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Abstract

To evaluate new airframe technologies we need design tools based on high-fidelity models that
consider multidisciplinary interactions early in the design process. The overarching goal of this
NRA is to develop tools that enable high-fidelity multidisciplinary design optimization of aircraft
configurations, and to apply these tools to the design of high aspect ratio flexible wings. We
develop a geometry engine that is capable of quickly generating conventional and unconventional
aircraft configurations including the internal structure. This geometry engine features adjoint
derivative computation for efficient gradient-based optimization. We also added overset capability
to a computational fluid dynamics solver, complete with an adjoint implementation and semi-
automatic mesh generation. We also developed an approach to constraining buffet and started
the development of an approach for constraining flutter. On the applications side, we developed a
new common high-fidelity model for aeroelastic studies of high aspect ratio wings. We performed
optimal design trade-offs between fuel burn and aircraft weight for metal, conventional composite,
and carbon nanotube composite wings. We also assessed a continuous morphing trailing edge
technology applied to high aspect ratio wings. This research resulted in the publication of 26
manuscripts so far, and the developed methodologies were used in two other NRAs.
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1 Introduction

With increasing interest in unconventional aircraft, there is a need to develop design tools and
processes that can handle next-generation concepts. Due to the lack of experience and historical
data for these concepts, low-fidelity aircraft conceptual design tools are not sufficient to resolve
the design trade-offs and accurately quantify the performance benefits. This NRA addressed these
issues under two main parts:

1. Geometry and meshing

2. High aspect ratio flexible wings

The geometry and meshing are currently two major bottlenecks in the creation of high-fidelity
models for aircraft configurations. Therefore, we focused our efforts on the development of tools
that facilitate the rapid generation of geometry and computational meshes for both CFD and
structural finite element models. Two main research questions arise under this topic:

• How can we rapidly construct aircraft geometries with a parametrization that is compatible
with high-fidelity models and gradient-based optimization?

• How can we handle the meshing of arbitrary aircraft geometries and speed up the meshing
process for both the external flow and the internal structure?

The high aspect ratio wing project focused on developing and applying high-fidelity aerostruc-
tural optimization tools to explore new high-performance wings. While there were many possibilities
under this overall goal, we prioritized the following questions:

• What is the optimum wing planform when considering new materials?

• What is the optimum use of morphing technologies?

• How can we constrain buffet margin in high-fidelity wing design optimization?

• What should a common benchmark for aeroelastic studies of high aspect ratio transonic wings
look like?

• How can we constrain flutter when optimizing both structural sizing and aerodynamic shape?

This report is structured around the answers to the above research questions. Due to the extent
of the work, this report does not repeat the details that have already been published as part of
this project, and instead we cite the relevant publications. Therefore, sections with material whose
corresponding papers have not yet been published (Sections 5, 6, and 8) are much longer than the
other sections.

This NRA resulted in the following 26 publications:

1. Kenway, G. K. W.; and Martins, J. R. R. A.:, Buffet onset constraint formulation for aerody-
namic shape optimization. AIAA Journal, 55(6):1930–1947, June 2017. doi:10.2514/1.J055172

2. Jonsson, E.; Kenway, G. K. W.; Kennedy, G. J.; and Martins, J. R. R. A.:, Development of
flutter constraints for high-fidelity aerostructural optimization. In 18th AIAA/ISSMO Multi-
disciplinary Analysis and Optimization Conference, June 2017

3. Kenway, G. K. W.; Secco, N.; Martins, J. R. R. A.; Mishra, A.; and Duraisamy, K.:, An
efficient parallel overset method for aerodynamic shape optimization. In Proceedings of the
58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
AIAA SciTech Forum, January 2017. doi:10.2514/6.2017-0357
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4. Martins, J. R. R. A.:, Encyclopedia of Aerospace Engineering, volume Green Aviation, chap-
ter Fuel burn reduction through wing morphing, pages 75–79. October 2016, pages 75–79.
doi:10.1002/9780470686652.eae1007

5. Kenway, G. K. W.; and Martins, J. R. R. A.:, Multipoint aerodynamic shape optimization
investigations of the Common Research Model wing. AIAA Journal, 54(1):113–128, January
2016. doi:10.2514/1.J054154

6. Kenway, G. K. W.; and Martins, J. R. R. A.:, Multipoint aerodynamic shape optimization
investigations of the Common Research Model wing. AIAA Journal, 54(1):113–128, January
2016. doi:10.2514/1.J054154

7. Hwang, J. T.; and Martins, J. R. R. A.:, An unstructured quadrilateral mesh generation
algorithm for aircraft structures. Aerospace Science and Technology, 59:172–182, December
2016. doi:10.1016/j.ast.2016.10.010

8. Lyu, Z.; and Martins, J. R. R. A.:, Aerodynamic shape optimization of an adaptive morphing
trailing edge wing. Journal of Aircraft, 52(6):1951–1970, November 2015. doi:10.2514/1.C033116

9. Lyu, Z.; Kenway, G. K. W.; and Martins, J. R. R. A.:, Aerodynamic shape optimization
investigations of the Common Research Model wing benchmark. AIAA Journal, 53(4):968–
985, April 2015. doi:10.2514/1.J053318

10. Hwang, J. T.; Lee, D. Y.; Cutler, J. W.; and Martins, J. R. R. A.:, Large-scale multidisciplinary
optimization of a small satellite’s design and operation. Journal of Spacecraft and Rockets, 51
(5):1648–1663, September 2014. doi:10.2514/1.A32751

11. Burdette, D. A.; Kenway, G. K.; and Martins, J. R. R. A.:, Performance evaluation of a mor-
phing trailing edge using multipoint aerostructural design optimization. In 57th AIAA Struc-
tures, Structural Dynamics, and Materials Conference, January 2016. doi:10.2514/6.2016-
0159

12. Burdette, D. A.; Kenway, G. K. W.; and Martins, J. R. R. A.:, Aerostructural design opti-
mization of a continuous morphing trailing edge aircraft for improved mission performance.
In 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, June 2016.
doi:10.2514/6.2016-3209

13. Kenway, G. K.; and Martins, J. R. R. A.:, Aerodynamic shape optimization of the CRM
configuration including buffet-onset conditions. In 54th AIAA Aerospace Sciences Meeting,
January 2016. doi:10.2514/6.2016-1294

14. Burdette, D.; Kenway, G. K. W.; Lyu, Z.; and Martins, J. R. R. A.:, Aerostructural design
optimization of an adaptive morphing trailing edge wing. In Proceedings of the AIAA Science
and Technology Forum and Exposition (SciTech), January 2015. doi:10.2514/6.2016-1294

15. Kenway, G. K. W.; and Martins, J. R. R. A.:, Multipoint aerodynamic shape optimization
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Part 1: Geometry and meshing

We now describe the development of GeoMACH, an open source geometry engine that is capable of
generating geometries for conventional and unconventional aircraft configurations. We then detail
the development of the capability to mesh these configurations for CFD analysis and optimizations
using the overset technique.

2 Differentiable geometry parametrization engine

Under this project, we developed an open-source package for high-fidelity geometry parametrization
and automatic structural mesh generation, called Geometry-centric MDO of Aircraft Configurations
with High fidelity (GeoMACH) [22, 30]. GeoMACH enables the use of high-fidelity computational
tools at the conceptual design level through a centralized geometry modeler. By employing a
robust, general, and flexible geometry representation, GeoMACH supports a configuration-level
multidisciplinary analysis and optimization environment in which the entire process, is streamlined,
from geometry creation to visualization of results from high-fidelity tools. One key feature of
GeoMACH is the ability to efficiently compute derivatives. This capability is especially valuable
when used in conjunction with a gradient based optimization.

In GeoMACH, the user creates an aircraft configuration as a set of components such as wings
and fuselages, and selects the desired shape design variables. These shape variables can be as
high-level as aircraft design parameters like sweep, or as low-level as individual NURBS control
points. Based on the structural layout defined by the user, GeoMACH automatically creates
the structural mesh as well using a novel unstructured mesh generation algorithm. Fig. 1 shows
the structural meshes created by GeoMACH for several unconventional configurations. To enable
gradient-based optimization, GeoMACH efficiently computes numerically exact derivatives of the
discretized geometry and the structural nodes with respect to the shape design variables.

GeoMACH is described in much more detail by Hwang et al. [22], and is currently being used in a
another NASA Research Announcement (NRA) for the design optimization of a TBW configuration
[31].

The development of automatic structural mesh generation was not originally proposed, but we
determined together with NASA it would be valuable to add this to GeoMACH, so we developed
it. The structural mesh generation algorithm is described by Hwang and Martins [11].

This project resulted in another serendipitous collaboration stream. Since GeoMACH was
to be tightly integrated with NASA’s OpenMDAO software, our team ended up contributing to
OpenMDAO with an algorithmic framework we named Modular Analysis and Unified Derivatives
(MAUD) [32], which is now the core algorithm and data structure in OpenMDAO.

10



Figure 1: Geometry and structural models for various configurations generated using Geo-

MACH.
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3 Overset CFD for aerodynamic shape optimization

Having the capability to quickly generate aircraft geometries suitable for high-fidelity aerodynamic
and structural analysis is not enough. Creating meshes for the aerodynamic and structural solvers
is another major bottleneck in the overall workflow. The generation of the structural meshes was
addressed within the GeoMACH project [11], but the automatic generation of CFD meshes is much
more complex and was not proposed or addressed in that project.

Our CFD solver, ADflow, is a Reynolds-averaged Navier–Stokes (RANS) structured multiblock
solver with an efficient adjoint solver that enables aerodynamic shape optimization with respect to
large numbers of variables; it has been used extensively for both aerodynamic shape [10, 12, 13,
33, 34] and aerostructural design optimization of aircraft [15, 24, 35, 36].

A fully automatic generation of multiblock RANS grids for full aircraft configurations is cur-
rently not possible, and would be extremely challenging. Furthermore, in many practical applica-
tions, creating a face-matched multiblock mesh is not possible, or results in a low quality mesh.
Even a relatively simple wing-body-tail configuration without engines, flap track fairings, or de-
ployed high-lift system requires substantial user effort to generate a structured multiblock mesh
of acceptable quality. This is the motivation to add overset capability to ADflow. In addition,
to retain the efficient design optimization capability, the adjoint gradient computation should also
be implemented in the overset version of ADflow. While a few examples of aerodynamic shape
optimization exist [37, 38], those efforts did not result in further published work, there have not
been published demonstrations on full aircraft configurations using RANS.

The overset approach consists in combining multiple structured meshes in a unstructured way.
Interpolation is performed at the overlap regions to transfer information between clusters of struc-
tured meshes. One important advantage is that we can generate specialized meshes for individual
components which can be then overlapped to constitute complex configurations. We use hyper-
bolic extrusion methods [39, 40] to automatically generate high-quality meshes for each geometry
component, which speeds up the mesh generation.

One key component in the overset capability is the computation of the overset mesh connectivity,
i.e., which cells are actually used for computation (compute cells), which cells should interpolate
values from other mesh clusters (interpolate cells), what the interpolation weights are for those
cells, and which cells should be excluded from the analysis (blanked cells), either because they are
outside of the domain of the problem or because they have no impact on the overall solution.

The implicit hole cutting (IHC) technique [41] is an automated way of overset connectivity
generation. This methodology preserves smaller cells, which usually are close to viscous walls, while
larger cells become either interpolate or blanked cells. We implemented the IHC functionality in
ADflow to minimize effort on the user side when setting up aerodynamic analysis cases. Even though
IHC is well known in the CFD community, we spent substantial effort to efficiently parallelize the
algorithm, making it feasible for optimization applications.

Figure 2 illustrates the overset mesh approach and IHC, where we can see that there are active
cells inside the bodies. These cells should be blanked since they are outside of the domain of interest
and could contaminate the solution in the exterior cells. We implemented a flooding algorithm [42]
in ADflow to blank these cells. A cell of a given mesh cluster is flagged as a flood seed if it
intersects walls defined in other clusters. Then, during the flooding process, the flood seed cells
blank adjacent compute cells. The flooding propagates from compute cell to compute cell within
the set of interpolated cells, and all flooded cells become blanked cells. The final mesh of the
example after the flooding process is shown in Figure 3. Additional details on the implemented
IHC are described by Kenway et al. [8].

Numerical integration of flow variables over surfaces is a key component required in CFD to
obtain important quantities such as lift and drag. However, we do not get a watertight surface mesh
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Figure 2: Example of overset connectivity computation starting with four different
meshes (left), and after IHC is applied (right). The four different meshes are: back-
ground (black), left circle (red), rectangular appendage (yellow), and right circle (blue).
The IHC method preserves the small cells near walls. Note that some cells of the back-
ground mesh that are inside the cylinders are still present, but will be blanked by the
flooding procedure.

Figure 3: Final overset connectivity; only compute cells are shown.
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(which is required for the surface integration) after the IHC process due to cell overlap requirements
for the interpolations. To be able to perform integrations over the surfaces, we implemented a
fully automated zipper mesh approach [43], which creates a watertight surface by triangulating
gaps between overlapping surfaces. The main steps of the fully automatic zipper mesh algorithm
implemented in ADflow are shown in Figure 4 for a simple sphere example. To illustrate the use of
the overset capability in ADflow, we show the wing-body Common Research Model configuration
used for DPW6 in Figure 5.

Figure 4: Overview of the zipper mesh procedure.

After implementing and testing the new ADflow capability for solving using overset grids, we
added the adjoint derivative computation capability in order to be able to perform design opti-
mization. Previous work already demonstrated the feasibility of overset-based aerodynamic shape
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Figure 5: Wing-body overset mesh application including engine nacelles.

optimizations. Lee and Kim [37] used the overset formulation while solving the Euler equations to
optimize the DLR-F6 wing, while computing derivatives with the discrete adjoint method. Liao
and Tsai [38] performed aerodynamic shape optimization of dual airfoils and turbine stators with
overset meshes using continuous adjoint formulation for Euler equations. The overset connectivity
was recomputed on every optimization iteration.

For the first implementation of the adjoint method for overset meshes in ADflow, we employed
what we call frozen overset connectivity, that is, the overset connectivities and interpolation weights
are computed before starting the optimization and assumed to remain fixed. This version was used
for the optimizations shown by [8].

The frozen overset connectivity approach has the advantages that the computational cost is low
due to the elimination of the connectivity updates, and that it yields a smoother design space since
it eliminates discontinuities that arise when the connectivity is updated. This makes the frozen
connectivity approach particularly attractive for optimization. However, for frozen connectivity
approach to give accurate solutions, it is necessary to deform the entire mesh in a consistent
manner to ensure that overlapped cells remain in the same relative location to each other. This
can be accomplished by using the unstructured-inverse distance mesh deformation approach that
we recently developed based on the method described by [44]. This approach modifies the nodal
positions of all overlapping meshes simultaneously, thus preserving their relative positions.

The implementation of the adjoint method required three main additions: 1) Differentiation of
the zipper mesh surface integration routines, 2) an overset halo exchange routine to the differenti-
ated code, and 3) the explicit linearization of the interpolated cells with respect to their real donor
cells in the Jacobian matrix of the residuals with respect to the flow state variables. The resulting
adjoint derivative computation was verified against the complex-step method and shown to be as
accurate as the original multiblock adjoint.

This overset version of ADflow already proved invaluable in another NASA project, where we
performed aerostructural and engine integration optimization for the D8 aircraft configuration, as
shown in Figure 6.

The assumption of frozen overset connectivity might be unfeasible for cases in which we need to
move geometry components and warp their associated meshes in an independent manner, such as
engine-airframe integration, or the placement of the struts in a strut-braced wing. This situation
requires a complete overset connectivity update, and led us to implement a second version of the
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Figure 6: Overset mesh and ADflow solution for the D8 aircraft configuration.

overset method adjoint in which we allow connectivity updates during each optimization iteration.
As mentioned above, this poses some challenges to gradient-based optimization, since it introduces
discontinuities in the functions of interest. For instance, if we allow overset connectivity updates
during the optimization process, the interpolation stencils of the interpolated cells might change.
In addition, changes in overset connectivity in viscous surfaces modify the pattern of the zipper
mesh, which is used for surface forces integration. These effects manifest themselves as noise in
the functions of interest, such as drag coefficient. Figures 7, 8, and 9 illustrate how drag coefficient
changes for a vertical wing translation with respect to the fuselage on a representative transonic
airplane configuration.

The noise amplitude observed in some optimization cases is in the order of hundreds of drag
counts, which is within the expected range of model and discretization errors. Furthermore,
gradient-based optimizers can still make progress because the gradients consistently point towards
the improvement direction. Discontinuities might hinder the optimizer performance near the opti-
mum, because the noise generates trends inconsistent with the small magnitude gradients.

A third version of the adjoint overset code is still under development. This version will take into
account the sensitivity of the interpolation weights with respect to the nodal coordinates during the
derivative computation. This will make the linearized code closer to the original nonlinear code,
which should improve the accuracy of the derivatives.
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Figure 7: Transonic configuration used for wing translation study.

0.05 counts

Fig. 9 a)

Fig. 9 b)

Figure 8: Drag variations due to the vertical translation of the wing on a transonic
airplane configuration. The red arrows represent gradients. Noise is observed at small
steps, but the gradients are still consistent with the overall trend. The noise is mainly
associated with changes in the zipper mesh. The zipper mesh change illustrated in
Fig. 9 caused the gradient inconsistency between the two indicated points.
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a) ywing = 0.0000 m b) ywing = 0.0025 m

Figure 9: Changes in the zipper mesh configuration causes noise in the drag curve
shown in Fig. 8.
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Part 2: High aspect ratio flexible wings

This part of the project focuses on enabling high aspect ratio flexible wings. Large spans decrease
induced drag, but also incur a structural weight penalty. The overall goal of this project is to
find ways to mitigate this weight penalty. Two airframe technologies are considered to enable
this: advanced materials and continuous morphing trailing edge. In addition, we developed the
formulation of design optimization constraints that are critical in the MDO of flexible wings: buffet
onset, and flutter boundary constraints.

4 Optimal high aspect ratio wings considering material trade-offs

Current and future composite material technologies have the potential to greatly improve the per-
formance of large transport aircraft. However, the coupling between aerodynamics and structures
makes it challenging to design optimal flexible wings, and the transonic flight regime requires high
fidelity computational models.

