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Microscopy as a statistical, Rényi-
Ulam, half-lie game: a new heuristic 
search strategy to accelerate 
imaging
Daniel W. Drumm    & Andrew D. Greentree

Finding a fluorescent target in a biological environment is a common and pressing microscopy problem. 
This task is formally analogous to the canonical search problem. In ideal (noise-free, truthful) search 
problems, the well-known binary search is optimal. The case of half-lies, where one of two responses to 
a search query may be deceptive, introduces a richer, Rényi-Ulam problem and is particularly relevant 
to practical microscopy. We analyse microscopy in the contexts of Rényi-Ulam games and half-lies, 
developing a new family of heuristics. We show the cost of insisting on verification by positive result 
in search algorithms; for the zero-half-lie case bisectioning with verification incurs a 50% penalty in 
the average number of queries required. The optimal partitioning of search spaces directly following 
verification in the presence of random half-lies is determined. Trisectioning with verification is shown to 
be the most efficient heuristic of the family in a majority of cases.

Optical microscopy remains a key platform technology enabling detection, tracking, and sometimes quantifi-
cation of biologically and medically relevant targets. Standard and advanced microscopy approaches include 
confocal1, and multiphoton2 techniques, which deliver high-power light to classically small (diffraction-limited) 
spot volumes. The probe light excites either endogenous targets3, or introduced emitters (suitably functionalised 
to bind targets4,5 within or between cells).

Standard approaches to confocal and multiphoton microscopy involve rastering the focal spot through a sam-
ple at constant scan rate; this can be treated as a finite dwell time on each pixel/voxel. Firstly, this is to allow 
enough time for signal generation, and secondly, the dwell time is usually above a greater threshold value long 
enough that even dim regions of the sample exhibit low noise. However, biological materials (and some intro-
duced emitters) often exhibit photosensitive or even phototoxic responses6, and may photobleach over time5,7,8. 
There is therefore a tension between resolving the image and minimally affecting the sample, and consequently 
a need to use the probe microscope light in the most efficient manner possible, extracting maximal information 
per photon used in both excitation and collection.

Whether using multiphoton or confocal techniques, a measurement illuminates a continuous sample region 
and is equivalent to asking a question of presence or absence of some target. However, both confocal and multi-
photon microscopes suffer considerable signal photon loss1, due to their collection angles, detection point-spread 
functions, and sundry loss pathways. Conversely, due to improvements in detector technology, false photon gain 
events (e.g. dark counts) are now extremely rare. Therefore the physical situation strongly resembles a half-lie 
scenario, where the presence of a particle may be subject to a lie (i.e., be undetected), but the absence of a particle 
is correctly reported–albeit by an absence of signal.

Half-lies have been studied in the context of games where a Questioner attempts to guess which integer the 
Responder has in mind of those in some domain (e.g., [1, 10 ]6 ). Only queries requiring yes/no answers are 
allowed; hence the response space is binary, and the category of problem is known as binary search9,10. The opti-
mal classical method for the Questioner to accomplish this aim is to consecutively halve that domain; this tech-
nique is a special case of the splitting algorithm11. For binary searches, ⌈ ⌉mlog ( )2  queries suffice to locate one of m 
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integers. The game becomes more interesting when the Responder occasionally lies12,13. These Rényi-Ulam games 
have been studied extensively, both mathematically14–18, and in various applications19–29.

As originally described, the Rényi game is of the combinatorial form “Find a number a ∈ {1, 2, …, m}” using 
arbitrary queries with yes/no answers, where the Responder will lie a set number of times12. Ulam’s game is simi-
lar, but specifies the number of times the Responder may lie (without enforcing such behaviour). Variants since 
considered include asymmetric errors (including half-lies), asking only comparison-type questions, etc. (14 gives 
a comprehensive list). Partially fidelitous solutions have been presented for a subset of these problems30, though 
most studies to date have focussed upon finding optimal strategies where a minimum number of queries suffice 
in all cases to identify the target with 100% fidelity15–17,20,21,24–26,31–40.

An interesting variant of Rényi-Ulam games arises when the lies are limited to only one response type, e.g., 
“yes”, or “present”. Such constraints are termed “half-lies”31, and have again been the subject of some enquiry21,36, 
albeit for specific known numbers of such half-lies, or for unfettered choice of query18. Another interesting subset 
of the games are those where the lies are no longer limited in number, but instead occur probabilistically12,30,41 
(otherwise known as the statistical variant). We are interested in the intersection of these two sub-types.

Here, we show the connection between microscopy and Rényi-Ulam games, and explore subtle differences 
from standard Rényi-Ulam games arising from the physics of confocal and multiphoton apparatus. These differ-
ences preclude the usual approach of determining an optimal number of queries, instead forcing us to consider 
their average number across many trials. We find a useful heuristic for accelerated searching under these condi-
tions, which include the treatment of noise as an intrinsic characteristic of the measurement apparatus, rather 
than as a background distractor as assumed by signal detection theory42,43.

