et al., 2013; Yang et al., 2014). 

Although the effects of nitrogen application on relieving the detrimental effects of high day-

temperature were different at different nitrogen levels (Dai et al., 2009; Duan et al., 2013), 

indicating appropriate application of more nitrogen could contribute to alleviating the yield 

losses at high day–time temperature stress. For example, in the Duan et al. pot experiment, 

extra nitrogen application (1.0 g pot−1) at panicle initiation stage led to increases in spikelets 

panicle−1 and grain weight under higher temperatures (maximum temperature was 37.5°C at 

10 days after heading). The mechanism behind minimizing the detrimental effects of high 

day-time temperature on grain yield by increasing nitrogen application could be the increased 

flag-leaf  photosynthetic rate and root oxidation activity, or higher activities of the key 

enzymes involved in sucrose to-starch metabolic pathway in grains (Duan et al., 2013). 

However, from our field experiments (Tables 4.1 and 4.2), the same or an even higher 

proportion of yield loss was observed in the susceptible cultivar Gharib when plants were 

exposed to HNT at higher nitrogen level (N2) than at N1 level. Cultivar PSBRc4 also 

recorded significant yield loss on exposure to HNT when plants were grown at N2 level. The 

differences in the findings may result from the different kinds of temperature studies as high 

day-time temperature and HNT induce negative effects on different chains of physiological 

processes leading to damage to rice growth (Jagadish et al., 2015). A classical study involving 

different levels of nitrogen reported increases in respiration rates with corresponding 

increments in nitrogen supply (Swain et al., 2000). Our recent study has also indicated greater 

starch accumulation during the day leading to higher dark respiration rates (Peraudeau et al., 

2014). Therefore, additional application of nitrogen, although leading to increased assimilate 

production, could cause higher respiration loss, especially under HNT. However, this 

respiratory loss is less important when high temperature is imposed during the day, as 

photosynthesis enhancement by nitrogen may be expressed at a greater extent under high day-

time temperature provided that the day-time temperature is not raised to an extreme.  

       Since all three cultivars, maintained under chambers intended for either control or HNT 

stress treatments, were not exposed to stress until panicle initiation stage, here the tillering can 

be considered unaffected. However, the two different levels of nitrogen have led to  
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Figure 4.5 Source and sink activity of N22 (A, B), PSBRc4 (C, D), Gharib (E, F) grown at 
control (CK-22oC) and higher night-time temperature (HNT-28oC) conditions at two nitrogen 
levels (N1 and N2) in the dry season of 2012. 

 

different tiller numbers during both WS and DS but this was not reflected in the final panicle 

number (Tables 4.1 and 4.2). In addition, higher panicle number with higher nitrogen in 

Gharib and PSBRc4 during DS and WS resulted in lower grain yield indicating that the 

panicle number and grain yield were not linearly related and that HNT stress was the primary  
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Figure 4.6 Source and sink activity of N22 (A, B), PSBRc4 (C, D), Gharib (E, F) grown at 
control (CK-22oC) and higher night-time temperature (HNT-28oC) conditions at two nitrogen 
levels (N1 and N2) in the wet season of 2012. 
 

factor leading to yield losses rather than the dynamics in panicle numbers under different 

nitrogen levels. Significant differences were found among cultivars for spikelets m−2 and 

grain weight in the DS, and for seed-set and grain weight during WS under control and HNT 

conditions. A negative impact on spikelet differentiation and a significant increase in spikelet 

abortion decreasing spikelets m−2 has been documented when HNT was imposed from panicle 

initiation (floral meristem and spikelet differentiation stage) until flowering (Wei et al., 2010). 
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Our results reiterate grain weight to be the major yield component reduced by HNT exposure 

consistently across the different genotypes. The same response has been obtained by an 

independent study by Zhang et al. (2013), working on 36 varieties originating from different 

countries, and also a study focused on popular rice hybrids (Shi et al., 2016). The possible 

mechanisms behind the decreased grain weight under HNT include reduced endosperm cell 

size (Morita et al., 2005) and changed activities of key enzymes of starch synthesis, such as 

the activities of ADPG-PPase (Dong et al., 2011). In addition, increasing the nitrogen 

application in our experiments significantly reduced seed-set and grain weight in most cases 

(Tables 4.1 and 4.2). As these yield components are formed in different time windows, 

instead of merely increasing the total amount of N applied, systematically changing the timing 

and amount of applied N could be further investigated. Such an approach could allow to 

explore the possibility of minimizing HNT induced rice yield losses under field conditions by 

proper N management, provided night respiratory losses can be maintained at low levels. 

4.4.2 Quantifying source-sink relationships during grain-filling 

In this study, we extend the work of Yin et al. (2009) into a new methodology that quantifies 

source-sink relationships based on easily measured dynamics of grain growth and of the 

whole plant biomass during grain-filling. For the sink part, as with the approach of Yin et al. 

(2009), the dynamics of sink growth was described by Eq. (1), from the determinate sigmoid 

equation of Yin et al. (2003). The advantages of this sigmoid curve in describing sink growth 

dynamics over the more classical curves like the Logistic or the Richards functions were fully 

described by Yin et al. (2003). The first-order derivative of this sigmoid curve, Eq. (3), gives 

an instantaneous sink growth rate. For quantifying the dynamics of source activity, common 

measurements of net canopy photosynthesis would be needed. By developing the new 

equation, Eq. (6), quantifying the dynamics of source activity during grain-filling becomes 

very simple as it is based on the curve fitting to the easily measured whole-plant biomass data. 

From the estimated parameters of Eq. (6), the dynamics of source supply can be straight 

forwardly obtained by Eq. (5) which shares the same parameters Smax, tm and te with Eq. (6).  

 Our methodology can be used to characterize average and maximum grain-filling rates (𝐶𝐶̅ 
and Cm, respectively) and to assess whether the length of source and sink active phase (te) 

matches. The results suggested no consistent effect of N supply on, but genotypic difference 

in, sink growth in association with the source capacity (Tables 4.3 and 4.4). The grain-filling 

duration (te) of both N22 and PSBRc4 was not shortened by HNT while te decreased under 
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HNT in Gharib. Besides, average grain-filling rate (𝐶𝐶̅) increased in N22 and Gharib under 

HNT, whereas it was reduced in PSBRc4. Thus, lower grain weight of Gharib and of PSBRc4 

(Tables 4.1 and 4.2) might result from the shortened grain-filling duration and the lower 

grain-filling rate, respectively. Maximum grain-filling rate (Cm) were largely decreased in 

N22 and PSBRc4 when they were exposed to HNT, probably resulting in the decreases in the 

sink potential which is determined at the very early grain-filling stage. The lower individual 

grain sink potential would not compensate for the increased assimilate availability during the 

later grain-filling period (Borráset al., 2004), hence, resulting in final lower grain weight. By 

using Eq. (6), the te for source part was determined and was proved to be higher than the te for 

sink (Tables 4.3 and 4.4), indicating that grain growth stopped earlier than the complete 

terminating of total biomass accumulation. It reinforces the findings of Kim et al. (2011) 

reporting that assimilates were still supplied after the termination of grain-filling. 

 By comparing the time course of Eq. (3) and that of Eq. (5), one can quantify the 

instantaneous source and sink (im)balance during the period of grain growth (Figures 4.5 and 

4.6). Obviously there was a surplus in available assimilates for the first part of grain-filling, 

and the surplus assimilates must first enter the crop pool of reserves for remobilizing to 

support grain-filling in the later phase when the current source supply is in deficit compared 

with sink demand. The transition from surplus to deficit can be easily shown, which is not 

necessarily in the middle of grain-filling (Figures 4.5 and 4.6). So, current rice simulation 

models that set the fraction of partitioning to grains immediately after flowering may not 

reflect the actual partitioning dynamics during the initial grain growth. 

 The instantaneous source and sink dynamics shown in Figures 4.5 and 4.6 reveal the 

contrast between DS and WS. While the sink dynamics differed little between the seasons, 

source activity in most cases declined sharply from the onset of grain-filling in DS (Figure 

4.5), compared to WS during which source activity decreased gradually (Figure 4.6). This 

was probably because there were considerably more spikelets m-2 in DS (Table 4.1) than in 

WS (Table 4.2); such a higher sink demand requires more N remobilization from leaves 

(Sinclair and de Wit, 1975), already during the early part of grain-filling in DS. While the 

sink dynamics of PSBRc4 did not differ much from other two genotypes in WS, it differed in 

DS. Again, the level of N had little impact on these differences. 

 Our methodology also quantifies whether or not the cumulative source and sink capacity 

during the period of grain growth is in balance. This approach determines the percentage of 
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the amount of grain weight that comes from the pre-flowering assimilate reserves (when in 

deficit) or the fraction of the post-flowering assimilates that are unutilized for grain growth (in 

surplus). The latter surplus case certainly suggests an overall sink limitation of crop yield, as 

in cases of N22 under both control and HNT conditions in our DS experiment (Table 4.5), 

while it was in deficit during WS which proved to be source limited. But for cv. PSBRc4, 

which had larger grain weight than the other two cultivars (Tables 4.1 and 4.2), it required 

assimilates reserved at pre-flowering phase in most cases and especially under HNT at both N 

levels, indicating it belonged to the source limitation even though sink demand decreased 

when exposed to HNT. For the susceptible cultivar Gharib, it was generally under surplus 

condition at control and HNT condition, suggesting a sink limitation. There was no effect of 

N supply on changing source and sink limitation, except for Gharib in WS for which there 

was a switch from source to sink limitation from N1 to N2 levels. 

 The calculation as given in Table 4.5 shows no consistent effect of N on either overall 

source capacity or overall sink growth, but a clear effect of genotypes on the sink response to 

HNT. Susceptible cultivar Gharib consistently had decreased sink growth under HNT whereas 

the tolerant cv. N22 and the high-yielding cv. PSBRc4 did not. Such genotypic difference in 

response to HNT was not found for overall source capacity. The contrast for source and sink 

from this analysis on single-grain basis, combined with the genotypic differences in spikelets 

m-2 in response to HNT (Tables 4.1 and 4.2), suggests that breeding programs should focus on 

selection for the sink related traits to improve rice tolerance to HNT. 
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Abstract 

Rice grain yield and quality are predicted to be highly vulnerable to global warming. Five genotypes 

including heat-tolerant and susceptible checks, a heat-tolerant near-isogenic line and two hybrids were 

exposed to control (31°C/23°C [day/night]); HNT (31°C/30°C); HDT (38°C/23°C) and HNDT 

(38°C/30°C) treatments, for 20 consecutive days during grain-filling stage. Grain-filling dynamics, 

starch metabolism enzymes, temporal starch accumulation patterns and process of chalk formation 

were quantified. Compensation between grain-filling rate and duration minimized HNT impact but 

irreversible impacts on seed-set, grain-filling and ultimately grain weight were recorded with HDT and 

HNDT. Scanning electron microscopy demonstrated irregular and smaller-sized starch granule 

formation affecting amyloplast build-up with HDT and HNDT, while a quicker but normal amylopast 

build-up was recorded with HNT. Our findings revealed temporal variation in the starch metabolism 

enzymes in all three stress treatments. Changes in the enzymatic activity did not derail starch 

accumulation under HNT when assimilates were sufficiently available, while both sucrose unloading 

and the conversion of sucrose into starch were affected by HDT and HNDT. The findings indicate 

differential mechanisms leading to heat stress induced loss in yield and quality. Additional genetic 

improvement is needed to sustain rice productivity and quality under future climate. 

Keywords: Chalkiness, grain-filling, high day-time temperature, high night-time temperature, rice, 

starch metabolism enzymes, starch packaging  

 

 

Abbreviations: CWI, cell wall invertase; DAF, days after flowering; HT NIL, heat-tolerant near-

isogenic line; HDT, higher day-time temperature; HNT, higher night-time temperature; HNDT, 

combined higher night-time and day-time temperature; NSC, non-structural carbohydrates; RH-

relative humidity; SS, starch synthase; SuSy, sucrose synthase; Tday, day temperature; Tnight, night 

temperature; VI, vacuolar invertase; VPD, vapour pressure deficit. 
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5.1 Introduction  

Global mean surface air temperature is predicted to increases by 1.8 to 3.7oC by the end of the 

21th century, which potentially increase the frequency and magnitude of heat-stress events 

(IPCC, 2013). Under such climatic scenarios, rice plants are particularly vulnerable to heat 

stress during developmental periods of grain-filling, leading to substantial reduction in yield 

and quality (Lobell and Gourdji, 2012; Lyman et al., 2013). For example, in 2010, extremely 

high temperature after heading significantly deteriorated rice grain quality in many rice 

growing regions of Japan (Morita et al., 2016). A heat wave with temperatures well over the 

critical threshold 33°C (Bheemanahalli et al., 2016), i.e. 38oC lasting for 10 to 20 d, 

contributed to a total estimated 5.18 million tonnes of paddy yield loss in China (Yang and Li, 

2005; Tian et al., 2009).  

 Although an increase in global temperature has been well documented, a greater increase 

in night-time compared to day-time temperatures has been highlighted recently (Sillmann et 

al., 2013). This differential increase in day and night temperature will result in reduced 

diurnal temperature range, which has been shown to affect crop growth and development (Yin 

et al., 1996; Peng et al., 2004; Bahuguna and Jagadish, 2015). However, it is also reported 

that high day-time temperatures (HDT) in some of the major tropical rice growing regions are 

already close to the threshold, beyond which yield begins to decline (Prasad et al., 2006; 

Wassmann et al., 2009). Additionally, the very first global mapping exercise differentiating 

vulnerability of rice growing regions to high day and night temperatures, demonstrates 

regions that could be affected either by HDT, high night-time temperature (HNT) or 

combined high night-time and day-time temperatures (HNDT) (Laborte et al., 2012). By 

analysing yields obtained from 227 rice farms in 6 countries across South and Southeast Asia, 

Welch et al. (2010) pointed out that rice yields were differentially sensitive to increased 

maximum and minimum temperatures, supporting the above mapping exercise. Further, it is 

shown that rice genotypes (both inbreds and hybrids) possess different response mechanisms 

to HNT compared to HDT from previous studies (Shi et al., 2013; Jagadish et al., 2015; Shi et 

al., 2016; Bahuguna et al., 2017). Hence, substantiating the need to study different responses 

of rice plants exposed to HDT, HNT and to HNDT stresses in parallel, to determine resilience 

of rice genotypes to these stresses for sustaining rice production across different geographical 

regions (Laborte et al., 2012). 
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 Exposure to increasing temperatures under either HDT, HNT or combined HNDT under 

chamber (Yamakawa et al., 2007; Cao et al., 2016) or field (Shi et al., 2013; Rehmani et al., 

2014; Bahuguna et al., 2017) conditions during grain-filling impairs grain growth, leading to 

poor seed-set and reduced single-grain weight. Changes in single-grain weight are often 

attributed to reduced carbohydrate supply (Dong et al., 2014) and altered starch metabolism 

enzymes (Bahuguna et al., 2017). Exposure to heat stress during grain-filling also brings 

about poor grain quality, for example increased chalkiness of the grains (Ishimaru et al., 2009; 

Lanning et al., 2011). Chalk formation in rice grain is a result of loosely packed starch 

granules leading to air spaces between amyloplasts (Ashida et al., 2009), which could result in 

a higher percentage of broken grains and significantly lower the market value of the rice grain 

(Lyman et al., 2013; Zhao and Fitzgerald, 2013). Chalky grains are usually classified into 

milky-white, basal-white, white-back and white-belly, based on the location of the chalk 

formation in the grain (Wada et al., 2015). Determining the type and location of chalk 

formation is crucial, particularly under stressed conditions (Lyman et al., 2013). Despite the 

importance, comparative responses of rice to HDT and HNT independently, and to combined 

HDT and HNT, affecting grain growth and starch packing over time and chalk formation have 

not been systematically investigated. Hence a better understanding of the differential 

responses of HDT and HNT is needed to refine ongoing approaches towards developing heat-

stress resistant rice cultivars. 

 Recent progress in improving heat tolerance in rice during flowering has resulted in fine 

mapping of an effective QTL (quantitative trait locus) on chromosome 4 (qHTSF4.1), which 

increased spikelet fertility by 15% at 38 °C compared to its susceptible parent IR64 (Ye et al., 

2015). Both IR64 and its heat tolerant near-isogenic line (HT NIL) introgressed with 

qHTSF4.1 (Ye et al., 2015) were tested to assess if the beneficial impact of heat tolerance 

observed during anthesis in the NIL could also reduce the impact of post-flowering heat 

damage. Hence in our study, IR64, HT NIL in IR64 background, and the known heat-tolerant 

aus type N22 (Jagadish et al., 2010), together with two hybrids, were exposed to post-

flowering heat stress to address the following objectives: (i) to compare the differential 

impact of HDT, HNT and their combination (HNDT) on parameters related to grain growth 

and development; (ii) to test if the known HDT tolerant NIL in IR64 background has a 

positive influence on maintaining grain quality under stress; and (iii) to determine the impact 

of HNT, HDT and HNDT on key starch metabolizing enzymes and their influence on starch 

packaging in developing rice grains.  
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5.2 Materials and methods 

5.2.1 Plant material and experimental set-up 

Five rice genotypes, Nagina 22 [N22] (heat tolerant), IR64 (heat susceptible), heat tolerant 

IR64 near-isogenic line (HTNIL) (Ye et al., 2012) and two hybrids (H2 [private company 

hybrid]) and H5 [International Rice Research Institute (IRRI) hybrid breeding programme] – 

numbering of hybrids based on Shi et al., 2016 for ease of comparison across studies) were 

used. The two hybrids were selected based on their higher relative difference in seed-set (H2) 

and grain weight (H5) under HNT exposure (Shi et al., 2016) and also to represent the private 

and public breeding products.  

Dormancy of the seeds was broken by exposing seeds to 50oC for 3 days and pre-soaked 

seeds were sown in seeding trays. One 14-day-old seedling was transplanted into 7-liter 

plastic pots (23 cm diameter and 25 cm height) containing 6 kg clay loam soil. Basal fertilizer 

of 2.0 g ammonium sulfate [(NH4)2SO4], 1.0 g single superphosphate (SSP), and 1.0 g 

muriate of potash (KCl) was applied to each pot. An additional 2.0 g (NH4)2SO4 was top-

dressed at 25 days after transplanting. The study was conducted at the IRRI, Los Baños 

(14°11′N, 121°15′E, 21 m asl), Philippines. Plants were grown in pots in a naturally-lit 

greenhouse until flowering, and were then moved to controlled-environment walk-in 

chambers where plants were subject to various temperature treatments (see next section). All 

pots were maintained under flooded condition from transplanting to harvest to avoid water 

stress. No major pests and diseases were noticed during the experiment.  