We addressed these challenges by solving a series of high-fidelity aerostructural optimization
problems that explore the design space for the wing of a large transport aircraft. We consid-
ered three different materials: aluminum, carbon-fiber reinforced composites and an hypothetical
composite based on carbon nanotubes.

Table 1 lists the properties for the materials. Note that the properties for the CNT-based
composite material are hypothetical; they are based on a tensile modulus of 1.2 TPa and a tensile
strength of 6 GPa, while the remaining properties are scaled to match the corresponding composite
material data. A composite material with such properties is currently not available, but we use
it here to quantify the impact on wing design of improving material properties by an order of
magnitude.

The methodology and results are only briefly described here; much more detail is provided in
the paper presented in a special session organized by NASA [27], and a contract report written
exclusively about this study [45].

For this study, we used both a medium-fidelity and a high-fidelity aerodynamic analysis coupled
with a detailed finite element model of the wing. The medium-fidelity aerodynamics consisted of
TriPan, an unstructured, three-dimensional parallel panel code for calculating the aerodynamic
forces, moments and pressures for inviscid, incompressible, external lifting flows using the Prandtl–
Glauert equation [46]. TriPan also includes an estimate of the viscous drag that uses sectional
viscous drag data based on Mach number, Reynolds number, and airfoil thickness. The sectional
viscous drag is integrated across the span to obtain the total viscous drag. This estimate models the
effect of wetted area, t/c, and taper ratio on viscous drag. For the high-fidelity aerodynamics, we
used the CFD solver ADflow, which is a second-order structured block-based finite-volume solver
for the Euler, Navier–Stokes and RANS equations [47].

The structural analysis is performed using the Toolkit for the Analysis of Composite Structures
(TACS), a parallel, finite-element code designed specifically for the analysis of stiffened, thin-walled,
composite structures using either linear or geometrically nonlinear strain relationships [46].

The load and displacement transfer scheme follows the work of Brown [48]. The displacements
from the structures are extrapolated to the aerodynamic nodes using rigid links. These rigid links
are formed by locating the closest point on the structural surface to each of the aerodynamic
nodes. The structural surface is determined by interpolating between structural nodes using the
finite-element shape functions.

Efficient gradient-based optimization requires the accurate and efficient evaluation of gradients
of the objective function and constraints. To achieve this, we use the coupled adjoint approach [49,
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Table 1: Mechanical properties of the metallic, conventional composite and hypothetical
CNT-based composite used in this study.

Parameter Value Units Parameter Value Units

Aluminum material data

E 70.0 GPa ν 0.3
σY S 420 MPa ρ 2780 kg/m3

Composite material data

E1 128 GPa E2 11 GPa
G12 4.5 GPa G13 4.5 GPa
G23 3.2 GPa ν12 0.25
Xt 1170 MPa Xc 1120 MPa
Yt 40 MPa Yc 170 MPa
S 48 MPa ρ 1522 kg/m3

Carbon nanotube-based composite material data

E1 1200 GPa E2 120 GPa
G12 45 GPa G13 45 GPa
G23 32 GPa ν12 0.25
Xt 6000 MPa Xc 5000 MPa
Yt 400 MPa Yc 1600 MPa
S 500 MPa ρ 1522 kg/m3

50] We have developed a coupled aerostructural adjoint that is based on analytic derivatives without
the use of finite-difference computations. Further details of the approach for the medium-fidelity
case are given in Kennedy and Martins [46], and the high-fidelity case is similar to Kenway et al.
[24].

For this study we have developed what we called the Quasi-CRM (QCRM) geometry to serve
as a baseline. The QCRM is a wing and wing-tail geometry that has a planform roughly the same
as the Common Research Model (CRM) used in the Drag Prediction Workshops (DPW) 4 and
5 [51]. However, it should be emphasized that the QCRM geometry is not derived from the CRM
geometry directly. The QCRM wing geometry is shown in Figure 10. The aircraft parameters are
similar to those of a next-generation 777-sized aircraft.

We minimized a weighted combination of fuel burn and take-off gross weight (TOGW) over
four prescribed missions. The contribution to the objective from each mission was weighted based
on the proportion of flights flown for each distance. We computed the fuel consumption for each
mission based on the Breguet range equation

FB = LGW

(
exp

(
RTSFC

V (L/D)

)
− 1

)
, (4.1)

where FB is the fuel burn for the entire mission, LGW is the landing gross weight, R is the mission
range, TSFC is the thrust-specific fuel consumption, V is the cruise speed and L/D is the lift to
drag ratio.

The structural design must satisfy a series of failure and buckling constraints at the two critical
loading conditions such that the yield stress and buckling constraints at each loading condition are
within the admissible failure envelope. In addition, we imposed steady-state lift and trim constraints
at each of the 6 operating conditions. This is an idealization for the maneuver conditions since, in
reality, a steady pull-up condition would require a finite turning radius.
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Figure 10: The Quasi-CRM (QCRM) wing geometry.

The design variables consist of geometric variables, structural variables, and aerodynamic design
variables. The aerodynamic design variables consist of the angles of attack at each of the 6 operating
conditions. The geometric variables consist of 4 twist variables distributed along the wing span,
with a fixed root twist, one span-scaling variable, 5 vertical scaling variables, which modify the
thickness to chord ratio, and a single chord scaling variable for the entire wing. Together the span
and chord scaling variables admit a series of planforms that are stretched in the chord-wise and
span-wise directions, but share similar geometric features. In addition, we employ 6 tail rotation
angle variables in order to trim the aircraft at each flight condition.

The structural design variables consist of a top stiffener pitch and bottom stiffener pitch vari-
able. Each panel has 2 thickness variables for the skin and stiffener, respectively as well as a
stiffener height. The stiffener base width is fixed based on the stiffener height. For the metal
wing parametrization, each material is isotropic and no further information is necessary. For the
composite wing parametrization, there are an additional 3 variables that define the ply-fraction for
the skin. We fixed the ply-fractions within the stiffeners to a 0o-ply dominant laminate.

The aerostructural optimization problem can be summarized as follows:

minimize

4∑
i=1

wi (βFB + (1− β)TOGW)

w.r.t. x

such that KS
(i)
fail ≤ 1 i = 1, . . . , 6

KS
(i)
buckling ≤ 1 i = 1, . . . , 4

L(i) = n(i)W
(i) i = 1, . . . , 6

M (i) = 0 i = 1, . . . , 6

c(x) = 0

l ≤ Ax ≤ u

(4.2)
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where KS
(i)
fail and KS

(i)
buckling are the Kreisselmeier–Steinhauser aggregation functions [52? ] for

failure and buckling constraints, respectively; L(i) = n(i)W
(i) is the lift constraint for each analysis

condition; n(i) is the load factor; M (i) = 0 represents the trim condition for each load condition;
and c(x) = 0 represents all the consistency constraints.

We solved this problem for several values of β for all three materials using the medium-fidelity
solver TriPan as the aerodynamic model. Figures 11–13 shows the skin thickness distributions
for the top and bottom skins of the metallic, conventional composite, and CNT-based composite
designs. The panel thickness for the metallic design exhibits slightly larger thicknesses for the lower
skin compared to the upper skin. For the composite designs, the lower skin thickness is significantly
higher than the upper skin thickness due to a combination of the buckling and failure criteria at
the −1 g condition and the failure criterion at the 2.5 g condition. Note that the designs for each
of the metallic, conventional composite and CNT-based composite exhibit consistent design trends
between the TOGW (β = 0) and fuel burn (β = 1) objectives.

β = 0.0

β = 0.5 β = 0.625
β = 0.75

β = 0.875

β = 1.0

panel thickness [mm]
21.3
18.7
16.2
13.6
11.1
8.6
6.0
3.5

Upper surface

Lower surface

Figure 11: Skin thickness distributions for the metallic wing designs.

Figures 14 and 15 show the ply fractions in the wing skins for the composite and CNT-based
designs. The reference axis associated with the ply angles is aligned along leading edge span of
the wing. The laminate is fixed throughout the panel and the panel thickness is constant. A
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β = 0.75 β = 0.875

β = 1.0

panel thickness [mm]
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28.0
23.9
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11.7
7.6
3.5

Upper surface

Lower surface

Figure 12: Skin thickness distributions for the conventional composite wing designs.

minimum ply-fraction constraint of 12.5% is enforced for any ply. Note that the plot shows the
relative composition of the panel as a proportion of the panel area. Since the panel area reduces
in the spanwise direction, this is not meant to represent absolute values. For both the composite
and CNT-based composite wings, the designs with larger wing spans incorporate greater fractions
of 0◦ plies. The spanwise variation of the ply fractions is also significant. All designs tend to utilize
greater fractions of 0◦ plies near the root and larger fractions of ±45◦ plies towards the wing tip.
This design feature reduces the tip twist of the wing under load and offsets the loss of torsional
stiffness from the smaller, thinner tip sections.

The aerostructural optimizations for various values of β enable us to plot Pareto fronts with
respect to structural weight and fuel burn as shown in Figure 16. This is the weighed objectives
approach. Another alternative to finding points on the Pareto front would be to constrain one
of the objectives while minimizing the other. We chose to use the weighed objectives approach
method for two reasons: 1) Both fuel burn and takeoff gross weight (mass) have the same units so
it is natural to try to combine them, and 2) we did not know a priori which TOGW and fuel burn
values would be of interest along the Pareto front, so constraining one and minimizing the other
would have been challenging. Note that this is really a smaller portion of a Pareto front between
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Figure 13: Skin thickness distributions for the CNT wing designs.

drag and structural mass.

From these Pareto front trends, it is clear that the use of advanced materials leads to simultane-
ous fuel burn and structural weight improvements. The uneven spacing in the Pareto front points
is due in part to optimizer convergence. As more advanced materials are used, the difference in
performance between fuel burn minimization and TOGW minimized designs becomes smaller and
the Pareto fronts become more compact. This is due to the larger weight savings, which reduces
both fuel consumption and TOGW directly. The composite TOGW design (β = 0) is 8.4% lighter
than the metallic baseline, and the CNT-based composite design is 5.6% lighter relative to the
β = 0 composite design. For the fuel burn optimized designs (β = 1) the composite design ex-
hibits a 7.7% fuel burn advantage compared to the metallic design, and the CNT-based composite
exhibits a further 5.2% fuel burn reduction compared to the composite β = 1 design. Thus, the
improvements in performance of the CNT-based composite wings are relatively modest given that
the assumed stiffness and strength are an order of magnitude higher than the conventional com-
posite. This is in part because the weight savings were limited by minimum thickness constraints.
Trends of the fuel burn and weight versus span, and the details of the resulting wing designs are
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Figure 14: Ply fractions for the conventional composite wing designs.

presented in Kennedy et al. [27].

In Figure 16 we also show the results from a sequential design method for a series of fixed spans
with metallic wings. In the sequential approach, we repeatedly perform design iterations where
the structure is sized at fixed aerodynamic loads to obtain a structural weight estimate, followed
by an aerodynamic optimization at fixed structural weight to minimize the fuel burn. This design
process ignores the impact of aeroelastic deformation, but provides a useful comparison of the
fully integrated optimization approach with a sequential design method. The span for a given β
was fixed to the corresponding aerostructural optimum value because an aerodynamic optimization
would tend to increase the span as much as possible, while a structural optimization would tend
to decrease it as much as possible. Therefore, the span variable would not converge using this
sequential process. There is a significant difference between the performance of the wing obtained
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Figure 15: Ply fractions for the CNT wing designs.

from a sequential design method and the aerostructural optimization results. These sequential
optimization results are in agreement with previous low-fidelity aerostructural optimization results,
where the sequential approach was shown to be inferior relative to the MDO approach [53, 54].
This indicates that when considering the next generation of aircraft it is important not only to
invest in airframe technologies, but also invest in the development of new design methodologies.

As a second stage of this study, we performed RANS-based aerodynamic shape optimization
of designs obtained from the medium-fidelity aerostructural design optimizations presented above.
The goal was to optimize the airfoil cross sections to improve the transonic performance without
compromising the previously optimized structural design. Two optimizations at the extremes of
the Pareto front were performed: one for TOGW (β = 0) and one for fuel burn (β = 1). Table 2
shows the data for the TOGW and fuel burn optimizations, and Figure 17 compares the pressure
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Figure 16: The Pareto fronts of fuel burn and takeoff gross weight shows the advantage
of the conventional composite and CNT composite materials, as well as the advantage
of aerostructural design optimization over sequential optimization.

contours, airfoil shapes, structural thicknesses, spanwise lift distributions, twist distributions, and
t/c distributions for these two optimizations.

As shown in Table 2, the TOGW for the β = 0 optimization is lower than the fuel burn
optimization, but converse is not true: The fuel-burn optimized design has 0.7% higher fuel burn.
The reason for this discrepancy is that these optimizations were performed at a fixed altitude, and
therefore the wing is not free to fly at the best point in its drag polar. This was an important lesson
derived from this study: if large changes in wing area or mass are expected during the optimization,
altitude variation, or a surrogate for altitude variation should be included as a design variable in
the optimization problem. In fact, we have since been including altitude as a design variables (see
Sections 6, 7, and [6, 15, 16, 36, 55, 56]).

The choice of objective function has a dramatic effect on nearly every aspect of the optimized
design. The wing planform is the first major difference that we notice in Figure 17. Both designs
have roughly the same aspect ratio, but the fuel burn design wing span is 7 m longer and has a
21.4% larger wing area. Since the fuel burn objective places less emphasis on the empty weight,
the wing span extends to lower the span-loading and thus lower the induced drag. This increase
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Table 2: TOGW and fuel burn results for RANS-based aerostructural optimization

β TOGW (kg) Fuel Burn (kg) Wing Mass (kg) L/D Span Wing Area (m2) AR

0.0 268 630 74 242 26 567 20.13 73.8 431.348 12.62
1.0 290 206 74 754 47 631 21.87 80.8 523.468 12.45

in span comes at a substantial penalty in terms of structural weight, 21 064 kg or 79% of the
TOGW optimized mass. This large wing mass is further explained by examining the distribution
of thickness to chord ratio distributions. The average t/c for the TOGW minimization is 33%
higher than for the fuel burn design. However, the difference in the wingbox depth is slightly lower
than this due to the larger chord of the minimum fuel burn wing. Further confirmation of the
increased wingbox mass can be seen in the upper skin thickness distribution contours in Figure 17.
With the exception of the more lightly loaded wing tips, the fuel burn design skin is thicker than
the minimum TOGW design.

The cruise lift distributions for both minimum fuel burn and minimum TOGW designs shown
in Figure 17 are close to elliptical, but the TOGW design yields a closer match. However, there
is a very large difference in the shape of the maneuver lift distributions. Both designs exhibit
passive load alleviation—where the 2.5 g maneuver lift distribution is shifted inboard relative to
the elliptical distribution—but this load alleviation is more pronounced for the minimum TOGW
design, since it emphasizes weight reduction. For the minimum fuel burn design, the corresponding
twist distribution shows the additional passive aeroelastic wash-out that occurs at the maneuver
condition. This additional downward twisting reduces the tip load, shifting the distribution inboard
and lowering the bending moment on the structure. This behavior is consistent with the medium
fidelity results.

The 2.5 g maneuver lift distribution for the TOGW design shows a completely opposite twist
behavior: the wing twist actually decreases under the higher loading condition. Even so, the
maneuver lift TOGW maneuver lift distribution shifted further inboard and is even more favorable
from a structural perspective. To explain this phenomenon, we examined the three-dimensional
flow field of the TOGW 2.5 g maneuver condition. At this condition, we observed that a large
portion of the wing has stalled, resulting in large region of separated flow. Although stall is not
desirable within the flight envelope (especially tip stall), the optimizer exploited the fact that no
stall constraint is imposed to implement an extremely effective way to alleviate the loads. This
is an excellent example of the optimization exploiting a weakness in the problem formulation and
provides a valuable lesson. Motivated in part by this issue, we developed the separation-based
buffet constraint formulation described in Section 7 and in Kenway and Martins [6].

Overall, we conclude that composite wings consistently resulted in lower fuel burn and lower
structural weight, and that the carbon nanotube composite did not yield the increase in performance
one would expect from a material with such outstanding properties. This was in part due to
the minimum structural thickness constraint. A future study that accounts for nanocomposite
manufacturing architectures and more realistic structural properties is recommended once this
technology is further developed and this information becomes available. In addition, we have since
developed the capability to perform RANS-based aerostructural optimizations more efficiently, to
include buffet constraints (see Section 7), and to include the altitude as a design variable, so we
would be able to consider utilizing these developments in future studies. For all materials, the
minimum fuel burn wings were found to be longer, heavier, thinner, more flexible, and more lightly
loaded than their minimum TOGW counterparts. Finally, based on a comparison with sequential
designs, we concluded that it is equally important to invest in new airframe technologies and in
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new design optimization methodologies.
We have been using the knowledge gained in this project in a more recent NRA on high-

fidelity aerostructural design optimization of tow-steered wings, which uses exclusively RANS for
the aerodynamics, and includes the buffet constraint formulation described in Section 7 and by
Brooks et al. [36, 55].
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5 uCRM—High aspect ratio undeflected Common Research Model

5.1 Introduction

The NASA Common Research Model (CRM) has served as a useful aerodynamic benchmark for
drag prediction and optimization [34, 57, 58]. The model was originally conceived as a purely
aerodynamic benchmark and as such the geometry of the wing was designed to take the shape of
the deflected wing at a 1.0 g flight condition. There has been growing interest in extending this
model to aeroelastic studies as well. However, due to its predefined in-flight shape, the model is
not suitable for aeroelastic analysis and design as is. To address this, we defined the undeflected
Common Research Model (uCRM), which includes the outer mold line (OML) geometry of the
undeflected wing and the corresponding internal wing box structure, with the goal of achieving the
flying shape of the CRM under nominal flight conditions. The topology of the wing box is designed
to be similar to that of a Boeing 777. The jig shape was generated through an inverse design
procedure where the objective was to minimize the difference between the 1.0 g aerostructurally
deflected shape and the CRM. Since the original CRM has an aspect ratio of 9 we refer to this
model as the uCRM-9. Since modern transport aircraft are trending toward higher aspect ratio
wing designs in an attempt to reduce induced drag, and therefore fuel burn, there was a need for a
higher aspect ratio variant of this model to assess the design potential of new future technologies.
This variant, uCRM-13.5, has a larger aspect ratio of 13.5 and is defined through an aerostructural
optimization of the uCRM-9 with considerations for buffet. The goal for both of these models is to
define a useful benchmark for aeroelastic wing analysis and design optimization studies. We will
start by describing the uCRM-9 geometry and structural wing box model. We will then describe
the procedure for developing the uCRM-13.5. A summary of the key geometric parameters of the
uCRM-9 and uCRM-13.5 planforms is given in Table 3.