This paper is organised as follows: in Sec. 1 we describe the equivalence between Rényi-Ulam games and 
microscopy, before developing a mathematical approach to selecting queries in Sec. 2 and obtaining an informa-
tion map. We discuss potential uses of the map in various strategies in Sec. 3, analysing their average behaviour 
across many trials, before concluding with Sec. 4.

Microscopy as a Rényi-Ulam game
We wish to determine one (single-photon-emitting) fluorescent target’s position x0 in some continuous 1D 
domain x ∈ [0, L] to within some precision ε (or alternatively, to better than some threshold resolution ε−1). The 
precision may be considerably larger than the target’s physical size, which is always on the atomic to 
few-nanometre scale. The average number of queries required should be minimised, and the result achieved must 
be 100% fidelitous. We assume the microscope illuminates and collects from a region defined by a single top-hat 
function (THF) with arbitrarily controllable boundaries, as this is the simplest approximation we can make. This 
is equivalent to a query in the Rényi-Ulam game over the THF. Queries provoke n fluorescence signal photons 
from the target where n ∈ {0, 1}. n = 1 iff the target is in the non-zero region of the THF, otherwise n = 0. These 
queries are formally equivalent to Rényi-Ulam interval queries, e.g., “Is b < x0 < c?”, for some threshold values b 
and c (see Fig. 1). (Note, however, that under some circumstances–as described in Sec. 3.1–these are also equiva-
lent to comparison queries.)

Microscopes often exhibit photon loss mechanisms, including finite numerical aperture, attenuation through 
optical fibres, and detector inefficiencies. Such system-wide losses are usually (multiplicatively) characterised 
through an overall efficiency, η. This parameter describes the chance of collecting a photon if the target is illumi-
nated by the peak value of the point-spread function, and since photons are usually collected through the same 
PSF, if collection occurs through the peak value also. Most microscopes have non-flat PSFs, often modelled with 
Gaussian functions. Thus, the true efficiency is η0 = η × PSF2(x0), if we normalise the peak value to 1. For simplic-
ity, we treat the PSF as a flat top-hat, and hence the true efficiency is simply η (if the target is illuminated). Being 
concerned primarily with photon loss, we define it as the complement of collection events, α0 = 1 − η, regardless 
of the origin of the loss.

Photon loss thus ocurrs with independent probability α ∈ [0, 1]0 . This loss is the genesis mechanism of the 
half-lie. Surviving photons are collected and counted; their number is the reported measurement result ∈r {0, 1}. 
We formally connect target presence with a Rényi-Ulam “yes”, its absence with a “no”, and allow half-lies on “yes” 

Figure 1.  Microscopy as a game: determining a fluorescing target’s position (red cross) x0 on x ∈ [0, L] within ε. 
Top: microscope (μ-scope) top-hat point-spread function (green-shaded area) not aligned with target 
(x0 < b < c); no photon generated (n = 0); measurement result guaranteed r = 0. Bottom: target within 
microscope PSF (b < x0 < c); photon generated (n = 1). Possibility of photon loss α, leading to probabilistic 
measurement result (r ∈ {0, 1}). Here, c = v as discussed in the main text; also v and α are uniquely specified in 
each measurement. The game ends when the distribution for x is bounded within any distance ε not necessarily 
centred on the true location x0, which is never found.
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states only. I.e., a “yes” could be reported as a “no”, but a “no” state can never be reported as a “yes” (see Table 1, or 
Eq. 1). The game is immediately extensible in multiple commuting spatial dimensions; one plays a separable, 
independent game in each such dimension.

Since we have probabilistic, random photon loss, we explicitly play a statistical, rather than a combinatorial, 
Rényi-Ulam game. The number of loss events is theoretically unbounded. Therefore, optimal solutions to combi-
natorial Rényi-Ulam games as described above do not exist here, since they describe scenarios where the number 
of lies (or half-lies) is known a priori.

For cases where up to a certain total fraction of the queries may be lied to (in any order, and in adversarial 
fashion), it has been shown44 that an O n(log )2  questioner’s solution exists for lie-rates <1/3, whilst for rates above 
the responder can always win. The authors note that their result is also obtainable from the proofs of Rivest, 
Meyer, Kleitman & Winklmann31. The complexity of the half-lie problem has been generally equated to that of the 
full-lie problem, for specified numbers of half-lies31, and the number of necessary and sufficient queries for one 
half-lie has been solved36. However, this still does not describe the probabilistic nature of the half-lies inherent to 
microscopy. The combination of half-lies and the statistical variant does not appear to have been yet considered.

Since microscopes typically have the probabilistic α0 > 1/3, but do not operate in adversarial fashion, we 
instead concern ourselves with minimising the average number of queries. Such an approach will aid experiments 
requiring many replications and/or variations, as are common in biology and medicine.