5.2.2 Temperature treatments and growth chamber conditions 

At the onset of flowering of the main and/or primary tillers from each plant, the flowering 

spikelets from the top portion of the panicle (located on upper primary rachis branches) were 

marked (i) to collect samples of developing grains, temporally having the day of flowering as 

the common reference across genotypes and treatments and (ii) to avoid collecting samples 

which would confound findings due to the known gradient in grain developmental differences 

from top (superior spikelets) towards the bottom (inferior spikelets) portion of a panicle 

(Yang and Zhang, 2010). Use of only the superior spikelets will allow to test if assimilate 

supply is the major factor leading to lower single-grain weight and poor quality under 

exposure to heat stress. The following day after marking, 50 pots (one plant per pot) per 

genotype per temperature treatment were moved into large walk-in growth chambers (3.3 m × 
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3.2 m × 2.7 m; 10.6 m2 area) programmed to induce temperature treatments. The temperature 

treatments were randomly assigned to four independent chambers and plants were randomly 

arranged in a chamber. Each chamber was fitted with six independent units of 1 kW high-

intensity discharge lamps, providing photosynthetic photon flux density of ≥ 650 μmol m-2 s-1 

at plant canopy for 11 h and 215 μmol m-2 s-1 for 2 h during 05:00-06:00 h and 17:00-18:00 h, 

providing a total photoperiod of 13 h day-1. Relative humidity (RH) in the chambers was set at 

70%. Plants were exposed to control temperature (Control, day/night, 31°C/23°C), high day-

time temperature (HDT, 38°C/23°C), high night-time temperature (HNT, 31°C/30°C), and 

combined high night-time and day-time temperatures (HNDT, 38°C/30°C). The high day-time 

temperature of 38oC was maintained from 08:30 h to 14:30 h for 6 h while night-time 

temperature exposure of 30oC was for 11 h from 18:00 h to 05:00 h (in order to obtain the 

short period of heat spikes during the day versus the long period of warmer nights with less 

fluctuation, replicating field conditions in tropical rice growing regions. The other hours 

(14:30-18:00 and 05:00-08:30) in a diurnal cycle were the gradual temperature change-over 

periods. In addition, the night temperature as observed in our earlier studies does not follow a 

sinusoidal pattern as the day temperature and the conditions are maintained relatively 

similarly over the entire night, further supporting our temperature treatment structure. 

Temperature treatments were imposed for 20 consecutive days after flowering, a period 

identified to be determining grain weight and its quality in rice (Gong et al., 2013; Ishimaru et 

al., 2003). For our experiment, these 20 days covered almost the entire grain-filling duration 

(see Results). After the treatment, the plants were transferred back into the greenhouse till 

physiological maturity under the natural condition where the temperature recorded during 

hours similar to the stress duration (08:30– 14:30 h) were 31.5°C (SD = 1.6°C) during day-

time and 25.4°C (SD = 1.0°C) at night-time (18:00– 05:00 h). It took 5 to 8 days for N22 and 

10 to 12 days for the other genotypes after the stress was released to reach physiological 

maturity. Temperature and RH were continuously monitored at 15-min intervals at plant level 

(about 1.3 to 1.5 m from the ground surface) inside the chambers by using MINCER 

(Micrometeorological Instrument for Near Canopy Environment of Rice, developed by the 

National Institute of Agrobiological Sciences, Japan; Yoshimoto et al., 2012). All actual 

temperatures, RH and vapor pressure deficit (VPD) in all walk-in growth chambers during 

experiments period are included in Table A5.1. The VPD was calculated by using the 

equation presented in the website http://cronklab.wikidot.com/calculation-of-vapour-pressure-

deficit. 
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5.2.3 Grain development measurements 

About 30 to 50 spikelets that flowered on the same day for each treatment were randomly 

collected on 2-day intervals until the end of the treatments (10 time points) and at 

physiological maturity for estimating multiple parameters that characterize grain-filling. 

Instead of repeatedly sampling from the same set of plants that is expected to generate a 

confounding effect on source-sink relationships, we sampled spikelets at various time points 

from independent replicate plants. All fertile spikelets that formed grains were counted and 

weighed after oven-drying at 70°C until constant dry weight was reached. The observed 

single-grain dry weight (W) and days after flowering (t) were used to fit the determinate 

sigmoid growth equation as described in detail in Yin et al. (2003, 2009) and used in Shi et al. 

(2017), to describe the temporal dynamics of single-grain growth 

𝑊𝑊 = {𝑊𝑊b + (𝑊𝑊max − 𝑊𝑊b) (1 + 𝑡𝑡e−𝑡𝑡
𝑡𝑡e−𝑡𝑡m

) ( 𝑡𝑡−𝑡𝑡b
𝑡𝑡e−𝑡𝑡b

)
𝑡𝑡e−𝑡𝑡b
𝑡𝑡e−𝑡𝑡m       𝑖𝑖𝑖𝑖 𝑡𝑡b ≤ 𝑡𝑡 ≤ 𝑡𝑡e

𝑊𝑊max       𝑖𝑖𝑖𝑖 𝑡𝑡 > 𝑡𝑡e

                      (1) 

where initial grain weight Wb is the grain weight at the time tb when growth of grain begins, 

Wmax is the maximum value of single-grain weight which is achieved at the end of grain 

growth (te). The mean grain-filling rate (𝐶𝐶̅)is calculated from 𝐶𝐶̅= (Wmax-Wb)/(te-tb), while the 

maximum grain-filling rate Cm, which is achieved at the time of the maximum growth rate 

(tm), is calculated by 

𝐶𝐶𝑚𝑚 = (𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑊𝑊𝑏𝑏) [ 2𝑡𝑡𝑒𝑒−𝑡𝑡𝑚𝑚−𝑡𝑡𝑏𝑏
(𝑡𝑡𝑒𝑒−𝑡𝑡𝑏𝑏)(𝑡𝑡𝑒𝑒−𝑡𝑡𝑚𝑚)] (𝑡𝑡𝑚𝑚−𝑡𝑡𝑏𝑏

𝑡𝑡𝑒𝑒−𝑡𝑡𝑏𝑏
)

𝑡𝑡𝑚𝑚−𝑡𝑡𝑏𝑏
𝑡𝑡𝑒𝑒−𝑡𝑡𝑚𝑚                                                              

 At physiological maturity, the final set of marked grains were collected and evaluated 

individually. Partially filled grains with incomplete grain-filling (Shi et al., 2015), filled and 

unfilled grains were counted separately. Seed-set was determined by the number of fully filled 

and half-filled grains divided by the total number of marked grains. Dry weight of filled 

grains was obtained after oven-drying at 70oC for 3 days. 

5.2.4 Enzyme assays and biochemical characterization 

Grains at 5, 10, and 15 days after flowering (DAF) were collected consistently at the same 

time across sampling dates. Specifically, samples of grains for HNT and those for the 

respective control were collected at 4 a.m. (i.e. towards the end of the night-time stress 

exposure), while for HDT, HNDT and control treatments grain samples were collected at 2 
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p.m. (i.e. towards the end of the day-time treatment). The samples were immediately 

submerged in liquid nitrogen and stored at –80 °C for subsequent enzyme assays. Activities of 

four key enzymes involved in sucrose-to-starch conversion (cell wall invertase, vacuolar 

invertase, sucrose synthase and soluble starch synthase) were determined. All chemicals and 

enzymes used for enzyme estimation were from Sigma Chemical Company (St Louis, MO, 

USA). We followed exactly the same protocol for enzyme extraction and activity assay as 

described in Bahugunaet al. (2017). Enzyme activity was expressed in nanomoles per 

milligram protein per hour for sucrose synthase and nanomoles per milligram protein per 

minute for others (detailed information on methodology provided in information of 

Appendix). 

 Grains at 5, 10, and 15 DAF and at physiological maturity were obtained to assess non-

structural carbohydrates (NSC) content. Briefly, 0.1 g of finely ground grain samples were 

extracted with 7 ml of ethanol (80% v/v) at 85oC for 10 min for three times. The supernatant 

was transferred after centrifugation and total volume was adjusted to 25 ml by combining all 

supernatants from washed pellet and also the 80% ethanol. Then soluble sugar content was 

measured by using anthrone reagent as described in Yoshida et al. (1976). The remaining 

residue was dried in the oven for 24 h. Then, 2 ml of water was added into the dried residue 

before placing the tubes in a boiling-water bath for 15 min. After ice cooling, 2 ml of 9.2 N 

HClO4 was added and the tubes were stirred occasionally for 15 min. The suspension was 

adjusted to 6 ml by adding water and then the supernatant was transferred after centrifugation. 

These steps were repeated by adding 2 ml of 4.6 N HClO4 and water to wash the residue, 

respectively. All supernatants were combined and the total volume was adjusted to 50 ml with 

water. The starch content was read by a colorimetric method with anthrone reagent at 630 nm 

(Yoshida et al., 1976). 

5.2.5 Observation of chalkiness 

To observe the endosperm structure of the developing grains, grains were collected at 5, 10, 

and 15 DAF for each of the four treatments and were carefully divided into halves by using 

the edge of a sharp razor blade to create natural fracture surfaces (Cao et al., 2016) to obtain a 

cross section of the grains. The separated halves were fixed on aluminium specimen stubs 

using a double-sided tape, and the specimen’s surface was coated with gold using an ion 

sputtering device (JFC-1100E, JEOL, Tokyo, Japan) under vacuum. Then the samples were 

observed and photographed with a scanning electron microscope (XL-30, Philips, The 
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Netherlands). At maturity, fully matured grains were collected for grain appearance 

evaluation: the hulled grains were viewed visually and classified into transparent, milky-

white/white-cored, white-belly, white-back, and opaque kernels according to the classification 

of Tsukaguchi and Iida (2008).  

5.2.6 Statistical analysis 

The data obtained for seed-set, single-grain weight, enzyme activities, NSC content and 

chalkiness were analyzed as a completely randomized design following ANOVA using 

GenStat 16ED (Rothamsted Experimental Station, Harpenden, UK), and the mean values 

were compared based on the least significant difference (LSD) test at a 5% probability level. 

The curve fitting of equation (1) was carried out using the least-squares nonlinear regression 

with the GAUSS method in PROCNLIN of SAS (SAS Institute Inc., Cary, NC, USA), and 

mean and maximum grain-filling rates (𝐶𝐶̅ and Cm) were calculated thereof.  

5.3 Results  

5.3.1 Seed-set  

A significant genotype × treatment (P<0.001) effect was recorded for seed-set based on the 

marked spikelets (Table 5.1). There was a significant reduction in the seed-set percentage 

under HNT exposure only in IR64 (7.7%), while HT NIL and both hybrids behaved similar to 

the heat tolerant N22. In contrast, seed-set was significantly reduced in all genotypes with 

HDT except in HT NIL, with least reduction in HT NIL (3%) and the highest in IR64 (17%). 

HNDT exposure led to significant reduction in seed-set across all tested genotypes compared 

with the control, with least reduction in H5 and N22 (5 to 6%) while the other three genotypes 

recorded reductions of 10 to 12%. To test the relative importance of day-time temperature 

(Tday) and night-time temperature (Tnight), as well as their interaction (Tday × Tnight), 

regression analysis was carried out and the results are included in the Tables A5.2 and A5.3. 

Across five genotypes, Tday was more damaging than Tnight for seed-set as absolute values 

of the negative coefficients of Tday were larger than those of Tnight (Table A5.2). Besides, 

the relative impact of Tday over Tnight depended on genotypes, there was a tendency that the 

difference between the coefficients of Tday and Tnight was smaller in HT NIL than in the 

other genotypes, suggesting the difference in sensitivity to Tday and Tnight was smaller in 

heat tolerant NIL genotype. On the other hand, IR64 and H5 showed a significant Tday × 

Tnight interaction (P<0.05) for seed-set (Table A5.3). 
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Table 5.1 Seed-set and single-grain weight of filled grains of five rice genotypes exposed to 
control temperature (31°C/23°C (day/night)), higher night-time temperature (HNT-
31°C/30°C), higher day-time temperature (HDT-38°C/23°C), or combined higher night-time 
and day-time temperature (HNDT-38°C/30°C) during grain filling for 20 consecutive days. 
  

 Seed-set (%) Single-grain weight (mg grain-1) 

Genotype Control HNT HDT HNDT Control HNT HDT HNDT 

N22 96.3 ± 0.7 95.2 ± 0.9 88.8 ± 2.9 90.9 ± 1.7 17.1 ± 0.2 17.2 ± 0.2 15.0 ± 0.6 12.9 ± 0.6 

IR64 94.9 ± 1.2 87.6 ± 1.3 79.1 ± 2.8 83.3 ± 1.7 23.3 ± 0.1 23.4 ± 0.1 17.5 ± 0.6 14.2 ± 0.3 

HT NIL 94.5 ± 1.1 92.3 ± 1.0 91.2 ± 1.8 84.8 ± 4.6 25.2 ± 0.2 25.0 ± 0.1 21.2 ± 0.6 20.2 ± 0.9 

H2 92.6 ± 1.6 92.3 ± 1.3 87.9 ± 1.7 82.7 ± 1.7 20.6 ± 0.2 20.5 ± 0.5 17.5 ± 0.3 13.4 ± 0.3 

H5 88.4 ± 1.0 86.5 ± 0.9 78.6 ± 2.0 83.9 ± 1.8 22.3 ± 0.2 22.2 ± 0.3 20.7 ± 0.2 17.7 ± 0.4 

Genotype (G) 1.9*** 0.3*** 

Treatment (T) 1.7*** 0.3*** 

G × T 3.7*** 0.7*** 

    Mean value ± standard error of the mean.  
    LSD (least significant difference) followed by *** indicating significance at 0.1%. 

 

5.3.2 Grain-filling parameters and single-grain weight 

We used equation (1) to fit data on the time course of grain-filling. In line with the use of 

equation (1) by Yin et al. (2009), we set flowering as the starting reference point, i.e., set tb = 

0 as the onset time of grain-filling, and let the model to fit parameters Wb, Wmax, tm and te. 

Variations in grain-filling parameters were effectively estimated using the model (R2 = 0.93-

0.99) across all genotypes and treatments (Table 5.2), as confirmed by the result that the 

estimated Wmax values (Table 5.2) were essentially the same as the observed mean grain 

weight (Table 5.1). Using these estimates, maximum (Cm, equation (2)) and mean (𝐶𝐶̅) grain-

filling rates were calculated (Table 5.2). 

Across all genotypes, the maximum (Cm) and mean (𝐶𝐶̅) grain-filling rates were higher 

with HNT than with the control, whereas the time taken to reach the maximum grain-filling 

rate (tm) and total grain-filling duration (te) were shortened by HNT compared with the 

control. Thus, the combination of an increased grain-filling rate (𝐶𝐶̅  increased by 1.1% - 

35.6%) and shortened total grain-filling duration (te decreased by 4.1% - 25.4%) did not result 

in a lower final single-grain weight under HNT compared with the control condition (Table 

5.1), indicating compensation of reduced grain-filling duration by increased rate of filling. 

Comparatively, the Cm and 𝐶𝐶̅of the five genotypes were largely decreased with HDT  
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compared with the control treatment, except for an increase in Cm in HT NIL and H5 (Table 

5.2), as well as no change in 𝐶𝐶̅ of HT NIL. Additionally, HDT reduced grain-filling duration 

(te) compared with control condition which resulted in the reduction of single-grain weight in 

all genotypes (Table 5.1).  

Four out of the five genotypes recorded higher Cm upon exposure to HNDT compared 

with control conditions; the exception was N22. The mean grain-filling rate (𝐶𝐶̅ ) was 

decreased in N22 and IR64, with an increase in H5 and H2 and a very strong increase in HT 

NIL. Across all five genotypes, time taken to reach the maximum grain-filling rate and grain-

filling duration were largely shortened under HNDT compared with control. Moreover, there 

was a strong reduction in total grain-filling duration of all genotypes under HNDT (21.3% - 

37.1%) compared with a smaller and more variable reduction with HNT (4.1% - 25.4%) and a 

similarly reduction under HDT (4.9% -15.3%) exposure. Therefore, the final single-grain 

weight under HNDT was the lowest compared with other treatments and the impact was the 

same for all five genotypes (Table 5.1). Single-grain weight was significantly and positively 

correlated with total grain-filling duration (te), with a non-significant positive relationship 

between single-grain weight and mean grain-filling rate (Figure 5.1). 
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Figure 5.1 The relationship of mean grain filling rate or grain filling duration (te – the time 
taken to reach maximum grain weight) and final single-grain weight across five genotypes 
grown at control (31°C/23°C (day/night)), high night-time temperature (HNT-31°C/30°C), 
high day-time temperature (HDT-38°C/23°C) or combined high night-time and day-time 
temperature (HNDT-38°C/30°C) at grain filling for 20 days after flowering. 
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Regarding the Tday and Tnight effects on single-grain weight, Tday had greater impact 

than Tnight (Table A5.2). Even though four out of five genotypes (except HT NIL) had 

significant interaction between Tday and Tnight, the interaction was significant at a very high 

probability level for single-grain weight (P < 0.001, Table A5.3). This suggests that although 

Tday was dominant, Tnight interacts with Tday in determining grain weight, in all tested 

genotypes except HT NIL. 