Table 3: uCRM specifications (metric)

Parameter uCRM-9 uCRM-13.5

Aspect ratio 9.0 13.5
Span 58.76 m 72.00 m
Root chord 13.62 m 16.02 m
Side of body chord 11.92 m 13.85 m
Yehudi chord 7.26 m 5.36 m
MAC 7.01 m 5.36 m
Tip chord 2.73 m 1.915 m
Wimpress area 383.74 m2 384.05 m2

Gross area 412.10 m2 465.22 m2

Exposed area 337.05 m2 377.45 m2

1/4 chord sweep 35◦ 35◦

Taper ratio 0.275 0.250
Gear post depth (777) 0.736 m 0.648 m

5.2 Definition for uCRM-9

The uCRM-9 wing model definition is based on the outer mold line (OML) of the CRM wing,
which is the shape of the wing at 1 g at the CRM nominal flight condition (M = 0.85, CL = 0.5
at 37 000 ft). No structural model or jig shape are provided in the original CRM model. Thus
we create a wingbox structure and jig OML whose aerostructural solution at the nominal flight
condition reproduces the original CRM OML. The CRM geometry does not provide any information
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Figure 18: Boeing 777 (left) and CRM-9 (right). The CRM has a slightly smaller area
wing and 3.5 deg more wing sweep than the Boeing 777.

with respect to the wing internal structure. To produce a structural model as representative as
possible, we examined cutaway views of the Boeing 777 aircraft to determine the layout of the
wingbox. The wingbox consists of two spars: a leading edge and trailing edge spar. Figure 18
shows the planform view of the 777-200ER extracted from the aircraft planning document [59]
with a best-guess superimposed wingbox locations. This estimate of the geometry of the Boeing
777 wingbox could not be used directly in the CRM wing because the CRM wing has more sweep.
Our approach was to generate a wingbox for the CRM using the same proportions (front and rear
spar location, rib spacing, etc.) and structural layout of the Boeing 777 wingbox. Using digital
versions of the Boeing 777 drawing, we measured the extents of the estimated wingbox at the root
and tip locations as a fraction of local chord. We then rounded off these measurements to obtain
the percentages of the locations with respect to local chord. This provided the required information
to define the wingbox structure planform for the CRM geometry. The rib spacing for the uCRM
wingbox is chosen to be approximately the same as for the Boeing 777, with a normal-distance
spacing of 73.15 cm (28.8 in). Since the CRM wing has a slightly lower span than the Boeing 777,
there are 44 ribs, not including the root close-out rib.

Having determined the planform of the wingbox, we used an in-house tool (pyLayoutGeo) to
generate the geometry of the wingbox and its components. Based on the information given above,
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Table 4: Material properties.

Parameter Value

Density 2780 kg/m3

Modulus 73.1×109 Pa
Poisson Ratio 0.33

we generated the wingbox structure shown in Figure 19. The meshing of this geometry was then
performed by specialized grid generation software that can generate surface meshes.

A set of constant aerodynamic loads is required to find the undeflected shape of the wing. These
aerodynamic loads were generated on the CRM wing-body-tail configuration using meshes from the
5th Drag Prediction Workshop, but were adapted for flight Reynolds number. We then determined
the structural sizing for the wingbox geometry previously described using a structural optimization
based on the aerodynamic loads. The objective of the optimization is to minimize the structural
weight of the wingbox subject to material failure and buckling constraints. We assume that all
structural panels are made of a 7000 series aluminum alloy with the properties listed in Table 4.

All main components of the wingbox are modeled using a blade stiffened panel approach. The
remaining variables are free to change (within bounds) from one panel to the next. Figure 20 shows
the panel definition distribution across the primary wing structure. The total mass of the wingbox
is 13,416 kg. This initial optimized wingbox provides a guess for the structure of our jig wing;
however, because it is based on the CRM OML, it also features the 1.0 g deflection in its geometry.
This deflection will then be removed in the subsequent inverse design procedure such that the CRM
wing geometry is recovered from the jig through structural deflection of the wingbox alone.

Given the 1 g OML of the original CRM, the wingbox structural layout and sizing, as well as the
aerodynamic loads, we then determined the jig OML and wingbox. This is accomplished using the
inverse design procedure described by Kenway et al. [24]. This is done by defining a least squares
optimization problem to minimize the difference between points on the CRM geometry, XT , and
points on the deflected jig shape under the nominal 1.0 g loads Xdeflect. The deflected points are
found by taking the jig points and adding the structural deflections from the applied aerodynamic
loads (Xdeflect = Xjig + u). The wing outer mold line geometry is parameterized using free-form
deformation (FFD) [60]. The optimizer changes the x, y, and z coordinates of the FFD control
points such that the initial deflection of the CRM wing is achieved through structural deflection
only. This inverse design procedure is not straightforward, since as the geometry of the structure
changes, the structural deflections change as well. Once the FFD shape variables are found, they
are then applied to the initial CRM geometry and wingbox to remove the deflection and achieve
a new approximate jig geometry. The new structural geometry is then structurally resized using
another structural optimization, and the procedure is repeated until convergence. This procedure
required three inverse design cycles before a converged jig solution was achieved. Figure 21 shows
the sequence of inverse design result leading to the finalized wing jig. The final wing jig and
structural geometry were dubbed as the uCRM-9.

To verify the result, we compared an aerostructural analysis of the uCRM-9 to an aerodynamic
analysis of the CRM. The shape and aerodynamic solution should match between these two cases.
A comparison of the upper surface Cp contours is shown in Figure 22. Overall, the two sets of
contours match well, although there are slight differences that can be attributed to the 0.04 deg
angle of attack difference in the aerostructural solution. This difference in angle of attack was
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Figure 19: Overview of the uCRM-9 wingbox geometry.
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Figure 20: Distribution of stiffener height, stiffener thickness, skin thickness and stiff-
ener pitch for the uCRM-9 structural design.

Figure 21: Iteration history of inverse design procedure
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Figure 22: Cp contours comparison between original geometry and aerostructural solu-
tion.

Table 5: Aerodynamic coefficient comparison

Parameter CRM wing-only uCRM-9 aerostructural

CL 0.5 0.5
CD (counts) 200.75 199.03
α 2.208 2.168

necessary to match the lift coefficient of the original CRM case. A summary of the comparison is
given in Table 5. The drag coefficient values differ by less than 1%, which we consider acceptable
given the significant additional complexity of the aerostructural solution.

5.3 Definition for uCRM-13.5

Because there exists no standard transonic transport aircraft geometry with such a large aspect
ratio, the structure and wing geometry of the uCRM-13.5 had to be defined through the process of
a full aerostructural design optimization. This is in contrast with the uCRM-9 model, where the
CRM OML is preserved, and only a structural sizing optimization is performed. The extension of
the uCRM-9 to obtain the required 13.5 aspect ratio is complicated by the fact that we want to
preserve the same wing loading and landing gear location, in order to avoid a cascade of design
changes that would affect the preliminary sizing. The new 13.5 aspect ratio uCRM wing attempts to
maintain overall compatibility with the remainder of the CRM aircraft. In this way, the resulting
aircraft design may be considered a higher span derivative of the CRM. Keeping in mind the
constraints imposed by a common fuselage, empennage, and propulsion system, we decided to keep
the cruise altitude and planform area fixed. Fixing the cruise altitude avoids having to account for
the engine performance variation, and keeps the original wing loading to avoid resizing the rest of
the aircraft. To ensure sufficient space is available in the uCRM-13.5 planform, we first determined
an appropriate value for this physical constraint. To determine this, we examined the planform
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Figure 23: Proposed uCRM-13.5 wing planform (blue) and CRM-9 planform (green).
The dotted lines show the 0, 50% and 100% MAC locations for the uCRM-13.5. The
green dot on the 50%MAC location signifies the main gear post.

diagrams from the 777 Airport planning document. The new proposed uCRM-13.5 planform is
shown in Figure 23.

A three-view rendering of the uCRM-13.5 planform is given in Figure 24. Note that the in-
built dihedral of the CRM has been removed. As suggested by Boeing, this configuration is a
straightforward modification of the well-tested CRM configuration with a clear connection to that
configuration. We expect this geometry will also be made available for further research.

The structural wingbox was chosen to exhibit the same topology of the uCRM-9 wingbox, with
the exception of the number of ribs. The absolute spacing was kept the same, and hence the
uCRM-13.5 has 9 additional ribs for a total of 54.

Once the initial geometry of the uCRM-13.5 was defined an aerostructural optimization had
to be performed to arrive at baseline design with realistic performance. The aerostructural design
optimization was performed by the MACH framework.

Like the uCRM-9 design procedure, this optimization was based on a traditional aluminum de-
sign. However, unlike the uCRM-9 the uCRM-13.5 design procedure was based on an aerostructural
optimization featuring a set of buffet onset constraint (explained in Section 7). The initial wing
weight is estimated from a structural optimization preformed before the start of the aerostructural
optimization. The flight conditions considered included a 5 point cruise stencil: 2 buffet constraint
conditions and 3 maneuver conditions, shown in Table 6. The first point of the cruise stencil was
defined as the center or nominal cruise condition (Mach = 0.85, CL = 0.5). Points 2 and 3 of the
stencil were defined by offsets of ±0.025 in CL relative to point 1. Cruise points 4 and 5 were
defined as ±0.01 offsets in Mach number relative to point 1, but restricted to have the same di-
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Figure 24: Three view of the 13.5 configuration.

mensional lift. All buffet and cruise conditions were evaluated at an altitude of 37,000 ft. The first
buffet point was specified to be a 1.3 g margin on the highest lift of the cruise conditions, cruise
condition 3. The second buffet condition was placed at a high Mach design point (M = 0.89)
with the constraint that the lift match that of the nominal cruise condition, cruise condition 1.
The 3 maneuver conditions included a -1.0 g, 2.5 g, and 1.0 g cruise with gust condition with yield
and buckling constraints for structural sizing. The gust condition is estimated using a static 1.3 g
load. The purpose of the gust condition is to ensure the operating stresses at normal operating
conditions are not too high. It is meant to be a surrogate for a gust load that may be expected to
load the wing sufficiently quickly that the passive aeroelastic tailoring cannot redistribute the load
inboard fast enough. This maneuver condition is analyzed at a steady cruise condition near the
Mach cross-over altitude of 28 000 ft, M = 0.85, TOGW and full fuel load and uses a 2.67 safety
factor to ensure a sufficient structural margin for a gust encountered near this altitude.

The objective of the optimization was to minimize the average fuel burn of the cruise conditions.
The optimization design variables included angle of attack, tail trim angles, cross-sectional shape,
twist and structural variables. In addition a target nominal lift coefficient variable was added
to allow the nominal cruise condition and thereby the entire stencil to find the optimal CL to
cruise about. Only the cruise and buffet points were affected by the moving stencil, the maneuver
conditions were constrained. The specifics of the optimization problem are given in Table 8.

The results of the optimization can be found in Figure 25. From the results we find that
the optimizer was able to improve the L/D, but the structural weight of the wing box increased.
Despite the increase in structural weight the improvement in L/D is enough to lead to an overall
improvement in fuel burn performance of the optimized aircraft. If we look at the t/c distribution
of the two designs we find that the reason for the increase in structural weight was due to the fact
that the depth of the wing box decreased considerably during the optimization so it was necessary
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Table 6: Initial flight condition stencil

Point Condition FB Weight (Ti) Mach CL/Lift Altitude (ft)

1 Cruise 1/5 0.85 0.5 37 000
2 Cruise 1/5 0.85 0.475 37 000
3 Cruise 1/5 0.85 0.525 37 000
4 Cruise 1/5 0.84 0.512 37 000
5 Cruise 1/5 0.86 0.488 37 000
6 Buffet 0 0.85 0.683 37 000
7 Buffet 0 0.89 0.456 37 000
8 2.5 g maneuver 0 0.64 2.5 ·MTOW 0
9 -1.0 g maneuver 0 0.64 −MTOW 0
10 Cruise gust 0 0.86 MTOW 27 300

Table 7: Optimized flight condition stencil

Point Condition FB Weight (Ti) Mach CL

1 Cruise 1/5 0.85 0.516
2 Cruise 1/5 0.85 0.491
3 Cruise 1/5 0.85 0.541
4 Cruise 1/5 0.84 0.528
5 Cruise 1/5 0.86 0.504
6 Buffet 0 0.85 0.703
7 Buffet 0 0.89 0.470

to reinforce the structure to account for the loss in stiffness. Figure 26 provides a fuel burn contour
plot as a function of Mach and CL for both designs. The benefit of this plot is it allows to visually
see both the robustness of the design and the margin between buffet onset and the cruise flight
envelope. The first thing to note on these plots is the line denoted 1.3 g buffet boundary. This
line shows the boundary for all of the operational conditions that have at least a 1.3 g margin from
buffet. Ideally all points in the cruise stencil should lie within this region. We can see that from
the initial contour plot some of the cruise conditions are not within this feasible region and as a
result the optimizer increases the feasibility region, ensuring that all points in the cruise stencil are
now feasible. The decrease in t/c that we saw in Figure 25 is primarily due to the prevalence of
the buffet constraint; the optimizer makes the airfoil thinner in order to delay flow separation and
in effect satisfy the buffet constraint. The other point of interest is the box under the 1.3 g buffet
boundary line which is designated the fuel burn performance integration region. In this region the
fuel burn is averaged over the entire region to assess the robust performance of the design. Ideally
this region should correspond with the cruise stencil, and both should lie very close to the global
minimum fuel burn on the plot, however due to the buffet boundary being so restrictive in the case
of the initial design the integration region is located further down in the Mach-CL design space
than it should be, causing a reduction in performance. We can see that the optimizer is able to
raise the performance integration region by moving the stencil up in CL which ultimately leads to
a decrease from 3,814 kg (4%) in average fuel burn. Once this optimization was performed the
converged wing shape and structurally sized result was dubbed as the uCRM-13.5 model.
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Table 8: uCRM 13.5 multipoint optimization problem with buffet conditions

Variable/function Description Quantity

Minimize
∑N
i=1 TiFBi Average Fuel Burn

with respect to xαi Angle of attack for each case 3
xtwist Wing twist 10
xtail Tail trim angle for each case 3

xairfoil FFD control points 192
xstiff thick Panel stiffener thickness skin/spars/ribs 266
xstiff height Panel stiffener height skin/spars/ribs 266

xpanel length Panel length skin/spars/ribs 266
C∗L0

Nominal cruise target lift coefficient 1
Total design variables 1007

Subject to CLi = C∗Li
Cruise and Buffet lift conditions 7

L = niW Maneuver lift conditions 3
cimy

= 0 Trimmed flight 10

tLE/tLEinit ≥ 1.0 Leading edge radius 20
tTE/tTEinit ≥ 1.0 Trailing edge thickness 20

(t/c)TE Spar ≥ 0.80(t/c)TE sparinit
Minimum trailing edge spar height 20

Lpanel − xpanel length = 0 Target panel length 266
KSstress < 1.0 2.5 g Material Failure 8

KSbuckling < 1.0 2.5 g and -1.0 g Buckling 9∣∣xpanel thicki
− xpanel thicki+1

∣∣ ≤ 0.0025 Skin thickness adjacency 258∣∣xstiff thicki − xstiff thicki+1

∣∣ ≤ 0.0025 Stiffener thickness adjacency 258∣∣xstiff heighti − xstiff heighti+1

∣∣ Stiffener height adjacency 258

xstiff thick − xpanel thick < 0.005 Maximum stiffener-skin difference 172
∆zTE,upper = −∆zTE,lower Fixed trailing edge 8
∆zLE,upper = −∆zLE,lower Fixed leading edge 8

Sepi ≤ 0.04 Buffet separation constraints 2
Total constraints 1328
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(a) Initial

(b) Optimized

Figure 26: Fuel burn contours (initial vs optimized)
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6 Continuous morphing trailing edge technology assessment

In an effort to improve fuel efficiency, aircraft designers are studying a number of next-generation
configurations and technologies. One such technology is continuous morphing trailing edge devices.
Designing morphing trailing edge devices is very challenging given the conflicting objectives in-
volved. A morphing mechanism needs to manage the trade-offs between the mechanism weight,
the ability of the mechanism to support aerodynamic loads, and the device’s ability to morph.

Within literature and in industry there are a number of approaches currently in development
to address these challenges. Vos et al. [61] considered the use of post-buckled pre-compressed
piezoelectric actuators for UAV wing morphing. Pankonien [62] developed and studied a hybrid
morphing concept utilizing shape memory alloys and macro fiber composites, again for use on
UAVs. For commercial aircraft, a number of researchers have considered the Variable Camber
Continuous Trailing Edge Flap (VCCTEF) approach, which uses a series of small flaps joined with
an elastic material on the wing’s trailing edge. Urnes et al. [63], Kaul and Nguyen [64], Ting et al.
[65] have performed a number of studies using this configuration. Stanford [66] also considered this
configuration, with the inclusion of open loop load cases in the measurement of a morphing device’s
effectiveness.

Commercially, FlexSys has produced the FlexFoil, a morphing design utilizing global compliant
structures. This mechanism has the potential to produce a smooth continuous wing surface, with a
wide variety of deflected shapes. The morphing devices considered herein are a simplification of this
configuration. While these global compliant mechanisms offer a wide range of shapes, determining
the optimal in flight shape and designing the set of deformed shapes that can be produced by the
morphing structure remains a challenging task. To address these challenges, we perform a number
of idealized high fidelity aerostructural optimizations of morphing trailing edge configurations.

