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Abstract

We present an automated method of identifying background eclipsing binaries mas-
querading as planet candidates in the Kepler planet candidate catalogs. We codify the
manual vetting process for Kepler Objects of Interest (KOIs) described in Bryson et al.
(2013) with a series of measurements and tests that can be performed algorithmically. We
compare our automated results with a sample of manually vetted KOIs from the catalog
of Burke et al. (2014) and find excellent agreement. We test the performance on a set
of simulated transits and find our algorithm correctly identifies simulated false positives
≈50% of the time, and correctly identifies >99% of simulated planet candidates.

1 Introduction

In support of its primary goal of determining the frequency of Earth-size planets around sun-
like stars, the Kepler mission produces regular catalogs of newly discovered planet candidates
(Borucki et al., 2011a,b; Batalha et al., 2013; Burke et al., 2014; Rowe et al., 2015; Mullally et al.,
2015; Coughlin et al., 2016). With each catalog, our techniques for identifying false positives
improved, but were long dominated by a manual process involving many trained astronomers
inspecting a series of metrics and searching for evidence that a given Kepler Object of Interest
(KOI) was not a planet. This team is known as the Threshold Crossing Event Review Team,
or TCERT1. A detailed description of the manual approach is given in Rowe et al. (2015), and
some estimates of the repeatability of the decisions is given in Mullally et al. (2015).

The true reliability of these catalogs is still under active study (Thompson et al., 2017).
Fressin et al. (2013) estimated the false positive rate for KOIs vetted as planet candidates to
range from 10–20%, while Désert et al. (2015) found a rate of 8.8%. Mullally et al. (2015)
warns that the reliability of the long period (& 200 day) sample may be significantly worse.

One line of evidence that TCERT considers is whether the pixels that change in brightness
during a transit are consistent with the hypothesis that the transit is occurring on the target
star. If the sky locations of the target star and transit source are well resolved, this is a relatively
easy measurement; for unresolved sources we rely on the measured photometric centroid shift
during transit.

Eclipsing binaries (EBs) can contaminate the planet sample at all planet radii. If the EB
shares a similar line-of-sight to another star, flux dilution (i.e., the fact that many stars may
contribute light to the aperture, but only one star dims during the transit) may reduce the
measured transit depth to that expected from a much smaller body. Accurately vetting the
catalog to identify such false positives is a key step in making an accurate estimate of the
frequency of planets at all radii (e.g., Burke et al. (2015)).

1The KOIs are drawn from the set of Threshold Crossing Events (TCEs) identified by the Kepler pipeline
(Jenkins, 2017).
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The algorithm introduced here, dubbed the Centroid Robovetter, automates this process of
testing for background eclipsing binaries (BGEBs)2. First used in Mullally et al. (2015) in a
supervised fashion, a slightly improved version was applied autonomously for the Q1-Q17 DR24
catalog (Coughlin et al., 2016). Together with the Centroid Robovetter, ephemeris matching
as described in Coughlin et al. (2014), and the metrics introduced by Thompson et al. (2015)
and Mullally et al. (2016), Coughlin et al. (2016) uses a fully automated vetting pipeline for
KOIs. An automated pipeline is faster, more objective, easier to test, and facilitates more
accurate estimates of catalog completeness, an important ingredient in estimating occurrence
rates. With a few additional modifications, this same Centroid Robovetter was used in the
creation of the Q1-Q17 DR25 catalog (Thompson et al., 2017).

2 Algorithm Inputs

The Centroid Robovetter tries to measure statistically significant offsets between the target
star and the source of the transit event. It relies on measuring centroid offsets based on fits to
difference images for in- and out-of-transit cadences produced by the Data Validation module
of the Kepler pipeline (DV, Wu et al., 2010). The technique, and the data products used, are
described in detail in Bryson et al. (2013).

Images of the star during transit are created by summing the pixel images for in-transit
cadences during a quarter (see Koch et al., 2010, and Haas et al., 2010, for an overview of
spacecraft operations). Out-of-transit images are constructed in a similar manner by combining
an equal number of cadences on either side of the transit. Difference images are created by
subtracting the in-transit image from the out-of-transit (OOT) image. One difference image is
created for every quarter in which one or more transits occur.3

DV then computes the shift in the photometric centroid during transit by fitting a model of
the Kepler Pixel Response Function (PRF, Bryson et al., 2010b) to the (per-quarter) difference
and OOT images. The mean shift and its significance is then computed, and the likelihood
that the transit is due to a background object is calculated in a manner described in §6.3 of
Bryson et al. (2013). DV also calculates the offset between the difference-image centroid and
the position recorded in the Kepler Input Catalog (KIC, Brown et al., 2011).