5.3.3 Sink-related enzymatic activity 

 A significant genotype × treatment × stage effect (P <0.001) was observed for cell wall 

invertase (CWI) activity of grains taken from control and HNT at 4 a.m. (Table A5.4). Under 

HNT exposure, CWI activity was significantly reduced across genotypes and stages, except 

for non-significant changes in HT NIL at 10 DAF, and H2 at both 10 and 15 DAF, and a 

significant increase in H5 at 10 DAF (Figure 5.2). Although not significant, a similar 

increasing trend in CWI was seen in HT NIL and H2 at 10 DAF. A significant genotype × 

stage (P <0.001) and treatment × stage (P <0.001) effect was observed for vacuolar invertase 

(VI) activity. HNT reduced the VI activity in the grains with the highest reduction recorded at 

5 (61% to 91%) and 15 (68% to 92%) DAF, but less reduction at 10 DAF (5% to 47%) or 

even an increase in N22. For sucrose synthase (SuSy) activity, a significant genotype × 

treatment × stage effect (P <0.001) was observed. HNT did not induce significant changes in 

the grains at 5 DAF and 10 DAF except for N22 at 10 DAF. In contrast, SuSy activity was 

significantly increased in the grains sampled at 15 DAF for all genotypes under HNT 

exposure, with HT NIL recording the highest increase (214%). Significant genotype × 

treatment (P <0.05), genotype × stage (P <0.001) and treatment × stage (P <0.001) effects 

were observed for starch synthase (SS) activity. HNT significantly decreased SS activity 

across all five genotypes and at three different grain growth stages, except for N22, IR64 and 

H2 at 10 DAF. Moreover, the largest reduction was observed at 5 DAF (66% to 90%) and 15 

DAF (68% to 91%) in SS activity in all genotypes while there was only a reduction of 5% to 

47% at 10 DAF.  

A significant genotype × treatment × stage effect (P < 0.001) was observed for CWI 

activity of the grains taken from control, HDT and HNDT treatments at 2 p.m. (Table A5.4). 

Grains had lower CWI activity at 5 DAF which was further reduced when they were exposed 

to HDT and HNDT compared with the control, except for N22, IR64 and H2 with relatively 

higher CWI activity at HDT compared with the control (Figure 5.3). Furthermore, the 
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reduction in CWI activity under both HDT and HNDT at 15 DAF was highly significant and 

consistent across all five genotypes. In comparison, CWI activity at 10 DAF was decreased 

under HDT compared with the control treatment while it increased under HNDT except for 

genotype IR64. A significant genotype × treatment × stage effect (P < 0.001) was also 

observed for VI activity in the grains sampled from control, HDT and HNDT treatments at 2 

p.m. HDT induced a reduction in VI activity across all genotypes and three stages except for 

N22, IR64 and H2 at 5 DAF. In contrast, HDNT reduced VI activity at 5 and 15 DAF while 

there was an increase in VI activity at 10 DAF under HNDT compared to control in all 

genotypes except N22. A significant genotype × stage effect (P < 0.001) was recorded for 

SuSy activity of the grains sampled from control, HDT and HNDT treatments at 2 p.m. (Table 

A5.4). Thus, changes in Susy activity depended on genotype in both HDT and HNDT 

conditions, but its activity tended to increase when grain growth progressed. For SS activity, a 

significant genotype × treatment × stage effect (P < 0.001) was also observed for grains 

sampled from control, HDT and HNDT treatments at 2 p.m. Under HDT, SS activity was 

significantly reduced across all genotypes and three grain growth stages except for a slight 

increase in N22, IR64 and H2 at 5 DAF. In contrast, the activity of SS was significantly lower 

at 5 DAF and 15 DAF when exposed to HNDT although no significant changes were 

recorded in N22, IR64 and H2 at 5 DAF, while its activity at 10 DAF was significantly higher 

across all genotypes under HNDT exposure.  

5.3.4 Content of non-structural carbohydrates 

A significant genotype × treatment × stage effect was observed for the NSC content in the 

grains (Figure 5.4). The faster grain-filling rate of grains when exposed to HNT was 

supported by higher NSC content with grains exposed to HNT than with grains that developed 

under control conditions in all genotypes at 5, 10 and 15 DAF, with NSC content under HNT 

exposure being close to control treatment at final maturity. Under HDT conditions, the NSC 

content did not change significantly in all genotypes at 5 DAF while it was significantly lower 

than under control conditions at 10 DAF, 15 DAF and maturity across all genotypes except 

for the non-significant effect in N22 and HT NIL at 10 DAF. For the HNDT treatment, 

differences among genotypes and stages were observed in the NSC content. In all genotypes, 

grains grown under HNDT showed higher NSC content than those grown under control 

conditions at 5 DAF. At 10 DAF, significantly higher NSC content was only observed in HT 

NIL and H2, while the other genotypes had lower NSC content than the control. After that (at  
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15 DAF and maturity), the NSC content under HNDT was significantly lower than for the 

control in all five genotypes. 

5.3.5 Development of amyloplasts 

To understand the effects of heat stress on the development of the endosperm, transverse 

sections of the central part of the grains were analysed under a scanning electron microscope 

(Figure 5.5 and Figures A5.1, A5.2, A5.3). At 5 DAF, small starch granules had developed in 

the rice endosperm across all genotypes and four treatments. Besides, starch granules began 

packaging into amyloplasts, particularly in the grains exposed to HNT, indicating that the 

grain-filling process in this treatment was more advanced than in the control, HDT and 

HNDT treatments while there were no obvious differences in the starch granules under both 

HDT and HNDT condition. Starting at 10 DAF, amyloplasts were compounded and tightly 

packed with numerous well-developed (polygonal shape) starch granules in developing grains 

under HNT exposure in all genotypes, while this phenomenon was only observed in N22 and 

H2 under control conditions (Figure A5.2). In contrast, the starch granules in grains exposed 

to HDT and HNDT were poorly developed (round shape together with heterogeneous size) 

and single, that is to say not all starch granules participated in the packing process towards 

amyloplast development. In addition, large airspaces were observed between amyloplasts or 

the individual starch granules in the grains exposed to HDT and HNDT. Thus, SEM results 

illustrated poor development of starch granules in the grains exposed to HDT and HNDT 

conditions which could have resulted in lower single-grain weight and poor grain quality, i.e. 

the formation of chalk.  

5.3.6 Chalkiness 

To ascertain the heat-stress impacts on the occurrence of different types of chalky kernels, the 

grains harvested at maturity were hulled manually and assessed visually. Percentage of 

various types of chalk kernels was examined per treatment for each genotype (Table 5.3). 

Many grains were found with a large chalky part around the core, indicating either milky-

white or white-core chalkiness, and were grouped into one category. A significant genotype × 

treatment effect was observed for the different types of chalkiness. More than 84% of the 

control grains were grouped into the transparent type across the five genotypes. However, 

HNT treatment significantly increased the percentage of white-belly grains (31.8% to 67.0%) 

in all genotypes and significantly induced an increase in proportion of grains with milky or 
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Figure 5.4 Non-structural carbohydrates (NSC) content in grains at 5, 10, 15 days after 
flowering (DAF) and physiological maturity (PM) in five rice genotypes exposed to control 
(31°C/23°C (day/night)), high night-time temperature (HNT-31°C/30°C), high daytime 
temperature (HDT-38°C/23°C) or combined high night-time and day-time temperature 
(HNDT-38°C/30°C) at grain-filling stage for 20 days after flowering. ANOVA results (values 
are least significant difference following by the significance level (*** P<0.001) were: 
genotype (G): 0.44***, Treatment (T): 0.39***, Stage (S): 0.39***, G×T: 0.88***, G×S: 
0.88***, T×S: 0.79***, G×T×S: 1.76***. 
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Figure 5.5 Scanning electron microscopic observation of the transverse section of the central 
part of the developing grains collected at 5, 10, 15 days after flowering (DAF) in IR64 
exposed to control (31°C/23°C (day/night)), high night-time temperature (HNT-31°C/30°C), 
high day-time temperature (HDT-38°C/23°C) or combined high night-time and day-time 
temperature (HNDT-38°C/30°C) at grain-filling stage for 20 days after flowering. 
Magnification = ×2,000. Yellow arrows indicate the single granules. Red arrows indicate the 
single granules grouping into amyloplast. Red rectangle indicates the polygonal shape of 
starch granules grouping into amyloplast without airspaces. Yellow elliptical ring shows 
poorly developed amyloplasts together with the individual round shape and heterogeneous 
size of starch granules with large airspaces. 
 

white-core grains in N22 and H2. In contrast, HDT and HNDT substantially increased the 

chalkiness, as the proportions of milky-white or white-core grains were suddenly increased up 

to 72.6 % to 91.7% (P<0.001) which accounted for the largest proportion and opaque (fully 

chalky) kernels which went up (P<0.001) to the second largest proportion under both the 

HDT and HNDT conditions. In summary, all high-temperature treatments resulted in a 

significant increase in chalkiness of the grains, but with HNT mainly resulting in white-belly 
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chalkiness while HDT and HNDT resulted in a high proportion of milky white and/or white 

core chalkiness. 

5.4 Discussion  

A comprehensive geographical mapping exercise on a global scale indicated regions with 

higher vulnerability to HNT or HDT or a combined HNDT stress (Laborte et al., 2012), 

substantiating the need for systematic investigation of the response of rice genotypes to these 

conditions. HNT of 30oC coinciding with flowering and extended to a few days after 

flowering did not affect seed-set/spikelet fertility negatively under growth chamber and field 

conditions (Shi et al., 2013; Coast et al., 2014; Jagadish et al., 2015) and this is largely 

supported by our findings. However, the present results indicate clear differential responses of 

rice genotypes to HDT and HNT, with a greater impact of HDT on seed-set compared to HNT 

(Tables A5.2 and A5.3). This variable response was noted despite the shorter duration of 

increased day-time temperature per day imposed in our treatments (6 h for day-time treatment 

and 11 h for night-time treatment). The findings are in agreement with the results of Yin et al. 

(1996), showing that Tday exerts a greater influence on rice plant development rather than 

Tnight. Since the stress was imposed a day after anthesis key physiological processes such as 

anther dehiscence, pollen germination etc. would not be the primary determinants reducing 

seed-set (Jagadish et al., 2007). Hence, the reduced seed-set would have mainly resulted from 

the impact on the embryo development, including division of the fertilized egg or primary 

endosperm nucleus and subsequent processes (Vara Prasad et al., 2017). Since regulation of 

cell division, endo-reduplication and cell expansion varies during day and night, for example, 

cell division is known to be stimulated by light (Okello et al., 2015), rendering the day-

temperature to be more important in determining seed-set than night-time temperature.  

 Similar to the seed-set, Tday induced greater damage than Tnight for grain growth 

patterns, whereas Tnight interacted with Tday to determine single-grain weight. Previous 

studies involving single genotype in which night-time temperature were extremely high (34oC 

and 35oC) together with relatively low day-time warming (34oC and 35oC) treatments, 

suggested HNT to have a larger negative impact on single-grain weight than HDT (Morita et 

al., 2005; Li et al., 2011). In contrast, day-time warming had greater effects on grain weight 

than night-time warming normalized by every 1oC warming (Rehmani et al., 2014), which is 

supported by our results. However, with the predicted increase in night-time temperature at a 

faster rate than day-time temperature, the negative influence of HNT on overall yield losses 
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should not be underestimated (Shi et al., 2013, 2016 and 2017). At the whole plant level, we 

have demonstrated that HNT of 29oC starting from panicle initiation to maturity using field-

based tents significantly reduce 1000 grain weight (Shi et al., 2013, Jagadish et al., 2015). 

Differential responses for grains at different positions within a panicle exposed to high 

temperatures have been documented (Cao et al., 2016; Fu et al., 2016). No decline in the 

single-grain weight under HNT in the current study could be attributed to the measuring 

approach wherein only superior spikelets having greater access to assimilate were considered 

(Fu et al., 2016 and other references within). This approach using only superior spikelets 

allowed to have a common reference for explicitly estimating enzymatic activity and starch 

packaging during grain-filling and by avoiding other confounding factors. Having sufficient 

assimilates available with stress imposed after flowering allows marked spikelets to exercise 

the plasticity to minimize damage and to ascertain if the impact was primarily due to stress 

and not due to source limitation. However this may not be the case at the whole plant level 

which is determined by the source-sink relationships altered by the loss of essential 

carbohydrates to enhanced night respiration (Bahuguna et al., 2017), curtailing the level of 

plasticity.  

 Grain weight is mainly determined by a balance between grain-filling rate and grain-

filling duration. The ability of the grain to retain its grain weight under HNT indicates the 

plasticity expressed under sufficient resource availability, which in our studies was made 

possible by following a measuring approach that included just the superior spikelets. On the 

other hand, the impact of HDT or HNDT, induces an irreversible damage either during the 

embryo development (seed-set reduction) or grain-filling stages (reduced grain weight), 

indicating the need for taking a genetic route to enhance tolerance to HDT. Kim et al. (2011) 

suggested an early termination of grain-filling in temperate rice exposed to high temperature 

not due to lack of assimilates but loss of sink activity. In contrast, Kobata and Uemuki (2004) 

have attributed the impact of HDT during grain-filling to limitations in assimilate supply. 

Interestingly, we noticed that the targeted tillers exposed to HDT and HNDT treatments 

produced new extra tillers during the grain-filling stage in most cases, indicating surplus 

assimilates from the leaf and/or the reserves stored in the culm and leaf sheath. Thus, in our 

study the failure of assimilate supply to the grain was not the reason behind the lower grain 

weight under HDT and HNDT conditions; instead, sink itself was playing a more important 

role, supporting Kim et al. (2011) in emphasizing the need to focus on sink strength under 

heat stress exposure. 
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 The determination of the dynamic grain growth in rice and other cereals has been related 

to the senescence of source and or sink organs, i.e. loss of photosynthetic activity in the leaves 

and sugar or starch metabolism related enzyme activity in the endosperm (Bahuguna et al., 

2017). The sink strength of a developing grain is met by a balanced sucrose gradient from 

source to sink tissue and by cleaving sucrose into hexoses by invertases and SuSy (Hirose et 

al., 2002; Koch 2004). Key starch metabolism enzymes including CWI [responsible for 

phloem unloading and cleaving sucrose in the apoplast (Wang and Ruan 2012)], VI [sink 

initiation and expansion by supporting cell division during the pre-storage phase (Roitsch and 

Gonzalez 2004)], SuSy [supplying the substrate (UDP glucose/ADP glucose) for starch 

synthesis (Li et al., 2013)] and SS for starch synthesis, are shown to be affected differently 

among rice genotypes under HNT exposure (Bahuguna et al., 2017). Under HNT exposure, 

with developing grain samples collected at 4 am, the activity of CWI, VI and SS decreased 

especially at 5 DAF and 15 DAF while SuSy activity remained rather stable across three time 

points. Interestingly, the CWI and VI levels remained similar to control at the peak grain-

filling stage, i.e. 10 days post flowering (Bahuguna et al., 2017), only in HT NIL and N22, 

respectively, indicating possible alternative routes to continue cleaving of transported sucrose. 

This along with the significantly higher SuSy activity in N22 (10 and 15 DAF) and HT NIL 

(15 DAF) indicates that they may be better equipped for harsher night-time temperature 

exposure compared to the other three genotypes. The reduced enzymatic activity did not 

contribute to derail the NSC accumulation and grain weight under HNT at the single grain 

level, as reflected by simple correlation coefficients in Table A5.5. All four enzymes were 

positively correlated (P<0.05 to P<0.001) with three of the key grain-filling parameters, 

particularly maximum and mean grain-filling rate under HNT exposure (Table A5.5), while 

the pattern was mixed with HDT and HNDT (Table A5.6 ). However, Bahuguna et al. (2017) 

has shown that lower CWI and SuSy activity to play a decisive role in NSC accumulation and 

grain weight under HNT exposure at the whole-plant level, which was seen only at 5 DAF, 

indicating a strong impact of source-sink relationship with total grain-filling duration at the 

whole-plant level compared to single grain.   

 The total NSC in grains under HDT and HNDT exposure was lower than that under 

control at the single-grain level. This low NSC could be a result of the unloading of 

transportable sugar (lower CWI activity), poor substrate supply for starch synthesis (lower 

Susy activity) and low starch synthesis at late grain-filling stage. However, at the single grain 

a clear correlation with NSC accumulation in grain and the enzymatic activity was not 
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observed. Interestingly across all the tested genotypes and almost all the four key enzymes, 

their activity was increased considerably with HNDT compared to HDT at the peak grain-

filling phase of 10 DAF. This could be either attributed to an accelerated phenomenon due to 

higher temperature or more a short term acclimation response with high night-time alternated 

by high day-time temperature stress, which could prove beneficial if sufficient assimilates 

become available (resilient source-related sucrose transporters). Hence, exploring the ability 

of the key starch metabolism enzymes to acclimatize to increasing day-time or night-time 

temperature is an interesting area for further research.  

 In our study, HDT and HNDT resulted in smaller-sized starch granules during the grain-

filling period, along with loosely packed starch granular structure leading to more chalky 

appearance and lower single-grain weight as documented by Geigenberger (2011). Moreover, 

milky-white/white-cored chalk was substantially increased under HDT and HNDT exposure, 

which is known to reduce the economic value of the grains (Lyman et al., 2013). However, 

this phenomenon was not observed in HNT exposure as our scanning electron microscopic 

observations were aimed at the chalkiness at the central part of grains which is the most 

serious problem. Although the central part of developing grains had tightly packed polygonal-

shaped starch granules (amyloplasts) under HNT condition white-belly chalk was noticed to 

significantly increase under HNT. These results are in agreement with the observations in 

previous studies, which showed less effect on chalkiness under HNT compared with HDT 

(Dai et al., 2009; Li et al., 2011). The formation of milky-white/white-cored chalk under heat 

stress is mainly attributed to reduced assimilates supply (as indicated above with a possible 

source enzymatic failure with HDT) unable to meet the enhanced demand resulting from 

higher grain-filling rate (Liu et al., 2013). In addition, white-belly chalk often occurs at the 

late stage due to inefficient utilization of reserves (Xi et al., 2014). Lisle et al. (2000) 

suggested that chalk formation is more likely related to the utilization of carbon during 

sucrose-to-starch deposition within the developing grains rather than the insufficient 

assimilate supply. From our findings we see that this holds true with HNT under sufficient 

assimilate availability while a limitation with both supply and utilization aspects were 

affected under HDT and HNDT. Hence, the above findings highlight the importance of 

exploring the efficiency of the source-sink activity at different forms of heat stress exposure. 

 HT NIL performed differently compared to the other genotypes in many aspects. When 

exposed to HDT, HT NIL was the only genotype without significant decrease in seed-set 
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compared with others (Table 5.1), indicating its true tolerance and providing evidence for its 

post-flowering heat stress tolerance in addition to tolerance during flowering (Ye et al., 2012). 

