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Certainty Equivalence M-MRAC for Systems with Unmatchedceainties

Vahram Stepanyan and Kalmanje Krishnakumar

Abstract— The paper presents a certainty equivalence state  The rest of the paper is organized as follows. In Section
feedback indirect adaptive control design method for the sy- ||, we give the problem statement and the assumptions. In
tems of any relative degree with unmatched uncertainties. it gaction |11, we introduce the identification model and give
approach is based on the parameter identification (estimatin) it " Th trol desian i ted in Secon |
model, which is completely separated from the control desiy ItS properties. e' control design '_S presente _'n ectspn
and is capable of producing parameter estimates as fast as and the controller’s performance IS analyzed in Section V.
the computing power allows without generating high frequery A simulation example is presented in Section VI, and some

oscillations. It is shown that the system’s input and output concluding remarks are given in Section VILI.
tracking errors can be systematically decreased by the progr

choice of the design parameters. Il. PROBLEM STATEMENT

Consider an uncertain single input single output (SISO)

system in the parametric strict feedback form [4] (p. 99)
Control design for systems with unmatched uncertainties

. T

is a challenging task, and the main design method is based T1(t) = 22(t) + 01 ¢y (1) 1)
on the backstepping technique outlined in [4]. There, it has do(t) = x3(t) + Oy o1, T2)
been shown that certainty equivalence principle leads &v ov
parametrization, which can be avoided by the departure of :
the certainty equivalence. In this case, the adaptive laws in(t) = u(t) + 6 @, (x)
enter_lnto the contr(_)I law, _whlch can result in the h'g.hwith 2(0) = w0, wherez(t) = [z1,...,2]7 € R" and
magnitude control signals in the case of large adaptlvg(t) € R are the state and the input of the systéine R
rates (fast adaptation). An alternative certainty egeneé i

: . : : . .are vector of unknown constant parameters, @nd R* —
control design method is presented in [1], which avmdim i — 1 n are sufficiently smooth known vector-

functions. The system (1) is written in the vector form

|I. INTRODUCTION

over parametrization for linear systems, but not for nadin
systems with the relative degree greater than two.

In this paper, we present a certainty equivalence indirect x(t) = Az(t) + bu(t) + n(t), (2)
adaptive control approach without over parametrizatian fo

. ) .. Where we denote

the nonlinear systems of any relative degree, which is the
main contribution of the paper. The approach is based on 4 _ On—1x1 In—1xn-1 } b= { On—1x1 }
the identification scheme, which is completely separated 0 O1xn—1 1

from the control design. To enable a fast adaptation WithOlétndn(t) _ [91T<P1(I1) OQT%(xl ). 0] (2)]T.
generating high frequency oscillations in the adaptivaais, The objective is to design a control srilgnZ(ft) such that

it employs an error feedback term, like in the modifiedne ¢losed-loop signals are bounded, and the system'’s butpu
reference model MRAC (M-MRAC) architecture mtroducedy(ﬂ — 21 (t) tracks the outpuy, (t) = =, of the reference

in [5]. It is shown that the state prediction error convergeg,qqel

to zero independent of the control design. Moreover, it

is shown that transient of the state prediction error and  @:(t) = A, (t) + b,r(t), x,(0) =z0, )

the combined parameter estimation error can be regulat%ere A, = A— Bk', b, = kb, andr

) . (t) is a piece-
by the proper choice of the error feedback gain and t ise continuous and bounded external command. Here, the
adaptation rate. The control design follows the comma

8 . . edback gairk and feedforward gaih, are chosen to make
filtered backstepping procedure [2]. It is shown that th?lr Hurwitz and meet the performance specifications.
input tracking error (difference between ideal control and

command filtered certainty equivalence control signal) and [Il. I DENTIFICATION MODEL

output tracking error can be regulated by the proper choice In order to generate the necessary parameter estimates, we
of design parameters. introduce the following identification model
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() = [0, (Opr(z1) By (H)pa(ar,22) ... 0, (D, (x)]T, Recalling that|(t)[|? < 2V (£), we obtain
and0,(t) is the estimate of the unknown paramegrfor

eachi = 1,...,n. These estimates are generated according @) < [21/(0) _ ﬁ_f] e—2(e=1)t 4 5_12 (13)
to adaptive laws - ¥ v
éi(t) =it p;(w1,... 1), i=1,...,n, (5) The bound (10) follows from the fact thafa + b < \/a+Vb