There are a number of reasons why the centroid offset measured by DV should not be taken
at face value:

• Our fit uncertainties are often dramatically underestimated (see § 3.5), so the significance
of the shift should be measured from the scatter in multiple measurements. DV reports
a significance even when the number of measurements is very low.

2Our definition of BGEB includes any transiting or eclipsing system that is not physically associated with
the target, and includes signals better described as foreground events.

3To avoid corrupting the image, certain transits are excluded from the difference images (see Bryson et al.
(2013)).
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• For low signal-to-noise transits (. 12), the computed difference image is noise dominated,
and the resulting centroid estimate is untrustworthy because it is often dominated by a
single bright pixel. DV does not distinguish between high- and low-quality centroid
estimates when computing the significance of a centroid offset.

• DV reports centroid values for saturated images, but these values are unreliable and
should not be used.

• If the source of a transit signal is a background star that is incompletely captured in the
mask (i.e., the set of pixels collected for a given target; see Bryson et al., 2010a), PRF
fitting may fail to converge and miss an obvious false positive.

• In crowded fields, the OOT centroid may be systematically biased by the light from a
nearby star. This leads to a large measured offset between the OOT and difference-
image centroids, falsely suggesting the transit did not occur on the target star. While
this problem can be mitigated by using the offset from the KIC position, which is less
sensitive to influence from nearby stars, this KIC offset suffers from systematic errors
that depend in detail on the quarters in which the centroids are measured. Accurately
determining the significance of a KIC offset is challenging.

Any automatic technique must account for these challenges to accurately identify false
positives (FPs). To maximize the value of a catalog, it also must reliably identify corner cases
where the identification may be suspect, so that additional oversight can be directed at the
weakest identifications. In Mullally et al. (2015), such cases were vetted manually. In Coughlin
et al. (2016) they are flagged for attention, but marked as planet candidates. This is consistent
with the TCERT philosophy of “innocent until proven guilty” (Mullally et al., 2015), where
strong evidence is required that a KOI is not a planet before marking it as a false positive.
This maximizes the fraction of detectable planets in the final catalog, at the cost of incorrectly
including some non-planets.

3 The Algorithm

The algorithm presented here is an implementation of the techniques suggested in Bryson et al.
(2013). We mimic the manual steps detailed in that paper in an automatic fashion that speeds
the process while removing human subjectivity. The algorithm proceeds in three main steps:

1. Identifying and rejecting low-quality difference images (§ 3.1),

2. Identifying sources clearly resolved from the target star (§ 3.3), and

3. Measuring statistically significant centroid motion during transit (§ 3.4–3.5).

8
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We discuss the steps in detail below, and the MATLAB source code for the algorithm is
available at https://sourceforge.net/projects/keplercentroidrobovetter/. Note that
the code takes intermediate data products produced by the Kepler pipeline that have not been
made public, and as such can not be run without considerable modification. The code is
provided for documentation purposes only.

3.1 Identifying Valid Difference Images

We first check the images for saturation. Saturated pixels show near zero flux in the difference
image and these images are not used. Stars are identified as saturated if they are listed in the
KIC as being brighter than Kp = 11.5. See § 5 of Bryson et al. (2013) for further discussion of
the difference images of saturated stars.

Next, we check that the difference image is not noise dominated. We use a simple but
effective method called connected-component labeling (Rosenfeld et al., 1966) to find contiguous
clusters of three or more pixels brighter than some threshold, which we call labeled regions.
The threshold was chosen (by trial and error) as the mean sky flux plus the root mean square
(rms) scatter of a set of pixels. We compute both values by iteratively measuring the rms
scatter and rejecting large values. This approach is fast and reliable, although it tends to be
overly conservative, setting the threshold for a good difference image slightly higher than the

Figure 1: An example of a difference image misclassified as having a low SNR. The image at left
shows the distribution of flux out-of-transit (OOT) for KIC 12647577 in Quarter 8, while the
center image shows the difference image flux. The difference image looks qualitatively similar
to the OOT image, so we expect the centroid measurement to be trustworthy. Indeed the KIC
position (cross), OOT centroid (plus sign), and difference-image centroid (triangle) all have very
similar positions (in fact the cross and plus overlap to produce an asterisk). The small centroid
shift is consistent across the other quarters where this transit was observed (not shown). The
image at right shows labeled regions, the groups of contiguous pixels above threshold. No
group has greater than three pixels, so the image is incorrectly labeled as having a low SNR.
We describe the construction of these images in §§ 2 & 3.1.