When exposed to HNDT, HT NIL, responded similarly as other genotypes, but with a lower 

reduction in seed-set and with least decrease in single-grain weight. In addition, HT NIL was 

the only genotype which maintained mean grain-filling rate (𝐶𝐶̅) under HDT or had the largest 

increase in 𝐶𝐶̅ under HNDT, presumably contributing to significantly higher NSC content at 10 

DAF under HDT and HNDT, respectively, while most other genotypes recorded a significant 

decline in NSC at 15 DAF and at maturity (Table 5.2 and Figure 5.4). Although investigation 

of the starch metabolism enzymes did not lead to striking differences in its responses to HDT 

and HNDT compared with other genotypes, HT NIL had relatively higher CWI, VI and SS 

activity at the peak grain-filling period i.e.10 DAF under HDT and HNDT conditions (Figure 

5.3). This provides partial mechanistic support that the HT NIL in IR64 background tolerates 

heat stress during both flowering and post-flowering stages, making it an ideal source for 

further detailed molecular analysis to develop genetic markers for introducing sustained long 

duration heat stress tolerance into current susceptible popular rice cultivars. 

5.5. Conclusions 

The impact of HNT, HDT and HNDT during grain-filling on physiological, biochemical and 

histological aspects related to grain growth was quantified in a contrasting set of rice inbreds 

and hybrids. HDT and HNDT had a pronounced negative impact on the starch biosynthetic 

enzyme activity and also on the NSC content of the grains leading to structural changes in the 

starch granules resulting in increased milky-white/white-core chalk. However, HNT did not 

induce the reduction in single-grain weight and in NSC content due to the dynamic 

compensation of higher grain-filling rate and shortened grain-filling duration. Interestingly, 

the HT NIL developed to minimize the heat-stress impact at flowering had an extended 

positive impact on reducing the heat-stress effect during grain-filling stages. Comparatively, 

day-time temperature either independently or in combination with HNT had strong negative 

impact on the processes including the starch packing. These results provide comprehensive 

understanding of the impact of high day-time or night-time temperature and their combined 

impact on grain growth and form a starting point for further elucidation of the complex 

echanisms responsible for differential responses of day-time and night-time temperatures and 

diel warming on rice plants.   
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Appendix Chapter 5, Supplementary tables and figures 

Table A5.1 Actual temperature, relative humidity and vapour pressure deficit records within 
the walk-in growth chambers which were set at control (31°C/23°C (day/night)), higher night-
time temperature (HNT-31°C/30°C), higher day-time temperature (HDT-38°C/23°C) or 
combined higher night-time and day-time temperature (HNDT-38°C/30°C) for exposing the 
treatments to rice plants. Mean ± standard deviation. Data for day-time was from 08:30 h – 
14:30 h for 6 h while night-time was recorded for 11 h from 18:00 h – 05:00 h 
 

  Temperature (°C) Relative humidity (%) 
Vapour pressure deficit 

(kPa) 
Treatment Day-time Night-time Day-time Night-time Day-time Night-time 

Control 30.9 ± 0.5 22.9 ± 0.3 68.2 ± 5.4 72.6 ± 7.6 1.4 ± 0.5 0.8 ± 0.2 
HNT 31.0 ± 0.6 29.8 ± 0.4 61.9 ± 9.5 71.9 ± 6.7 1.5 ± 0.3 1.6 ± 0.2 
HDT 37.8 ± 0.7 22.7 ± 0.6 61.1 ± 10.2 68.6 ± 5.8 2.0 ± 0.2 0.9 ± 0.3 

HNDT 37.8 ± 0.6 30.1 ± 0.4 67.9 ± 8.9 66.0 ± 6.8 1.9 ± 0.2 1.3 ± 0.1 
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Figure A5.1. Scanning electron microscopic observation of the transverse section of the 
central part of the developing grains collected at 5 days after flowering in four rice genotypes 
exposed to control (31°C/23°C (day/night)), higher night-time temperature (HNT-
31°C/30°C), higher day-time temperature (HDT-38°C/23°C) or combined higher night-time 
and day-time temperature (HNDT-38°C/30°C) at grain filling stage for 20 days after 
flowering. Magnification = ×2,000. Yellow arrows indicate the single granules. Red arrows 
indicate the single granules grouping into amyloplast. 
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Figure A5.2 Scanning electron microscopic observation of the transverse section of the central 
part of the developing grains collected at 10 days after flowering in four rice genotypes exposed 
to control (31°C/23°C (day/night)), higher night-time temperature (HNT-31°C/30°C), higher 
day-time temperature (HDT-38°C/23°C) or combined higher night-time and day-time 
temperature (HNDT-38°C/30°C) at grain filling stage for 20 days after flowering. Magnification 
= ×2,000. Red rectangle indicates the polygonal shape of starch granules grouping into 
amyloplast without airspaces. Yellow elliptical ring shows poorly developed amyloplasts 
together with the individual round shape and heterogeneous size of starch granules with large 
airspaces. 
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Figure A5.3 Scanning electron microscopic observation of the transverse section of the 
central part of the developing grains collected at 15 days after flowering in four rice 
genotypes exposed to control (31°C/23°C (day/night)), higher night-time temperature (HNT-
31°C/30°C), higher day-time temperature (HDT-38°C/23°C) or combined higher night-time 
and day-time temperature (HNDT-38°C/30°C) at grain filling stage for 20 days after 
flowering. Magnification = ×2,000. Red rectangle indicates the polygonal shape of starch 
granules grouping into amyloplast without airspaces. Yellow elliptical ring shows poorly 
developed amyloplasts together with the individual round shape and heterogeneous size of 
starch granules with large airspaces. 
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Supplementary Information 5 – Detailed methods for enzyme estimation. About 200 mg 

grains were grinded in mortar and pestle by using liquid nitrogen in the cold condition. 

Enzyme extract was prepared by adding 1.5 ml extraction medium with 100 mM tricine-

NaOH (pH 8.0), 8 mM MgCl2, 2 mM ethylene-diamine-tetra-acetic acid (EDTA), 50 mM 2-

mercaptoethanol, 12.5% (v/v) glycerol and 5% (w/v) insoluble polyvinylpyrrolidone-40 for 

starch synthesis (SS); 100 mM Hepes-KOH (pH=7.4), 5 mM MgCl2, 1 mM EDTA, 1 mM 

EGTA, 1 mM PMSF, 5 mM DTT, 1 ml l-1 Triton X-100, 200 ml glycerol, and 5 mM thiourea 

for invertases; 25 mM Hepes-NaOH (pH=7.5), 5 mM MgCl2, 0.5m M EDTA, 2% 

poly(ethylene glycol)-20, 3 mM DTT and 1% bovine serum albumin for sucrose synthase 

(SuSy). The extract was centrifuged for 5 min at 14,000 rpm at 4°C and the supernatant was 

directly used as enzyme source for SS assay. The supernatant was desalted for SuSy assay by 

using 3 ml Sephadex G-50 column (25 mM Hepes-NaOH (pH=7.5), 5 mM MgCl2, 0.5 mM 

EDTA) at 4°C. Supernatant for soluble invertase, i.e. vacuolar invertase in our study, was 

pipetted out and retained after centrifuge. Then, 0.5 ml extraction buffer was used to wash the 

pellet and finally suspended in 1.8 ml for the cell wall invertase (CWI) assay. 

A 280-μl reaction mixture containing enzyme extract and 50 mM Hepes-NaOH (pH 7.4), 1.6 

mM ADP glucose, 0.7 mg amylopectin, 15 mM DTT was incubated at 25°C for 20 min for 

the SS assay. The enzyme was inactivated by placing the reaction mixture in a boiling water 

bath for 30 s which was followed by adding 100 μl of a solution of 50 mM Hepes-NaOH (pH 

7.4), 4 mM phospho(enol) pyruvate, 200 mM KCl, 10 mM MgCl2 and pyruvate kinase (1.2 

U) and incubating at 30°C for 30 min. Again, the mixture was immersed in a boiling-water for 

30 s and then was centrifuged at 10,000 rpm for 5 min. The supernatant (300 μl) was mixed 

with a solution of 50 mM Hepes-NaOH (pH 7.4), 10 mM glucose, 20 mM MgCl2 and 2 mM 

NADP. The absorbance was measured at 340 nm after adding 1μl each of hexokinase (1.4 U) 

and G6P dehydrogenase (0.35 U). The assay mixture (70 μl) containing 8 mM UDP glucose, 

8 mM fructose, 15 mM MgC12, 40 mM Hepes-NaOH (pH 7.5) and desalted extract was used 

for SuSy activity determination. The mixture was incubated at 25°C for 10 min, and 70 μl 1N 

NaOH was added to terminate the reactions. Then, the tubes was placed in boiling water for 

10 min. After cooling the tubes at room temperature, 0.25 ml of 1% resorcinol in ethanol and 

0.75 ml of 30% HCl were added and the total mixture was incubated further at 80°C for 8 min 

followed by immediately cooling on ice. Tubes were centrifuged at 5000 rpm for 5 min and 

absorbance was read at 520 nm. 
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A 40 μl supernatant extract and a dissolved pellet fraction were taken for the VI and CWI 

assay, respectively. Extract was added on ice to a 180 μl assay mixture including 0.1 M 

sucrose, and either 50 mM Bicine-KOH (N,N-bis[2-hydroxyethyl]glycine) (pH=7.6) or 50 

mM sodium acetate at pH=4.3 and pH=4.7 for VI and CWI, respectively. At time zero, tubes 

were transferred to a water bath at 30°C for 1 h and at the same time, time zero controls were 

set in which the incubation at 30°C had been omitted. Additional 30 μl of 1 M Tris–HCl 

(pH=8) was added in assays and controls for both VI and CWI before heating at 85°C for 3 

min. 70 μl of assay mixture was added to the 190-μl fructose assay mix (100 mM Hepes-KOH 

(pH 7.4), 2.25 mM MgCl2, 1.1 mM ATP, 0.2 U hexokinase and 1.1 mM NADP).  

The production of G6P from glucose was determined from the increase in absorbance at 340 

nm and upon the addition of 0.2 unit (U) of NADP-dependent G6P dehydrogenase. 
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Abstract 

High temperature during flowering in rice causes spikelet sterility and is a major threat to rice 

productivity in tropical and subtropical regions, where hybrid rice development is increasingly 

contributing to sustainable food security. However, the sensitivity of hybrids to increasing temperature 

and physiological responses in terms of dynamic fertilization processes are unknown. To address these 

questions, several promising hybrids and inbreds were exposed to control and high day-time 

temperature (HDT) in Experiment 1 and hybrids having contrasting heat tolerance were selected for 

Experiment 2 for further physiological investigation under high day and night temperature treatments. 

The day-time temperature played a dominant role in determining spikelet fertility compared with 

night-time temperature. HDT significantly induced spikelet sterility in tested hybrids and hybrids had 

higher heat susceptibility than the high-yielding inbred varieties. Poor pollen germination was strongly 

associated with sterility under high temperature. Our novel observations capturing the series of 

dynamic fertilization processes demonstrated that pollen tube not reaching the viable embryo sac as 

the major limitation leading to spikelet sterility under heat exposure. Our findings highlight the urgent 

need to improve heat tolerance in hybrids and highlights integrating early-morning flowering as a 

potential trait for mitigating heat stress impact at flowering.  

 

Keywords: Fertilization, flowering, high day-time temperature, high night-time temperature, in vivo 

pollen germination, rice.  
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6.1 Introduction  

Hybrid rice plays a pivotal role in sustaining food security due to its high productivity under 

favorable conditions, as demonstrated, consistently throughput China (Cheng et al., 2007). 

Outside of China, hybrid rice has increased steadily, up to 6.36 million ha in 2014, mostly 

planted in tropical and subtropical rice growing countries, such as Philippines, India, 

Bangladesh and Indonesia (Xie and Peng, 2016). However,  planting area of hybrid rice in 

these countries is  limited and often fluctuates because of unfavorable weather conditions (Xie 

and Peng, 2016). It has been projected that global temperature will continue to increase 

steadily during the 21st century, accompanied by more frequent and more intense heat 

episodes and warmer nights (IPCC, 2013). Although the typical heat episodes occur in short 

durations, when it coincides with critical flowering stage, heat can pose a serious threat to 

spikelet fertility and therefore induce yield loss (Jagadish et al., 2007). To date, heat-induced 

spikelet sterility during flowering has been documented in rice fields from different rice 

growing regions, e.g. China (Tian et al., 2010), Japan (Hasegawa et al., 2011) and Laos and 

Southern India (Ishimaru et al., 2016). 

 Developing heat-tolerant varieties is a sustainable strategy to cope with the challenges 

arisen from increasing temperature (Challinor et al., 2014). Given the unpredictable 

occurrence of high temperature stress in the tropics and subtropics, hybrid rice should have 

both high-yielding potential and heat resistance to improve rice yield in these areas. To that 

end, identifying genetic variation and understanding physiological mechanisms underlying the 

variation are essential to support breeding for heat tolerance. A series of phenotyping studies 

have identified a wide genetic variation in rice in their response to high temperature at 

flowering among indica and/or japonica ecotypes (Matsui et al., 2001; Jagadish et al., 2008; 

Shi et al., 2015). Also, some studies have assessed the performance of hybrid rice under high 

temperature conditions in China, showing sensitivities of hybrid rice to increasing day-time 

temperature during flowering (Hu et al., 2012; Fu et al., 2015). Our previous study has 

clarified the serious vulnerability of tropical and subtropical hybrid rice to high night-time 

temperature (HNT) (Shi et al., 2016). However, there is little information regarding the 

resistance of tropical and subtropical hybrid rice to high day-time temperature (HDT). In 

addition, it is not clear whether there is any difference in, and interaction between, the effects 

of HDT and HNT on spikelet fertility during flowering.   
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Flowering includes pollination, pollen germination and fertilization. Any stress taking 

place during this stage is likely to cause sterility, and ultimately induce yield loss. Flowering 

stage has been considered to be the most-sensitive stage to temperature fluctuations (Satake 

and Yoshida, 1978; Matsui et al., 2001; Jagadish et al., 2007). During high temperature 

exposure, anther dehiscence of rice is inhibited from decreased ability of pollen grains to 

swell, resulting in a lower number of pollen adhered to the stigma (Matsui et al., 2000; Prasad 

et al., 2006; Jagadish et al., 2010). Immediately after landing on the stigma, pollen grains start 

to germinate followed by pollen tube growth inside the pistil to reach the female gametophyte 

inside the ovule. Even when sufficient numbers of pollen are shed on stigma, pollen 

germination can be sometimes poor and pollen tube growth impeded under heat stress (Satake 

and Yoshida, 1978; Tang et al., 2008). In rice, all the above mentioned, the combined process 

of anther dehiscence, pollination, pollen germination, and pollen tube reaching the ovary, 

usually takes about 45 minutes during the opening and after closing of the flower (Jagadish et 

al., 2010). In contrast, the subsequent fertilization typically occurs within 1.5 to 4.0 h after 

flower opening (Cho 1956). Thus, there is a significant chance that the subsequent double 

fertilization process after pollen tube penetrates the embryo sac occurs under high temperature 

around noon. However, almost all studies focusing on the spikelet sterility caused by high day 

temperature during flowering mainly concentrate on pollination and pollen germination, 

whereas the effect of high temperature on the fertilization process remains unknown. 

Nowadays, breeders are working towards introducing early-morning flowering trait (EMF) in 

rice plants that allows spikelets to flower during early hours of the day when temperature is 

relatively cooler (Ishimaru et al., 2010). The introduction of EMF trait can potentially 

minimize heat stress damage on pollen viability but the fertilization process after the 

completion of pollination and pollen germination will still be vulnerable to high temperature 

during late morning and early noon.  

The objective of this study is to investigate the high temperature effects on the 

fertilization process in rice in the context of evaluating the “early-morning flowering” strategy 

to improve tolerance to high-temperature stress. Two experiments were conducted. In 

Experiment 1, we evaluated some promising tropical and subtropical hybrids to assess their 

difference in heat resistance to HDT compared with some popular high-yielding inbreds. 

Pollen germination was also tested in Experiment 1 to explore its contribution to sterility 

under HDT stress exposure. Based on the results of Experiment 1, contrasting hybrid 

genotypes were selected to be further examined in Experiment 2 on impacts of independent 
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HNT, HDT and their combination (HNDT) on spikelet fertility. More importantly, by using 

an advanced experimental set-up for in vivo imaging of double fertilization, we had a clear 

visual observation on the entire dynamic fertilization process inside the intact ovule, thereby, 

specifically filling knowledge gaps in identifying the effect of high temperature on the in vivo 

fertilization process.  

6.2 Materials and methods 

6.2.1 Materials and crop husbandry 

In Experiment 1, promising tropical and subtropical hybrids from a private company (H1-H3) 

and International Rice Research Institute (IRRI) (H4-Mestizo 1, H5-Mestizo 3, H6-Mestizo 

21 and H7-Mestizo 31), high-yielding inbreds [PSBRc4, NSICRc222 and HHZ12-DT10-

Sal1-DT1(HHZ12)], along with the best heat tolerant check N22, an aus variety from India 

and a popular variety IR64 as susceptible check, were chosen to determine their responses to 

HDT. Seeds of all entries were first exposed to 50oC for 3 days to break their dormancy and 

then were incubated at 30oC for 2 days. After that, the germinated seeds were sown in seeding 

trays followed by transplanting one 14-day-old seedling into each plastic pot (23 cm × 25 cm) 

filled with 6 kg dried clay loam soil. 2.0 g ammonium sulfate [(NH4)2SO4], 1.0 g single 

superphosphate (SSP) and 1.0 g muriate of potash (KCl) were applied as basal fertilizer in 

each pot and an additional 2.0 g [(NH,4)2SO4] was used for topdressing at 25 days after 

transplanting. Plants were grown in the greenhouse with natural environmental conditions 

(temperature, photoperiod, relative humidity and radiation) at IRRI, Los Baños (1411N, 

12115E, 21 m asl), Philippines, before transferring them to walk-in growth chambers for 

various temperature treatments described below. MINCERs (Micrometeorological Instrument 

for Near Canopy Environment of Rice, developed by the National Institute of Agrobiological 

Sciences, Japan; Yoshimoto et al., 2012) were placed in the greenhouse to record the actual 

temperature and relative humidity at the plant level at 15-min intervals. The recorded actual 

temperature, relative humidity and vapor pressure deficit (VPD) in the greenhouse during the 

period of experiments are shown in Table A6.1. The VPD was calculated by using the 

equation presented in the website (http://cronklab.wikidot.com/calculation-of-vapour-

pressure-deficit). Photoperiod was about 12 h during the greenhouse phase of the experiment. 