Mathematical formalism
We now formulate the game, with particular regard for the choice of measurement boundary (defined shortly) 
and the consequences of that choice for algorithm run time. Random variables X, N, and R, are defined on the 
domains of x, n, r (position, number of signal photons, measurement result); A is the signal loss probability, on 

[0, 1]α ∈ , and V is the turn-off boundary between the measured and non-measured regions, defined on 
v [0, 1]∈ . Without loss of generality due to the invariance of Shannon information with a reordering of the dis-
tribution, we fix the turn-on boundary at the leftmost point with PDF > 0 for convenience. This also further 
specifies the query type as a comparison question.

The physics of our system allows us to put constraints on their behaviour:

n v x v x x v
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where θ is the Heaviside step function, and δi,j is the Kronecker delta function as the domains n and r, of N and R 
respectively, are discrete. Since we only probe emitters left of v, we can only excite emissions left of v; the receipt 
of a photon necessarily requires its emission, and is sometimes blocked by signal loss. For conciseness, we hence-
forth omit the probabilities’ domains.

As the domain v is continuous, we set δ= − v v( )V 0 , using the Dirac delta function, and assuming a perfectly 
known boundary, v0. Also, δ α α= −( )A 0 , a perfectly known false negative rate, α0. Further, although the target 
has a unique position x0, this is unknown; therefore we have a uniform prior over X, such that L1/X = .

Since A and V are uniquely determined,
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We now consider that when we attempt to detect photons, we are making a quantum measurement of the field. 
Since the position of the emitter and measurement boundary are determined before the Markov process of meas-
uring (collapsing) the state and reporting the outcome, we can deconditionalise thus:

(4)R N A V X R N A, , , ,= .| | 

System State Possible responses

Rényi-Ulam
No No

Yes No or Yes

Microscopy
Absent r = 0

Present r ∈ {0, 1}

Table 1.  Possible responses in Rényi-Ulam game and microscopy experiment, illustrating the connection 
between the experiment and the game. Because the “No” and r = 0 responses appear for both states, the 
possibility of a half-lie must be considered when one of these responses is obtained. Conversely, a “Yes” or r = 1 
response is guaranteed to be fidelitous.
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We form the full joint by:
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Substituting Eqs 1–4 in Eq. 5 and marginalising gives
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Now, using the definitions of Shannon information:
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we can calculate the mutual information:
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shown in Fig. 2. As expected, since this limit is formally equivalent to the canonical binary search problem, 
=α → vlim 1/20 00

. v0 is undefined for α0 = 1; however, the limiting value as α0 → 1 is v0 → 1/e. The optimal meas-
urement domain in the presence of photon loss (half-lies) is therefore less than L/2.

Search strategies
Proposals.  A greedy strategy for target searches would be to maximise the information gain for each subse-
quent measurement. However, any search over a region that is not a simple dividend of the overall region will be 
difficult to update for a null result, r = 0. (It would also return the query type to interval questions.) We therefore 
consider simple heuristic approaches, whereby the domain is split into q subdomains which are explored sequen-
tially until the target is explicitly located, whence the split (into q subdomains) recurs. Note that the final split in 
each heuristic is still into q subdomains, even if fewer would suffice to meet the criterion of precision ε, maintain-
ing the heuristics’ simplicity. We develop and contrast four such approaches: bi-, tri-, and tetra-sectioning with 
verification, and the limiting extension of these to sequentially scanning each of the ε−1 subdomains.

The obvious choice for an heuristic is bisectioning, the limiting case for zero half-lie rate. (Basic bisectioning 
is equivalent to binary search in this limit.) Here, we define an approach where null measurements simply unbal-
ance the PDF, and following measurements are undertaken on the other half; i.e., naïvely rastering between only 
two equally sized subdomains at a time. This cycle repeats until positive verification of target presence occurs by 
a measurement r = 1; the problem is then recursively reposed within the successful half (Fig. 3, for q = 2). We call 
this process “bisectioning with verification”. Note that by insisting on positive verification, we cannot take advan-
tage of all the available information in the low-half-lie limit. On average, this process dictates 1.5 measurements 
per level of enquiry, due to the equal probabilities of the target being or not being in the first-examined subdo-
main; i.e., for precision ε, ε. −1 5 log ( )2

1⌈ ⌉ queries are required.
Here, we extend the definition of bisectioning with verification to define a new family of heuristics: 

q-sectioning with verification. q equal subdomains are queried in turn until positive verification is obtained. The 
average number of measurements will be ε αmq, , 0

; for half-lie-free search this is:
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ε=
+ 




.ε

−m q( 1)
2

log ( ) (10)q q, ,0
1

Now we consider trisectioning with verification; we have ⌈ ⌉m 2 log ( )3, ,0 3
1ε=ε

− . Due to our high probability of 
signal loss, we expect ε α ≠−m3, , 01

0
 to be a considerably higher number of measurements than m3, ,01ε− . Note that this 

is explicitly not the ternary search of Rényi-Ulam games, defined as a special case of q-ary search34,45. That refers 
instead to a similar, but subtly different process in which the Responder indicates which of the q subdomains 
holds the target. A good example problem of that type is finding a heavier coin by balance weighing18. Neither is 
it the ternary search of computer science or learning, where it is used to maximise unimodal functions by evalu-
ating their value at two intermediate points46,47, or to classify and sort data48.

