Earth-to-orbit Beamed Energy eXperiment (EBEX)

July, 2016

Les Johnson / NASA Marshall Space Flight Center Edward E. (Sandy) Montgomery / MonTech, LLC [U.S. Army Directed Energy (retired)]

Nasi What is EBEX?

- Ground to space laser illumination of a solar sail to impart measurable $\Delta \mathrm{V}$ ($=0.1 \mathrm{~mm} / \mathrm{sec}$)
- LightSail 2 solar sail
- launch April 2018 or later
- 14 days checkout
- 28 days solar sailing
- 5.67×5.67 = $32 \mathrm{~m}^{2}$
- 5 kilograms
- 92 \% specular reflective at 1064 nm wavelength
- Initial Orbit
- 720 km circular
- 24° inclination

- NASA SAA8-1417702 - Available for EBEX after 6 weeks and solar sailing on-orbit

Nash Orbit at beginning of EBEX experiment

- Sail orientation is controlled using torque rods and a single-axis momentum wheel
- Expected apogee rate of change: $700 \mathrm{~m} /$ day during first two weeks

- Attitude control modes
- Solar sailing (on-off to solar vector)
- Laser propulsion (sail normal co-aligned with velocity vector, max drag)
- No control
- Capability of aligning sail normal along inertial velocity vector, with pointing errors of < 30 deg

Masi Ground Site Candidates

- For this assessment only considered sites that had previously hosted outdoor high energy laser operations or were controlled-access, space observation installations
- Site latitude with respect to orbital inclination important

Ground Site	Latitude (deg)	Longitude (deg)	Altitude (km)
Haleakala	20.7085	-156.258	3.057
Huntsville, At	34.6064	-86.6557	0.171
Kwajalein	8. 11955	167.719	0.05904
North Obscura Peak, NM	33.7522	-106.372	2.400
Santa Cruz	37.1399	-122.202	0.710
Santa Rosa Island, FL	30.3979	-86.7291	0.000
Starfire Optical Range	34.9642	-104.464	1.871
White Sands	32.6325	-106.332	1.205

NASA
 Effect of Minimum Elevation Limits
 [source: Dan Thomas/MSFC]

- 720 km circular orbit at 24° inclination Initial state not known, so simulations run over 160 days to capture patterns
- Orbit propagator:
- HPOP
12×12 gravity model (WGS84_EGM96.grv)
- Sail drag coefficient = 3.3
- Area to mass of sail $=3.667 \mathrm{~m}^{2} / \mathrm{kg}$
- Default solar flux/geomag: Daily F10.7 $=90$, Avg. $\mathrm{F} 10.7=90, \mathrm{Kp}=3.0$
- Third body gravity: Sun, Moon
- Integrator: RKF 7(8)
- Eclipsing Bodies: Earth, Moon

NASA
 Three Successive Orbit Tracks for Santa Rosa Island, Eglin AFB, FL

Santa Rosa Island, Eglin Air Force Base, Florida

Nash Review of Access Times

- Durations of each access, number of accesses per day, and maximum gap between accesses:

Santa Rosa Island, Eglin AFB, FL to LightSail 2

Mon Laser Propulsion Opportunities

- Sum of accesses for each day and time between each access
- Want high total duration/day with small times between each opportunity

Examine in
more detail
Santa Rosa Island, Eglin AFB, FL to LightSail 2

mosi Performance Analysis Method

- Method based on:
- "Beam Control for Laser Systems", by Dr. Paul Merritt, published by the Directed Energy Professional Society, Albuquerque, N.M., 2012, Library of Congress Control Number: 2010929641]
- "Linear Photonic Thrust Model and its Application to the L'Garde Solar Sail Surface", by Gyula Greschik, 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 8-11, 2013, Boston, Massachusetts

Non Power Delivered to Orbit

Diffraction and jitter combine to "spill" ~50\% of energy past LightSail 2 at 700 km orbit altitude

Max Effect of Laser on LightSail 2

- 10kw, 1064 nm cw laser
- 30 cm beam director aperture
- 3 urad jitter, $\mathrm{M}^{2}=1.1$
- $32 \mathrm{~m}^{2}$ Sail Area, 0.92 specular reflection
- 5 kilogram spacecraft mass
- 720 km circular orbit @ 24° inclination
- Ground site: Eglin AFB, FL
- 0.71 transmittance factor
- $\sigma_{\text {DIFF }}=R^{*} 0.45 \lambda / D$