Both pests and diseases were effectively controlled.  
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In Experiment 2, hybrids with contrasting responses to high-temperature impact on 

spikelet fertility as observed in Experiment 1 (H2, H5 and H6), heat tolerant IR64 near-

isogenic line (HT NIL) introgressed with a Chromosome 4 fragment from N22 (Ye et al., 

2012) together with the parents (N22 and IR64) were selected. The crop husbandry was the 

same as in Experiment 1. 

6.2.2 Temperature treatments 

When the main tillers of the plants showed first signs of flowering (external appearance of 

anthers),  pots were randomly moved into walk-in growth chambers (3.3 m × 3.2 m × 2.7 m; 

10.6 m2 area in each chamber) facility at IRRI to impose temperature treatments in 

Experiment 1. Plants were exposed to control at 30oC and HDT at 38oC for 6 hours (8:00 to 

14:00 h) per day, lasting for 6 consecutive flowering days. The transition from night to day 

temperature was for three hours (from 5:00 to 8:00 h), and that from day to night temperature 

was from 14:00 to 18:00 h, after which the chamber temperature was set to 23°C as night 

temperature till 6:00 of the next day. The six-hour day temperature treatment was applied 

with an aim to cover the major flowering period within a given flowering day and to make 

sure that >90% spikelets that flowered on that day were exposed to high temperature 

(Jagadish et al., 2007). In the controlled-environment walk-in chambers, six independent units 

of 1 kW high-intensity discharge lamps were fixed in each chamber to provide ≥650 mol m-2 

s-1 photosynthetic photon flux density at the crop canopy for 11 h of photoperiod and 215 

mol m-2 s-1 for 1 h during the day-night changeover period, resulting in 12 h of photoperiod. 

The relative humidity was controlled at 70%. MINCERs were placed in the middle of the 

chamber at plant level (about 130 to 150 cm above the ground floor) to record the actual 

temperature and relative humidity at 15-min intervals. Actual temperature, relative humidity 

and VPD are shown in Table A6.1. After 6 days of high-temperature stress, the majority of 

spikelets from the target panicles completed flowering under stress exposure and the 

remaining un-flowered spikelets were marked and excluded from the determination of 

spikelet fertility. All plants were then transferred back into the greenhouse till grain maturity.  

 In Experiment 2, plants whose main tillers started to flower were randomly moved into 

four independent walk-in growth chambers for 6 consecutive days of exposure to temperature 

treatments. Plants were exposed to four temperature treatments: control (day/night, 

31°C/23°C), high day-time temperature (HDT, 38°C/23°C), high night-time temperature 

(HNT, 31°C/30°C), and combined high night-time and day-time temperatures (HNDT, 
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38°C/30°C). Both day-time and night-time temperatures were maintained for 11 hours from 

6:00 to 17:00 h and from 18:00 to 5:00 h, respectively, with one hour transition period 

between day and night. The longer duration of stress exposure on each day in Experiment 2 

was to ensure all the key flowering and fertilization processes during day-time were stressed, 

allowing us to observe the entire time course of fertilization process under a similar level of 

heat stress. Since flowering in rice extends until close to noon, with a known 4 h time frame 

needed for post-flowering fertilization events to be completed (Cho, 1956), the treatment 

structure followed in Experiment 2 is essential to dissect the impact on the entire fertilization 

process minimizing bias or stress escape. The setup for the other environmental factors within 

the walk-in growth chambers, including photosynthetic photon flux density, photoperiod and 

relative humidity (RH), were the same as in Experiment 1. After the treatment, the plants 

were moved back into the greenhouse till they reached grain maturity. 

 In both Experiments 1 and 2, 0.2-mm-diamater copper constantan thermocouples (PTFE 

twin twisted pair thermocouple, RS Components Corporation, Northamptonshire, UK) were 

inserted into the spikelets’ lemma and palea to measure spikelet tissue temperature in each 

chamber during the temperature treatment. Spikelet tissue temperatures were monitored every 

5 s and means over 5 min were recorded by a data logger (CR 1000 data logger, Campbell 

Scientific Inc., Logan, UT, USA).   

6.2.3 Observation of spikelet fertility 

At the maturity stage, spikelet fertility from Experiment 1 and Experiment 2 were estimated 

from the targeted main-tiller panicles. Individual spikelet was pressed by thumb and fore 

finger to determine whether it was fertilized or not. Spikelets with enlarged ovule (Shi et al., 

2015), partially filled spikelets (spikelets with incomplete grain-filling) and fully filled 

spikelets were grouped into fertilized spikelets. Thus, spikelet fertility was calculated as the 

ratio of fertilized spikelets to total number of spikelets from one panicle. The heat stress index 

(%) for spikelet fertility was then calculated as (Tao et al., 2008): 

Heat stress index (%) = spikelet fertility in control −  spikelet fertility in stress
spikelet fertility in control  × 100 

6.2.4 Observation of in vivo pollen germination 

On the first day of temperature exposure at flowering stage, spikelets that just began to flower 

(open of lemma and palea) after transferring into the chambers were carefully marked and 
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more than 20 spikelets were randomly sampled into FAA (50% absolute ethanol, 5% acetic 

acid and 18% sterilized water) fixative following the protocol by Rang et al. (2011), at about 

1 h after their flowering from each genotype and each temperature treatment for Experiment 1. 

The spikelets were vacuumed for 1 h followed by washing them with 50% ethanol and de-

ionized water. Thereafter, the sampled spikelets were carefully dissected using a 

stereomicroscope (Olympus SZX7, Olympus Corp, Japan). Isolated stigmas were cleared in 8 

N NaOH for 3–5 h at room temperature and subsequently stained with 2% aniline blue 

dissolved in 0.1 M K2HPO4 for 5–10 min. The total number of pollen and the number of 

germinated pollen on the stigma were recorded to determine the percentage of pollen 

germination.  

6.2.5 Whole-mount observation of in vivo fertilization 

In Experiment 2, individual flowering spikelets were marked at the initiation of flowering on 

the first day of temperature treatments by using the acrylic paint tagging technique (Jagadish 

et al., 2008) for control and HDT treatments. As day-time temperature had a predominant 

effect on spikelet fertility (see Results) presumably because pollination and the subsequent 

fertilization processes mainly occurred during the day-time, we conducted the observations on 

the effects of only HDT on fertilization. About 30 to 50 spikelets were systematically 

collected at 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 8.0, 12.0 and 24.0 hours after their 

initiated flowering. The spikelet samplings were collected into FAA fixative and vacuumed 

for 1 h followed by washing with 70% ethanol and stored in 70% ethanol at 4°C until 

microscopic observation.  

The embryo sac of rice is enclosed within the nucellus, integument and ovary wall, thus 

posing a technical challenge for its observation using conventional paraffin sectioning (Zeng 

et al., 2007). To facilitate observation of cells and nuclei in different stages of their 

development within the embryo sac without continuous sections of the sample and to obtain a 

clear visual image, a simple and effective eosin B staining procedure for embryo sac scanning 

using a laser scanning confocal microscope (Zeng et al., 2007), designated as WE-CLSM 

(whole-mount eosin B-staining confocal laser scanning microscopy), was applied in our study. 

In detail, the ovaries from the spikelets were carefully dissected in 70% ethanol under a 

stereomicroscope (Olympus SZX7, Olympus Corp, Japan). Then, they were sequentially 

dehydrated in 50%, 30%, 10% ethanol and distilled water for 20 min respectively. To 

facilitate dyeing the samples, the ovaries were pretreated in 2% aluminum potassium sulfate 
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for 20 min. They were then stained with 10 mg/L eosin B solution (dissolved in 4% sucrose) 

for 10 to 12 h at room temperature. Having completed all above steps, the ovaries underwent 

thorough dehydration. Specifically, after being treated with 2% aluminum potassium sulfate 

for 20 min to remove partial dye from the ovary walls, the ovaries were rinsed 2 to 3 times 

with distilled water. Then the samples were dehydrated with a series of ethanol solutions 

(10%, 30%, 50%, 70%, 90%) for 20 mins individually and then with 100% ethanol for 20 

mins for two to three times. At last, the dehydrated ovaries were carefully transferred into a 

mixture of absolute ethanol and methyl salicylate (1:1) for 1-2 h, and then they were kept in 

pure methyl salicylate for at least 1 h before microscopic observation.  

The stained ovaries were carefully placed on a glass concavity slide and mounted with 

pure methyl salicylate before covering with coverslips. Then samples were scanned by a 

Leica SPE laser scanning confocal microscope (Leica Microsystems, Heidelberg, Germany) 

at excitation wavelength at 543 nm and emitted light was detected between 550 and 630 nm. 

The images of embryo sac were recorded and the abnormality of their structure and 

fertilization were determined.  

6.2.6 Statistical analysis 

A two-way analysis of variance (ANOVA) was used to assess the effects of genotype, 

temperature treatment and their interaction on spikelet fertility and percent pollen germination 

data. Spikelet temperature was analyzed by a one-way analysis of variance (ANOAV). Least 

significant difference test (LSD) at a probability level of 5%, 1% and 0.1% was used to mean 

separation. Together with correlation and regression analysis, the above analyses were 

performed using Genstat (Version 16th, Rothamsted Experimental Station, Harpenden, UK).  

6.3 Results 

6.3.1 Spikelet tissue temperature 

In Experiment 1, the range of spikelet tissue temperatures across the tested genotypes under 

control conditions and heat stress ranged between 31.0°C and 33.3°C, and between 36.0°C 

and 38.5°C, respectively (Table 6.1). The spikelet tissue temperatures under control condition 

were slightly higher than the target air temperature, while they were close to target air 

temperature under HDT condition. In contrast, spikelet tissue temperatures from Experiment 

2 were similar to target air temperature across all temperature treatments in day, night and 
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Table 6.1 Spikelet tissue temperature of checks (N22 and IR64), selected common 
high-yield inbreds (NSIC Rc222, HHZ12, PSBRc4) and seven hybrid rice varieties (H1 
to H7) which were exposed to control (30°C) and higher day-time temperature (HDT-
38°C) from 08:00 – 14:00 h for 6 h at flowering stage for 6 consecutive days.  

Genotype Control HDT 
N22 33.3 ± 0.8  38.4 ± 0.3 
IR64 32.5 ± 0.7 37.7 ± 0.3 

NSIC Rc222 31.2 ± 0.1 37.1 ± 1.4 
HHZ12 32.1 ± 0.2 38.0 ± 0.6 
PSBRc4 33.0 ± 1.0 36.0 ± 0.9 

H1 32.2 ± 0.4 38.0 ± 0.3 
H2 31.6 ± 0.4 38.5 ± 0.7 
H3 32.9 ± 1.3 37.6 ± 0.6 
H4 31.0 ± 0.4 36.1 ± 0.7 
H5 32.8 ± 1.0 37.0 ± 0.7 

H6 33.0 ± 1.4 38.0 ± 0.3 
H7 32.0 ± 0.6 36.2 ± 0.9 

Genotype 1.1* 0.8*** 
                  Mean ± standard deviation. 
                  LSD (least significant difference) followed by *,*** means significance at 5% and 0.1%.  
    

combined stress treatments (Table 6.2). As measured spikelet tissue temperature did not differ 

much from air temperature, we used air temperature in all our analysis, unless specified 

otherwise. 

6.3.2 Spikelet fertility 

In Experiment 1, plants were exposed to two temperature treatments, i.e. control and 

HDT (38oC) for 6 h per day for 6 days at flowering stage. Significant genotype, treatment, 

and interaction between genotype and interaction effects (P<0.001) were recorded for spikelet 

fertility based on the targeted panicles. Specifically, under control condition, spikelet fertility 

was more than 80% in checks and high-yielding inbred varieties, but slightly lower in all 

hybrids except for H1 (Figure 6.1a). Spikelet fertility across the tested genotypes decreased 

under HDT stress and there was significant genotypic variation in response to HDT (P<0.001). 

Under HDT exposure, tolerant check N22 had 12.4% reduction in spikelet fertility compared 

to 64.9% in susceptible check IR64. Across the three inbreds, an average decline of 15.0% in 

fertility was recorded with exposure to HDT stress. Largest decrease of spikelet fertility was 

documented across all hybrids except for H2, with an average of 48.2%. In Experiment 2, the 

plants were exposed to separate and combined HNT and HDT, along with control temperature. 

There were significant effects of genotype, temperature treatments, and of the interaction 



Differences in response to high day and night temperature at flowering 
 

139 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T
ab

le
 6

.2
 S

pi
ke

le
t t

is
su

e 
te

m
pe

ra
tu

re
 o

f 
ch

ec
ks

 (
N

22
 a

nd
 I

R
64

), 
he

at
 to

le
ra

nt
 I

R
64

 n
ea

r-
is

og
en

ic
 li

ne
 (

H
T 

N
IL

) 
an

d 
th

re
e 

hy
br

id
s 

(H
2,

 H
5,

 H
6)

 e
xp

os
ed

 to
 c

on
tro

l (
31
℃

/2
3℃

(d
ay

/n
ig

ht
))

, h
ig

he
r 

ni
gh

t-t
im

e 
te

m
pe

ra
tu

re
 (

H
N

T-
31
℃

/3
0℃

), 
hi

gh
er

 d
ay

-ti
m

e 
te

m
pe

ra
tu

re
 (H

D
T-

38
℃

/2
3℃

), 
co

m
bi

ne
d 

hi
gh

er
 d

ay
-ti

m
e 

an
d 

ni
gh

t-t
im

e 
te

m
pe

ra
tu

re
 

(H
N

D
T-

38
℃

/3
0℃

) 
at

 f
lo

w
er

in
g 

st
ag

e 
fo

r 
co

ns
ec

ut
iv

e 
6 

flo
w

er
in

g 
da

ys
. 

B
ot

h 
da

y 
an

d 
ni

gh
t 

te
m

pe
ra

tu
re

 w
er

e 
m

ai
nt

ai
ne

d 
fo

r 1
1 

h 
at

 0
6:

00
 h

 –
 1

7:
00

 h
 a

nd
 1

8:
00

 h
 –

 0
5:

00
 h

, r
es

pe
ct

iv
el

y.
 

  
D

ay
-ti

m
e 

N
ig

ht
-ti

m
e 

G
en

ot
yp

e 
C

on
tro

l 
H

N
T 

H
D

T 
H

N
D

T 
C

on
tro

l 
H

N
T 

H
D

T 
H

N
D

T 
N

22
 

31
.2

 ±
 0

.1
 

29
.6

 ±
 1

.2
 

38
.1

 ±
 0

.1
 

37
.6

 ±
 0

.3
 

22
.5

 ±
 0

.1
 

28
.2

 ±
 0

.4
 

23
.1

 ±
 0

.1
 

28
.3

 ±
 0

.2
 

IR
64

 
29

.9
 ±

 0
.0

 
29

.4
 ±

 0
.3

 
37

.7
 ±

 1
.0

 
38

.4
 ±

 0
.4

 
22

.4
 ±

 0
.1

 
29

.4
 ±

 0
.2

 
22

.4
 ±

 0
.4

 
29

.4
 ±

 0
.4

 
H

T 
N

IL
 

30
.2

 ±
 0

.3
 

30
.0

 ±
 0

.7
 

38
.0

 ±
 0

.4
 

38
.0

 ±
 0

.4
 

22
.6

 ±
 0

.3
 

29
.6

 ±
 0

.6
 

22
.1

 ±
 0

.0
 

28
.9

 ±
 0

.2
 

H
2 

30
.7

 ±
 0

.3
 

31
.6

 ±
 0

.3
 

39
.3

 ±
 0

.5
 

38
.1

 ±
 0

.4
 

22
.7

 ±
 0

.2
 

29
.5

 ±
 0

.1
 

22
.2

 ±
 0

.1
 

30
.0

 ±
 0

.2
 

H
5 

31
.0

 ±
 0

.3
 

30
.6

 ±
 0

.4
 

37
.2

 ±
 0

.3
 

38
.1

 ±
 0

.3
 

22
.9

 ±
 0

.1
 

29
.6

 ±
 0

.2
 

23
.0

 ±
0.

1 
30

.4
 ±

 0
.4

 
H

6 
30

.0
 ±

 0
.3

 
29

.4
 ±

 0
.3

 
38

.6
 ±

 1
.1

 
38

.6
 ±

 0
.2

 
22

.9
 ±

 0
.1

 
29

.4
 ±

 0
.2

 
22

.5
 ±

 0
.3

 
29

.1
 ±

 0
.4

 
G

en
ot

yp
e 

0.
4*

**
 

0.
9*

**
 

0.
9*

* 
N

S 
0.

2*
* 

0.
5*

**
 

0.
4*

**
 

0.
5*

**
 

 M
ea

n 
va

lu
e 

± 
st

an
da

rd
 d

ev
ia

tio
n.

 
 L

SD
 (l

ea
st

 si
gn

ifi
ca

nt
 d

iff
er

en
ce

) f
ol

lo
w

ed
 b

y 
**

, *
**

 m
ea

ns
 si

gn
ifi

ca
nc

e 
at

 1
%

 a
nd

 0
.1

%
. N

S 
m

ea
ns

 n
on

-s
ig

ni
fic

an
t. 

 
 



Chapter 6 
 

140 

between genotype and temperature (P<0.001). Spikelet fertility was not significantly affected 

when exposed to HNT in checks and HT NIL, while there was a moderately significant 

decline in all tested hybrids (Table 6.3). In contrast, there were highly significant decreases in 

spikelet fertility when exposed to HDT and HNDT across all genotypes, with an average 

fertility of only 14.7% and 15.4% under HDT and HNDT exposure, respectively. Interestingly, 

there was a significant increase in spikelet fertility of H6 at HNDT over HDT. Regression  
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Figure 6.1 Spikelet fertility (a) and percentage of pollen germination on the stigma (b) of 
checks (N22 and IR64), selected common high-yielding inbreds (NSIC Rc222, HHZ12, 
PSBRc 4) and seven hybrid rice varieties (H1 to H7) which were exposed to control (30°C) 
and high day-time temperature (HDT-38°C) at flowering stage for 6 consecutive flowering 
days in Experiment 1. Bars indicate standard errors of the mean. 