Figure 2.  Optimal measurement domain strategy per independent measurement on [0, L] in the presence of 
photon loss half-lies: (a) false-colour plot of information gained as a function of false negative rate α and region 
boundary v, with particular values of α marked (black dashed lines), and optimal region boundary placement 
shown as a function of α (white curve); (b) focus on optimal boundary placement (white curve from (a)); (c–f) 
line slices of (a) showing the information gain for each boundary placement at α ∈ {0.2, 0.4, 0.6, 0.8} (black lines 
in (a)); and (g) maximal information possible per measurement shown as a function of α.

Figure 3.  q-sectioning algorithm requiring detection to proceed. Update prior step not formally required. 
We choose (without loss of generality) to index subdomains from the left boundary. l is an index for the q 
subdomains required at any step of q-sectioning. The algorithm completes when the final subdomain is smaller 
than the precision required, ε.
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We also extend this idea to tetrasectioning, which is analogous to bi- and tri-sectioning but partitions the 
surviving search space into four equal subdomains at any level of measurement. Similarly, the average number of 
measurements for half-lie-free search will be m 2 5 log ( )4, ,0 4

1
1 ⌈ ⌉ε= .ε

−
− .

The penultimate approach we consider is to use precisely as many equal sections as we require for the desired 
precision, i.e., ε−1 subdomains, and to raster over these subdomains until positive verification is obtained. We call 
this approach “rastering with verification”. On average, this will require ε ε= . +ε ε ε=

− −
− − −m 0 5( 1) log ( )q , ,0

1 1
1 1 1  

measurements, which for any appreciable value of ε−1 is prohibitively large compared to the previous three strat-
egies. We therefore summarily dismiss rastering with verification as unfeasible (except for small ε, where it 
approaches the other strategies) and do not consider it further in this work.

Finally, we consider rastering as is commonly performed. Here, the domain is continuously scanned from 
left to right, with the THF having width ε. This is used instead of dwelling on each subdomain in turn to avoid 
ring-down of the equipment after stopping and any consequent dark time to allow its mitigation. The scan rate is 
slow for several reasons, including shot noise suppression, and convenience in automation by standardising the 
process for every pixel. We can, however, model this approach as physically dwelling on each subdomain in turn 
for a set number of queries before moving on. For a dwell time corresponding to γ queries, this approach will 
require γ/ε measurements; 0.5γ/ε on average if the scan is adaptively implemented and will cease after locating 
the target. Not only does this approach again require a far larger number of measurements for any appreciable ε−1, 
but the inefficiency is compounded by the dwell parameter, γ, which must be at least 1. Once more, we dismiss 
this strategy and ignore it henceforth.

We note in each of these heuristic schemes that since the initial domain PDF is uniform, the entropy of an 
initial query on an edge subdomain is the same as one on an internal subdomain (of equivalent length). Therefore, 
the query types, though often of interval form, are informationally equivalent to comparison queries. Similar 
arguments can be made for the following measurements until a new mapping within a subdomain occurs and the 
reasoning recurs.

First-pass analysis.  To estimate the average optimal number of queries needed to locate a target with preci-
sion ε for specific α0, we consider the amount of mutual information – from Eq. 8 – delivered by a hypothetical 
optimal first measurement as dictated by Eq. 9. We approximate all consequent measurements with this value. 
Achieving the desired precision corresponds to acquiring ε−log ( )2

1  bits of information, and thus requires an esti-
mated ⌈ ⌉ε |α

− I X R[log ( )bits]/[ ( : ) bits/query]v2
1

,0 0
 queries.

We simulated one million random emitter positions, using α0 = 0.99, and subjected each to bi-, tri-, and 
tetra-sectioning with verification as described above, to an arbitrarily selected precision of ε = 10−10. (This high 
precision displays the algorithmic speedup well; microscopy generally deals with ε > 10−6, or the approximate 
ratio of a confocal spot diameter to the length of a 96-well plate.) The measurement regions were curtailed only 
after positive detection, otherwise cycling through the 2, 3, or 4 sections available. For α0 = 0.99, this dictates an 
estimated ≈6240 “optimal” queries.

Figure 4a shows a histogram of the Monte Carlo results: the mode [Mo()] of each stratagem is apparent, 
with Mo(trisectioning) < Mo(tetrasectioning) < Mo(bisectioning). The trisectioning mode is also smaller than 
the estimated optimal average number of measurements; the semi-infinite nature of the data space allows for an 
average value pulled right of the mode.