9
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Figure 2: The background source of the transit for KIC 11100670 is incompletely captured by
the mask in Quarter 5, and PRF fitting fails to converge in the difference image (evidenced by
the lack of a triangle symbol). We identify this object as a false positive because the location of
the brightest pixel at the edge of the mask in the difference image (center panel) is inconsistent
with the KIC location of the star. The panels and symbols are defined as in Figure 1.

ideal (see Figures 1 and 2).

When we find a star in the difference image, we still reject the difference image if it fails
any of the following three tests:

1. Bleed trails from saturated stars and column effects (Coughlin et al., 2014) are identified
as labeled regions that are not sufficiently round (i.e., defined as a set of contiguous pixels
covering twice as many columns as rows (or vice versa)). This test identifies systematics,
but is insensitive to asymmetries in the PRF.

2. Difference images may contain deeply negative-valued pixels caused by imperfect de-
trending during creation. These negative values bias the centroid measurements, and
such images should be ignored. We reject difference images where the flux from the most
negative pixel adjacent to the brightest pixel is below a threshold,

Fmin < −0.5Fmax

where Fmax is the flux in the brightest pixel.

3. In rare cases, the difference image may be inverted because the star is brighter during
the transit. It is beyond the scope of the algorithm to determine whether such events are
weak transits around variable stars, or a case where pulsations are incorrectly identified
as a transit. If any quarter’s difference image shows an inverted PRF, the KOI is flagged
for attention (see § 5.3).

10
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3.2 Ensuring Sufficient Data for Reliable Analysis

Not all quarters of data necessarily produce a difference image because some quarters may
contain no transits, or some transits may be lost because they overlap with other spacecraft
events, such as data downlinks, safe modes, or transits from another object in the system
(Bryson et al., 2013). If a KOI has fewer than three good difference images, we conclude there
is insufficient data to rely on a centroid measurement. Following our “innocent until proven
guilty” philosophy, we treat such KOIs as planet candidates, and set flags to indicate why they
passed (see § 5.3).

Our difference-image quality metric is too conservative, and often incorrectly flags quarters
as having a low SNR. If the number of good images falls below threshold because of SNR issues,
we mark the KOI as a planet candidate and set a warning flag.

3.3 Identifying Obvious Background Objects

Having identified good quality difference images, we next search for obvious background objects.
When an eclipse happens on a nearby star that is incompletely captured by the mask, the PRF
fit may fail (see Figure 2), so we need to search for such events directly. Our approach is again
simple, but effective. We map the KIC position of the star onto the pixel grid, and measure
its distance from the center of the brightest pixel in the mask. If this separation is greater
than 1.5 pixels, the image indicates that the transit is on a background object. If two-thirds
of the images indicate a background object, we mark the KOI as a false positive. If fewer than
two-thirds, but > 3 quarters indicate a background object, we flag the KOI as requiring further
attention. Similarly, if there are fewer than four good difference images and one indicates a
background object, the KOI is flagged for attention. These threshold values were chosen by
experiment to best reproduce the results of TCERT and avoid falsely incriminating KOIs.

3.4 Computing Valid Centroids

If a KOI passes the obvious background object test, we then check the evidence from the
centroid fits. If the transit happens on the target star, the PRF centroid should not move
during transit, and the OOT and difference-image centroids should agree. If they disagree,
that is evidence that the transit is occurring on a background object. Again, we insist on at
least three measurements before making a decision to fail a KOI.

DV measures the centroid offset per quarter in two ways: by comparing the difference image
and out-of-transit centroids (the OOT offset), and comparing the difference-image centroid to
the KIC position of the star (the KIC offset). The OOT offset has smaller biases in uncrowded
fields, but the KIC offset performs better when more than one star contributes significant flux
to the mask. In these cases, the OOT centroid can be “pulled” away from the true position by
the contaminating flux. This can lead to the OOT centroid lying far from the photocenter of

11
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Figure 3: Two stars occupy the mask for KIC 9958962. The OOT centroid (plus sign) is biased
by the second star and the best fit solution lies in the wings of the target. In cases like this we
recognize that the OOT centroid is inconsistent with the KIC and fall back on the KIC offset.
These images are based on the transits of the second KOI (period of 90 days) in Quarter 3. The
panels and symbols are defined as in Figure 1.

the star, while the difference-image centroid is consistent with the transit being on the target,
giving the false impression of a large shift during the transit (see Figure 3 for an example).