(a) 

(b) 
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Table 6.3 Spikelet fertility of checks (N22 and IR64), heat tolerant IR64 near-
isogenic line (HT NIL) and three hybrids (H2, H5, H6) exposed to control (31℃/23℃
(day/night)), higher night-time temperature (HNT-31℃/30℃), higher day-time 
temperature (HDT-38℃/23℃), combined higher day-time and night-time 
temperature (HNDT-38℃/30℃) at flowering stage for 6 consecutive flowering days 
(Experiment 2). 

 
Genotype Control HNT HDT HNDT 

N22 93.0 ± 0.7  91.8 ± 0.7 24.5 ± 5.0 29.0 ± 1.8 
IR64 88.2 ± 0.8 86.5 ± 0.8 12.1 ± 1.5  9.7 ± 1.7 

HT NIL 83.4 ± 1.7 80.7 ± 1.7 19.1 ± 2.6 20.2 ± 2.0 
H2 69.5 ± 2.1 52.5 ± 2.5 15.4 ± 3.9  9.3 ± 2.9 
H5 70.3 ± 2.1 40.6 ± 6.6 4.6  ± 1.5  3.8 ± 0.8 
H6 73.4 ± 2.0 66.4 ± 2.1 12.7 ± 1.7 20.9 ± 1.4 

Genotype (G)  3.5 ***  
Treatment (T) 2.8 *** 

G × T 7.0 *** 
           Mean value ± standard error.  

LSD (least significant difference) followed by *** means significance at 0.1%.  
 

 

analysis was undertaken to test the relative importance of day-time temperature (Tday) and 

night-time temperature (Tnight), as well as their interaction (Tday × Tnight) on spikelet 

fertility. Using air temperature or spikelet tissue temperature essentially gave similar results 

(Table 6.4). Overall, Tday was more damaging than Tnight as absolute values of the negative 

coefficients of Tday were generally higher than those of Tnight (Table 6.4). Moreover, the 

effects of Tday on spikelet fertility was significant for all genotypes while that of Tnight was 

at a significant level in some genotypes only, indicating genotypic variation in responses to 

Tday and to Tnight, and the spikelet fertility of hybrids in particular were, to some extent, 

further affected by Tnight. Moreover, of the hybrids, H5 and H6 showed a significant Tday x 

Tnight interaction, suggesting that although the effect of Tday was dominant, Tnight notably 

interacted with Tday in determining spikelet fertility in these two genotypes.  

 A strong positive correlation was observed for the heat stress index between two 

independent sets of plants exposed to HDT in Experiments 1 and 2, indicating genotypic 

consistency in tolerance/susceptibility to heat (P<0.05; n=5; Figure A6.1) in two independent 

experiments. However, the heat stress index was higher in Experiment 2 than in Experiment 1, 

presumably due the different durations of high temperature (11 h in Experiment 2 vs 6 h in 

Experiment 1).  
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6.3.3 Pollen germination and its relation with spikelet fertility 

The percent pollen germination was significantly affected by genotypes, temperature 

treatment and their interaction (P<0.001) in Experiment 1. Under control conditions, the 

pollen germination ranged from 30.0% to 71.4% across all genotypes (Figure 6.1b). There 

was a significant decline in percentage of pollen germination with HDT in all genotypes 

except for the tolerant check N22, with an average of 46.8% of reduction across cultivars. The 

percent pollen germination was significantly correlated with spikelet fertility with high 

temperature condition (P<0.01; n = 12) while it was not strongly associated with spikelet 

fertility at the control condition (Figure 6.2).   

6.3.4 Fertilization observation 

By applying the WE-CLSM, the in vivo imaging of the double fertilization process was 

successfully observed for rice exposed to both control and HDT. About 0.5 to 1 h after 

flowering across all genotypes (Table A6.2), the tip of the pollen tube passed through the 

micropylar pole (Figure 6.3a), discharged its content through interaction with one of 

degenerated synergids which looked like a horn (Figure 6.3b). The horn-like structure was 

seen extending and getting closer to the two polar nuclei and egg cell, allowing the release of  
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Figure 6.2 The relationship between spikelet fertility and pollen germination of all tested 
genotypes which were exposed to control (30°C) and high day-time temperature (HDT - 38°C) 
at flowering stage for 6 consecutive flowering days (Experiment 1). The significance of the 
correlation is represented as: ***, P<0.001. 
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two sperm cells to migrate towards the female gametes (one of the released sperm cells 

moved towards the egg cell and the other one towards polar nuclei – not visible in our 

pictures). After that, cytoplasm content around polar nuclei became denser (Figure 6.3c). 

From then on till 2  or 3 hours after flowering in different genotypes, polar nuclei together  

 
Figure 6.3 Processes leading to fertilization and zygote formation in IR64 plants exposed to 
control temperature (30oC) coinciding with flowering (Experiment 2). (a) At 0.5 h after 
flowering (h), pollen tube (PT) was passing through the micropylar. (b) At 1 h, pollen tube 
penetrated into the degenerated synergids (DS) and a horn-like structure got closer into two 
polar nuclei (PN) and egg cell (EC). (c-d) From 1.5 to 2.0 h, two polar neulei together with 
one sperm cell nucleus (SN-small nuclei shown in 2.0) started migration. (e) At 2.5 h, the 
fusion of PN and SN occurred (indicated by arrow). (f-h) From 3.0 to 4 h, free endosperm 
nucleus (EN) were shown due to the first division of the primary endosperm nucleus. (i) At 5 
h, zygote (Z) shown with large nucleolus was seen from fusion of EC and SN. (k) At 12.0 h, 
pre-embryo with two cells. (l) At 24 h, embryo (E) together with plenty of free endosperm 
nucleus. Bars = 50 μm 
DS, degenerated synergids; E, embryo; EC, egg cell; EN, endosperm nucleus; PT, pollen tube; 
PN, polar nuclei; SN, sperm cell nuclei; Z, zygote. 
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with the sperm nucleus moved closer to the wall of the embryo sac (Figure 6.3d, e) and the 

primary endosperm nucleus was formed from the fertilization of polar nuclei and sperm 

nucleus. Then the primary endosperm nucleus started its first free-nuclear division (Figure 

6.3f) and there was genotypic variation in the timing when division was started (Table A6.2). 

From then on, the primary endosperm nucleus continued its 2nd or 3rd division (Figure 6.3g – 

j). In 5 hours after flowering, the sperm nucleus fused with egg the nucleus, forming a larger 

nucleolus providing initial signals of zygote formation (Figure 6.3i). Twelve hours after 

flowering, the zygote was seen to undergo its first division and a two-celled embryo was 

formed, while the primary endosperm nucleus had completed three or more rounds of 

divisions (Figure 6.3k). At 24 hours after flowering, the size of the embryo sac was enlarged 

with plenty of free nuclei distributed around the wall of embryo sac and simultaneously 

 

 
 
Figure 6.4 Processes happening at 0.5 and 1.0 h after flowering in two rice genotypes 
(checks-N22 and IR64), heat tolerant IR64 near-isogenic line (HT NIL) and three hybrids (H2, 
H5, H6) after exposing to control temperature (30oC) and high day-time temperature (38oC) at 
flowering stage (Experiment 2). (control-0.5 h) Highlighted pollen tube is passing through 
micropylar (in IR64 and H5) or soon after it penetrated into one of the degenerated synegids 
and bright horn was formed (indicated by arrow). (control-1.0 h)  Horn-like structure 
extended into the middle of two polar nuclei and egg cell allowing the release of two sperm 
cells nuclei. (HDT-0.5 h & HDT-1.0 h) The bright pollen tube or horn-like structure was not 
observed in the embryo sac indicating the pollen tube did not reached the embryo sac.  
Bars = 50 μm 
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the zygote continued its division (Figure 6.3l).  

Based on the in vivo fertilization observations, spikelets were classified into four 

categories to distinguish the differences between control and HDT exposure (Table 6.5). 

Under the control condition, more than 73.3% of the spikelets had normal fertilization, and 

the next large group was the spikelets without pollen tube reaching the embryo sac, 

accounting for 2.5% to 23.8% of spikeles across all genotypes (Table 6.5). There were only 

0.2% to 2.2% of samples in which the pollen tube reached the embryo sac, but then were 

arrested with no further progress. After exposure to high day temperature stress, the spikelets 

with normal fertilization largely decreased between 2.3% and 19.0% (Table 6.5). There were 

an average 80.2% samples without pollen tube reaching to the micropylar pole or without 

bright horn-like structure indicating penetration of pollen tube into the degenerated synergids 

in all genotypes (Figure 6.4 - showing the process at 0.5 and 1.0 h after flowering). In contrast, 

the spikelets with arrested fertilization increased under the HDT condition compared to that in 

the control condition even though it was less frequent among the various fertilization 

classifications.  

6.4 Discussion 

In view of constraints affecting hybrid rice development under the current and projected 

increase in frequency of heat episodes in tropical and subtropical rice-growing countries, we 

studied experimentally the impact of high temperature stress on hybrids in comparison with 

inbred rice genotypes. When designing experiments involving temperature effects 

transpiration cooling could be a confounding factor due to different VPD  (vapor pressure 

deficit) which is determined by interaction between day temperature and relative humidity 

(Yan et al., 2010; Julia and Dingkuhn, 2013). Considering tissue temperature in plants has 

been highlighted (Sheehy et al., 1998; Yoshimoto et al., 2011), to account for this interaction. 

There are indications of genotypic difference in panicle temperature under highly variable 

environments such as extreme heat and low relative humidity (Julia and Dingkuhn, 2013). 

However, in our study, spikelet tissue temperature measured across all genotypes and both 

experiments was close to air temperature, by following an established experimental set up (i.e. 

high day temperature and moderately high relative humidity) wherein VPD is maintained at 

low levels (Jagadish et al., 2010; Shi et al., 2015). Additionally, it has been reported that the 

tolerant genotype with higher spikelet fertility had relatively higher spikelet tissue  



Differences in response to high day and night temperature at flowering 
 

147 

 

 

 

 

 

 

 

T
ab

le
 6

.5
 F

re
qu

en
ci

es
 o

f v
ar

io
us

 c
la

ss
ifi

ca
tio

ns
 o

f f
er

til
iz

at
io

n 
in

 c
he

ck
s 

(N
22

 a
nd

 IR
64

), 
he

at
 to

le
ra

nt
 IR

64
 n

ea
r-

is
og

en
ic

 li
ne

 
(H

T 
N

IL
) 

an
d 

th
re

e 
hy

br
id

s 
(H

2,
 H

5,
 H

6)
 o

f 
ric

e 
ex

po
se

d 
to

 c
on

tro
l (

31
°C

/2
3°

C
, d

ay
/n

ig
ht

) 
an

d 
hi

gh
 d

ay
 te

m
pe

ra
tu

re
 (

H
D

T-
38

°C
/2

3°
C

) a
t i

ts
 fl

ow
er

in
g 

da
y 

(E
xp

er
im

en
t 2

). 
 

G
en

ot
yp

e 
Tr

ea
tm

en
t 

To
ta

l n
o.

 o
f s

pi
ke

le
ts

 
us

ed
 fo

r o
bs

er
va

tio
n 

Sp
ik

el
et

s w
ith

 n
or

m
al

 
fe

rti
liz

at
io

n 
 

(%
) 

Sp
ik

el
et

s w
ith

ou
t p

ol
le

n 
tu

be
 th

at
 re

ac
he

d 
its

 
em

br
yo

 sa
c 

(%
)  

Sp
ik

el
et

s w
ith

 
ar

re
st

ed
 fe

rti
liz

at
io

n 
(%

)  

U
nc

le
ar

 sa
m

pl
es

 
an

d 
ab

no
rm

al
 

em
br

yo
 sa

c 
(%

) 
N

22
 

C
on

tro
l 

44
6 

94
.8

 
2.

5 
0.

9 
1.

8 

 
H

D
T 

 
30

6 
19

.0
 

77
.1

 
2.

3 
1.

6 
 

 
 

 
 

 
 

IR
64

 
C

on
tro

l 
31

9 
91

.2
 

2.
5 

0.
3 

6.
0 

 
H

D
T 

34
1 

2.
3 

73
.3

 
16

.7
 

7.
6 

 
 

 
 

 
 

 
H

T 
N

IL
 

C
on

tro
l 

53
3 

89
.1

 
8.

6 
0.

2 
2.

1 

 
H

D
T 

38
4 

16
.4

 
78

.4
 

4.
2 

1.
0 

 
 

 
 

 
 

 
H

2 
C

on
tro

l 
35

6 
81

.2
 

14
.6

 
2.

2 
2.

0 
 

H
D

T 
30

6 
9.

8 
81

.4
 

4.
6 

4.
2 

 
 

 
 

 
 

 
H

5 
C

on
tro

l 
41

2 
73

.3
 

23
.8

 
0.

5 
2.

4 
 

H
D

T 
30

7 
5.

9 
83

.4
 

3.
3 

7.
5 

 
 

 
 

 
 

 
H

6 
C

on
tro

l 
45

9 
88

.7
 

6.
3 

0.
4 

4.
6 

 
H

D
T 

53
0 

9.
8 

87
.4

 
1.

3 
1.

5 
  T

ot
al

 n
o.

 o
f o

bs
er

ve
d 

sp
ik

el
et

s i
s t

he
 su

m
 o

f c
ol

le
ct

ed
 sp

ik
el

et
s s

ta
rti

ng
 fr

om
 0

.5
 to

 2
4 

h 
af

te
r f

lo
w

er
in

g.
  

 "
Sp

ik
el

et
s w

ith
 n

or
m

al
 fe

rti
liz

at
io

n"
 in

di
ca

te
s t

he
 sp

ik
el

et
s h

av
e 

th
e 

si
m

ila
r p

ro
ce

ss
 to

 c
on

tro
l c

on
di

tio
n 

at
 it

s p
ar

tic
ul

ar
 ti

m
ep

oi
nt

. 
 "

Sp
ik

el
et

s w
ith

 a
rr

es
te

d 
fe

rti
liz

at
io

n 
"i

nd
ic

at
es

 th
e 

fe
rti

liz
at

io
n 

pr
oc

es
s s

to
pp

ed
 a

nd
 it

 w
as

 n
ot

 in
 th

e 
sa

m
e 

co
nd

iti
on

 a
s t

he
 c

on
tro

l s
am

pl
es

. 
 



Chapter 6 
 

148 

temperature compared to the susceptible genotype (Coast et al., 2015; Shi et al., 2015). Our 

study also showed that the spikelet fertility of tolerant check-N22 was much higher than that 

in other genotypes under high temperature, with no obvious difference in spikelet tissue 

temperature between N22 and other genotypes (Table 6.1 and 6.2). These data indicate that 

genotypic resilience is not merely associated with avoiding the hot microclimate, but mostly 

due to its resilient reproductive physiology (such as number of pollen and pollen germination 

on the stigma).  

 Thus, it is necessary to investigate how spikelet fertility is associated with reproductive 

physiology under stress. Until today, our study is the first to evaluate this association in the 

context of the performance of tropical and subtropical hybrids to HDT. We first observed the 

high vulnerability of these hybrids to HDT during flowering, which is in agreement with the 

previous studies working on evaluating the heat tolerance of hybrid rice grown in China 

(Tong et al., 2008; Hu et al., 2012; Zhang et al., 2014; Fu et al.,  2015). It is worth noting that 

hybrids having heat stress tolerance to HDT in above studies and even our study account for 

only a small portion of all tested hybrids. Moreover, substantial differences in the sensitivity 

of spikelet fertility to HDT were identified within investigated hybrid rice and selected best-

performing modern inbred indica varieties and a heat tolerant check. Hybrids showed greater 

decreases in spikelet fertility over the inbreds exposed to HDT at flowering. Madan et al. 

(2012) showed that the large yield advantage of one hybrid over an inbred cultivar (IR64) at 

29°C and 35°C disappears at 38°C as sterility significantly increased. In line with our results, 

a study which compared one inbred japonica variety with two hybrids showed higher heat 

susceptibility in hybrids at heading stage (Zhang et al., 2014). Based on the above studies and 

our own evaluation, it can be concluded that high temperature is a major factor in regulating 

the stability of hybrid rice production, with hybrid rice relatively more sensitive to increasing 

temperature than indica and japonica inbreds. These findings, therefore, highlight the urgent 

need to address the damage caused by HDT on hybrids and develop heat-tolerant hybrids by 

utilizing the genetic advances made using inbreds and landraces (Ye et al., 2015). In 

Experiment 2, HDT and HNDT significantly decreased spikelet fertility in all tested 

genotypes while HNT moderately decreased spikelet fertility in only three hybrids (Table 6.3). 

Regression analysis also demonstrated that day temperature was dominant in deciding 

spikelet fertility of rice rather than night temperature (Table 6.4). This is in agreement with 

the results of Yin et al. (1996) on phenological development to flowering in response to day 
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and night temperature and of Ishimaru et al. (2016) on the spikelet sterility in the fields of 

heat-vulnerable regions in Laos and southern India.  