Figure 4b is the cumulative density function for each approach, from which the median is extractable where 
each curve crosses the horizontal dotted line. Again, the same ordering is evident, with Median(trisectioning) 
falling just below the estimated optimal average number.

The distribution means are displayed in the first row of Table 2, and are consistent with the other measures of 
central tendency, except that the trisectioning mean is now slightly higher than the estimated optimal average. In 
addition, the mean number of queries required was evaluated for several different half-lie rates, and form the 
remainder of Table 2. Similar estimates for the optimal behaviour based on αI X R( : ) w,0

 are also provided.
The requirement of absolute knowledge (zero PDF outside the final location), by positive verification of 

presence through signal capture, inflicts a penalty on the sectioning strategies. As mentioned above, 33.2 bits of 
information are required: at zero half-lie rate, this dictates 34 measurements in a perfect scheme. The final row 

Figure 4.  Results of 1,000,000 Monte Carlo trials with α0 = 0.99 for each sectioning strategy: (a) Histograms 
of search heuristic results indicating the mode of each strategy, and estimated optimal average result, and (b) 
cumulative distributions of same, indicating median values. Note: the trisectioning trace is to the left of both 
bi- and tetra-sectioning for almost the entire number of trials. Also note the estimated optimal average (dotted 
black line), similar but not equal to the trisectioning median (intersections with dashed black line).
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of Table 2 shows that none of the sectioning strategies performs particularly well compared to this mark, with 
bisectioning using on average 50% more queries than required. In contrast, tri- and tetra-sectioning only require 
24% more queries than are optimal. Neither uses the extra (positive) information which can be derived from null 
results, which faithfully indicate that the target is not present. The ignorance and disuse of the full information 
available by the insistence on positive verification translates as an extra cost in the number of measurements 
required.

It is instructive to consider the lower (non-trivial) limit of half-lie rates, where the most likely outcome is one 
half-lie. Assuming the 34 necessary plus one erroneous measurements, one half-lie is most likely for 
1/36 ≤ α0 ≤ 1/18, with the expected value of one half-lie for α0 = 1/35. Rivest et al.31 proved that finding a target 
in k discrete subdomains, when up to E responses to comparison questions may be erroneous iff the truth is of one 
specified type (e.g., less than), requires ≥ + +⌈ ⌉Q k E k O E Elog ( ) log log ( ) [ log ( )]2 2 2 2  comparison questions. 
For our example case, where E = 1 and k = 1010, =E Elog ( ) 02 , requiring ⌈ ⌉≥ ∼ . =Q 38 2 39 queries. From 
Table 2, the trisectioning heuristic performs on average within 11% of the Rivest et al. bound within these limits, 
and outperforms the bi- and tetra-sectioning approaches.

Not only does bisectioning fail to be optimal (even for zero half-lies), trisectioning outperforms it at every 
half-lie rate as well (for ε−1 = 1010). From Table 2 we can determine that the penalty for using bi- instead of 
tri-sectioning is 8–21%, depending on the photon loss rate–and worst for low loss rate (where the insistence on 
positive verification is most deleterious). There is therefore an immediate, quantifiable benefit to preferring the 
trisectioning strategy over bisectioning. Tetrasectioning has a similar, albeit smaller, penalty, and is nearly as 
efficient as trisectioning for low half-lie rates.

Although for low photon loss, the trisectioning heuristic requires more measurements than the estimated 
optimal information use, its performance improves markedly as losses increase. For typical confocal microscope 
conditions (α0 ≈ 0.99), trisectioning requires on average only 1% more measurements, and beats bisectioning by 
10%.

Returning to the original context of confocal/multiphoton microscopy, one major point of difference is that 
here, we explicitly recognise that once a subdomain is searched and a null result obtained, the target is more likely 
elsewhere in the full domain. In contrast, conventional approaches dwell on each pixel, effectively performing 
a number of measurements (as defined by our approach) several orders of magnitude larger than the one per-
formed here before moving the PSF. Such processes are information inefficient.

The second, and more impactful, difference is that conventional microscopy always searches the same amount 
of area per query, whereas the sectioning approaches resize the PSF after verification. This is the origin of the 
change from linear to logarithmic behaviour–if the local intensity of the probe beam within the PSF can be main-
tained for diffuse measurements.

Exploration for other precisions.  Zero half-lie rate.  The selection above of ε−1 = 1010 was somewhat 
arbitrary, and it is natural to question whether the performance of the trisectioning algorithm was due to the 
nearness of 1010 to a power of three (and distance from powers of two and four).

To explore this concept, we propose the following thought experiment: let us set the half-lie rate to α0 = 0. 
Now, there is no probabilistic component to the average number of searches required to find a target in q subdo-
mains; the average number is simply q

2
, based on the random placement of the target within the initial domain. 