To determine which centroid to use, we check that the OOT centroid is consistent with the
KIC position. If it is not, we fall back on using the KIC position. To determine what level of
disagreement is significant, we looked at the distribution of offsets between the OOT centroid
and the KIC position for 16,000 measurements across 1,300 stars in Burke et al. (2014). We
show the two one-dimensional distributions in Figure 4. The distributions are well modeled in
the core by a Gaussian distribution with a standard deviation of 40 millipixels, but there is a
long tail with significantly larger values. If the offset for a given KOI is > 0.5 pixels in any one
quarter, or the median offset is > 80 millipixels (i.e., twice the standard deviation of the fit),
we fall back on the KIC offset, otherwise we trust the OOT offset.

We measure the mean offset and its statistical significance using an unweighted robust least
squares fit to the column and row offsets for the good quarters. We use the robustfit4 function
in MATLAB, with the default bi-square weight function and the default tuning constant of
4.685. This is a departure from Bryson et al. (2013), who recommend weighting the fit by the
formal centroid uncertainty. We find weighted fits can be unduly biased by outliers with low
formal uncertainty.

3.5 Estimating Centroid Offset Uncertainty

Our offsets are measured by fitting the PRF model to the flux distribution across the pixels.
The model, described in Bryson et al. (2010b), is based on commissioning data (Bryson et al.,

4http://www.mathworks.com/help/stats/robustfit.html
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Figure 4: Distribution of offsets between the PRF fit to the OOT image and KIC position.
The red solid line shows the difference in ccd row, the blue line shows the difference in ccd
column. The black dashed line is a Gaussian fit to the row offsets. The core of the distribution
is well modeled by a Gaussian, but there are more stars in the wings than the model predicts.
The large offsets are due to OOT centroids being biased in crowded fields.

2017). The actual PRF changes with the temperature profile across the focal plane, itself a
function of orbital phase and spacecraft orientation (see Figure 10 of Van Cleve et al., 2016).
Because the actual PRF differs from the model, our formal position uncertainty underestimates
our scatter by up to an order of magnitude.

To address this issue we compute three estimates of uncertainty and take the largest. Fol-
lowing Bryson et al. (2013), we estimate our uncertainty from both the rms scatter in the
individual offsets, ∆crms, and from a bootstrap analysis. We compute the bootstrap uncer-
tainty, ∆cbs, from the rms of many distributions which are sampled with replacement from
the set of measured centroids for a KOI. We find that the Bryson et al. (2013) approach of
computing Q2 distributions (where Q is the number of quarterly centroid measurements) does
not produce repeatable results. Instead we sample every permutation of drawing Q samples
from Q values, up to a limit of 50,000. We estimate the uncertainty on the uncertainty of the
bootstrap centroid, ∆2cbs, by dividing ∆cbs by the square root of the number of trials.

Our third measure of uncertainty, ∆cformal, is the formal error on the average of the offsets,
and is given by the hypotenuse of the individual formal uncertainties from the PRF fit. This
guards against the rare case where the quarterly measurements randomly scatter closer to
each other than the formal uncertainty suggests, biasing the previous two measurements into
overestimating the significance of the offset.

We then choose our final value for centroid uncertainty as:

13
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(∆c)2 = max(∆crms,∆cbs,∆cformal)
2 + (∆csys)

2, (1)

where ∆csys is a systematic uncertainty term set to 0.066” for OOT centroids and 0.160” for KIC
centroids. The former number is taken from Bryson et al. (2013), and the latter corresponds
to the 1σ width in Figure 4.

If only three or four quarterly offsets are available, ∆2cbs can be quite large. We refuse to
fail a KOI if changing the value of ∆c by ±3∆2cbs would change the disposition from pass to
fail (or vice versa). A flag is set to indicate when this occurs. This process is complex, but
necessary to avoid failing valid planet candidates.