High temperature during flowering has been identified to affect the anther dehiscence, 

pollen pollination and pollen germination, causing spikelet sterility (Matsui et al., 2000; 

Prasad et al., 2006; Jagadish et al., 2010). Our result (Figure 6.2) was in line with previous 

reports that spikelet sterility under HDT exposure was strongly associated with lower 

numbers of pollen germinated on the stigma. Only one pollen tube can succeed in penetrating 

the embryo sac from the micropyle because the other pollen tubes that arrive there later 

cannot enter as the micropyle opening is blocked by the first arriving pollen tube. However, 

the elongation of the pollen tube is more favorable when several pollen tubes are in close 

proximity to each other as compared with isolated ones (Hoshikawa, 1989). Thus, a certain 

number of germinated pollen are required for maintaining the spikelet fertility under HDT 

condition, and Yoshida (1981) identified that this minimum number of germinated pollen 

grains is ten. After the pollen has germinated on the stigma and the pollen tube has penetrated 

the embryo sac, the double fertilization process is immediately initiated. However, this in vivo 

fertilization process has never been clearly described in previous research to pinpoint relative 

changes under both control and high temperature conditions. Our results clearly demonstrated 

that increased temperature during flowering caused spikelet sterility by disturbance of the pre-

fertilization process as spikelets without pollen tube reaching the embryo sac accounted for 

the largest proportion among all observations (Table 6.5, Figure 6.4 and Figure A6.2). A more 

detailed mechanistic explanation to previous findings, high temperature affecting pollen 

viability and germination on the stigmatic surface and along its journey to the ovary, from our 

findings adds to the knowledge gap in this area. In contrast, the fertilization processes in both 

control and HDT conditions were less affected by temperature stress as spikelets with arrested 

fertilization accounted for a small proportion compared with spikelets without pollen tube 

reaching the ovary. Our study is the first to prove the hypothesized statement that temperature

≥38°C occurring one hour after flowering had a minimal impact on fertility (Yoshida et al., 

1981; Jagadish et al., 2007). Furthermore, our results imply that by shifting the flower 

opening to early morning cooler conditions (Ishimaru et al., 2010; Bheemanahalli et al., 2017) 

is an effective strategy, and should be considered as a potential trait to improve the heat-stress 

resilience in hybrids.  
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6.5 Conclusions 

In summary, together with the findings of previous studies showing the high vulnerability of 

hybrids to high day temperature, our study also indicates the heat susceptibility in tropical and 

subtropical hybrids and emphasizes their susceptibility to be higher than that of the high-

yielding inbred varieties. Moreover, we identified a novel mechanism of high temperature 

impacts during flowering, that is, the fertilization process was minimally affected by HDT; 

instead, disturbances in the pre-fertilization phase were the primary causes for heat-induced 

spikelet sterility. Thus, introducing the early-morning flowering trait into rice plants could be 

considered as a good strategy because the sensitive period of the plant would be in the 

relatively cool morning hours and the later fertilization process, though taking place at high 

temperature around noon, would be little affected. While this mechanism may also explain 

our result in H6 that HNT might alleviate the negative effect of the following-day HDT, it 

does not explain our data showing a direct negative effect of HNT in three hybrids. The latter 

effect merits further morpho-physiological investigations. 
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Figure A6.1 The relationship between heat stress index of five common selected 
genotypes in Experiment 1 (HDT-1) and Experiment 2 (HDT-2). The significance 
of the correlation is represented as: *, P<0.05. 
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Figure A6.2 Processes happening in the embryo sac of IR64 at 0.5 to 24 hours after 
flowering (the numbers located on the top right corner in each picture) exposed to 
higher day-time temperature (38°C/23°C-day/night) for 6 consecutive days. The 
bright horn-like structure (position indicated by arrow) was not found in the embryo 
sac indicating the pollen tube did not passed through the micropylar and penetrated 
with degenerated synegids. 
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Warmer nights and more frequent, more intense and longer heat waves than ever before in the 

history of agriculture occur particularly in tropical and subtropical rice growing regions, and 

this trend is projected to continue in the future(see Chapter 1). Rice production, therefore, will 

seriously be affected by the increasing temperatures, posing a great challenge to sustaining 

rice productivity for meeting the growing food demands in the future. In this thesis, efforts 

were madeto unravel the impact of high day-time temperature (HDT) and/or night-time 

temperatures (HNT) on rice grain yield and grain quality. Besides, some key physiological 

traits and phenomena, related to the response of rice to HNT and/or HDT,were analyzed and 

effective adaptation strategies to cope with frequent high temperatures were proposed. 

 In this chapter, I will first discuss the major results from my studies and their implications 

(Sections 7.1 to 7.4)by addressing the following questions raised in the General 

Introduction(Chapter 1) of this thesis: (a) what arethe responses ofrice to HNT in the field?(b) 

what is the degree of tolerance/susceptibility among promising tropical and subtropical rice 

hybrids to increased temperatures? (c) what are the differencesin response of rice to HDT and 

HNT at flowering and early grain filling stage? and (d) what are the appropriate strategies that 

can be used to cope with increased temperatures.Subsequently I will indicate the further 

research questions that are not yet dealt within this thesis and I will make suggestions for 

future research in Section 7.5. The General Discussion will be completed byConcluding 

remarks (Section 7.6). 

7.1 Responses of rice to high night-time temperaturein the field 

7.1.1 Response of yield and yield components of riceto high night-time temperature  

This thesis presents the first effort to explore the impact of HNT on rice plants in the field and 

the first evidence that yields of tropical and subtropical rice hybridsare affected by exposure 

to HNT.HNT significantly reduced grain yield of susceptible genotypes(Gharib) and all tested 

hybrids under field conditions (Chapters2-3). Chapter 3 also showed thatHNTsignificantly 

decreased grain yield across both seasons (i.e. the dry and the wet season), with on average 

less reduction in the dry season(13.4%) than in the wet season(18.6%),although the 

temperature treatmentsweresimilar for bothseasons.Such difference in the effects of high 

night-time temperature between the seasons may be associated with other environmental 

factors, such as day temperature(Ziska and Manalo, 1996) and solar radiation (Bell et al., 

1992). Theday-time temperature and solar radiation during the wet seasonwere relatively 
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lower than during the dry season (Yang et al., 2008), which could lead to a 

decreasedassimilate production and accumulation, thus inducing largeryieldloss in the wet 

season. In line with my results, Wei et al. (2010b) found different effects of HNT on grain 

yield of both early- and late-season ricein China. HNT imposed during the wet season 

resulted in the absence of a clear diurnal temperature amplitude.Such an amplitude has been 

documented to have a stronger negativeimpact than an increase in night-timetemperature per 

se(Bueno et al., 2012), and could be another factor resulting in a largerdecline in yield in the 

wet season than in the dry season. However, the effect of the amplitudeis still poorly 

understood.  

 The impact of increasing temperatures can occur through effects on each of the following 

yield components: number of panicles per plant, number of spikeletsper panicle, percentage 

seed set, and single-grain weight. In Gharib, an elite indica traditional rice variety with low 

yielding capacity and good quality (Sabouri et al., 2012), the yield reduction, as observed in 

this thesis, was consistently caused by decreases in single-grain weight. Among the high-

yielding rice hybrids, the yield component number of spikelets m−2contributed most, and 

single-grain weight contributed less, to yield variation under control and/or HNT across the 

two seasons, while the contribution of percentage seedset was generally low and season-

specific.This is in contrast with previous HNT studies conducted in controlledenvironments, 

in which yield reduction was attributed to increases in spikelet sterility (Cheng et al. 2009; 

Mohammed andTarpley 2010, 2011;Mohammed et al., 2013; Dong et al., 2014). However,my 

study was in line with subsequent HNT studiesin the field,which indicated that percentage 

seedset may notbe the main determinant of HNT-induced yield loss underfield conditions as 

seedset was not consistentlyand significantly affected by HNT (Zhang et al. 2013; Rehmani et 

al., 2014).The differences in findingsbetween experiments carried out in 

controlledenvironments and in the field could partly be attributed to the fact thatvery high 

HNTs were imposed in all above controlled-environmentstudies (Cheng et al. 2009; 

Mohammed andTarpley, 2010, 2011, Mohammed et al., 2013; Dong et al., 2014), i.e. 

temperatures ≥ 32°C were imposed. Such high values do not exactly represent the predicted 

increase in the near future, whereas HNTs were closer to the current, actual night-time 

temperatures (+2°C to 4 °C) inthe experiments carried out in the field.  

 Environmental variables during the early reproductive phase from panicle initiation to 

booting can have a major effect on rice yield formation. The number of spikelets per panicle 
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is determinedduringthis development phase. In my study, seasonal HNT starting from panicle 

initiationsignificantly reduced the number of spikelets m-2in high-yielding hybrids with a 

large number of spikelets panicle-1(Chapter 3). This finding is supportedby a strong negative 

impact on spikelet differentiation and asignificant increase in spikelet abortion under HNT 

exposuredocumented by Wei et al. (2010a) and Wu et al. (2016).Moreover, grain weight 

reduced under HNT was consistently observed in my studies and other recent studies with 

inbred rice (Zhang et al. 2013; Rehmani et al., 2014; Shah et al., 2014). 

 In conclusion, the number of spikeletsm−2 and the single-grain weight were mainly 

determining the yield loss when the field crops were exposed to warmer nightsduring the 

whole reproductive stage.  

7.1.2Physiological mechanisms of yield loss under high night-time temperatures 

At the whole plant level, HNT consistently reducedsingle-grain weight (Chapters 2-4), which 

was also observed inothersubsequent field-scale HNT studies (Zhang et al., 2013; Rhemani et 

al., 2014; Shah et al., 2014). Thus, my studies focused on the important factors limiting grain 

growth and development during grain filling under HNT. Final single-grain weight is mainly 

determined by duration and rate of grain filling. High night-timetemperatures reduced grain 

growth duration, resulting in an overall negative effect on final single-grain weight (Chapter 

2). Moreover, a significant reduction in assimilate translocation after 

floweringwasobservedfor the susceptible genotype when exposed to HNT (Chapter 2), 

highlighting the critical role high assimilate translocation plays in tolerance to HNT.In 

addition, net assimilate production is mainly determined by the balance between 

photosynthesis and respiration. Warmer nights negatively affect thebalance between day-time 

photosynthesis and night-time respiration (Bahuguna et al., 2016), reduce overall 

carbohydrate pool and biomass, and thusreduce yield(Chapter 3).The reduction in single-grain 

weight under HNT is related not only to the changes in source activity as reported above, but 

also to sink limitation resulting from the changes in enzymes involved in sucrose-to-starch 

metabolism (Bahuguna et al., 2016). Only superior spikelets having greater access to 

assimilates were considered in Chapter 5 to test if assimilate supply is the major factor 

leading to lower single-grain weight and poor quality under exposure to heat stress.No decline 

in the single-grainweight was found under HNT at early grain filling stage in the 

controlledenvironments. I observed that HNT disturbedthe sink activity (enzymes involved in 

sucrose-to-starch metabolism) of superior spikelets. By using a novel modelling approach that 
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quantifies source-sink relationshipsduring grain filling, I foundthat there were 

significantdifferences among cultivars in grain filling duration and grain filling rate, both 

modulated bytheir source-sink relationship in response to HNT (Chapter 4).In summary, both 

source activity (assimilation and/or translocation) and sink activity (enzymes involved in 

sucrose-to-starch metabolism) were affected byHNT. However, given the significant 

genotypic variation in HNT responses, such detailed physiological mechanisms have to be 

investigatedfurther, usingmore rice accessions.   

7.2Responses of hybrid riceto high temperatures 

A potential adaptation strategy to develop heat-tolerant cultivars demands an extensive search 

for genetic variation. So far, genetic variation in response to HDThas been well reported in 

several studies (Ziska et al., 1996; Matsui et al., 2001; Prasad et al., 2006; Jagadish et al., 

2008; Tenorio et al., 2013; Shi et al., 2015; Huang et al., 2016). Although there is wide 

genetic variation in HDTtolerance across different rice germplasm accessions, only 5% of 455 

rice germplasmsshowed some level of tolerance (Tenorio et al., 2013), indicating that there 

are relatively few potential donorsof tolerance traits available among the genetic resourcesthat 

could be used for developing cultivars tolerant to HDT. Moreover, most heat-tolerant 

germplasm in previous studies are traditional varieties with undesirable agronomic 

characteristics and they are grown in relatively narrow geographic niches, making it difficult 

to directlyuse them in breeding (Tenorio et al., 2013). Therefore, a more effective way is to 

use modern advanced breeding lines or cultivars. In this thesis, hybrids that are currently 

grown in major tropical and subtropical rice-growing areas were examinedto assess the 

variation among these cultivars in response to high temperatures (HNT and HDT). HNT 

exposure covering the whole reproductive phasesignificantly decreased grain yield of all 

tested hybrids in the field, which was associated witha reduction in the number of spikelets m-

2 and single-grain weight (Chapter 3).Besides, HDT during flowering lead to severe sterility 

in the field. In my study, HDT during flowering significantly increased spikelet sterility in 

tested hybrids.More importantly, hybrids had lower tolerance to HDT than the high-yielding 

inbred varieties (Chapter 6).My resultsare in agreement with previous studies evaluating heat 

tolerance of hybrid rice grown in China (Tong et al., 2008; Hu et al., 2012; Zhang et al., 2014; 

Fu et al., 2015). It is worth noting that hybrids having tolerance to HDT in the above studies 

and also in my studyaccount for only a small portion of all tested hybrids. These findings, 

therefore, highlight the urgent need to address the serious damage in hybrids caused by HDT 
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or HNTand to develop heat-tolerant hybrids. Besides, the identification of genetic resources 

tolerant to HDT is well documented compared with the identification of genetic resources 

tolerant to HNT. HNT and HDT have different impacts on rice plants and different chains of 

processes leading to damage resulting from HNT and HDT have been addressed (Jagadish et 

al., 2015).Future studies should aim to identify novel donors that have tolerance to warm 

nights,in order to provide sufficient options to mitigate the impact of increasing night-time 

temperatures. 

7.3Differences in impact between high night-time temperature and high day-time 

temperature 

Global warming occurs asymmetrically,with a faster increase in the night-time than in the 

day-time temperature (Donat and Alexander, 2012).Also, more than just the increase in the 

average day-time temperature, it becomesincreasinglyfrequentthatshort-term heat spikes 

coincide with flowering and/or grain filling for a couple of days (Wassmann et al., 2009).In 

my studies, seasonal HNTcaused a significant decline in overallbiomass, reduced non-

structural carbohydrates in plants, and resulted indecreased number of spikeletsm-2and single-

grain weight, ultimately resulting in yield losses(Chapters2-4). HDTcoinciding with 

flowering,however, induced a reduction in percentage of germinated pollen grains on the 

stigma, and resulted inspikelet sterility (Chapter 6).When HDT occurredduringthe early grain 

filling stage, processes involved in grain growth and development were affected, such as 

changes in grain filling dynamics and in activities of starch metabolism enzymes, resulting in 

much lower single-grain weight and increases in grain chalkiness (Chapter 5). In a recent 

meta-analysis,adose-response analysis was conducted using95 published data sets to 

differentiate HNT and HDT influences (Xiong et al., 2017). My results are in agreement with 

that meta-analysis,clearly indicatingthat the responses of rice plants to HDT and HNT differ, 

involving different chains of processes.  

 Seed set is determined by the successful flowering and fertilization processes, and also by 

successful early embryo development. For rice plants, the combined process of anther 

dehiscence, pollination, pollen germination, and pollen tube growth until it reaches the ovary 

usually takes about 30 to 80 minutes during the opening and closing of the flower during day-

time (Cho, 1956). The subsequent fertilization typically occurs within 1.5 to 4.0 h after flower 

opening. These processes are definitely associated with day-time temperature rather than 

night-time temperature as they occur within the course of a day. As discussed earlier, day-
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time temperatures above 35°C occurring even for one hour during flowering had a 

pronounced impact on flowering processes, and consequently spikelet fertility (Satake and 

Yoshida, 1978; Prasad et al., 2006; Jagadish et al., 2007, 2010a,b, 2011).However, the 

temperaturesduring the previous night can also induce changesin flowering dynamics in the 

following days, such as shifting the time of peak flowering, extending or shorteningspikelet 

flowering duration and daily flowering duration per panicle, and lowering percentage of 

pollen germination(Mohammed and Tarpley, 2009a; Julia and Dingkuhn 2012; Coast et al., 

2015). Such changes might partly be linked with spikelet sterility and reduce grain yield in the 

controlled-environment chamber studies with very high night-time temperatures. However, it 

has been proven in my field studies that HNT effects on seedset were lesspronounced 

compared with HNT effects on other yield components and that these effects were season 

specific(Chapters 2-4). Moreover, regulation of cell division, endo-reduplication and cell 

expansion varies during day and night, for example, cell division is known to be stimulated by 

light in tomato (Okello et al., 2015), rendering day-temperature to be more important in 

determining early embryo and endosperm development than night-time temperature. Thus, 

compared with HNT, HDT had a more significant impact on flowering behavior, early 

embryo development, and therefore on seed set.  

 Similar to seedset, HDThad a greater influencethan HNTonsingle-grain growth patterns 

for spikelets from the top portion of the panicle, whereas HNT interacted with HDTin 

determining single-grain weight (Chapter 5). Previous studies involvinga single genotype in 

which night-time temperatures were extremely high (34°C and 35°C) together with relatively 

low day-time warming (34°C and 35°C) treatments, suggested HNT to have a larger negative 

impact on single-grain weight than HDT (Morita et al., 2005; Li et al., 2011; Coast et al., 

2015). In contrast, day-time warming had greater effects on single-grain weight than night-

time warming normalized by every 1°C warming (Rehmani et al., 2014), which is supported 

by my results. However, the negative influence of HNT on single-grain weight should not be 

underestimated at the whole plant level in the field (Chapters 2-4). In my studies, HDT 

induced changes in grain filling rate (decreases or slight increases in different genotypes) and 

substantiallyreduced growth duration; these effects wereassociated with changes in starch 

biosynthetic enzyme activity, ultimately resulting in a smaller pool of non-structural 

carbohydratesand lower single-grain weight (Chapter 5).However, HNT did not reduce 

single-grain weight and NSC content due to the dynamic compensation of higher grainfilling 

rate and shortened grainfilling duration in my study.Therefore, there were different findings in 
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terms of impact of HNT and HDT on grain growth and development. The underlying 

mechanism of how HDT and HNT cause lower grain weight in rice is still far from clear and 

requires further rigorous research. 

High temperaturesduring grain filling impair biosynthesis and storage of starch, resulting 

in chalk formation. In my study, it was clearly determined that HDT had more significant 

impact on chalkiness than HNT (Chapter 5), whichis in line with other studies (Dai et al., 

2009; Li et al., 2011; Xiong et al., 2017).Occurrence of milky-white/white-cored chalk was 

substantially increased under HDT exposure, which was observed as loosely packed,irregular 

and small-sized starch granules (Chapter 5). In contrast, white-belly chalk, together with a 

quicker formation but normal shape of amyloplast build-upat the central part of the 

grains(polygonal shape of starch granules grouping into amyloplast without 

airspaces)wererecorded with HNT (Chapter 5).Thus, these findings indicated different 

mechanisms involved in the response to HDT and HNT during grain filling.  

7.4Appropriate strategies to cope with increased temperatures 

Rice spikelets become sterile if high temperatures occurs during flowering. The potential 

adaptation strategies in response to high temperature at this critical stage, i.e. 

flowering,include heat avoidance (panicle cooling by transpiration- Julia and Dingkuhn, 

2013), heat escape (time of day of anthesis- early morning flowering; Ishimaru et al., 2010; 

Julia and Dingkuhn, 2012; Hirabayashi et al., 2014) and heat tolerance (through involvement 

of key genesto resilient reproductive processes - Jagadish et al., 2010b). Apart from these 

three strategies specifically raised for heat-induced sterility during flowering, some crop 

practices have also been highlighted to cope with yield loss under high temperature exposure. 