. . . foranya >0, b> 0. [ |
wherey > 0 is the adaptation rate. The state prediction ermor gjnce the effect of the initialization of the state predioti

dynamics do not explicitly depend on the control signal error decays exponentially with the rate- 1, andc will be

5;@) = (A —cD&(t) +n(t), (6) assigned to large values in order to damp the high frequency
oscillations in adaptive estimates for large adaptatidasa
we setxy = xq in the following derivations.

where we definei(t) = n(t) — 7(t) with 6;(t) = 6; —

0i(t), i=1, o n being th? pararpeter estimation grror. Next lemma gives the bounds on the error sighdl) and
Lemma 3.1: The error signals&(¢) and ?i(t)’ ! = a tighter bound on(t), whenx(t) andu(t) are bounded

;’ .-,n are globally uniformly bounded, an#l(t) — 0 @s  yhich will be provided with the control design in the next
— 00.

section).
Lemma 3.4: Let the estimateg:(¢) and7(t) be generated
1 Y 1-T =~ by the identification model (4) and (5). In addition, let
Vi) =35> {x () + 26 (ﬂoi(t)} ) (7} 2(t) and u(t) be bounded. Them(t) and Z(t) satisfy the
=1 following bounds
the derivative of which is computed along the trajectories o

Proof: Consider a candidate Lyapunov function

n

the prediction error dynamics (6) and the adaptive laws (5) 1A < Bae™" + % (14)
V() =2 (£)(A - c)a(t) 1Z(t)]| < Bae™ + =, (15)
n T ~ éi(t)} where the constant§; >0, i =2,...,5andv; > vy >0
+ .0, (t (T i yeeey X)) i N ’ ’ )
2im18: () {x (il @i) v are defined in the proof.
Substituting the adaptive laws and completing the squares Proof: Itis straightforward to show thag;(t) satisfies
results in the dynamics
- o L. . (1) + enii(t) + pi(0)77:(8) = =y pi(D)Zi41 (1)
V(t)=—(c—1))_ &) - 5[50%@) +a,(t)] (8) o ; i
i=1 —70i(1)Zi(t) + chi(t) + hi(t) (16)
n—1 n . . .
1 _ . 9 ~2 for all ¢ = 1,...,n, where for the notational convenience
D) Z[xi(t) —Zip (D] < =(c—1) in ). we introduce a variablé, ., = 0. The other variables are
i=1 i=1

. _ defined asp;(t) = @, (t)@;(t), hi(t) = é: t)@;(t). Since
With ¢ > 1, the LaSalle-Yoshizawa theorem ( [4], p.24),, andu(t)( are bougld)ed,(ii follgv)vs thatgtg is(b)ounded.
guarantees thai(t), 0i(t), @ = 1,...,n are globally ppoetore there exist positive constamts s, 6 such
umformly bounded, andk(t) —>n0 ast — go In2part|cular, that ||pi()llc. < 61, |p1()]lee < 82 and |hi(t)] e <
there exists, > OASUCh thal_;_, ||6:(t)]|" < ﬁl'. . d3. Then, it can be concluded from equation (16) that
- Lemm 3'2: If & = o, then the state prediction IO yetermines the damping and determines the frequency
%(t) satisfies the bound of the signal#;(¢). It follows from the results of [5], that

|2(t)]c. < By~ V2. (9) choosinge > 24/6,y damps the oscillations im(t) and
Proof: The proof follows from the fact thdtz(t)||> < guarantees the bound
2V (t) <2V (0) < p7 for all t > 0. [ ] 55
The next lemma gives the bound on the state prediction  [[7(t)[| < Bae™2" + dal|(t)]| + ﬁHh(t)ll, a7

error whenzy # x.

Lemma 3.3: If & # xo, then(t) satisfies the bound wherev, is proportional to,/5 , and the positive constants
B2, 44 and 05 are independent ofy (see details in [5]).

|2(t)]| < Bre™ ™Vt 4 b , (10)  Substituting (9) we arrive to (14) withs = 041 + d505.
ince A, is Hurwitz, there exist positive constanis an
val Since A, is Hurwitz, th i iti nis and
2 v5 such that the state transition matrix satisfies the inetyuali
where Sz = /[21/(0) — . At < age—2. It follows that [e(4—<1]| < 5 ity
Proof: The inequality (8) can be written as lle” || < dge=". It follows that[|e 77| < dge '
' Then we obtain from (6) by the direct integration that
. c—1
V(t) < —2(c—1)V(t) + > B, (11) 1Z(0)]| < 228 [emnt — e=(atol]
which implies that O e [L— e (eIt < premvet 4+ o (18)

sincec andv; are proportional tq/, which is much greater

B
T oy thanwv, (adaptation is faster than the reference modellm

2
V() < [v<o> } e B pemm £ )
Y Y



IV. CONTROL DESIGN which is in the form of modified reference model introduced

In this section, we design four controllers, first three of? [3]- In this case the error signal(t) = 2(t) — @.(t)
which are used for the analysis purposes, and only the 1f0Ives according to the dynamics

one is implemented. &(t) = Ave(t) + ca(t) . (29)