3.6 Identifying False Positives Based on Centroid Offsets

We define the offset significance as offset divided by uncertainty. We use the cuts in offset and
significance suggested in Bryson et al. (2013) (and shown as red lines in Figure 5) to decide
whether a KOI is marked as a planet candidate, a false positive, or as a possible false positive.
In the Q1-Q16 catalog (Mullally et al., 2015), the possible false positives were subjected to
human scrutiny. In the Q1-Q17 DR24 catalog they were marked as candidates, based on our
tests with simulated events (see § 5.2).

Figure 5: Distribution of measured offset and significance for transits injected on the target
star (i.e., with no offset). Overly dense regions of this plot are shown as a shaded histogram for
clarity. KOIs that land in the upper right region (as indicated by the red lines) are incorrectly
marked as false positives using the limits set forth by Bryson et al. (2013).

14
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4 Algorithm Weaknesses and Mitigations

4.1 Saturated Stars

The focus changes across the Kepler field of view, and the saturation magnitude is brighter in
regions of poor focus. An obvious improvement in our algorithm would be to search for evidence
of saturation in the pixel time series instead of applying a simple magnitude cut. Also, clearly
resolved sources can often be identified visually in even heavily saturated cases, and a future
version of the algorithm could extract useful information from the brightest stars.

4.2 Difference-Image Quality Metric

The weakest part of our approach is our difference-image quality metric. As shown in Figure 1,
our metric sometimes marks difference images as having a low SNR even when the image
quality is still good enough to produce trustworthy centroids. In Q1-Q17 DR24, 8% of KOIs
were marked as having three or more difference images, but fewer than three that passed the
SNR test. Some FPs were probably missed because we did not manually examine these cases.

4.3 Bright, Nearby Variable Star

If a bright, variable star is within the mask of the target star, the change in flux from the target
during transit can be less than the change in flux from the variable star over the same interval.
This variability can be mistaken for an eclipse signal from a background star. Because the
timescale for variability is typically different than the transit period, the background variable
is not usually bright in difference images from all quarters. We catch many such background
variables by insisting that many quarterly difference images show a resolved source. This
catches most examples, but some errors inevitably slip through. If there are only a small
number of difference images available, it is not possible to distinguish between true background
objects and variable stars based on difference images alone. Such cases are flagged as requiring
additional attention.

4.4 Bright, Far Away Star

If the source of a false positive is a bright star that is many pixels away from the mask of
collected pixels, then our connected component labeling will fail because the wings of the bright
star’s PRF contribute similar flux to every pixel in the mask and no contiguous group of pixels
is brighter than the mean. Such FPs could in principle be detected in the difference images
with an automated approach. Instead, these KOIs are found by the period-epoch matching
algorithm Coughlin et al. (2014) or the ghostbuster metric (Thompson et al., 2017).

15
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4.5 Centroid Significance

In crowded fields, we identify badly measured OOT centroids by comparing with the KIC
position of the star. If the OOT centroid is significantly offset from the KIC position, we
assume the field is crowded and rely on the KIC position. Our estimate of significance is
based on the average for a large number of stars (see Figure 4) and may not be appropriate
for individual cases. It is possible, although unlikely, that a disposition is wrong because the
difference-image centroid is incorrectly compared to the OOT centroid in a moderately crowded
star field.

As a final precaution, we note that the KIC position of a star can also be incorrect in
crowded fields (or for stars with high proper motions), leading to a small fraction of objects
incorrectly having large and significant KIC offsets. To guard against this problem, we flag,
but do not fail an object if it shows a statistically significant offset from the KIC position.
Approximately a dozen M stars suffer from this problem because their high proper motions
result in a measurable difference between their catalog and observed positions.

5 Performance

5.1 Agreement with Catalog of Burke et al. (2014)

Published catalogs of manually vetted KOIs provide a labeled dataset against which the algo-
rithm can be trained and tested. We divided the KOIs in the Q1-Q8 catalog of Burke et al.
(2014) into training and test sets. The training set was used to help develop the algorithm,
then the test set was used to measure performance. We show the results in Table 1. The
algorithm correctly predicts the TCERT disposition over 98% of the time. Of the 18 cases
where the algorithm incorrectly labeled the KOI (where correct is defined as agreeing with the
TCERT designation), we judge three cases to be errors on the part of TCERT, and two cases
were ephemeris matches (see § 4.4).

