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» The dual-frequency, dual-polarized, Doppler radar (D3R) system was developed in support of the ground validation Diameter [m] 1.8 0.71 from regular tip curve scans [6] during clear sky conditions. fa. 5 Ootical thick P
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achieve its radar sensitivity and minimum range. However, one of the three pulses can be disabled with a tolerable > For now, noise sources are assumed to be stable and changes
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decrease in sensitivity and its receive channel can be repurposed to support passive measurements. Peak Sidelobe Level [dB] 25 in injected power are proportional to gain fluctuations. g. 6 Antenna temperature using measured receiver
0 . | [dB] <-30 output and gain deviation. All other parameters
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> This work focuses on progress in the characterization of the Ku-band H polarized passive channel operating P o (a) - o (b) - estimated from past engineering measurements.
simultaneously with two active as a step towards the provision of brightness temperatures along with the other radar Iy Beam co-alignment [deg] 0.1 “WWMWNMWWWMWM | 5ol ,, . | » Fig 11 shows results for 420 tip curve
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important parameters. Many of these also apply to radiometers as well, however, beam efficiency and self-emission o Isolation [dB] RFI detection and also shown in fig 12
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