A. Known System Lemma 4.2: The controller defined by (24), (25) and (27)
For the analysis purposes we first design a controllegguarantees the control objective.

assuming that? is known (ideal control). Following the Proof: According to Lemma 3.1%(t) € L, and

standard backstepping procedure [4], we define new vagablg(t) — 0 ast — co. Since A, is Hurwitz andr(t) € L,

Ormy 0 0 o it follows that 2(t) € L. €(t) € L andé(t) — 0.

7 (t) =ai(t) —ai,(t), i=1....n (19)  Therefore, application of the controller defined by (24%)(2
(superscript) indicates that the variables corresponds to thand (27) to both the system and the identification model

ideal control signal) and stabilizing functions results in
ad(t) =0, a¥(t) = —m(t) (20) y(t) = yr(t) + ex(t) + 21(t) = yr (0) (30)
ad(t) = —nmi(t) + &), (1), i=2,...,n. In addition, fromy,.(t) € L. it follows thatz () € L,

henced; (t) € L, sincey, (x1) is continuous and, (t) €

Th t 2 b itten i iabl . L
e system (2) can be written in new variables as Lo according to Lemma 3.1. This implies th&d(t) € Lo

20(t) = AZ0(t) + b[ul(t) — (1)) . (21) and z5(t) € L. Continuing this recursion we conclude
_ _ that £(¢) € Loo, (t) € Loo, Gi(t) € Lo, = 1,...,m,
Obviously, the control signal &-(t) €L, i=1,....,n—1, anda(t) € Loo. -
uO(t) = =k 20(t) 4 k() + a2 (1), (22) We notice that using the state in the identification

_ model (4) simplifies the stability analysis in the identifioa
reduces the system into the reference model (3), hence th@ge. However, the control design becomes problematic,

errore’(t) = 2°(t) — x(t) satisfies dynamics becaused; (t) contains unknown parameté through the
(1) = A,e’(t) . 23) state derivativer(t). Ope way to overcome thi; issm_J(_a is tore-
placep,(x1,...,x;) with ¢, (&1, . .., Z;) in the identification
Lemma 4.1: The controller defined by (19), (20) and (22)model (4), which brings additional terms||6; & " (t)&(t)
guarantees the control objective for the system (2). into the V(t) expression (8), where\; is the Lipschitz
Proof: SinceA, is Hurwitz, it follows thate®(t) € L.,  constant ofp,(z1,...,z;). In this case the same stability
and e’(t) exponentially converges to zero. Hengé(t) = properties are guaranteed with the choice cof> 1 +

y.(t) + €9(t) exponentially converges tg.(t). In addition, >, \;||0;||, anda,(t) becomes implementable. However,
from r(t) € L., it follows that x,(t) € L., which along the repetitive differentiations d; () introduces the multiple
with e°(t) € L., implies thatz’(¢) € £.,. Boundedness of powers of the adaptation rateinto the control law, which
a2(t), i =1,...,nandz’(t) is obtained recursively starting makes the designer to keep the adaptation slow from the
with 29(¢) = 2{(t) € L. Then,u’(t) € L, follows. m perspective of the control constraints. This is in conflighw
, ) the improvement of the performance by speeding up the
B. Certainty Equivalent Control adaptation. From this perspective, we use the command fil-
Next, we design a controller for the identification modetered backstepping approach from [2]. Although the method
(4), by replacing the unknown parametewith its estimate was introduce to simplify the process of determining the
6(t) in the stabilizing functions command derivatives in the backstepping procedure, it also
. N . allows to completely separate the identifier design from the
Go(t) =0, . an(t) = =) (24) controller design. Therefore, the identification procean c
Qi(t) = —0i(t) + di—a(t), i=2,...,n, be made as fast as the computational power allows. In the
meantime, the high frequency oscillations associated tivith
fast adaptation are avoided with the proposed identifinatio
2:(t) = 2;(t) — q—1(t), i=1,...,n. (25) model by the proper choice of design parameters.