Within our model the structures outside the wing box—like those within the morphing region—
are not modeled explicitly, but rather idealized to remove many morphing shape restrictions, and
allow a wider range of morphing versatility. While most of the morphing deformations in literature
consist of a number of rigid rotations or a number of spanwise polynomial deformation profiles, the
deformations in this work are much more general. We use Free Form Deformation (FFD) volumes
to parameterize geometric shape changes, including those in the morphing section of the wing. This
approach embeds the geometry in a volume covered in a number of control points. Moving those
control points stretches the entire volume, and thus the geometry embedded within. This relatively
unrestrictive parameterization permits a wide variety of morphing shapes, which when coupled with
gradient based optimization allows us to explore the potential of morphing technology. Rather than
starting with a mechanism and determining the best deformation within the mechanism’s design
space, this approach seeks a more mechanism-independent optimal morphing shape. This approach
produces a more general set of optimal morphing shapes, which are valuable for measuring of the
potential of morphing technology and for informing the design of future morphing mechanisms.

Our goals in this study were to accurately quantify the fuel efficiency improvements enabled
by morphing trailing edge technology, and subsequently to gain a more detailed understanding
about the mechanisms by which this improvement is achieved. Towards these ends, we performed
a number of single- and multi-point aerostructural optimizations of the uCRM configuration with
and without a morphing trailing edge. Detailed results and discussions of the various optimizations
and comparisons herein can be found in the related papers [15, 18].

6.1 Single point optimization

The first study we completed consisted of a collection of single point optimizations. We compared
the optimized results of a uCRM wing-body (with a correction for the trim contributions) with

43



no morphing, with a retrofit morphing trailing edge, and with a complete redesign including a
morphing trailing edge. Detailed results on these three optimizations can be found in the associated
paper [18].

Each optimization consisted of one 2.5-g sea level maneuver condition at Mach 0.64 and a single
cruise condition at a Mach number of 0.85, a lift coefficient of 0.5, and an altitude of 37,000 feet.
The cruise condition is used to quantify the objective function—fuel burn, calculated using the
Breguet range equation—at a typical flight condition, while the maneuver provides limits for the
structural design. Design variables include angle of attack, wing twist, structural sizing of members
within the wingbox, and wing shape variables. The wing shape is manipulated using an FFD, with
192 control points distributed across the wing. Eighty of those control points are used on the aft
40% of the wing to control the morphing region of the wing. A number of geometric, aerodynamic,
and structural constraints are used to ensure the optimized design is reasonable. The specific set of
design variables and constraints used for each optimization are defined in the related publication.

The baseline aerostructural optimization included no active morphing. Leveraging improved
aerodynamic cruise performance and aeroelastic tailoring produced by changes to the jig shape and
wingbox structure, this baseline optimization reduced the fuel burn of the uCRM configuration
by approximately 5.8%. The first morphing optimization represented a retrofit of the uCRM with
a morphing trailing edge device. While this optimization provided no shape control on the front
60% of the wing, independent shape changes were possible in the morphing region at both cruise
and maneuver. The final single point optimization represented a clean sheet redesign of the wing
including a morphing trailing edge. This optimization is essentially the same as the baseline, non-
morphing optimization, with the addition of a set of morphing design variables at the maneuver
condition. The fuel burn and structural weight results of each optimization are shown in Table 9.

Table 9: Comparison of the fuel burn and wing mass of the three single point optimized
wing designs.

Optimization Fuel Burn [kg] Wing mass [kg]

Baseline 105,993 33,839
Retrofit 105,959 31,957
Clean Sheet 105,613 33,131

Each of the single point optimizations produced very similar fuel burn values. It is notable
that in this case, adding a retrofitted morphing trailing edge produced a fuel burn reduction es-
sentially equal to that resulting from a redesign of the wing without morphing. The small 0.36%
fuel burn difference between the baseline optimized wing and the clean sheet design is attributed
to the specification of the optimization problems. Considering one cruise and one maneuver con-
dition does not take advantage of the active shape changing capabilities of morphing technology.
Without morphing, the baseline optimized wing uses aeroelastically tailored bend-twist coupling to
achieve maneuver load alleviation. This aeroelastic mechanism provides a very good design, which
offers limited potential for improvement with the addition of morphing capabilities. In order to
more appropriately compare morphing and non-morphing wings, more flight conditions need to be
considered, as is done in the next section.

6.2 Multipoint optimization

To perform a legitimate comparison of clean-sheet morphing and non-morphing wing designs, we
ran a series of multipoint optimizations of both configurations. Optimizations with and without
morphing are performed on both three- and seven-point stencils, with maneuver conditions at 2.5-g
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and −1-g. More details about the optimization problem definitions and results can be found in the
associated paper [15]. A comparison between the conventional and morphing optimization results
for the seven point stencil is shown in Figure 27.

Figure 27 demonstrates that the 5% fuel burn improvement produced by morphing for a seven
point stencil is achieved with aerodynamic improvements at cruise and lightening of the structure
enabled by maneuver load alleviation. At maneuver the outboard morphing regions reflex, reducing
the lift in that region, and producing the sizable inboard shift visible in the spanwise lift distribution.
More details about these results are available in the reference alluded to previously.

Table 10: As the multipoint stencil size is increased from 3 to 7 points, the fuel burn
savings increases from 2.53% to 5.04%, respectively.

Stencil Morphing Fuel Burn[kg] Wing Mass [kg]

3 point
No 94,421 29,573
Yes 92,034 22,938

7 point
No 98,627 30,060
Yes 93,656 22,300

Table 10 summarizes the results of the 3 and 7 point optimizations. The maneuver conditions
used to size the structures in both optimizations were the same, which leads to an interesting
finding. Wing weight changes are subject to an aerostructural trade-off. As the weight of the wing
is increased, there is a direct penalty to fuel burn resulting from the increased weight of the aircraft.
Increasing wing weight also produces an aerodynamic benefit due to the improved consistency of
the deflected shapes at various flight conditions. These results demonstrate that the addition
of morphing changes the balance of these two effects. Without morphing, increasing stencil size
encourages an increase in the structural weight, as there is a larger benefit from improved deflected
shape consistency. With morphing however, the coupling between performance at various flight
conditions is decreased, weakening the aerodynamic incentive to increase the structural weight.
This is seen in the optimized results, as the weight of the morphing wing optimized at 7 points is
less than that optimized at 3 points, while this trend is reversed for the non-morphing wings.

After completing these multipoint studies, we conducted two additional comparisons of opti-
mized results. The first additional study investigated the importance of the size of the morphing
region. A realistic wing design including a morphing trailing edge may not allow a device to span
the entire chordwise region aft of the wingbox. To address this, the morphing region was reduced
to the aft 30% of the wing. The three and seven point optimization comparisons were repeated, and
fuel burn increases of 0.22% and 0.81%, respectively, were observed compared to the results with
the larger morphing region. The second additional study considered the influence of the aspect
ratio on the effectiveness of morphing devices. The three point comparison was repeated on the
uCRM13.5, and showed promising results. Morphing improved the fuel efficiency of the uCRM
and uCRM13.5 by 2.53% and 3.79%, respectively. This result clearly demonstrates the synergistic
effect between increasing a wing’s aspect ratio and adaptive morphing.

6.3 Morphing dexterity study

The morphing trailing edge optimizations up to this point have not included an explicit considera-
tion of the morphing mechanism. Morphing shapes were were not limited based on any mechanism
restrictions, and no design-dependent weight penalty was added for actuators. As such, the previ-
ous results can be interpreted as the maximum performance using an ideal morphing device. Based
on discussions with collaborators at FlexSys, this problem formulation is reasonably representative
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and realistic, however these assumptions prevent a study considering the dexterity of morphing
devices. To address this issue, we developed a surrogate model representing the actuator weight as
a function of aerodynamic loading, designed for use within our high fidelity framework.

There is a physical relationship between the morphing shape and the weight of the required
actuator/mechanism(s). The idealistic assumptions used in the previous optimizations ignore this
relationship. Without modelling this relationship, it is impossible to capture and study the tradeoff
between a morphing configuration’s weight and dexterity. As more spanwise actuators are added,
the morphing configuration gains dexterity, and therefore can produce better aerodynamic perfor-
mance; however, the addition of actuators also adds weight to the morphing configuration. To
study this tradeoff we developed the necessary actuator surrogate models, and subsequently sought
to perform a number of aerostructural optimizations.

We first consider the development of the actuator weight surrogate model. The model is built
around a dataset for linear electromechanical actuator specifications, as shown in Figure 28. A large
portion of the dataset for smaller actuators is based on off-the-shelf actuators available online [1, 2],
and data for a larger actuator comes from a design outline produced by Fronista and Bradbury [3].
The data is fit to a power regression of the power density as a function of the power, as defined in
Figure 28. This formulation, yielding power density as a function of power formulation is typical
in industry, and with an R-squared value of 0.9464, showed strong performance compared with
alternative forumlations. Within the framework, the actuator formulation needs to produce masses
as a function of required power. Replacing the power density with power per kilogram mass and
rearranging reformulates the surrogate as:

m = 0.5903P 0.2878 (6.1)

,where m is the actuator mass and P is the required actuator power. This relationship provides
a sizing function for the morphing actuators as a function of the power those actuators require.
The power requirement is based on the aerodynamic loads produced on the panels of the morphing
region. We assume a transition region is included between each panel to avoid nonlinear effects
produced by the influence of deflections in adjacent actuators. The pressure and viscous forces on
each panel are aggregated into an aerodynamic moment about the actuation axis. This calculation
of a moment about an arbitrary axis produced by a subset of the surface was produced for this work.
Adjoint-based gradients of this calculation were developed and validated as well. The aerodynamic
moment is multiplied by a required actuation rate of 70 deg/s [67], which was selected as an
upper bound of required actuation rates found in literature. The result is the required actuator
power as a function of the aerodynamic loading. An additional surrogate was added to account for
the requirements in deforming the morphing structure, however that model is based on work by
FlexSys [68], and is therefore not described herein. The total required power for each actuator is
then used in Eqn. (6.1) to produce the required actuator mass.

The key difference between these optimizations and those previously discussed is the addition
of the morphing regions and actuator weights. Four different optimizations were developed in this
study, with 0, 3, 6, and 12 actuators. The smallest division of the morphing region, into 12 panels, is
shown in Figure 29. Figure 29 also shows the wingbox superimposed, showing the morphing panels
locations aft of the wingbox. This results in a morphing region spanning a variable percentage of
the chord, between 30 and 40%. These panels, defined as sub-families within the mesh, define the
regions of integration used when calculating the aerodynamic moment used to size the actuators.
For the case with 12 actuators, each panel is considered individually. In the optimizations with 3
and 6 actuators, each actuator is sized using a combination of the moments from multiple panels.

Defining the morphing region used to size the actuators generates the dependence of the actuator
weight on the design, however it does not model the change in morphing dexterity associated with
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adding actuators. To include the changes in dexterity, the design space of each optimization is
defined differently. The baseline shape of the wing is defined the same way in each case, with the
FFD shown in the upper-left corner of Figure 30. The morphing regions for each case are defined
with a separate sub-FFD. Each of the sub-FFDs used for 3, 6, and 12 actuators are shown on the
bottom of Figure 30. In the upper right of Figure 30 is a view with all of the FFDs included. Note
that in this aggregated view, control points are sized such that those used with fewer actuators are
larger. Therefore green control points from the sub-FFD for 3 actuators are always covering purple
and red control points from the sub-FFDs for 6 and 12 actuators. In the same way, there is a red
control point from the case with 12 actuators under each purple control point for the 6 actuator
case.

As actuators are added, design variables are also added, giving a larger design space, and pro-
viding the aerodynamic benefit produced by improved dexterity. In order to maintain c1 continuity
on the OML, only the aft two design variables chord-wise are given freedom on each sub-FFD. Ad-
ditionally, thickness constraints like those used in previous optimizations are not given to maintain
the wing thickness in the morphing region. Instead, control points on the morphing sub-FFDs are
constrained to move together with the point above or below them.

A three point multipoint stencil is used for each of these optimizations. The nominal point of
the stencil is defined at L = W , and the off-design points of the stencil are at a load factor of
0.9 and 1.1. The nominal Mach number is once again 0.85. Two maneuver conditions are used to
constrain the structure, a 2.5-g pull up and a -1.0g push over.

The remainder of the optimization problem definition closely mirrors the problem definitions
from previous studies. At each flight condition the angle of attack and tail rotation variables
are provided, and the lift and pitching moment are constrained. Along with 240 local shape
variables, the baseline shape of the wing is optimized with 8 twist variables. There are 1029
structural variables, including panel length, skin thickness, stiffener height, stiffener pitch, and
stiffener thickness. The volume of the wing is constrained not to decrease, to maintain enough space
for fuel. The thickness cannot decrease at the leading edge, trailing edge, or aft spar. As in previous
optimizations, these constraints provide better low speed performance, assure manufacturability,
and leave space for actuation mechanisms and other avionics etc. near the aft spar. The leading
edge control points are always constrained to move in equal and opposite directions. When there
is no morphing, the trailing edge is constrained to prevent shear twist. A subset of the design
variables—like panel lengths, actuator weights, and some shape variables—are specified in multiple
locations for implementation reasons, and require associated consistency constraints. The structural
members are constrained not to fail at 2.5g, not to buckle at 2.5g, and the lower skin, ribs, and
spars are constrained not to buckle at -1.0g. An overview of the four optimization problems is given
in Table 11.
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Figure 28: The actuator sizing surrogate is based on a fit of the relationship of power
(P ) to power density (ρ) for a number of electromechanical actuators [1–3].

Figure 29: The morphing region is divided into 12 spanwise panels, each of which is aft
of the wingbox.
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Figure 30: The baseline FFD used to define the undeformed shape of the wing shown
in blue, while the sub-FFDs defining the shape changes of the morphing region for 3,
6, and 12 actuators are shown in green, purple, and red, respectively.
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To complete this study we developed a surrogate model relating actuator weights to aerodynamic
moments on regions of the wing. We also added functionality in our flow solver to calculate those
aerodynamic moments produced by viscous and pressure forces on a region of the wing around
arbitrary axes. This calculation included gradient computation with an adjoint approach, which
was verified. The additions to the framework necessary for the optimizations and the required
inputs were developed, but we have not yet completed the full optimization study. These high
fidelity optimizations typically require a number of manual iterations to adjust parameters, problem
definitions, etc., and finding the correct problem setup proved difficult for this problem. A particular
obstacle in this case was the inability to use multigrid capabilities in our flow solver. Given the
discretization of the mesh for the definition of the morphing panels, the indexing required for the use
of multigrid capabilities was lost. This resulted in substantially slower analyses, and subsequently
a bottleneck in the development of a properly formulated optimization problem.

6.4 Conclusions

In this assessment, we used high fidelity adjoint-based optimization techniques to quantify the
fuel efficiency improvement potential of morphing trailing edge technology. The morphing trailing
edge produced fuel burn savings of over 5% for a seven point multipoint optimization. Morph-
ing technology was shown to improve aircraft efficiency using a combination of improvements to
cruise aerodynamic performance and maneuver load alleviation. The importance and influence
that morphing has on the trade-off governing the optimal structural weight was also identified
and studied. We additionally addressed outstanding questions associated with the technology. We
demonstrated that the chordwise size of the morphing device could be reduced without severe per-
formance penalties. We also demonstrated the direct relationship between a wing’s aspect ratio
and the effectiveness of morphing technology. As aerospace materials and composites continue to
improve and enable more flexible, higher aspect ratio wings, the incentive to include morphing
technology will increase.

The use of our high fidelity optimization framework enabled us to produce an accurate quantifi-
cation of the efficiency improvement potential of morphing technology that was previously unavail-
able in literature. Our framework additionally enabled an accurate and detailed investigation of the
subtle effects that the inclusion of morphing technology will have on the trade-offs that engineers
navigate during aircraft design.
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7 Buffet prediction and constraint

Although high-fidelity aerostructural optimization was essential for the wing material study (Sec-
tion 4) and the morphing technology assessment (Section 6), we found that the designs are sus-
ceptible to buffet, and are not guaranteed to satisfy the safety requirements. These requirements
stipulate that commercial transport aircraft maintain at least a 30% margin from the cruise oper-
ating condition to buffet onset. To address this issue, we developed a separation-based constraint
formulation that constrains buffet onset in an aerodynamic shape optimization. The separation
metric developed in this work was verified against a common buffet prediction method and validated
against experimental wind tunnel data. We performed a series of optimizations based on the AIAA
Aerodynamic Design Optimization Discussion Group wing-body-tail case to show that buffet-onset
constraints are required and to demonstrate the effectiveness of the proposed approach. Here, we
present a summary of the separation constraint formulation and some selected results. Much more
detail is included in Kenway and Martins [6, 17].

One classic way of buffet prediction is to use the lift curve slope of the aircraft configuration—
the ∆α = 0.1 method [69]. However, this approach is not ideal for optimization and does not utilize
the rich flow field information that is available from RANS solutions. To develop a more direct way
of constraining buffet onset, we focus on the physical mechanism of shock-induced flow separation.
This approach is also suitable for constraining separation in general. An example showing the
typical progression of this type of separation with increasing angle of attack is shown in Fig. 31.
The first row in Fig. 31 shows the friction lines and pressure coefficient, as well as a shock sensor
(in orange) [70].

To determine if the flow is separated at a given location on the surface, we check if the surface
flow velocity has a component in the negative freestream direction (which is approximately the
negative x axis) direction, i.e., if

cos θ =
~V · ~V∞
|~V ||~V∞|

< 0, (7.1)

where θ is the angle between the local surface velocity and the freestream. The surface velocity is
taken from the center of the cells right above the solid surface. We can then define a separation
sensor as

χ =

{
1 if cos θ ≤ 0

0 if cos θ > 0.
(7.2)

Thus, χ is specific to each surface location and is a Heaviside function: It is equal to one when
the flow is separated, and equal to zero when the flow is attached. The blue areas on the surface
for α = 3.00◦ and α = 3.29◦ in the bottom row of Fig. 31 show the regions where χ = 1, which
approximately coincide with the regions where the flow is separated.

Since we need to use this function as a constraint in a gradient-based optimization, we would
like this function to be smooth. However, because this integral will be discretized based on a CFD
surface mesh, and χ is either zero or one for a given cell, the value of this area does not change
continuously with the design variables. To address this issue, we use a smooth Heaviside function
to blend the discontinuity as follows:

χ̄ =
1

1 + e2k(cos θ+λ)
. (7.3)

In this equation, k and λ are free parameters, where k determines the sharpness of the transition,
and λ is a parameter that can be used to shift the smoothing function to the left or right as a
function of the angle.