Maximum Acceleration Available

Maximum available acceleration during overpass

Max ΔV of Laser on LightSail 2

- 10kw, 1064 nm cw laser
- 30 cm beam director aperture
- 3 urad jitter, $\mathrm{M}^{2}=1.1$
- $32 \mathrm{~m}^{2}$ Sail Area, 0.92 specular reflection
- 5 kilogram spacecraft mass
- 720 km circular orbit @ 24° inclination
- Ground site: Eglin AFB, FL
- 0.71 transmittance factor

Single overpass max cumulative
$\Delta V=0.056 \mathrm{~m} / \mathrm{sec}$

$0.1 \mathrm{~m} / \mathrm{sec} \Delta \mathrm{V}$ goal may be exceeded with two or more accesses

An optimum spacecraft attitude program required to achieve max results

AMOS vs. other sites

	Laser ${ }^{1}$	Aperture	wavelength	mittance	Jitter ${ }^{1}$	[watts] at	Elevation	$(\mu \mathrm{N})$ at	Elevation		on 5kg	time	$\Delta \mathrm{V}$	
Site	[watts]	D [m]	$\lambda[\mu \mathrm{m}]$	τ, ref	[$\mu \mathrm{rad}$]	20 deg	90 deg	20 deg	90 deg	Median	$[\mu \mathrm{g}]$	[sec]	[mm/sec]	
AMOS, HI	1000	3.67	1.064	0.95	0.1	402	540	2.7	3.6	3.1	0.06	600	0.38	
AMOS, HI	180	3.67	11.17	0.99	0.1	131.7	131.8	0.9	0.9	0.9	0.02	600	0.11	
AMOS, HI	50	0.2	0.539	0.91	0.1	16	28	0.1	0.2	0.1	0.003	600	0.017	
AMOS, HI	10000	0.5	1.064	0.95	3.0	324	436	2.2	2.9	2.5	0.052	600	0.30	
AMOS, HI	50000	0.5	1.064	0.95	3.0	1620	2179	10.8	14.5	12.7	0.26	600	1.52	
SOR, NM	10000	3.5	1.064	0.88	0.1	4396	5622	29.3	37.5	33.4	0.68	180	1.20	
SOR, NM	6000	0.5	1.064	0.88	0.1	3021	3863	20.1	25.8	22.9	0.47	180	0.83	
SOR, NM	50	0.2	0.539	0.88	0.1	25.2	32.2	0.2	0.2	0.2	0.004	180	0.007	3-5X longer accesses
SOR, NM	50	0.2	1.178	0.88	0.1	25.2	32.3	0.2	0.2	0.2	0.004	180	0.007	70\% shorter slant range
WSMR,NM	10000	0.5	1.064	0.95	3.0	324	436	2.2	2.9	2.5	0.05	180	0.09	- 2-3X more access
WSMR,NM	25000	0.5	1.064	0.95	3.0	810	1089	5.4	7.3	6.3	0.13	180	0.23	- $2-3 x$ more access
WSMR,NM	50000	0.5	1.064	0.95	3.0	1620	2179	10.8	14.5	12.7	0.26	180	0.46	per day
RSA, AL	25000	0.5	1.064	0.71	3.0	63	455	0.4	3.0	1.7	0.04	120	0.04	-3-6X less attenuation
RSA, AL	50000	0.5	1.064	0.71	3.0	250	731	1.7	4.9	3.3	0.07	120	0.08	in atmosphere
(1) Contains speculative values when official characteristics are not available														

[^0]
Nusi 2018-2019 Candidate Missions

Orbit Change Determination

- Will utilize available tracking information to build a high precision orbital propagation model including all relevant forces.
- Deviations from expected orbit will indicate the propulsive event from laser
- Analysis can be performed during mission and/or post-mission
- Results may be enhanced by involving additional tracking stations, optical Tracklet data, and select experts.

[^0]: Calculations assume 100\% of delivered laser power is utilized
 sail may be larger than spot at high orbital altitudes.
 No reduction for sail attitude/receiving area
 Perfect normal reflection from sail assumed
 23 km visibility (i.e. clear weather) assumed