We can therefore easily compute the expected number of searches under a given heuristic as ε





−log ( )q
q2

1 . 
Performing this for q ∈ {2, 3, 4, 5} and ε−1 ∈ {2, 3, 4, …, 106}, we compute Fig. 5a.

It is quickly apparent that trisectioning and tetrasectioning dominate a search for minimum-search strategies. 
Further investigation shows that tetrasectioning is actually the most frequent winner, for 611612 of the consid-
ered values of ε−1. It is unique for 569970 of these cases. See Table 3 for more detail.

Strategies with q > 8 are never efficient, hence our comments about rastering as generally performed. 
Strategies with 5 ≤ q ≤ 8 are efficient only in limited special cases. Choosing q ∈ {3, 4} offers optimal behaviour for 
987,353 of the cases considered.

α0 −Bi  sectioning −Tri  sectioning Tetra− sectioning Est. optimal

0.99 6783.13 6275.92 6771.67 6240

0.5 119.00 105.02 110.49 104

0.3 80.15 69.00 71.64 66

0.1 58.55 49.01 50.06 44

1/18 54.99 45.71 46.49 40

1/35 53.00 43.85 44.60 37

1/36 52.94 43.80 44.44 37

0.01 51.69 42.64 43.18 35

0.001 51.07 42.06 42.57 34

0 51.00 42.00 42.50 34

Table 2.  Average number of measurements (for 106 trials) to locate an emitter to one of 1010 subdomains using 
various heuristic search strategies and an estimate of the optimal average value obtained from Eqs 8 and 9 
(shown in Fig. 4g).
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Realistic microscopy parameters.  The situation becomes more interesting for non-zero α0, and yet harder to 
obtain extensive data for. Since non-zero α0 implies some probabilistic behaviour, we again performed many 
Monte Carlo simulations to obtain the equivalent of one datum from Fig. 5a, but for α0 = 0.99. We chose ε−1 = 106 
as equivalent to a search across a microscope slide or well plate (of order 10 cm) down to the diffraction limit of 
light (of order 100 nm). It is also conveniently substantially closer to powers of 2 and 4 than 3, as given by our 
metric function for the effective nearness of ε−1 to a power of q:

ε ε ε= . − . − 


− 







− −F q( , ) 0 5 0 5 log ( ) log ( )
(11)q q

1 1

A value of F = 0 means that ε−1 is an exact match to a power of q, whilst F = 0.5 is the greatest distance attainable.
We find that trisectioning is still competitive (Table 4). We have also included pentasectioning for complete-

ness; it performs poorly compared to the others, despite 106 being a similar distance from a power of five as from a 
power of three. Bi-and tetra-sectioning, which have similar F values, have drastically different modes. Clearly, the 
relative nearness to a power of q is not the only contributing factor to the performance of the heuristics.

Figure 5.  Average numbers of searches required to find a target for various ε, given particular heuristics and α0. 
(a) Directly calculated exact means for α0 = 0; (b) Mean results of running 104 Monte Carlo trials for each value 
of ε−1 ∈ {2, 3, …, 104} and α0 = 0.99; (c) direct calculation of expected means for the same conditions as (b); (d) 
extension of direct calculation of (c) for all ε−1 ∈ {104 + 1, 104 + 2, …, 108}.

q

Solution type

Optimal Unique

2 2 1

3 415,229 246,610

4 611,612 569,970

5 142,433 12,634

6 1,500 11

7 11 1

8 1 0

10 0 0

100 0 0

1,000 0 0

Table 3.  Performance of various q-sectioning search heuristics for 1/ε ∈ {2, 3, …, 106} and α0 = 0. Performance 
is described as optimal where no q-sectioning heuristic solution exists for that ε−1 with fewer measurements, 
and unique if no similarly optimal solution for that ε−1 exists with different q.
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We explored a limited subset of ε−1 to the same rigour (Table 5). Here, pentasectioning occasionally performs 
comparably to the other heuristics, but mostly considerably poorer than the best of them. It is notable that the 
heuristic with minimal distance is most often not the one with the lowest mean number of measurements.

General solution.  It being impractical to perform 106 simulations for each value of ε−1, we match Fig. 5a by low-
ering our standards. We performed 104 Monte Carlo simulations for every value of ε−1 between 2 and 104, with 
α0 set to 0.99; the results can be see in Fig. 5b. We note that the individual heuristics still perform in step-wise 
semilogarithmic fashion (albeit with larger jumps); however, the pattern is significantly distorted from the 
zero-half-lie case. Our observations regarding pentasectioning are borne out; in the main it performs the worst 
of these heuristics. We also note the enhanced perfomance of the trisectioning heuristic over the tetrasectioning, 
as evidenced by its greater proportion of being the minimum solution–especially at the right of the figure, where 
the logarithmic scale greatly compresses the data over ε−1.