53



Next, we can integrate the smooth separation sensor (7.3) over the surface and normalize it by
the aircraft reference area to obtain the proposed separation metric:

Ssep =
1

Sref

∫
S
χ̄dS. (7.4)

This is equivalent to performing a weighted area integration of the sensor value shown in the bottom
row of Fig. 31.

To find out if the separation metric (7.4) is correlated to buffet onset, we used the ∆α = 0.1
method as a reference. We start by using the ∆α = 0.1 method to compute the buffet boundary for
the baseline CRM configuration [57] at a flight altitude of 37 000 ft and for Mach numbers ranging
from 0.8 to 0.9. The resulting reference buffet boundary is shown as the orange line in Fig. 32. We
then plot the lines corresponding to various values of the separation metric, and determine that a
cutoff value of χ = 4% yields the best agreement when compared with the ∆α = 0.1 method.

The overall shape of the buffet onset is consistent with the separation-based criteria. Because
the separation-based approach is more representative of the actual physics, we argue that it is the
more accurate of the two methods [6].

To validate the proposed separation metric as a way to constrain buffet-onset, we compare the
results obtained by using this approach with experimental results by Balakrishna and Acheson [4],
who tested the CRM wind tunnel model. They estimated the buffet onset by making high-speed
measurements of the strain at the wing root. Buffet onset can be identified by the increase in
the strain gauge signal amplitude, which is caused by the shock oscillations interacting with the
separated flow. Based on this increase in signal amplitude, they define the buffet coefficient, CB.

Figure 33, which is reproduced from Fig. 4 in Balakrishna and Acheson [4], shows the evolution
of the buffet coefficient for two Mach numbers: a high subsonic Mach number (M = 0.70) and a
transonic Mach number (M = 0.85). We overlay lines at α values for which our method yields a
separation sensor value of 4%, with λ = −0.1. We see that the results of the separation sensor
method correlate well with the increase in CB, providing more evidence that the separation-metric
approach correctly predicts buffet onset.

To understand the need for the buffet constraint, and to understand the consequences of en-
forcing the constraint, we solve a sequence of seven design optimizations. These cases—numbered
5.1 through 5.7—are summarized in Table 3. Cases 5.1 and 5.2 are currently specified by the
AIAA Aerodynamic Design Optimization Discussion Group (ADODG) [71]. We added the other
cases (cases 5.3 through 5.7) to further study the effects of including buffet-onset conditions on
the optimized geometries. The objective of all optimizations (except for Case 5.7, which is dis-
cussed separately) is to reduce the weighted drag coefficient at the N operating conditions. The
optimization problem statement can be written as

minimize
∑N

i=1WiCDi Quantity
with respect to Airfoil shape variables 240

Wing twist 9
Angle of attack (αi) N
Tail rotation angle (ηi) N

subject to CLi − C∗Li = 0.0 N

CMyi
= 0.0 N

tj ≥ tjCRM 750
Ssepi ≤ 0.04 N

(7.5)

Each flight condition i is assigned a weight Wi that specifies to what extent the drag of the
given flight condition influences the objective function. The lift and moment coefficient constraints
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ensure that the aircraft is trimmed at each flight condition, which can be achieved by the appropriate
combination of angle of attack and tail rotation angle. The thickness tj is computed at 750 points
arranged in a 25 × 30 regular grid in the chordwise and spanwise directions, respectively. These
thicknesses are constrained to be greater than or equal to the original thicknesses of the CRM
geometry at the corresponding points. Because making the wing as thin as possible is desirable in
transonic flow [10], these constraints ensure that the wing does not become too thin, which would
result in a significant increase in structural weight. Imposing thickness constraints means that only
changes in the wing camber are available to the optimizer.

Only cases 5.4, 5.5, and 5.7 use the separation constraint to satisfy the buffet margin. In
these cases, the separation constraint is only enforced for the last two flight conditions, and the
drag coefficient for these conditions does not contribute to the objective function (i.e., Wi = 0).
Therefore, the adjoint for CD is not evaluated for the buffet-onset conditions. Conversely, the
separation metric adjoint is not evaluated for the conditions where the drag coefficient weights are
nonzero. This results in a total of three adjoint solutions being required for both the cruise and
buffet flight conditions, which is desirable from a computational load-balancing perspective.

The ADODG specification for Case 5 disallows changes to the wing planform, and any shape
modification may only be made in the vertical direction. Additionally, twist rotation is permitted
for the wing, as is a solid-body rotation of the horizontal tail for trimming the aircraft.

Although drag-coefficient divergence curves yield useful insights into optimized designs, exam-
ining the performance in the full M -CL space is particularly instructive. In the context of transonic
transport wing design, ML/D is a better measure of performance because it includes the benefit
imparted on overall aircraft efficiency by a higher cruise speed. This overall performance can be
approximated by the Breguet range equation

R =
Ma

c

L

D
ln

(
W1

W2

)
, (7.6)

where L/D is the lift-to-drag ratio, a is the speed of sound, c is the thrust-specific fuel consumption,
and W1 and W2 are the initial and final cruise weights, respectively. For a purely aerodynamic
optimization at fixed Mach number, only L/D varies if we assume a constant c and weight ratio
W1/W2, so we are left with ML/D.

The procedure for generating contour plots is detailed by Kenway and Martins [6]. Figure 34
shows contour plots for all seven optimizations and the baseline design. The contours in each figure
extend up to the predicted buffet-onset curve shown in red. The orange curve shows the buffet
onset predicted by using the ∆α = 0.1 method. Several regions appear where the orange curves are
missing data, which we attribute to the failure to find an intersection between the two lift curves.
Overall, the separation-metric method continues to produce results that are close to those of the
∆α = 0.1 method, despite the large changes in the buffet-onset boundary.

The blue curve represents the 30% margin to buffet-onset boundary and is computed directly
from the red buffet-onset curve. For normal operation, only operating conditions below the buffet-
margin curve can be considered. The absolute maximum ML/D value for each configuration is
shown in pink. Two specific contours for the optimization configuration (one for the baseline
configuration) are highlighted: the contour of 99% (ML/D)max for the particular design is shown
in blue, and the contour of 99% (ML/D)max for the baseline configuration is shown in red. The
motivation for plotting these 99% contours is that airliners typically fly between the Mach number
yielding maximum range (approximated by the maximum ML/D value in the figures) and a higher
Mach number that yields a 1% fuel-burn penalty but decreases in the flight time. The area enclosed
by both of these contours is used to quantify the robustness of the design in these figures. The
areas are scaled by a factor of 1002 so that the area of the rectangle measuring 0.01 in M and 0.01
in CL has unit area.
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Table 12: Operating conditions for each optimization. Red diamonds denote separation-
constrained points. Operating conditions for Case 5.7 are determined by the optimiza-
tion process itself. Zero weight means that only the flight condition is considered for
the constraints.

Case Point Weights (Wi) Mach CL Re M–CL plot

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

5.1 1 1 0.85 0.500 43.00× 106

5.2 1 1/3 0.85 0.500 43.00× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 1/3 0.85 0.650 43.00× 106

3 1/3 0.89 0.456 45.00× 106

5.3 1 2/3 0.85 0.500 43.00× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 1/6 0.85 0.650 43.00× 106

3 1/6 0.89 0.456 45.00× 106

5.4 1 1 0.85 0.500 43.00× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 0 0.85 0.650 43.00× 106

3 0 0.89 0.456 45.00× 106

5.5 1 1/5 0.845 0.490 42.75× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.72 1/5 0.845 0.445 42.75× 106

3 1/5 0.845 0.408 42.75× 106

4 1/5 0.835 0.467 42.24× 106

5 1/5 0.855 0.418 43.25× 106

6 0 0.85 0.650 43.00× 106

7 0 0.89 0.456 45.00× 106

5.6 1 1/5 0.845 0.490 42.75× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.7

2 1/5 0.845 0.445 42.75× 106

3 1/5 0.845 0.408 42.75× 106

4 1/5 0.835 0.467 42.24× 106

5 1/5 0.855 0.418 43.25× 106

5.7 1 1/5 0.845 0.520 42.75× 106

Mach

C
L

0.8 0.85 0.9
0.4

0.5

0.6

0.72 1/5 0.845 0.475 42.75× 106

3 1/5 0.845 0.438 42.75× 106

4 1/5 0.835 0.497 42.24× 106

5 1/5 0.855 0.448 43.25× 106

6 0 0.85 0.690 43.00× 106

7 0 0.89 0.469 45.00× 106

The design operating conditions listed in Table 12 are shown as diamonds. The operating condi-
tions considered for the objective function are shown in black, whereas the buffet-onset constraint
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conditions are shown in red. The first buffet point (M = 0.85, CL = 0.65) is at the nominal
cruise Mach number and the CL value corresponding to a 1.3g maneuver. The second buffet point
(M = 0.89, CL = 0.456) is 0.04 higher in Mach number, which is a typical margin between a nom-
inal cruise Mach number and the maximum Mach number (MMO) condition. The lift coefficient
for this condition is adjusted to give the same dimensional lift as the nominal cruise condition at
the same altitude.

Two additional regions are highlighted in black and orange, which we refer to as integration
regions. They are constructed as follows: The Mach range is from 0.83 to 0.86, which corresponds
to the typical range of operating Mach numbers for an aircraft such as the CRM. The upper
line corresponds to the buffet-margin boundary, which is equivalent to specifying the maximum
altitude the aircraft can fly for a particular weight. The bottom line corresponds to the reduced
CL for a 4000 ft decrease in altitude. To put it in another way, the integration region contains all
operating conditions within 4000 ft of the buffet-constrained ceiling and for all normal operating
Mach numbers. The aircraft spends the vast majority of cruising flight in this region. The black
integration region corresponds to the baseline design, whereas the orange regions are adjusted to
reflect the actual buffet-margin boundary for each design. In addition, the upper edge of the black
region indicates how the buffet-onset boundary changes for each design relative to the baseline
configuration for the specific Mach range of integration.

Given the results above (and the more extensive results in Kenway and Martins [6]), we recom-
mend that physics-based buffet-onset constraints be enforced for aerodynamic and aerostructural
shape optimization of transonic transports, as we do in this work. Although one must be cautious
when using RANS to model separated flow, our results are encouraging because the approach was
verified against another established numerical approach, and also validated against experimental
data. The separation metric we develop herein is easily implemented and yields robust results, so
it provides a much needed constraint formulation for the CFD-based wing design community not
only for constraining buffet, but flow separation in general.
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3% cutoff

2% cutoff

Mach

C
L

0.8 0.82 0.84 0.86 0.88 0.9
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

=0.1 method

Separation ( =0.1, 4% cutoff)

Figure 32: Results of the ∆α = 0.1 method compared with those of the proposed
separation metric method.

Figure 33: Buffet coefficient CB obtained from wind tunnel data [4]. Vertical lines are
the buffet-onset locations predicted by the separation sensor.
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Figure 34: Contours of ML/D for the baseline and for each optimized configuration.
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8 Flutter boundary constraint

8.1 Introduction

One of the issues that arise from the high-fidelity aerostructural optimizations performed in Sec-
tion 4, especially in the case of fuel burn minimization, is that the resulting long span wings are
probably flutter critical. To address this issue, we decided to develop a flutter constraint formula-
tion suitable for gradient-based optimization. Several methods have been developed for computing
flutter boundaries, but the critical requirements in the context of our optimization that have not
been addressed so far are: 1) Efficient computation of the flutter boundary derivatives for optimiza-
tion, and 2) Computation of coupled derivatives with respect to not only structural sizing variables,
but with respect to wing shape as well.

In the research community, a wing’s flutter boundary is often analyzed with a time-accurate
coupled CFD-CSD solver similar to that proposed by Liu et al. [72]. However, this method incurs
a high computational cost since hundreds if not thousands of time steps are required to simulate
the flutter motion making it ill suited for optimization.

The current standard for flutter prediction in industry are methods based on panel codes,
Doublet-Lattice Methods (DLM), and Transonic Small Disturbance (TSD) equations [73]. In the
transonic region there is a significant reduction in the flutter speed, called the transonic dip or flutter
bucket. Corrections using wind tunnel experimental data can be applied to panel method aerody-
namic influence coefficients (AIC). For aerostructural design optimization this data is unavailable.
Although other methods, such as full potential flow or the Euler models, are able to predict shock
waves in the flow, they are limited in certain cases. As shown by several authors [74–76] viscous
effects are necessary to predict flutter onset accurately.

Despite the aforementioned shortcomings of linear methods, the DLM method can be used to
efficiently calculate flutter onset and thus can be incorporated as a flutter constraint in an otherwise
high-fidelity aerostructural optimization. Using this approach, the high-fidelity CFD solver solving
the RANS equations will account for nonlinearities in the flow solution, whereas the optimizer tries
to smooth out any shock that may appear on the wing surface.

Stanford and Dunning [5], Stanford et al. [77] implemented a flutter constraint for several mass
minimizations of a transport wing. To retain some of the nonlinearities in the flow, a transonic
AIC matrix was constructed from an Euler CFD code. This AIC matrix is however not updated
during the optimization process. Further, the derivatives of the mode shapes with respect to design
variables are neglected during the optimization. However, the mode shapes are updated at every
design iteration. For a mass minimization problem these approximations may be acceptable [78],
but for a change in planform and aspect ratio, these approximations may give unrealistic results.
For the flutter computation in this work, sensitivities of the mode shapes from the reduced system
with respect to the design variables, including planform, will be considered.

We implement the DLM method coupled to an FEM solver TACS. The entire code base is
differentiated to give sensitivities of an aggregated damping value (flutter eigenvalue) with respect
to the design variables. To compute the sensitivities accurately and efficiently we employ an
Automatic Differentiation (AD) adjoint method. Sensitivities are verified using a complex-step
method. We plan to apply the newly developed flutter constraint to two geometries of interest,
a flat plate verification problem and a transport wing. Further we perform optimization on both
geometries where in both cases we consider planform design variables.
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8.2 Methodology

There are several techniques and components necessary to enable flutter computations. In the
following section we will outline the major characteristics of these components. Further, we outline
the theory necessary for predicting flutter.

The doublet-lattice method (DLM) by Albano and Rodden [79] consists of a lifting surface
method that is formulated in the frequency domain. The DLM is based on the vortex-lattice
method (VLM) where the VLM is extended to harmonically oscillating surfaces where a flat wake
is assumed. A substantial body of literature exists on the DLM. An excellent reference worth
mentioning is the work done by Blair [80]. The DLM is widely adopted in the aeroelastic community
and has been a valuable tool in flutter analysis of subsonic aircrafts. Commercial software tools
such as MSC/NASTRAN have adopted the DLM [81]. In this work the implementation is based
in part on the method of Albano and Rodden [79], and the extension by Rodden et al. [82].

In this work, we use a flutter analysis that takes the following form:

F(s) =
[
s2M(x) + K(x)− q∞A(s)

]
u = 0 (8.1)

where F(s) is the overall flutter system, M(x) and K(x) are the mass and stiffness matrices from
the finite-element equations, which are functions of the design variables x. Furthermore, q∞ is
the dynamic pressure and A(s) = TTAIC(s)T, where AIC is the aerodynamic influence coefficient
matrix, and T is the load and displacement transfer interpolation matrix. The Laplacian parameter
(eigenvalue) s = ω(γ + i) is complex and gives the frequency and damping of the motion. Note
that the influence coefficient matrix is complex and is a nonlinear function of s. Therefore, the
flutter equation (8.1) is a generalized nonlinear eigenvalue problem with a solution given by the
triplet (s,v,u), where s is the complex eigenvalue and v and u are the left and right eigenvectors,
respectively. The triplet satisfies the following equations:[

s2M(x) + K(x)− q∞A(s)
]
u = 0

vH
[
s2M(x) + K(x)− q∞A(s)

]
= 0

Instead of using the full eigenvalue problem (8.1), flutter analysis techniques often employ a
reduced eigenproblem using a small number of natural frequencies. The reduced modes are the
eigenvectors of the problem: [

K(x)− ω2
iM(x)

]
u = 0,

where ωi is the natural frequency. The eigenvectors u for i = 1, . . . , r are collected in the matrix
Qr ∈ Rn×r where n is the size of the square mass and stiffness matrices. These eigenvectors are
M-orthonormal, such that QT

r MQr = Ir. The reduced eigenproblem can now be written as follows:

Fr(s̃) =
[
s̃2Mr + Kr − q∞Ar(s̃)

]
ur = 0, (8.2)

with the solution (s̃,ur,vr). The reduced matrices take the form:

Mr = QT
r MQr = Ir ∈ Rr×r,

Kr = QT
r KQr = diag{ω2

i } ∈ Rr×r,
Ar(s̃) = QT

r A(s̃)Qr ∈ Cr×r.

Note that Ar has no sparsity structure and is a dense matrix in general, while Mr and Kr are
sparse in general.

In this work, we use a shifted Lanczos method, which is a generalized eigenvalue solution algo-
rithm. The Lanczos algorithm extracts eigenvalues for symmetric generalized eigenvalue problems.
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Here, we use this algorithm to solve for the natural frequencies of the structural problem without
aerodynamic loads:

Ku = λMu.

Instead of solving this problem directly, we use a shift and invert strategy to zero-in on the desired
spectrum to reduce the number of iterations required. This shift and invert technique produces the
following eigenproblem that has the same eigenvectors but different eigenvalues [83, 84]

M(K− σM)−1Mu = µMu,

where the transformed eigenvalue µ is related to the original eigenvalue λ through the relationship:

µ =
1

λ− σ .

When σ is chosen such that it lies close to the desired λ, the corresponding transformed eigenvalues,
µ, become well separated, making the Lanczos algorithm more efficient.

The Lanczos algorithm uses an M-orthonormal subspace, written as Vm ∈ Rn×m, such that
VT
mMVm = Im. In exact arithmetic, this subspace can be formed directly from the Lanczos three-

term recurrence. However, the resulting subspace loses orthogonality as the algorithm converges
to an eigenvalue due to numerical truncation errors. Instead, we use an expensive, but effective,
full-orthonormalization procedure (Gram–Schmidt) that enforces M-orthonormality.

The Lanczos method can be easily extended to find multiple eigenpairs (λi,u).