5.2 Testing Against Simulated Transits

Christiansen et al. (2016) tested the performance of the Kepler pipeline used by Coughlin
et al. (2016) by injecting transits at the pixel level and measuring the rate at which those
injections were recovered as a function of period, injected depth, etc. Their method is similar
to Christiansen et al. (2015), but was run on all available data, instead of just one year’s worth.
Some 42% of the recovered events were injected at a location slightly offset from the target’s
catalog position (up to 4” or one Kepler pixel). These offset injections allow us to test the
performance of our algorithm in a controlled fashion.

16
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Table 1. Agreement with TCERT for Q1-Q8

Robovetter Needs Robovetter
PC Scrutiny FP

TCERT PC 900 69 4
TCERT FP 14 3 47

Note. — TCERT PC refers to the objects labeled as
planet candidates in Burke et al. (2014) and TCERT
FP refers to those labeled as false positives. Rows
indicate the previously published classification, and
columns are the results of the Centroid Robovetter.

We looked first at the non-offset injections. We would expect most of these transits to pass
our tests. In Figure 5, we see that the bulk of our measured offsets are less than 1” and less
than 2σ significant. If the distribution were Gaussian, and our uncertainties well measured, we
would expect 96 injections to be measured as greater than 3σ due to noise alone. Instead we
find 1064 exceed this threshold, indicating our error calculations are unduly optimistic. That
said, our choice of threshold results in less than 1% of non-offset injected KOIs being marked as
clearly failing due to a significant offset, indicating that the vast majority of bona-fide, on-target
events are passed by the algorithm.

In Figure 6 we plot a two-dimensional histogram of the fraction of off-source injected transits
that were correctly marked as false positives as a function of the injected MES (i.e., multiple-
event statistic; see Jenkins (2017)) and offset distance. We expect that large-offset, large-MES
injections will frequently be marked FP, but small offset, small MES injections will incorrectly
pass because we can’t detect the offset with a sufficient SNR. In Bayesian terms, this figure can
be interpreted as the likelihood of detection of a false positive for a given MES and offset, the
prior is the astrophysical probability of there being a background source, and the posterior is
the probability of detecting a background source in Kepler data.

Our uncertainty model includes a systematic term that means we rarely fail anything with
an offset less than 1”. For transits injected with MES as high as 20 and offsets >1.5”, we
typically only detect ≈ 50% of the injections as false positives. We find the offsets are typically
measured correctly to within the uncertainties, but the significance is often too low to claim an
unambiguous detection of a false positive.

Christiansen et al. (2016) injected transits with a distribution of parameters intended to
best measure the recoverability of low SNR events. They injected few high SNR (> 20) transits,
so the right-hand side of the plot is strongly affected by Poisson noise due to the lack of injected
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Figure 6: Fraction of transits injected with an offset from the target star that were correctly
labeled as false positive, as a function of injected offset and MES. Bins with MES > 30 typically
have fewer than 10 injections per bin. The detection rate doesn’t rise much above 50% even for
offsets approaching 4” (i.e., one Kepler pixel) and injected MES of 20 (i.e., the typical signal
from three transits of a 1.7 R⊕ planet around a bright, quiet solar-radius star).

events in that region of parameter space.

We note that transits were injected using the PRF models of Bryson et al. (2010b) that were
created using commissioning data (Bryson et al., 2017). The true PRF is known to vary by up
to 10% from these models (Van Cleve et al., 2016). In this regard, our simulations probably
overestimate our performance.

With these caveats in mind, we can summarize the results of the transit injection test by
stating that 99% of on-source transits are preserved by the algorithm. For MES > 20 we
correctly identify >50% of cases where the source of the transit is 1.5–4” from the source, and
almost none of the cases where the source of the transit is between 0–1”.

5.3 DR24 Minor Flag Names

We list here the mnemonics used in the DR24 minor flags table to describe the decision tree
for the Centroid Robovetter, and provide a brief explanation of their intended meaning. The
mnemonics help understand how the final decision on the disposition of a KOI was determined.
Combinations of flags are often used to document a decision. For example, the flags FP,
EYEBALL, KIC OFFSET and SIGNIF OFFSET in combination indicate a star in a crowded
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field for which a significant offset between the KIC position and the difference-image centroid
was detected.

Bit 0 Value 1, FP: The KOI is a false positive because the transit did not occur on the target
star. In Coughlin et al. (2016), this flag is ignored if Bit 1 is also set.