The regularity of each heuristic’s behaviour led us to propose a more general form for the mean number of 
measurements, based upon the frequentist interpretation of probabilities as the mean chance of outcome given 
exhaustively many trials:

q F(q, ε) Mean Median Mode

2 0.068 3990.2 3924 4157

3 0.425 3887.4* 3789* 3674

4 0.034* 3983.5 3853 3458*

5 0.416 4482.8 4318 3657

Table 4.  Measures of central tendency from results of Monte Carlo trials in the same vein as Fig. 4; 106 trials for 
α0 = 0.99. The lowest values in each column are denoted by asterisks (*).

ε−1 q F(q, ε) Mean Median Mode

103

2 0.034 1994.7 1929 1813

3 0.288 2092.7 1994 1762

4 0.017* 1992.0* 1861* 1568*

5 0.292 2489.5 2325 2016

3 × 103

2 0.449 2394.6 2328 2108

3 0.288 2391.7 2292 2158

4 0.225 2389.7* 2257* 1890

5 0.025* 2429.5 2329 1834*

104

2 0.288 2797.7 2716 2641

3 0.384 2690.3* 2591* 2607

4 0.356 2787.8 2656 2359*

5 0.277* 2989.1 2823 2628

3 × 104

2 0.127* 2992.8 2927* 2821

3 0.384 2988.7* 2980 2602

4 0.436 3188.9 3059 2565*

5 0.405 3845.9 3321 3330

105

2 0.390 3391.9 3326 3145

3 0.480 3288.8* 3190* 2947*

4 0.305 3584.9 3452 3417

5 0.153* 3983.7 3820 3704

3 × 105

2 0.195 3790.7 3725 3657

3 0.480 3587.0* 3488* 3071

4 0.097* 3985.2 3852 3637

5 0.164 3984.9 3823 3160

106

2 0.068 3990.2 3924 4157

3 0.425 3887.4* 3789* 3674

4 0.034* 3983.5 3853 3458*

5 0.416 4482.8 4318 3657

Table 5.  Measures of central tendency from results of Monte Carlo trials in the same vein as Fig. 4; 106 trials for 
α0 = 0.99. The lowest values in each column/major row are denoted with asterisks (*).
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The first term in the prefactor recognises that in the long run, 1/(1-α0) trials must occur in the correct subdomain 
before a photon will be detected. However, for each trial (except the final one), we incur the penalty of searching 
the other q − 1 subdomains, necessitating −

α−( )q 11
1 0

 searches per level before we expect to receive a signal on 
the next pass through. On the final pass (per level), we have (q + 1)/2 searches as before. This total, of course, is 
then scaled by the logarithmic ceiling function, which dictates how many levels of search need be accomplished 
to sufficiently locate the target. Of course, m mlim q q0 , , , ,00

1
0

1=α ε α ε→ − −  from Eq. 10.
Figure 5b also presents a direct calculation (by Eq. 12) of the means previously estimated through Monte Carlo 

sampling. By eye, it appears to describe the behaviour well. We extend its domain over more values of ε−1 than it 
is practical to simulate, even for a single α0, in Fig. 5c. Given the semi-logarithmic nature of the plot, it is clear that 
trisectioning search is the optimal q-sectioning heuristic for the vast majority of ε−1 ∈ {2, 3, …, 1010} (and 
α0 = 0.99). Closer exploration reveals it to be the optimal q-sectioning heuristic for all ε > ∼ . ×− 2 1 7 101 24 7 
(and α0 = 0.99). It is also optimal for 85.0% of the cases below 224, as Table 6 shows. What is less clear, given the 
scale of the axes, is that all of the solutions are now unique. This is due to the more complex prefactors involved.

It is now trivial to compare the estimates of the means from Table 5 with Eq. 12 – see Table 7. The agreement is 
very good, with most estimates within 1 measurement of the corresponding analytic values.

Behaviour with changes in loss.  Obtaining a general analytic form allows us to explore behaviour of the 
family of q-sectioning with verification heuristics across changes not only to the desired precision, but also of the 
half-lie rate α0. Due to the step-like nature of the mq, ,1

0ε α−  function, its behaviour can be modelled simply by tak-
ing values on each side of the step function locations–which are the powers of the various q. Figure 6 shows the 
optimal heuristic type(s) for each ε−1 ∈ {2, 3, … 1010} and α0 ∈ {0, 0.01, …, 1}.

The abundance of light blue in Fig. 6 shows that the trisectioning with verification heuristic is optimal not 
only for most ε at α0 = 0.99, but also at lower half-lie rates. This is a somewhat surprising result; above ε−1 = 128, 
trisectioning dominates the plot - except for zero half-lies. Of course, the q-sectioning with verification heuristic 
is not optimal at zero half-lies, since it does not take advantage of the information contained in failures to detect 
photons; basic bisectioning (binary search) search is faster there. However, searches not requiring verification 
cannot be 100% fidelitous for any α0 > 0.