Lanczos method for computing eigenvalues and eigenvectors of Ku = λMu
Given: m, v̂1, σ, εtol
Factor the matrix (K− σM)
Set i = 1
while i ≤ m do

v̂i+1 = (K− σM)−1Mvi
Set j = 1
while j ≤ i do . Full M-orthonormalization

hji = vTj Mv̂i+1

v̂i+1 ← v̂i+1 − hjivj
j ← j + 1

end while
αi ← hii

βi =
√

v̂Ti+1Mv̂i+1

vi+1 = v̂i+1/βi
Ti = tridiagk{βk, αk, βk−1} . Solve the reduced eigenproblem
Solve Tiyi = θyi for (θ,yi)
if βiy

T
i ei < εtol then . Test for convergence

u = Viyi
λ = 1

θ + σ
break

end if
i← i+ 1

end while
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The flutter solution algorithm that we use is given by [85], which solves the reduced nonlinear
eigenvalue problem Eq. (8.2). This method is a secant method applied to the determinant equation:

∆(s) = det QT
r F(s)Qr.

Note that the columns of Qr ∈ Rn×r are the eigenvectors from the natural frequency eigenproblem.
Given initial guesses s1, and s2, the method computes sk+2 as follows:

sk+2 =
sk+1∆(sk)− sk∆(sk+1)

∆(sk)−∆(sk+1)
,

the iteration is continued until |∆(sk+2)| ≤ εtol for some specified tolerance. In this implementation
all flutter eigenvalues s, at a velocity (or dynamic pressure) range of interest, are found for mode i
first before advancing to the next mode.

When evaluating the flutter determinant, the Aerodynamic Influence Coefficient (AIC) matrix
is not evaluated explicitly but rather interpolated using 4th order b-splines from a precomputed
AIC matrices at a range of reduced frequencies. These AIC matrices are precomputed at startup for
a specified range of reduced frequencies where the upper limit is the maximum reduced frequency
kmax of the reduced problem. The number of evaluation points for this range is chosen a priori and
is equally spaced over the selected range. This procedure is commonly applied for an AIC method
like the DLM and will improve the overall efficiency of the code as the evaluation of the AIC matrix
is generally expensive operation. Although the AIC matrix is independent of the structures a new
set of precomputed AIC matrices are constructed for each optimization iteration as the planform
of the geometry, hence the aerodynamic mesh is changed or updated.

We use a Kreisselmeier–Steinhauser (KS) function [52, 86] to aggregate the real parts of all the
flutter eigenvalues <(si) for each mode, into a single value. Note that si is the flutter eigenvalue at
the ith dynamic pressure for that mode. The KS function gives a differentiable maximum and can
be defined as

KS(x) =
1

ρ
ln

(
N∑
i=1

eρxi

)
(8.3)

where ρ is the KS parameter. This parameter can be used as a buffer or tolerance. As ρ → ∞
the KS function approaches the maximum, but too large a value can cause sharp changes in the
gradient. To avoid numerical difficulties due to overflow we use an alternate form of the KS function

KS(x) = a+
1

ρ
ln

(
N∑
i=1

eρ(xi−a)

)
(8.4)

where a = max(x).
Here we present a brief verification study of the DLM code and the methods used in our

flutter analysis. Natural frequencies of the flat plate problem presented in Section 8.6 are obtained
using the Lanczos method. The subspace size was 10, and 4 modes are used. A comparison with
MSC/NASTRAN is shown in Table 13, where the overall agreement is good.

Flutter analysis is obtained using the uCRM wingbox presented in Section 8.8. Specifically,
in Fig. 35, we compare the flutter eigenvalues for the first eight modes of the structure with
MSC/NASTRAN. Overall trends of our implementation are good although some discrepancy is
present. This is likely due to several reasons such as: (1) The precomputed AIC matrix could
have different resolution when constructed (evaluated a different number of reduced frequencies),
resulting in a discrepancy when the AIC is interpolated for a specific reduced frequency. (2) The
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use of a parabolic approximation kernel for the AIC matrix rather than the quartic approximation
[82] found in MSC/NASTRAN and different flutter equation formulation used in MSC/NASTRAN
[87].

Table 13: Flat plate natural frequencies agree well with NASTRAN. Units presented
here are radians.

Mode number NASTRAN TACS Error (%)

1 7.130 7.134 0.058

2 44.575 44.693 0.263

3 57.704 58.268 0.969

4 125.070 125.838 0.610
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Figure 35: Real and imaginary parts shown for the flutter eigenvalue of a CRM wing-
box. Solid lines show results from this proposed work, the DLM with TACS flutter
implementation, where the dashed lines are from MSC/NASTRAN aeroelastic module.

As in the other work described in this report, we use FFD for the wing shape parametrization
[60]. The FFD for the plate used in this section is shown in Fig. 36, where the red points represent
the control points and the black lines connecting them denotes the outer edges of the volume.

8.3 Adjoint implementation

To produce accurate gradient information, the code is analytically as well as automatically differ-
entiated (AD). We now describe the automatic differentiation adjoint approach that we used in this
work. We write the quantity of interest as I, which depends implicitly on the independent variables
of interest x. In the case of aerodynamics this quantity could for example be the lift or the drag
coefficients. State variables y(x) implicitly depend on the independent variables.

I = I(x,y(x))
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The residual equation can be written as

r = R(x,y(x)) = 0

For the derivation of the adjoint we start with the total derivative of the value of interest

dI

dx
=
∂I

∂x
+
∂I

∂y

dy

dx
(8.5)

The total derivative of the residual equation can also be obtained as

dr

dx
=
∂R

∂x
+
∂R

∂y

dy

dx
= 0

Rewriting the above equation we get

∂R

∂y

dy

dx
= −∂R

∂x
(8.6)

⇒ dy

dx
= −

[
∂R

∂y

]−1 ∂R

∂x
(8.7)

Note that the inverse of the square Jacobian ∂R/∂y is not calculated explicitly but rather used
to indicate that this matrix is solved as a linear system along with some right hand side vector.
Combining Eq. (8.7) and Eq. (8.5) we obtain

dI

dx
=
∂I

∂x
− ∂I

∂y

[
∂R

∂y

]−1 ∂R

∂x
(8.8)

The adjoint equations are written as [
∂R

∂y

]T
ψ = −

[
∂I

∂y

]T
where ψ is the adjoint matrix and is of size nx×nI . This linear system needs to be solved nI times
or for each column of [∂I/∂y]T . Substituting in to Eq. (8.8) we get

dI

dx
=
∂I

∂x
− ψT ∂R

∂x
(8.9)

We could also solve the system with the direct method where we would solve

∂R

∂y

dy

dx
= −∂R

∂x

This linear system needs to be solved nx times to get the full dy/dx. Since many aerodynamic
optimization formulations contain many more design variables than outputs of interest (or nx >>
nI) we solve the adjoint equations in order to obtain the sensitivities as efficiently as possible.

Automatic differentiation, also know as algorithmic differentiation, is a well established method
that systematically applies the differentiation chain rule to source code. The method uses source
transformation tools that takes in the original computer program, augments it, and generates a
new code, such that it computes the analytical derivatives along with the original program [88, 89].

66



Two modes exist, the forward mode and the reverse mode. For a generic system with scalar input
x and output y we can write it as:

System x→ F (x) → y

Forward AD ẋ→ F ′(x) → ẏ

Reverse AD x̄← F ′∗(x) ← ȳ

where the arrows represent the flow of information, the box represents the system or a function.
The forward mode, know as tangent, is denoted with a dot ˙( ) over the variable. Given some
small variations on the input (independent) variables x we can compute the resulting variations of
the dependent variables y. The Jacobian matrix J contains the partial derivatives of each output
(dependent) variable yj with respect to each independent variable xi. The forward mode thus
computes dy = J× dx for each given dx or

dy = J× dx
ẏ1

ẏ2

...

ẏn

 =


∂y1

∂x1

∂y1

∂x2
· · · ∂y1

∂xm
∂y2

∂x1

∂y2

∂x2
· · · ∂y2

∂xm
...

...
. . .

...
∂yn
∂x1

∂yn
∂x2

· · · ∂yn
∂xm

×

ẋ1

ẋ2

...

ẋm


Conversely the reverse mode, known as the adjoint, is denoted by a bar ¯( ) over the variable.

The order of operations reverses and we compute the transposed Jacobian product dx = J∗ × dy
for each given dy or

dx = J∗ × dy
x̄1

x̄2

...

x̄n

 =


∂y1

∂x1

∂y2

∂x1
· · · ∂yn

∂x1
∂y1

∂x2

∂y2

∂x2
· · · ∂yn

∂x2
...

...
. . .

...
∂y1

∂xm
∂y2

∂xm
· · · ∂yn

∂xm

×

ȳ1

ȳ2

...

ȳm


In other words, the gradient of the independent variable is a linear combination of the variation
in the dependent variable. This is a very important observation particularly in the case where
we have many fewer output variables than input variables. In this work we used the AD source-
transformation tool, Tapenade [90, 91] to obtain part of the derivatives used in this work.

8.4 Flutter derivatives

A simplified flow of information for the flutter calculation, obtaining derivatives in forward and
reverse mode can be written as:

x→ K,M→ Qr,Kr,Mr → si → KSi

ẋ→ K̇, Ṁ→ Q̇r, K̇r, Ṁr → ṡi → K̇Si

x← K,M← Qr,Kr,Mr ← si ← KSi

where K,M are the siffness and mass matrices and Qr the reduced natural modes shapes. The
KSi represents the real part of flutter eigenvalue si for mode i aggregated over the velocity range
interest using the KS function defined in Eq. (8.4).
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Total derivatives of the flutter constraints dKS/dx are generated with a combination of AD
and analytically differentiated code. Routines such as LAPACK’s [92] complex and real linear
solutions are not automatically differentiated, but instead must be differentiated analytically and
implemented as such.

The adjoint method was also implemented to obtain total derivatives for the flutter constraint
where the partial derivatives are computed mainly with AD. However, likely due to bugs in the
implementation, accuracy was lacking compared to full differentiation of the code or complex step.
More work on the adjoint implementation is therefore needed as that will improve efficiency over
automatically differentiating the full code.

8.5 Derivative verification

To demonstrate correct and accurate derivatives we go through a rigorous verification. Each func-
tion in the code is unit tested where sensitivities are computed using a second order central finite-
difference stencil, a complex-step method [93] as well as forward and reverse mode AD. The finite-
difference stencil used here is

dI

dx
=
I(x+ h)− I(x− h)

2h
+O(h2),

with a step size ranging from h = 10−3 to h = 10−6 depending on the function under consideration.
It has to be mentioned that in order to get a reasonable prediction with finite-difference, a step
size study was performed to get the most accurate gradient possible. For the complex-step method
the sensitivity of a function is computed as

dI

dx
=

Im[I(x+ ih)]

h
+O(h2),

where i =
√
−1 with a step size of h = 10−40. The complex-step method does not suffer from

subtractive cancellation errors as does the finite-difference method. The step size can be made
very small, hence the O(h2) truncation error becomes negligible, thus giving same precision as the
function I(x).

One drawback of the complex-step however is that it cannot be used by default in programs that
already contain complex numbers and do complex arithmetic. Such programs need to be modified
such that the complex number is represented by two real numbers, one for the real part and one for
the imaginary part. Complex arithmetic thus need to be done by hand and cannot be done using
intrinsic functions. In this work, all code has been modified such that it utilizes only real numbers
for complex calculations and is complex-step safe.

Since we have many more design variables than functions of interest I(x), we want to employ
the adjoint or the reverse mode AD in the optimization. A common technique to verify the reverse
mode is to implement the forward mode and perform a dot product test. The forward mode and
the complex-step should also match close to machine precision so implementing the forward mode
as well is an important step. We can then write the dot product test [94]

x̄∗ẋ = (J∗ȳ)∗ ẋ

= ȳ∗ (Jẋ)

= ȳ∗ẏ set ȳ = ẏ

= ẏ∗ẏ

This equality should be exact to machine precision.
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8.5.1 Intermediate derivatives

We now present derivative results of the flutter constraint with respect to the reduced stiffness
matrix Kr, the aerodynamic mesh nodes Xaero and Qm which are the reduced mode shapes Qr

transferred on to the structure. As shown in Table 14 sensitivities are very accurate as the complex-
step and the reverse AD agree very well. As expected, the second order finite difference method
does however not perform as well, and was sensitive to variation in step size. In order to get the
best finite difference derivative the step size was varied from h = 10−3 to h = 10−6 depending on
which derivative was being calculated.

8.5.2 Flat plate derivatives

Sensitivities for the flat plate, geometry presented in Section 8.6 are considered. Sensitivities for the
design variable of interest, chord, span and thickness are shown in Table 15. The thickness variable
is for the entire plate as opposed to one thickness variable per element. As before finite difference
offers less accuracy compared to AD or complex-step. Its noted that number of matching digits for
the full chain is somewhat less than what is presented in Table 14 which is coming from the Fortran
code. Once passed through the reverse implementation of TACS and the Lanczos method some
accuracy is lost. The reason why this is, are not obvious at this point and need further evaluation.

Table 14: Intermediate sensitivities of aggregated eigenvalue mode 1 with respect to a
single value in the reduced stiffness Kr matrix, aerodynamic mesh points Xaero matrix
and the reduced transferred mode shapes Qm. Reverse AD compares very well to
complex-step and is close to matching machine precision. Finite difference however
lacks accuracy compared to the other methods.

∂KS1
∂Kr

∂KS1
∂Xaero

∂KS1
∂Qm

Finite Difference 0.0043664132309829 0.1058895990890818 -0.0230063250672430

Complex-step 0.0043664135454205 0.1058895982342961 -0.0230063273513534

AD (Reverse) 0.0043664135454142 0.1058895982342963 -0.0230063273513523

Table 15: Sensitivities of the of aggregated eigenvalue mode 1 with respect to the design
variables, chord, span and plate thickness.

dKS1
dxchord

dKS1
dxspan

dKS1
dxthickness

Finite Difference 1.59234199 -2.55801140 3930.43055292

Complex-step 1.59403748 -2.56075992 3929.75519514

AD (Reverse) 1.59481803 -2.56035533 3929.74618753
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Table 16: Derivatives for flutter constraint on mode 1 versus the design variables for
8 spars, 8 ribs and 8 skin elements of the structure. RAD is reverse AD, FD is finite
differencing, and CS is the complex step.

Variable i FD CS RAD Relative error FD-CS Relative Error RAD-CS

Spar Elements 1 -2.014985468 -1.999974758 -1.999965907 7.51E-003 4.43E-006

2 -0.088696547 -0.090194566 -0.090198427 1.66E-002 4.28E-005

3 -0.095666766 -0.085257553 -0.085258866 1.22E-001 1.54E-005

4 0.203193368 0.210156947 0.210212359 3.31E-002 2.64E-004

5 0.263933667 0.259278622 0.259260509 1.80E-002 6.99E-005

6 -0.071987279 -0.032305006 -0.032318974 1.23E+000 4.32E-004

7 0.006071139 -0.000334429 -0.000327057 1.92E+001 2.25E-002

8 -0.020179093 0.000032238 0.000026615 6.27E+002 2.11E-001

Rib Elements 1 0.253309222 0.224356643 0.224359214 1.29E-001 1.15E-005

2 0.191743890 0.175807433 0.175809351 9.06E-002 1.09E-005

3 0.207341327 0.230292459 0.230290811 9.97E-002 7.16E-006

4 0.185916602 0.181973005 0.181975321 2.17E-002 1.27E-005

5 0.237979611 0.233055462 0.233046967 2.11E-002 3.65E-005

6 0.181381180 0.185529844 0.185526430 2.24E-002 1.84E-005

7 0.231692141 0.231781620 0.231775388 3.86E-004 2.69E-005

8 0.150392537 0.184741162 0.184729822 1.86E-001 6.14E-005

Skin Elements 1 0.441049044 0.434946729 0.434919882 1.40E-002 6.17E-005

2 0.276180216 0.287471575 0.287450964 3.93E-002 7.17E-005

3 0.247139578 0.285488076 0.285466885 1.34E-001 7.42E-005

4 0.470635907 0.436378482 0.436469380 7.85E-002 2.08E-004

5 0.328335009 0.287666266 0.287733113 1.41E-001 2.32E-004

6 0.291624919 0.285354574 0.285422324 2.20E-002 2.37E-004

7 0.485841301 0.477884284 0.477930152 1.67E-002 9.60E-005

8 0.306040695 0.312406435 0.312433467 2.04E-002 8.65E-005

8.5.3 uCRM derivatives

Here we present sensitivities for the uCRM geometry presented in Section 8.8. Sensitivities for the
KS function with respect to selected variables are listed in Table 16. As before the finite difference
values are obtained using a second order stencil. A step size study would be desirable for each
design variable or element, but this was not done in this case. Instead, the step size that gave
the best overall results was chosen, which was h = 10−6. This step size resulted in more elements
having sensitivities that where closer to the complex-step. The last two columns give the relative
error between the finite difference and complex-step and reverse AD and complex-step. We note
that the reverse AD and complex-step compare very well as the relative error is three to six orders
of magnitude smaller than compared to finite difference.
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Figure 36: Flat plate structural and aerodynamic mesh shown in red and black re-
spectively. The plate is cantilevered at the left edge. A Free-Form-Deformation (FFD)
volume is also shown with 8 control points which are depicted as red spheres connected
by solid black lines.

8.6 Flat plate analysis and optimization

8.6.1 Model description

The flat plate geometry shown in Fig. 36 is chosen for verification purposes due to its simplicity and
short optimization turnaround. The flat plate structure, shown in red is embedded within a larger
flat aerodynamic mesh, shown in gray. The red circles are control points of the FFD volume, which
both meshes have been embedded in. The structural model consists of 12 elements in streamwise
direction and 40 elements in the spanwise direction with a total of 480 finite elements. The finite
element used here is the MITC4 shell element. The aerodynamic model consists of 10 elements in
streamwise direction and 15 elements in the spanwise direction. Material properties, dimensions
and discretization for the baseline flat plate are summarized in Table 17.

For the flat plate analysis and optimization the air density is kept fixed and the Mach number
is set to zero resulting in incompressible flow. The velocity range is varied in 40 increments from 2
to 15 m/s for each design. The flight conditions are summarized in Table 18. The flutter problem
is solved at each velocity (dynamic pressure effectively) for each mode. In this work we constrain
the first 4 modes of the plate. The first 4 natural modes and mode shapes are calculated using the
Lanczos algorithm with a subspace of size 10.