7.4.1 Heat avoidance 

Previous studies often use air temperature to explain variability in heat-stress induced spikelet 

sterility during flowering. However, recent studies have shown large differences between 

plant tissue temperature and air temperature, depending on the plants’ transpiration cooling 

ability which is largely a function of prevailing temperature and relative humidity (Matsui et 

al., 2007;Lafarge et al., 2016). Tissue temperature is not considered in controlled-environment 

high temperature studies as these experiments are generally conducted at a targeted relative 

humidity. Hence, in my study (Chapter 6), spikelet tissue temperatureswere measured across 

all genotypes and they were recorded tobe close to air temperature, by following an 
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established experimental set-up (i.e. high day-time temperature and moderately high relative 

humidity) wherein vapor pressure deficitwas maintained at low levels (Jagadish et al., 2010; 

Shi et al., 2015;Lafarge et al., 2016), indicating that transpiration cooling ability is strongly 

limited under high humidity conditions. Thus, a holistic approach to a detailed 

characterization of rice genotypes for true high-temperature tolerancein the controlled-

environment chambers is to provide low vapor pressure deficit conditions to minimize 

evaporative cooling in plants (Bahuguna et al. 2015).Additionally, it has been reported that 

the tolerant genotype with higher spikelet fertility in my research had a relatively higher 

spikelet tissue temperature compared to a susceptible genotype (Julia and Dingkuhn 2013; 

Coast et al., 2015; Shi et al., 2015). My study also showed that spikelet fertility of the tolerant 

check, cv. N22, was much higher than that of other genotypes under high temperature, with 

no obvious difference in spikelet tissue temperature between N22 and other genotypes 

(Chapter 6). These data clearly indicate that toleranceof a genotype is not merely associated 

with avoiding the hot microclimate, but mostly due to genotypic tolerance to reproductive 

physiology,more than to its transpiration ability.Therefore, transpiration cooling ability, 

considered as a potentially effective adaptive trait for improving spikeletfertility at high 

temperature exposure(Weerakoon et al., 2008; Julia and Dingkuhn, 2012),might not work at 

high humidity. Besides, genotypic transpiration cooling ability is not equal to genotypic high-

temperature tolerance, so transpiration cooling abilityshould be used with caution as a trait for 

phenotyping heat toleranceof large panels of genotypes. 

7.4.2 Heat escape 

Recent studies show thatdisturbance of the various physiological processes including anther 

dehiscence, pollination and pollen germination, takingplace during the opening and after 

closing of the flower, are the primary causesforheat-induced spikelet sterility during 

flowering(Matsui et al., 2001; Jagadish et al., 2007). This is confirmed in Chapter 6, in which 

I also recorded a similar phenomenon of poor pollen germination ability strongly associated 

with sterility under high temperature in various rice genotypes.Moreover, the subsequent 

fertilization processes occurring within 1.5 to 4.0 h after flower opening (Cho 1956) was 

investigated in my thesis to specifically fill knowledge gaps in identifying the effect of high 

temperature on in vivo fertilization process. In Chapter 6, novel observations, having a series 

ofsnapshots of dynamic fertilization processes, demonstrated that poor pollen tube growth 

resulting in not reaching the viable embryo sac was the major limitation leading to spikelet 
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sterility under heat exposure. In other words, disturbances in the pre-fertilization phase 

werethe primary causes for heat-induced spikelet sterility.Recently, the early-morning 

flowering trait from wild rice Oryza officinalis has been successfully incorporated into 

popular rice cultivars, advancing their flowering time during the a day to the cooler hours in 

the morning (Ishimaru et al., 2010; Hirabayashi et al., 2014). My observations have clearly 

demonstrated that introducing the early-morning flowering trait into rice plants is a good 

strategy. The peak of the heat-sensitive flowering period occursin the relatively cool hours 

sooner after dawn and the later fertilization process, although taking place at high temperature 

around noon, is little affected.Moreover, the effectiveness of this trait in minimizing heat-

induced sterility has been recently confirmed in field conditions (Bheemanahalli et al., 2017). 

Hence, with the predicted increasing temperatures, escaping heat stress by incorporating the 

early-morning flowering trait in breeding programs is a practical and effective strategy.   

7.4.3 Heat tolerance 

Adaptation to increased temperature could be improved if more heat-tolerant varieties are 

adopted (Jagadish et al., 2010b). After identification and breeding of the heat-tolerant lines by 

breeders, further studies should be focused oninvestigatingthe potential to improve rice, and 

especially heat-tolerance traits from breeding lines, which in turn, could assist in future 

breeding. Recently, anidentified highly heat-tolerantaustype, N22 (Prasad et al., 2006; 

Jagadish et al., 2008), has been used as donor of tolerance intoa widely growncultivar, IR64, 

and theresultant heat tolerant near-isogenic line has been proven to increase spikelet fertility 

by 15% at 38°C compared to its susceptible parent IR64, during flowering(Ye et al., 2012, 

2015). Hence in Chapters 5-6, Ihave included this known heat tolerant near-isogenicline to 

test its high-temperature tolerance. As expected, the tolerant IR64 near-isogenic line had 

consistently lower sterility than its susceptible parent IR64 under exposure to high 

temperature. More interestingly, this near-isogenic line which was developed to improve high 

temperaturetolerance at flowering, had anextended positive impact on reducing the heat-stress 

effect during grain filling. It had the smallest reduction in seed set and single-grain weight 

under HDT, because ofits maintained higher rate of grain filling and higher starch 

biosynthetic enzyme activities compared with its susceptible parent IR64. Thus, this heat-

tolerant near-isogeniclinecan be used as an ideal source for further detailed molecular analysis 

to develop genetic markers for introducing sustained heat tolerance during grain filling. 

Hence, under future climate change scenarios, it is veryimportant to exploit existing heat-
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tolerant germplasm andto incorporate beneficial traits fordeveloping cultivars with both 

superior high yield potential and adaptation to increasing temperatures. 

7.4.4 Nitrogen management 

Increasing nitrogen application helps alleviating the negative impact of high day-time 

temperature stresson grain yield or grain quality(Dai et al., 2009; Duan et al., 2013; Dou et al., 

2017). When the crop was exposed to HDT, extra nitrogen application couldcontribute to 

increasingthe photosynthetic rate of the flag leaf and the root oxidationactivity, or to higher 

activities of the key enzymes involved in sucrose-to-starch metabolic pathways in the grains, 

and to reduce the yield loss ultimately (Duan et al., 2013).However, in Chapter 4, higher 

nitrogenapplication induced the same or even a higher yield loss than observed for the lower 

nitrogen application, indicatingthat the additional nitrogen fertilizer did not assist in 

minimizing yield loss under exposure to HNT.The discrepancy in the findings may result 

from the different kinds oftemperature studies as HDT and HNT induceddifferent chains of 

physiological processes leading to damage to rice growth as I discussed in Section 7.4. 

Additional application of nitrogen, although leading to increased assimilate production, could 

cause higher respiration loss(Swain et al., 2000;Peraudeau et al.,2014). However, this 

respiratory loss is less important when high temperature is imposed during the day, as 

photosynthesis enhancement by nitrogen may be expressed toa greater extent under high day-

time temperature provided that the day-time temperature is not too high.Thus, the potential of 

using nitrogen management to alleviate high-temperature stress requires further critical 

assessment. Perhaps, instead of merely increasing the total amount of nitrogenapplied, 

systematically changing the timing and amount of applied nitrogencould be further 

investigated. Such an approach could allow to explore the possibility of minimizing HNT 

induced rice yield losses under field conditions by proper nitrogenmanagement. 

7.5Further research questionsand future perspectives 

Solutions to overcome current challenges faced with increasing temperature-induced yield 

losses have been proposed for rice. But changes in ambient temperature may besensed via a 

complex network involving different parts of the plant, and examining the complex network 

underlying lower yield and poor quality continues to be a major challenge.Although my 

studies have contributed to fill in knowledge gaps on both how key physiological processes 

and the observed yields and quality are affected by high temperatures occurring particularly 
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during the reproductive stage, there are more questions raised from my research that remain to 

be answered from more research efforts. These include the following areas. 

1) With more emphasis laid on addressing HNT impacts on rice, caution needs to be 

exercised in imposing the proper levels of stress and targeting traits that can overcome 

the damage under realistic field conditions. From my field experiments, I have noticed 

different mechanisms underlying the yield loss under HNT exposure when compared 

with the findings from controlled-environment studies. There is an urgent need to 

identify and validate a critical temperature threshold to facilitate thorough 

investigations of HNT-induced rice yield and grain quality losses under field 

conditions.Moreover, I found that the reduction of yield under HNT was different 

during the two seasons, indicating that other environmental factors under field 

conditions may interact with HNT in influencing yield, such as solar radiation and 

relative humidity. Although the interaction between HNT and other climate factors 

isnot clearly investigated, all of these factors are of importance to be considered in 

future high-temperature studies (Julia and Dingkuhn, 2012; Matsui et al., 2014).  

2) The critical role of HNT in reducing the numberof spikeletsm-2 is not systematically 

investigated in my study, although the sensitivities appear to vary among varieties. 

Detailed observationsto ascertain the cause of damage during the early reproductive 

phase are needed,especially for high-yielding hybrid rice with a large sink size 

thatcontributes to the high yield advantage. 

3) Day-time and night-time temperature increases have been documented to potentially 

affect rice plant differently. In previous studies, the effects of higher day-time and 

night-time temperatures are scarcelyinvestigated in combination. In this thesis, 

however, the efforts to explore these differential influences were undertaken during 

flowering and during grain filling, but in a controlledenvironment only (Chapters5-6). 

In future studies, more field experiments are required to investigate the differential 

effects of HNT and HDT. 

4) Heat tolerance variesamong different genotypes. At the same time, the impacts of 

high-temperature stress on growth, development, grain yield, grain quality as well as 

various physiological functions may involvea complex network. Elucidating this 

complexity would need a mechanistic understanding of these affected processes and 

an incorporation of this understanding into robustcrop models. Such understanding 

and modeling would helpto quantifythe effects of high temperatures under a range of 
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environments and genotypes,and also help to identify traits that can potentially be 

improved toobtain higher and more stable crop yields in stressful environments. 

7.6Concluding remarks 

Global warming, including warmer nights and extreme heat spikes,reduces rice grain yield 

and quality. Thus, it aroused much more attention than ever. However, some critical questions 

have not been fully answered;to that end, my thesisattempts to fill in the knowledge gap to 

address them. I investigated the responses of rice plants to increased night-time temperatures 

in the field, suggesting reduction in the number of spikelet m-2and grain weight were 

closelyassociated with yield loss under HNT in the field. In view of the increasing area of 

hybrid rice production,in particular in South and Southeast Asia, my studies investigatedthe 

degree of tolerance among tropical and subtropical hybrids of rice in response to increased 

temperatures. The results showed the lack of tolerance to high temperatures in hybrid 

rice,suggesting the urgent need to improve heat tolerance for hybrid rice in order to cope with 

future warming scenarios. Moreover, the combined HNT and HDT studies provided a better 

understanding of the differential mechanisms underlying rice flowering and grain 

development under either HNT or HDT. The integrative physiological studiesdescribed in this 

thesis also illustrated diverse capacities in high-temperature adaptation in rice and 

providedeffectivemechanisms or traits that can be exploited to improve heat tolerance in rice. 
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Summary 

The vulnerability of rice productivity to frequent high maximum day-time temperature and 

the relative more increase in night-time temperature compared with the day-time temperature 

in rice growing area across South and Southeast Asia have been mapped. Moreover, the 

increase in both day- and night-time temperatures is projected to continue, potentially leading 

to significant reductions in yield. Hence, major efforts are needed to sustain rice production 

under a rapidly warming climate. Physiological responses of rice to high temperatures, 

including high day-time temperature (HDT) and high night-time temperature (HNT) need to 

be explored, to unravel mechanisms and traits that can be exploited to improve heat tolerance 

in rice.  

The specific objectives of this thesis are to address the following questions: (1) what are 

the impacts of HNT in the field? (2) how tolerant is (sub)tropical, hybrid rice to increased 

temperatures? (3) what are the mechanisms behind the differences in impact between HDT 

and HNT? and (4) what are the appropriate strategies that can be used to cope with increased 

temperatures? 

To understand rice responses to HNT, most previous studies were conducted as pot 

experiments in controlled-environment chambers and involved exposure to very high night-

time temperatures. Field-level information about the impact of HNT on rice is very limited. In 

my thesis, therefore, independent HNT studies were conducted under field conditions to 

systematically analyse HNT responses. In Chapter 2, two genotypes having contrasting 

responses were exposed to HNT during the entire reproductive period. Compared to that in 

the tolerant check N22, the grain yield reduction in the susceptible genotype Gharib was due 

to the significant reduction in grain weight, resulting from decreases in nitrogen and non-

structural carbohydrate translocation after flowering, and from reduced grain-filling rate and 

duration. Combined increase in heat shock proteins, Ca signalling proteins, and efficient 

protein modification and repair mechanisms (particularly at the early grain-filling stage) 

enhanced the tolerance of N22 for HNT.  

Chapter 2 demonstrated that the known heat-induced reduction in grain weight under 

HNT exposure was the major determinant for yield reduction under field conditions, a finding 

which was different from the previous results based on controlled-environment experiments. 

It also showed a necessity to analyse how diverse the temperature effects are if more 

genotypes are studied. In Chapter 3, I presented the first effort to explore the degree of 
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tolerance among six promising tropical rice hybrids in response to HNT together with the two 

genotypes with lower yield potential used in the previous chapter. Overall, HNT significantly 

decreased grain yield of the susceptible check Gharib and all tested hybrids across two growth 

seasons, with less average reduction in the dry season than in the wet season. The latter 

suggests that other environmental factors under field conditions may also contribute to HNT 

impacts on yield. Among yield components, the variation in number of spikelets m−2 most 

significantly contributed to yield variation under control and/or HNT followed by variation in 

grain weight, while the contribution of the percentage of seed-set was small and season-

specific. In most hybrids, grain quality was also strongly affected by HNT, with decreased 

head rice yield and increased chalkiness. Thus, the combination of decreased number of 

spikelets m−2 and individual grain weight largely contributed to the decline in grain yield 

under HNT exposure in the field compared with the percentage seed set. This chapter also 

indicated that tropical and subtropical hybrid rice is generally highly vulnerable to HNT.  

Both assimilate production (source) and assimilate accumulation (sink) are associated 

with yield of cereal crops. Besides, there have been reports that increasing nitrogen 

application can alleviate the negative impact of HDT on yield in rice. However, little is 

known about the interactive effect of HNT and nitrogen supply on rice grain yield and its 

underlying source-sink relationships. In Chapter 4, a novel model approach was proposed to 

quantify source-sink relationships for rice genotypes grown under HNT and different nitrogen 

regimes. HNT significantly decreased grain yield of the susceptible check Gharib at both 

nitrogen levels and in both dry and wet seasons, while grain yield of cultivar PSBRc4 was 

significantly reduced by HNT at the higher nitrogen level only, suggesting that increased total 

nitrogen fertilizer supply did not alleviate the adverse effects of HNT on rice yield. Moreover, 

the model showed that there were significant differences among cultivars in grain-filling 

duration, grain-filling rate and total sink size, resulting from their diverse source-sink 

relationships in response to HNT.  

HNT consistently reduced grain weight in the previous chapters. To this end, my studies 

focused on the important factors limiting grain growth and development during grain-filling. 

In addition, more frequent high day-time temperature has been documented to coincide with 

the grain-filling stage, causing substantial yield loss in many rice-producing regions. In 

Chapter 5, I investigated the impact of independent HNT, HDT and a combination of HNT 

and HDT (HNDT) on grain-filling. At the single organ level (superior spikelets), 
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compensation between grain-filling rate and duration minimized the HNT impact, but 

irreversible impacts on seed-set, grain-filling and ultimately grain weight were recorded with 

HDT and HNDT. Changes in the enzymatic activity did not derail starch accumulation under 

HNT when assimilates were sufficiently available, while both sucrose supply and the 

conversion of sucrose into starch were affected by HDT and HNDT. Irregular and smaller-

sized starch granule formation causing the presence of milky-white and white-core chalkiness 

were observed with HDT and HNDT exposure, while a normal amylopast build-up and less 

chalkiness were recorded with HNT. The findings in this chapter indicate differential 

mechanisms leading to yield loss and poor grain quality from HNT and HDT.  

In previous chapters, I explored the high susceptibility among promising tropical and 

subtropical hybrid rice in response to HNT. The sensitivity of hybrids to increasing 

temperatures during flowering, and physiological responses in terms of dynamic fertilization 

processes are unknown. To address these issues, several promising hybrids and inbreds were 

exposed to HDT and/or HNT and physiological investigation was conducted on the in vivo 

fertilization processes in Chapter 6. HDT significantly induced spikelet sterility in tested 

hybrids and hybrids had higher heat susceptibility than the high-yielding inbred varieties. The 

day-time temperature exerted a greater influence on spikelet fertility than night-time 

temperature. Besides, novel observations involving a series of snapshots on dynamic 

fertilization processes demonstrated that the pollen tube not reaching the viable embryo sac 

was the major limitation leading to spikelet sterility under heat exposure. These findings 

highlight the urgent need to improve high-temperature tolerance in hybrids and demonstrate 

the importance of exploring early-morning flowering as a potential trait to mitigate the impact 

of heat stress at flowering. 

In conclusion, yield reduction under HNT in the field condition was mainly associated 

with the number of spikelet m-2 and individual grain weight. The selected promising tropical 

and subtropical hybrids were highly susceptible to both HDT and HNT, suggesting the urgent 

need to improve the tolerance of rice hybrids to increasingly warmer climates. Impact of HNT 

and HDT either at flowering or during grain-filling in rice was different; more research needs 

to be undertaken to investigate the mechanisms that drive this difference. Increased total 

nitrogen supply did not alleviate the HNT effect in the field. However, introducing the early-

morning flowering trait into rice plants could be a good strategy because the most sensitive 
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period of the plants would be in the relatively cool morning hours and the later fertilization 

process, though taking place at high temperature around noon, would be little affected.  
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