Bit 1 Value 2, EYEBALL: The disposition of this KOI is uncertain and warrants further
scrutiny. In Coughlin et al. (2016), no KOIs are marked as FP if this flag is set.

Bit 2 Value 4, KIC OFFSET: The centroid offset was measured relative to the star’s recorded
position in the KIC, not the OOT centroid. The KIC position is a less accurate estimate of the
stellar location than the OOT centroid in sparse fields, but more accurate in crowded fields. If
this is the only flag set, there is no cause for concern for the KOI. This flag does not mean the
KIC offset is significant, only that the KIC offset was used in preference to the OOT offset.

Bit 3 Value 8, SIGNIF OFFSET: FP flag was set because there was a statistically significant
shift in the centroid during transit.

Bit 4 Value 16, CLEAR APO: FP flag was set because the transit occurs on a star that is
spatially resolved from the target.

Bit 7 Value 128, INVERT DIFF: One or more difference images were inverted, meaning the
difference image claims the star got brighter during transit. This is usually due to a problem
with the generation of the difference image due to variability of the target star. When this flag
is set, the KOI is marked as requiring further scrutiny.

Bit 10 Value 1024, SATURATED: Star is saturated. The assumptions of the Centroid Robovet-
ter break down for saturated stars, and all such KOIs are marked as requiring further scrutiny.

Bit 11 Value 2048, TOO FEW QUARTERS: Fewer than three difference images with suffi-
ciently high SNR are available, and very few tests are applicable to the KOI. If set in conjunc-
tion with Bit 4 (CLEAR APO), the source of the transit may be on a star clearly resolved from
the target.

Bit 12 Value 4096, FIT FAILED: Transit fit failed to converge in DV and no difference images
were created. This flag is typically set for very deep transits of eclipsing binaries. If this flag is
set, the KOI is passed due to lack of evidence.

Bit 13 Value 8192, CROWDED DIFF: More than one potential stellar image found in the
difference image. The EYEBALL flag is always set in conjunction with the CROWDED DIFF
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flag.

Bit 14 Value 16384, TOO FEW CENTROIDS: The PRF fit does not always converge, even in
high SNR difference images. This flag is set if there are more than three high SNR difference
images detected, but centroid offsets are recorded for fewer than three. If this flag is set, the
KOI is passed due to lack of evidence.

Bit 15 Value 32768, CENTROID SIGNIF UNCERTAIN: The uncertainty in the offset signifi-
cance is enough that the algorithm can not confidently say that the significance is either above
or below the threshold. This flag typically gets set for KOIs with only three or four recorded
centroids (see § 3.5).

The Centroid Robovetter algorithm presented here was used to help identify false positives
in the planet catalog of Coughlin et al. (2016). A slightly earlier version was used in the
catalog of Mullally et al. (2015). In Mullally et al. (2015), KOIs marked as needing further
attention were scrutinized by two or more human vetters who made the final decision as to
the disposition. Coughlin et al. (2016) is an entirely automated catalog, and we instead relied
entirely on the automated decision. In keeping with the principle of innocent until proven
guilty, KOIs marked as possible false positives, but needing further attention, were kept as
planet candidates (but other parts of the Robovetter may fail these KOIs for other reasons).
Although our injection tests show this is the correct thing to do for stars with small centroid
offsets, some clearly resolved background eclipsing binaries will have a disposition of planet
candidate. These possible false positives can be identified by a bit string value of 19 (FP,
EYEBALL, CLEAR APO) or 2067 (FP, EYEBALL, CLEAR APO, TOO FEW QUARTERS)
in the DR24 KOI catalog.

6 Conclusions

Our automated method of vetting KOIs meets our goal of reproducing the result of the manual
TCERT approach with high fidelity. In addition, it allows us to test the algorithm against sim-
ulated transit events, something which would be difficult and time consuming to do otherwise.
We find the approach has high completeness, in that it fails <1% of all simulated on-target
events, but a lower effectiveness, in that ≈ 50% of off-target injections with injected MES ∼
30 and offsets of 1–4” are correctly identified as such. This lower effectiveness is a consequence
of our design choice to maximize completeness. Although half the background objects will be
missed by the algorithm, the probability of there being a nearby background eclipsing binary
must also be factored into the estimated false positive rate (Torres et al., 2011; Morton, 2012).
Our approach will likely be applicable to other transit searches such as TESS (Ricker et al.,
2014) or Plato (Rauer et al., 2014).
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