8.6.2 Problem statements

For this simple flat plate problem design variables are chosen as thickness of the entire plate
xthickness, its span xspan and chord length xchord. No sweep, taper or dihedral is applied here. The
objective is to maximize its range using the Breguet range equation,

R =
V

cT

CL
CD

ln

(
Winit

Wfinal

)
(8.10)

where R is range, V/cT is the flight speed to thrust-specific fuel consumption ratio, CL/CD is the
lift to drag ratio, and Winit/Wfinal is the initial to final cruise weight ratio. For simplicity we assume
that V/cT = 1, and we define the cruise weights as

Wfinal = Wfixed +Wplate

Winit = Wfinal +Wfuel

(8.11)
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Table 17: Flat plate mechanical properties, dimensions and discretization of the struc-
ture and the aerodynamic surface.

Variable Symbol Value

Density ρs 2800 kg/m3

Modulus of Elasticity E 70 GPa

Poisson ratio ν 0.3

Yield stress σy 400 KPa

Thickness t 0.002 m

Structure Span bs 0.85 m

Structure Chord cs 0.21 m

Number of Finite elements, streamwise nx 12

Number of Finite elements, spanwise ny 40

Span b 1.0 m

Chord c 0.3 m

Number of DLM elements, streamwise nx 10

Number of DLM elements, spanwise ny 15

Planform area Ainit 0.3 m2

where the Wfixed is a fixed weight and Wfuel is the fuel weight. The lift coefficient is fixed at
CL = 0.5 and the drag coefficient is calculated assuming it consists only of the lift induced drag.

CD =
C2
L

πeAR
(8.12)

where the wing span efficiency factor is set to e = 1 for simplicity. The AR is the aspect ratio
defined as AR = b2/S where b is the reference span and the reference area S is the planform area.
The range can for example be increased by reducing the drag coefficient. The drag coefficient is
reduced by increasing the aspect ratio as other parameters are fixed.

The chord and span directly affect the aspect ratio so we want to formulate the problem in
terms of the aspect ratio rather than directly the chord and the span. This allows us to make
contour plots that can give valuable insight into the design space of such a small problem. By
adding an area equality constraint we ensure that there is a link between the chord and span.
This prevents the chord and span from shrinking or growing as the optimizer will otherwise try to
increase the aspect ratio by modifying these variables independently. This will reduced the number
of design variables making this in effect a problem with two design variables, thickness and aspect
ratio. Flutter constraints are added on the first 4 modes such that KSi ≤ 0 for i = 1, . . . , 4 and
the planform area must be kept constant. Due to the primitive nature of the flutter constraint
applied here no minimum flutter speed or flutter point is defined explicitly. The constraint forces
the geometry to be flutter free for the entire flight envelope. For this particular problem no flutter
must occur for the velocity range of 2-15 m/s. One could then think of the minimum flutter
point to be 15 m/s as no constraints are enforced for higher velocities. The initial area is given in
Table 17. The side constraints are as follows, chord and span are specified such that the aspect
ratio is allowed to vary from 1 ≤ AR ≤ 6, and the material thickness of the plate is allowed to vary
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Table 18: Flat plate operating conditions under investigation. The airspeed is incre-
mented from 2 to 15 m/s in 40 increments.

Variable Symbol Value

Mach M∞ 0

Lift Coefficient CL 0.5

Air Density ρ∞ 1.225 kg/m3

Air Speed Range U∞ 2-15 m/s

# Speed Increments nU 40

Flight speed (range eqn.) V 1.0 m/s

Thrust specific fuel consumption cT 1.0 lb/(lbf · h)

Fixed weight Wfixed 1.0 kg

Fuel weight Wfuel 0.25 kg

from 0.0012 ≤ t ≤ 0.0025 m. The optimization problem is summarized in Table 19.

8.6.3 Design space analysis

Before running an optimization the design space is analyzed since we have the luxury of plotting the
design space. A contour plot is generated by sweeping over both the aspect ratio range 1 ≤ AR ≤ 6
and the thickness range 0.0012 ≤ t ≤ 0.0025 m. Due to a relatively cheap cost of each analysis a
grid of 32 steps in each variable is done giving a total of 1024 points. Figure 37 shows the contour
plot of the objective function where the four constraints have been applied to the contour one at a
time. The objective function appears smooth with a clear maximum at AR = 6, t = 0.0012 m as
expected. For each flutter constraint where KSi ≥ 0 the objective function value has been blanked
out as this part of the design space is infeasible. Constraints boundaries on modes 1,2,3,4 are shown
with black, blue, red, and purple curves, respectively. For mode 1 there appear small pockets of
infeasible region in the design space. This anomaly will be addressed later. For the other modes
2-4 we see that they are represented as continuous lines in the design space.

All constraints have been applied to the objective function contour plot in Fig. 38. The con-
straint pockets appearing on mode 1 will never be active as the these scattered regions are blanked
out by mode 2 and 3. Similarly constraint boundaries for mode 2 and 3 appearing in the low
aspect ratio region will never be active as mode 4 will blank them out. Hence modes 2,3,4 are only
needed as constraints for this optimization as mode 1 will never be active. After having applied
the constraints to the design space the optimum now appears to be close to AR∗ ≈ 6, t∗ ≈ 0.0015.

8.6.4 Optimization results

The flat plate is optimized using flight conditions in Table 18. Multiple random initial designs
within and outside the feasible design space where chosen to test the robustness of the code and
optimizer. The optimizer is able to find or get very close to the global optimum, but experiences
numerical difficulties close to the global optimum in almost all cases.

To illustrate the issue we give the following example. One initial design is chosen (AR =
4.38, t = 0.002), which in this case is within the feasible design space. The optimizer finishes
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Figure 37: Contour plot of the objective function shown with the four flutter constraints
applied to the contour plot. To generate the contour the design space is sampled using
32 points in both variables.
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Table 19: Optimization formulation of the flat plate problem

Function/variable Description Quantity

maximize Range Breguet equation

with respect to xspan Plate span 1

xchord Plate chord 1

xthickness Plate thickness 1

Total design variables 3

subject to A - Ainit = 0.0 Fixed plate area 1

KSi ≤ 0 Aggregate damping for velocity range 4

Total constraints 5

Figure 38: Objective function shown where the infeasible design space has been blanked
out by the four flutter constraints.
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but exits indicating numerical difficulties after 6 major iterations with the objective function and
design variables equal to -5.024517 and AR∗ = 5.98, t∗ = 0.001497, respectively. Note that we are
maximizing the range, so the value is in fact positive (5.024517). Although the result is labeled as
the global optimum (with an asterisk) it is clearly not. The aspect ratio, for instance, is not at its
maximum of 6, which indicates that the optimum found is not the global optimum. The initial and
the optimized geometry along with their damping plot is shown in Fig. 39.

By inspecting Fig. 39, we see that the initial geometry (dashed lines) is a feasible design as it
does not have any modes with positive damping values for the velocity range of interest 2-15 m/s.
As stated in Table 19 the KS aggregate for each mode must be less than zero. For the optimized
geometry (solid lines) we see that mode 3, once aggregated, is the one that makes KS3 constraint
active. Other constraints are inactive. This had already been revealed in our previous design space
study. The point on mode 3 that causes the constraint to be active is at the end of the flight
envelope, 15 m/s, where the value is zero, hence causing the constraint to be active. Note that the
constraints KSi are not shown explicitly in Fig. 39. All constraints would form a horizontal line
at 0 rad/s spanning the entire velocity range (2-15 m/s). There are no constraints before or after
2 m/s and 15 m/s, respectively.

Numerical difficulties close to the optimum could indicate incorrect or noisy gradients, or issues
in the design space and problem formulation, such as discontinuous constraints. Further investiga-
tion of the design space around the optimum is needed; this is addressed in the next section.

8.7 Further analysis of flutter constraints

To analyze the numerical difficulties experienced in the optimization we turn our attention to the
smoothness of the constraints. Figure 40 shows each of the constraints plotted over the entire
design space. Each row of plots represents the constraints where the first row of figures are the
constraint on mode 1 and the last constraint on mode 4. The left column shows each constraint
for the full design space while the right column show a zoomed in region 5.8 ≤ AR ≤ 6.2 and
0.00148 ≤ t ≤ 0.00152 m where the optimum is found. The zoomed region is sampled with 16 extra
points in each variable, a total of 256 points. The zoom region is highlighted with a red square on
the full design space in the left column.

Investigating the left column in Fig. 40 we find that constraint mode 1 has discontinuous regions
close to the optimum in the lower right corner of the design space. Looking at the zoomed region
where the optimum is found we see that the mode is not smooth which is certainly contributing to
the numerical difficulties that the optimizer is experiencing. By dropping out mode 1 as a constraint
from the optimization problem will likely improve the behavior of the optimization but would be a
temporary fix and not a good solution. By investigating the remaining mode constraints 2, 3, and
4 we can see that there is a discontinuity appearing between aspect ratio of 2–3 for all thicknesses.
Constraints 2, 3, and 4 are however smooth close to the optimum.

This is further illustrated in Fig. 41. Thickness is fixed as t = 0.001619 m and the aspect ratio
range 1 ≤ AR ≤ 6 is sampled with 256 points. The constraints are shown in the top figure in two
dimension. The damping and frequency plots are shown at three aspect ratio of interest labeled
from one to three. The numerical value of the aspect ratio is not important here as it is only chosen
to explain the discontinuity issue. Aspect ratios chosen are indicated by a gray vertical lines as
well as labeled from left to right using the letters A, B, and C.

By inspecting the top figure we immediately notice the discontinuity in constraint 4 and con-
straint 1 as well as the mode hopping or mode swapping where constraint 2 and constraint 3 switch
places. By comparing the damping plots at aspect ratio A and B we see that mode 4 is picking
up another flutter root that is close to the root that it is starting at. By comparing the frequency
plots for aspect ratios A and B, we notice that as the frequency of modes 2 and 3 become close to
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Figure 39: Damping and planform view of the initial (AR = 4.38, t = 0.002) and the
optimized (AR∗ = 5.98, t∗ = 0.001497) design. As expected mode 3 is causing the
constraint KS3 to be active. It can be seen that the maximum for mode 3 is at 15
m/s and it is very close to zero. Other constraints are inactive. Constraints are not
shown explicitly in the figure. Initial geometry shown with outlines and the optimized
geometry shown in gray solid color.
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Figure 40: KS values for mode 1 to 4 shown in the left column for the entire design
space. The right column shows the region 5.8 ≤ AR ≤ 6.2 and 0.00148 ≤ t ≤ 0.00152
m sampled using 16× 16 stencil. The zoom region is highlighted with a red square on
the full design space in the left column.
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Figure 41: Thickness is fixed as t = 0.001619 m and the aspect ratio range 1 ≤ AR ≤ 6
is sampled with 256 points. Damping and frequency plots are shown for three different
aspect ratios labeled A to C.

each other. The eigenvalue solution method (determinant iteration) can not distinguish between
the modes, and both of them pick up the same root. When increasing the aspect ratio further,
we see that modes 2 and mode 3 switch, and are therefore not representing the correct mode.
Inspecting the frequency plot at aspect ratio C, we notice that the frequency for mode 1 becomes
zero. When this happens two real roots emerge as the complex root (and its conjugate) will have
zero imaginary part. This is indicated as a bifurcation on the damping plot. In this case however
we are only tracking one of the real roots as current algorithm is only capable of tracking one for
each mode. This explains the discontinuity in mode 1 at aspect ratio C. The bifurcated real root
starts to appear between B ≤ AR ≤ C but depending on which real root the algorithm ”locks”
onto, changes between different AR causing these discontinuities to show up. This can be prevented
by using an algorithm that can track both real roots. To avoid mode swapping and track the real
roots properly, a more sophisticated algorithm than presented here is needed.
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Figure 42: The uCRM wingbox shown in green along with the aerodynamic mesh shown
in purple. The FFD volume is not shown here.

8.8 uCRM flutter analysis

8.8.1 Model description

The geometry under consideration is the undeflected Common Research Model (uCRM) developed
by Kenway et al. [24] for aerostructural optimization. This geometry is based off the Common
Research Model which has been studied extensively in multiple Drag Prediction Workshops (DPW)
as well as by the Aerodynamic Design Optimization Discussion Group test cases [26, 57, 95].
The purpose of the uCRM is to provide the undeformed jig geometry and structural layout for
aerostructural optimization, which reflects the overall size and shape of a typical transport aircraft
such as the Boeing 777-200ER.

The aerodynamic surface of the wing is discretized using 11 elements in both the streamwise
and spanwise directions for the inboard section but 11 and 18 elements in streamwise and spanwise
direction for the outboard section of the wing. The wingbox is made up of 10584 MITC4 shell finite
elements. The aerodynamic mesh and wingbox are shown in Fig. 42 where the aerodynamic mesh
is shown in purple, and the wingbox in green. The FFD used here encapsulates both meshes but is
not shown here. The material properties for the uCRM along with discretization is summarized in
Table 20. Skin, spar and rib thickness and stiffener height, thickness and pitch are not presented
here. The load transfer scheme between the aerodynamic and structure meshes is rigid links
approach [48] and is discussed in [96].

For the analysis of the uCRM the Mach number is kept fixed at M = 0.85. The air speed and
the air density are varied in 79 increments as a pair ranging from 253 - 305 m/s and 0.04 - 1.99
kg/m3 receptively. The operating conditions are summarized in Table 21. We use the Lanczos
method to calculate the 20 first natural modes and mode shapes using a subspace size of 50.
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Table 20: uCRM mechanical properties, dimensions and discretization of the structure
and the aerodynamic surface.

Variable Symbol Value

Density ρs 2780 kg/m3

Modulus of Elasticity E 70 GPa

Poisson ratio ν 0.3

Yield stress σy 420 MPa

Span b 58.6 m

Aspect ratio AR 9.0

Reference Area S 383.7 m 2

Sweep (leading edge) Λ 37.4 deg

Number of finite elements nFE 10584

Number of DLM elements, inboard streamwise nix 11

Number of DLM elements, inboard spanwise niy 11

Number of DLM elements, outboard streamwise nox 11

Number of DLM elements, outboard spanwise noy 18

8.8.2 Problem description

In order to gain insight into the uCRM flutter characteristics we formulate the problem similarly
as the flat problem where we use two effective design variables, the aspect ratio and thickness
scaling variable. Skin, spar and rib thickness and stiffener height, thickness and pitch are modeled
as individual variables but are then scaled using a single scaling factor tscaling that is allowed to
vary from 0.8 ≤ tscaling ≤ 1.75. When tscaling = 1.0 all structural variables are at their initial value.
When tscaling < 1.0, this will decrease their values and vise versa. This approach is only used here
in order to be able to visualize the design space in a similar manner as for the flat plate example.

The objective is to maximize the range using Eq. (8.10) but here the range is in nautical miles.
As before the lift coefficient is fixed at CL = 0.5. The drag coefficient is modeled using the lift
induced drag and the zero lift drag coefficient,

CD =
C2
L

πeAR
+ CD0 (8.13)

To simplify we set e = 1 and for the zero lift drag coefficient we use CD0 = 0.0162. The flight speed
in the range equation is fixed to V = 250 m/s and the thrust-specific fuel consumption also kept
fixed cT = 0.53 lb/(lbf · h). The initial and final cruise weights are defined as

Wfinal = Wfixed + 2.5Wwing

Winit = Wfinal +Wfuel

(8.14)

All parameters used there are summarized in Table 21. Flutter constraints are added to the first 10
modes or KSi ≤ 0 where i = 1, . . . , 10 and as before area is kept constant. As for the plate problem
the flutter constraints is enforced over the entire flight envelope (density and velocity pairs) and
thus there is no flutter point specified explicitly. Optimization problem is summarized in Table 22.
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Table 21: The uCRM operating conditions under investigation. The airspeed and
density are incremented together in 79 steps.

Variable Symbol Value

Cruise Mach M∞ 0.85

Cruise lift coefficient CL 0.5

Cruise air density ρ∞ 0.04–1.99 kg/m3

Cruise air speed range U∞ 253–305 m/s

Number of speed/density increments nU 79

Zero lift drag coefficient CD0 0.0169

Flight speed (range eqn.) V 250 m/s

Thrust specific fuel consumption cT 0.53 lb/(lbf · h)

Fixed weight Wfixed 197000 kg

Fuel weight Wfuel 90000 kg

The aspect ratio is allowed to vary from 8.18 ≤ AR ≤ 16.43 and as mentioned before the thickness
scaling factor can vary from 0.8 ≤ tscaling ≤ 1.75.

8.8.3 Design space analysis

As for the flat plate problem the design space is analyzed. To generate the contour plot the design
space is sampled using 32 samples in each variable, the aspect ratio and the thickness scaling
giving a total of 1024 samples. Figure 43 shows the first 9 modes, the KS aggregated values,
plotted as contour plots. None of the modes, excluding mode 9 which shows discontinuities, violate
the constraint or where KSi > 0. Mode 2 and 5 have however regions where they are very close
to zero or practically zero. Mode 9, shows similar discontinuities as the flat plate geometry where
KS >> 0. Mode 10, which is not shown here, shows similar behavior as the other.

Figure 44 highlights this further where a slice was done at fixed thickness scaling of tscaling = 1.1
over all aspect ratios. Inspecting the figure we see that mode 1 experiences a discontinuity at lower
aspect ratios. Similar behavior was seen with the flat plate case where in this case the flutter
root finding method is locking onto a different eigenvalue. Mode 9 show similar behavior and
experiences discontinuity around AR = 12.7. Here this mode has likely bifurcated and split into
two real roots where at this aspect ratio the root finding method is locking onto which ever root it
finds first. As noted before mode 5 is also very close to zero and is practically zero at the higher
aspect ratios. This design space appears to be very uninteresting as none of the constraints become
active although mode 2 and 5 come close to it. Optimization of this simplified problem does thus
offer limited insight into the flutter characteristics of the uCRM. No optimization is thus done at
this point.

A possible explanation why none of the modes are active could be due to the scaling of the entire
structure using only one thickness scaling variables. By lowering the bounds on the thickness scaling
parameter we might able to produce points where the structure flutters. Another explanation why
the structure does not flutter is the omission of the masses due to the engine as well as leading
edge and trailing edge devices such as slats, flaps and ailerons. One possible way of modeling these
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Table 22: Overview of the simplified optimization problem for the uCRM wing. All
structural variables are scaled using one scaling parameter.