As we might expect, the next most successful heuristic is tetrasectioning with verification. Bisectioning makes 
a few brief appearances, but is not uniquely optimal for any α0 after ε = 213. Pentasectioning is similar, though 
rarer again, and is no longer uniquely optimal under any conditions after q = 513.

q 2 3 4 5

Optimal 1,687 14,253,472 2,522,055 1

Unique 1,687 14,253,472 2,522,055 1

Table 6.  Performance of various q-sectioning search heuristics for 1/ε ∈ {2, 3, …, 224} and α0 = 0.99. 
Performance is described as per Table 3: optimal where no q-sectioning heuristic solution exists for that ε−1 
with fewer measurements, and unique if no similarly optimal solution for that ε−1 exists with different q.

ε−1 Type

q

2 3 4 5

103
Estimate 1994.7 2092.7 1992.0* 2489.5

Analytic 1995 2093 1992.5* 2490

3 × 103
Estimate 2394.6 2391.7 2389.7* 2429.5

Analytic 2394 2392 2391* 2490

104
Estimate 2797.7 2690.3* 2787.8 2989.1

Analytic 2793 2691* 2789.5 2988

3 × 104
Estimate 2992.8 2988.7* 3188.9 3845.9

Analytic 2992.5 2990* 3188 3486

105
Estimate 3391.9 3288.8* 3584.9 3983.7

Analytic 3391.5 3289* 3586.5 3984

3 × 105
Estimate 3790.7 3587.0* 3985.2 3984.9

Analytic 3790.5 3588* 3985 3984

106
Estimate 3990.2 3887.4* 3983.5 4482.8

Analytic 3990 3887* 3985 4482

Table 7.  Comparison of means, estimated from 106 Monte Carlo trials, versus those calculated directly from 
Eq. 12. The lowest values in each column are denoted with asterisks (*).
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In principle, Fig. 6 could be extended further in ε−1; however near 249, double-precision floats fail to avoid 
numerical errors in calculating ε α−mq, ,1

0
. Extending Fig. 6 this far would unacceptably compress the plot, which 

for clarity is limited to cases already discussed.

Conclusions
In summary, the q-sectioning with verification family of search algorithms has been proposed and studied. 
Verification is an intriguing constraint on search algorithms; its cost is most apparent at low photon loss rates. 
For zero loss, bisectioning with verification ignores half of the available information and suffers a consequent 
loss of efficiency compared to the optimal binary search. However, for any non-zero loss, algorithms requiring 
verification retain 100% fidelity in their predictions, while q-ary searches cannot (except in the unattainable limit 
of infinite measurements).

An analytic formula describing the mean number of measurements for entire the family of q-sectioning with 
verification algorithms given any choice of q, precision ε, and half-lie (photon loss) rate α0 has been developed. 
The family’s behaviour has been mapped across a wide range of ε and α0, and the optimal choice is not simply a 
function of the relative nearness of ε to a power of q.

Trisectioning with verification is most often the optimal q-sectioning with verification heuristic for prob-
lems involving any random half-lies and precision ε < 1/128 of the initial search domain. Further, although 
trisectioning with verification is sub-optimal, it appears near-optimal for our example case according to our 
estimator.

In practical terms, since photon-counting microscopes have already been developed, the trisectioning scheme 
discussed here offers the chance for greatly accelerated target searches over current confocal rastering techniques. 
This approach could be particularly useful for locating short-lived species if the microscope point-spread func-
tion can be modified quickly enough, via both changing the spot size as well as shifting the beam centre, thereby 
changing the search domain rapidly between measurements. However, before such a task is undertaken, it would 
be beneficial to reconsider this problem with explicit Gaussian roll-offs and/or general shape to the PSF, and also 
to fully characterise the intensity changes required by the varying PSF widths. Finally, before such an approach is 
applied to biological systems, attempts should be made to include penalty functions characterising photon expo-
sure and/or damage, as well as accounting for practical considerations such as time to modify or shift the PSF, to 
study how the dynamics of an optimal biological search differ from those presented here. Information may not be 
the sole metric of interest to be optimised; a full cost-benefit analysis accounting for these issues may eschew the 
information benefit of shifting position more often.

Figure 6.  Minimal q-sectioning with verification heuristic; q: mMin ( )q q, ,1
0ε α−  for each ε−1 ∈ {2, 3, … 1010} and 

α0 ∈ {0, 0.01, …, 0.99}. The ε−1 grid is set at a unique sorted list of ε−1 ∈ {qi − 1, qi, qi + 1} for q ∈ {2, 3, 4, 5} and for 
any i giving a value of ε−1 in the desired range. Panel colours show the minimal solution type; panels are shaded 
by the solution type(s) at their lower-left vertices, although due to the step-like nature of mq, ,1

0ε α−  the solution 
types are valid for all ε−1 across each panel horizontally. Note: no solutions are given for α0 = 1 as these are 
undefined.
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