Function/variable Description Quantity

maximize Breguet range equation

with respect to xplanform Planform variables 3

xstruct Structural sizing variables 582

Total design variables 585

subject to A−Ainit = 0.0 Fixed area 1

KSi ≤ 0 Aggregate damping for velocity
range for mode i = 1, . . . , 10

10

Total constraints 11

masses is to lump them at as a point mass at discrete locations and connect them to the structure
using rigid body elements (RBE3) elements such that they do not add stiffness to the structure.
Their effect is thus purely inertial. Figure 45 is a sketch of such a solution where the rigid links
are shown as lines extending out from the structure. These lumped masses have been shown to be
very important [5] as they reduce the torsional frequency substantially resulting in a lower flutter
speed of the structure.

8.9 Conclusions

Sensitivities of the implemented flutter constraints in this work are both accurate and obtained
efficiently. This allows us to perform optimization of the uCRM wing with tens or hundreds of
design variables. As illustrated with the flat plate problem and the uCRM geometry the current
root finding method, the determinant iteration, is not adequate or robust for even the simplest
problems. Issues encountered in this work that relate to the method can be described as follows.

1. If an eigenvalue changes rapidly with increasing velocity the method might converge to an
incorrect value due to a large step size in velocity. This issue can be mitigated by increasing
the number of velocities analyzed substantially.

2. If two eigenvalues have similar or same imaginary parts this method can lock onto an incorrect
eigenvalue. This issue as illustrated above was frequently observed in this work. Increasing the
number of velocity points analyzed substantially may sometimes alleviate this issue, although
it might become a computational burden if many modes and velocities are needed for the
flutter analysis.

3. This method offers no direct way of tracking two real roots that emerge from a bifurcated
root where the imaginary part vanishes.

To determine the flutter speed accurately and efficiently, and to implement it as a constrain in an
optimization, these issues have to be addressed. Using more sophisticated root finding methods or
reformulating the problem are options that we are currently looking into. The chosen method must
also be differentiated such that accurate and efficient sensitivities are obtained.
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Figure 43: KS values for mode 1 to 9 shown for the entire design space. Design space
was sampled with 32× 32 stencil
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Figure 44: KS values for mode 1 to 10 shown as a slice at thickness scaling tscaling = 1.1
for all aspect ratios. Notice the discontinuity in mode 9.

Figure 45: uCRM wingbox, where the engine mass as well as leading and trailing edge
devices are modeled as lumped point masses connected to the structure using rigid
body elements (RBE3); adapted from Stanford and Dunning [5].
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Necessary capabilities in TACS need to be developed to model the rigid body elements (RBE3),
or something similar, to support lumped discrete masses that do not add stiffness to the structure.
These point masses are lumped from the engine, leading and trailing edge devices and have been
shown to be very important as they decrease the predicted flutter speed [5].

8.10 Ongoing and Future Work

The flutter equation (8.1) can be written in a state space form and solved as a generalized eigenvalue
problem. Introducing the trivial expression

Iu̇− Iu̇ = 0 (8.15)

where I is the identity matrix and is a Nm ×Nm matrix, where Nm is the number of modes. We
now can write it on a state space form substituting u = ūept

p

[
I 0

0
(
U
b

)2
M

]{
ū

pū

}
−
[

0 I

−(K− q∞AR) −U
b C + q∞

k AI

]{
ū

pū

}
= 0 (8.16)

which is 2Nm× 2Nm of size. The non-dimensional eigenvalue p = g+ ik is obtained by multiplying
the Laplacian eigenvalue s by b/U i.e. p = s(b/U), and u is the generalized coordinate vector.

To solve Eq. (8.1) iterative procedures are commonly applied since the aerodynamic matrix
depends on the reduced frequency k, the imaginary part of p. One such procedure is the determinant
iteration [85]. Another popular method is found in commercial software [81, 87], where an eigenvalue
problem is solved based on an assumed reduced frequency k. The resulting eigenvalue for the mode
under study is identified and compared to the assumed reduced frequency k. If the difference exceeds
some predefined tolerance the iteration continues with the imaginary part of the new eigenvalue
used as the reduced frequency k = Im(p).

Both methods however have drawbacks or can experience convergence issues or converge to
incorrect values. For example if two eigenvalues are close to each other, meaning when the imaginary
component (frequency) of the modes are close to each other or identical, an incorrect mode may
be picked up. This will result in mode hopping. Another potential issue is when the eigenvalue
changes rapidly with dynamic pressure (velocity). This can result in convergence issues or in the
incorrect eigenvalue being picked up.

Further these methods do not distinguish aerodynamic lag roots from structural modes as they
are fixed to find as many roots as there are modes. If aerodynamic lag roots become unstable these
methods may converge to the lag root over the structural mode. A more sophisticated root finding
method is thus needed.

In this work we implement a non-iterative proposed by van Zyl [97]. A similar method is also
proposed by Chen [98]. The method is outlined here:

1. At each dynamic pressure q∞ increment, an eigenvalue problem is solved for a range of reduced
frequencies k.

2. Eigenvalues are valid roots of the flutter equation if the imaginary part of the eigenvalue
equals the assumed k value i.e. a matched point solution Im(p) = k.

3. A change in sign of the difference Im(p)− k signifies the existence of a root.

4. The root is then determined by a linear interpolation.
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Figure 46 shows the reduced frequency sweep for a single dynamic pressure qi for a hypothetical
system with two modes shown in red and blue. The black dots represent an intersection of a mode
with the black diagonal line, Im(p) = k. There are 5 valid roots for this particular system, 4 from
the red mode and 1 from the blue mode. For the red mode, there are two real roots at k = k0 = 0
and two complex roots at k = k1 and k = k2. The blue mode is complex throughout the reduced
frequency sweep and has only one root at k = k3. An iterative method such as the determinant
iteration would have issues converging to k = k1 and would converge to k = k2. A similar behavior
is noted in [99] where the iterative method converges to a real root when it should have converged
to oscillatory complex root. Further the determinant iterative method is only be able to find as
many roots as there are oscillatory modes but the non-iterative places no limit on the number of
roots that can be found.

The modes must be tracked at two stages. During the reduced frequency sweep, which finds all
the roots for a given dynamic pressure, and during the migration of the modes between dynamic
pressure increments. The modes are tracked using the mode tracking method of Van Zyl [100]. The
tracking of the modes during the mode migration is more challenging and requires extra care since
new modes can show up as well as modes can disappear. A correlation metric is used to determine
if the dynamic pressure increment is too big. If the increment is too large, the step is halved until
its either accepted (moving on to the next dynamic pressure), or fails due to being halved too often
where a minimum dynamic pressure increment has been reached. If it fails and the minimum step
size is reached, the roots are accepted and the dynamic pressure is incremented using a normal step
size.

Reduced Frequency k

=(p)

k1k0 k3k2

Figure 46: Hypothetical system with two modes shown in blue and red. Black dots
represent a match point solution, i.e., where the modes intersect the diagonal line,
Im(p) = k, depicted in black.

The method has already been implemented in Python. A complex-step-able version in Fortran
is currently being developed. A preliminary result from the python version is shown in Fig. 47

There are several challenges in adding efficient flutter constraint in eigenvalue problems. A
naive approach would be to specify the flutter point which is defined as the speed or dynamic
pressure which the structure flutters at or equivalently when one of the modes becomes unstable
[101]. For optimization this approach may introduce discontinuities in the constraints due to mode
switching or a hump mode so additional steps are required to get continuous constraints.
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Figure 47: The modes found using the van Zyl root finding method (python implemen-
tation) for a swept plate (not shown here).

In the case of mode crossing, as shown in Fig. 48, two modes switch (real part only shown), but
the flutter point is very similar. This can cause discontinuity in the predicted flutter point, and
results in issues for a gradient based optimizer. The imaginary part of the eigenvalue (frequency)
will also switch or in many cases the frequencies will coalescence causing a mode to become unstable.

Velocity

<(p)

Velocity

<(p)

Figure 48: Mode crossing. Here two modes change role of being the fluttering mode.

A more serious problem is when a hump mode is present and it becomes the unstable mode.
This is shown in Fig. 49. This is C0 discontinuity and for a gradient based optimizer is a nonstarter.

Techniques exist to handle these problems and are summarized by Stanford et al. [102]. One
method is to force the unstable mode to remain the unstable mode. Series of frequency separation
constraints can be used to prevent the mode switching which will force the critical mode to remain
the same thus mitigating the discontinuity issue. For a hypothetical system this is shown in the
left figure of Fig. 50. The drawback of this method is that for a system with Nm modes, Nm − 2
constraints are needed (here we expect two modes to coalesce hence no constraint is needed for
two modes). Other limitations are that always the same mode will become unstable which might
over-constrain the optimization problem. Another more serious flaw is that the possibility of a
hump mode becoming active is still present.
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Figure 49: Illustration of a hump mode present where it becomes active with small
changes in design.

=(p)

Velocity
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Figure 50: Two possible methods to prevent discontinuity in the flutter constraint.
To the left is frequency separation method and to the right is the damping boundary
shown in black.

More elaborate constraints are thus necessary to both handle the switch as well as the hump
mode. One way is to add a damping curve or a boundary such that we force the real part of the
eigenvalue to be below certain boundary. This boundary spans the operating conditions of interest
from wind off to some high value of interest. Such boundary is shown in the right figure of Fig. 50
where the black line represents that boundary. This approach mitigates the aforementioned issues
and has further other benefits. No constraint is placed on the flutter point itself and thus no need
to calculate ii specifically. A mode that becomes unstable abruptly and has steeper slope than the
boundary, will be handled as well.

Here we use a boundary shape proposed by Stanford et al. [77] which is a modified version of
a boundary proposed by Ringertz [103]. The boundary is defined as

G(U) =

{
g∗
(
3U2U∗ − 2U3

)
/(U∗)3 0 ≤ U < U∗

β(U − U∗)2 + g∗ U ≥ U∗
(8.17)

where g∗ < 0 rad/s, U∗ > 0 m/s, and β > 0 rad · s/m2 are chosen based on the criteria of the
problem at hand. Figure 51 shows the boundary where we have chosen g∗ = −2 rad/s, U∗ = 20
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m/s, and β = 3. The constraint is self is written as

gi ≤ G(U) i = 1, . . . , (NrNU ) (8.18)

where the damping value gi has to be less than G(U) at every root Nr at every speed of interest
NU .

Figure 51: Example of a constraint curve that can be applied.

Although solving the issues with discontinuity in the flutter constraint the number of constraints
have increased dramatically. To reduce the number of constraints we use a method proposed by
Haftka [104] where a parametric constraint, such as the one introduced above, is replaced by the
minimum value constraint. This reduces the number of constraints to the total number of modes
found in the analysis process for the entire flight envelope. This reduced set of constraints can then
be aggregated into a single constraint by using a KS function. Using this approach we can reduce
the number of constraints from NrNU to a single constraint. Although this hides information from
the optimizer this allows for any number of modes to show up in the analysis process. As before
the KS aggregated value has to be less than zero for the constraint to be inactive.
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9 Summary of conclusions and future work

The overall goal of this NRA was to advance the sate-of-the art in high-fidelity aerostructural
optimization of aircraft configurations, and to use high-fidelity aerostructural optimization tools to
explore the design of specific configurations.

To address the bottleneck of geometry generation, we developed GeoMACH a new geometry
parametrization tool that is able to quickly create conventional and unconventional aircraft geome-
tries that are appropriate for high-fidelity MDO. The distinguishing feature of this tool is that it
is able to compute derivatives efficiently using an adjoint method. Thus, using this in conjunction
with an adjoint-based aerostructural tool enables a high-fidelity optimization cycle for an aircraft of
two days or less using one thousand cores in a high-performance computing cluster. Some challenges
remain in the treatment of intersections when two intersecting bodies move too much relative to
each other, and this remains an area of future work. There also needs to be a better interoperability
with CAD, which is often necessary in practice.

The development of the overset capability in ADflow addressed another major bottleneck in the
workflow for high-fidelity aircraft MDO: mesh generation. We developed not only the capability for
ADflow to solver overset meshes, but we also automated many tasks in the generation of single and
overset meshes. A few steps are still not automated, and these might be tackled in the future. When
we compared overset versus multiblock mesh solution convergence, we observed that the overset
meshes exhibit better convergence. This was due to the fact that our overset meshes consist of
multiple high quality meshes generated using an hyperbolic mesh generator for each component.
The quality of the single meshes more than compensated for the interpolation errors that are
inherent in the overset approach. The ability to mesh complex aircraft configurations allows us to
perform design optimization studies of practically any full aircraft configuration. It has is also now
enabling us to study propulsion-airframe integration problems.

One of the applications of aerostructural optimization was the study of optimal high aspect ratio
wings. Because the true objective function in aircraft design is dependent on the trade-off between
acquisition cost and operating cost, we generated Pareto fronts with respect to TOGW and fuel
burn. We compared optimal wings for three different materials: aluminum, conventional carbon
reinforced composites, and an hypothetical carbon nanotube material. In the optimization, we
simultaneously optimized the wing planform and structural sizing. For all materials, the minimum
fuel burn wings were found to be longer, heavier, thinner, more flexible, and more lightly loaded
than their minimum TOGW counterparts.

Another application of high-fidelity aerostructural optimization was the assessment of the con-
tinuous morphing trailing edge technology. We demonstrated that the chordwise size of the mor-
phing device could be reduced without severe performance penalties. We also demonstrated the
direct relationship between a wings aspect ratio and the effectiveness of morphing technology. As
aerospace materials and composites continue to improve and enable more flexible, higher aspect
ratio wings, the incentive to include morphing technology will increase. The use of our high fi-
delity optimization framework enabled us to produce an accurate quantification of the efficiency
improvement potential of morphing technology that was previously unavailable in literature. Our
framework also enabled us to estimate the gains morphing technology will have once the trade-offs
between weight and drag are considered with high-fidelity tools.

In our high-fidelity aerostructural optimization studies of high aspect ratio wings, we observed
that buffet margin was being violated. This motivated the development of a method for con-
straining buffet based on a general physics-based formulation that can be used for any phenomena
involving flow separation. Although this is a very nonlinear phenomenon, we derived a smooth for-
mulation that is amenable to gradient-based optimization. This enabled us to perform high-fidelity
aerostructural optimizations that satisfied buffet margins with little additional computational cost.
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In our results, we showed the need for constraining buffet in a typical commercial airliner, and
quantified the effect that this has on the performance in the flight condition space.

In the process of studying optimal high aspect ratio wings in collaboration with NASA, we
identified the need for a common model for high-fidelity aerostructural design. Building on the
CRM configuration, which was developed exclusively for aerodynamic studies, we developed two
uCRM (undeflected CRM) configurations: one with the original aspect ratio of the CRM—the
uCRM-9—and a high aspect ratio version—the uCRM-13.5. We have since used these models in
our studies, and it has been used by a few other groups already.

Finally, we started the development of a flutter constraint, which is usually a critical design
consideration in wing design, and is expected to be especially important for flexible high aspect ratio
wings. We implemented a DLM-based flutter computation with adjoint derivative computation that
included coupled derivatives with respect to both structural sizing (which had been done before by
other researchers) and wing shape (which was a new development in the field). The derivatives of
the implemented flutter constraints in this work are both accurate and obtained efficiently. This
allows us to perform optimization of the uCRM wing with tens or hundreds of design variables. As
illustrated with the flat plate problem and the uCRM geometry the current root finding method is
not robust enough in its current form, and we plan to address this in future work.

In the course of the five years of this project, we advanced the state-of-the art in both methods
and design knowledge related to high-fidelity MDO of aircraft configurations. MDO still has not
reached its full potential and much remains to be done, but we have demonstrated that it is
now possible to use high-fidelity aerostructural design optimization routinely in the study of new
configurations and airframe technologies. This is made possible by improvements in the model
preparation workflow, reductions in wall time by tackling computational bottlenecks, developing
practical design constraint formulations, and creating effective visualizations of the results.
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78. Haftka, R. T.; and Gürdal, Z.:, Elements of structural optimization, volume 11, 2012.

79. Albano, E.; and Rodden, W. P.:, A doublet-lattice method for calculating lift distribu-
tions on oscillating surfaces in subsonic flows. AIAA Journal, 7(2):279–285, February 1969.
doi:10.2514/3.5086.

80. Blair, M.:, A compilation of the mathematics leading to the doublet lattice method. Technical
report, DTIC Document, 1992.

81. MSC Software Corp:, MSC Nastran 2012 Release Guide.

82. Rodden, W. P.; Taylor, P. F.; and McIntosh, S. C.:, Further refinement of the subsonic doublet-
lattice method. Journal of Aircraft, 35(5):720–727, September 1998. doi:10.2514/2.2382.

83. Trefethen, L. N.; and Bau III, D.:, Numerical linear algebra, volume 50, 1997.

84. Bathe, K.-J.:, Finite element procedures, 2006.

85. Hassig, H. J.:, An approximate true damping solution of the flutter equation by determinant
iteration. Journal of Aircraft, 8(11):885–889, 1971.

86. Poon, N. M. K.; and Martins, J. R. R. A.:, An adaptive approach to constraint aggregation
using adjoint sensitivity analysis. Structural and Multidisciplinary Optimization, 34(1):61–73,
July 2007. doi:10.1007/s00158-006-0061-7.

98

http://dx.doi.org/10.2514/6.2001-910
http://dx.doi.org/doi:10.2514/6.1999-3285
http://dx.doi.org/10.2514/6.2015-1127
http://dx.doi.org/10.2514/3.5086
http://dx.doi.org/10.2514/2.2382
http://dx.doi.org/10.1007/s00158-006-0061-7


87. Rodden, W. P.; Bellinger, E. D.; Harder, R. L.; and Center., L. R.:, Aeroelastic addition to
NASTRAN, 1979.

88. Griewank, A.; and Walther, A.:, Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation, second edition, 2008.

89. Mader, C. A.; and Martins, J. R. R. A.:, Derivatives for time-spectral computational fluid
dynamics using an automatic differentiation adjoint. AIAA Journal, 50(12):2809–2819, De-
cember 2012. doi:10.2514/1.J051658.
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