and introducing new variables as

The identification model in new variables takes the form C. Command Filtering

2(t) = A2(t) + blu(t) — an(t)] + ci(t) . (26) Following [2], we introduce the command filtered ap-
o _ proach for the design (19), (20) and (22), which will be
Defining the control signal as used for the analysis purposes, and for the design (24),

(25) and (27), which will actually be implemented. In the
case of known system, the new variables are introduced as
we obtain (superscriptf indicates that the command filtered version)

2(t) = Ap2(t) + byr(t) + cz(t), (28) dt)y=al(t)—od 1 (), i=1,...n, (31)

a(t) = =k 2(t) + kor(t) + dn (1) . (27)



where the command filter is designed as
01 (1) = wo? (1)

695 (t) = —2Cwo?,(t) — wlody (t) — af (1)]
1=0,....,n—1,

(32)

with the initial conditionso?, (0) = of (0) and 005(0) =0,
and the stabilizing functions are defined as
af(t) =0, of (1) = —n{ (1)
of (t) = =0l (t) +wol_1,(t), i=2....n,

(33)

where the superscripf indicates that the corresponding
guantities are computed when the command filtered control

is in the loop. The system (2) is written #rvariable as
21 (t) = Az7(t) + blu(t) — ol ()] + & (1) — &°(t), (34)

where

o (t) o71(t)
() = of 1(®) 0= ap_1.(t)
771_() O)

The compensated state is introducedvé§t) = 27 (t) —
£°(t), whereg®(t) is defined dynamically as

E(t) = 0?1 (t) —al (t) + €1, (t) (35)

with £9(0) = 0 fori = 1,...,n — 1, and£2(¢) = 0. In
compensated state the system (2) takes the form

0°(t) = Av°(t) + blu(t) — ol (t)], (36)

The control signak(t) in this procedure is defined as

equivalent control, designed in the previous subsectitre T
uncompensated state is now introduced as

Zz(t) :iri(t)—cri,lyl(t), = 1,,71 (41)
whereo;_1 1(t) is the filter's state given by
0"@1 (t) = w0172(t) (42)

Gia(t) = —20woio(t) — wloi () — &l (1))
1=0,....,n—1,
with the initial conditionss; 1 (0) = d{(o) ando; 2(0) =0,
and the stabilizing functions have the form
ag(t) =0, af(t) = —af(t)
af (t) = =] (t) + oi-12(0),
Here, we we introduce a short hand notatif)fl(t) =
9, (1! (1) and ¢! (t) = (] (¢),.... 2] (t)). The iden-

(43)

t=2,...,n.

7]
tification model inz-variables takes the form

2(t) = Az(t) + blu(t) — &, (t)]
+cx(t) + &l (t) — a(t). (44)

The compensated state and its dynamics for the identifi-
cation model are similarly introduced

&(t) = oin(t) — &l (1) + & (1) (45)
with £;(0) =0fori=1,...,n—1, &(t) =0, andov(t) =
z(t) — &(1),

o(t) = Av(t) + blu(t) — &l (t)] + cx(t).
The control signal to be implemented has the form
u(t) = =k v(t) + kr(t) + &l (1) (47)
The resulting compensated error sigeglt) = v(t) — x,(t)

(46)

and uncompensated error sigrat) = z(t) — x,(¢) satisfy

ul (t) = =k 0(t) + ker(t) + o (¢) - B7)  dynamics

Whereas the compensated error sigefdt) = v0(t) —z..(¢)
satisfies the dynamics e(t) = Ave(t) — &(t) + () + ca(t) . (49)

-0 _ 0
e.(t) = Arec(t) (38) Lemma 4.4: The command filtered controller defined by

and obviously is exponentially stable, the uncompensatdfil), (42), (43), (45) and (47) guarantees the following
errore’ (t) = 2/ (t) — x,.(t) has dynamics relationships

eo(t) = Avec(t) + ci(t) (48)

el (t) = Avel (t) — al (t) + a°(t). (39) e(t) —e(t)=0(), &) =0() (50)
Lemma 4.3: The command filtered controller defined by 7ia(t) = Ofi(t) =0, Z. =L..n=1
(31), (32), (33), (35) and (37) guarantees the following woia(t) —ai(t) =0(e), i=1,...,n—1.

Proof: Since the exponential convergence ®ft) is

relationships
P not guaranteed, Tikhonov’s theorem ( [3], Theorem 11.2)

el(t)—e’(t) =0 (), &°(t) =0 (e) (40) cannot be directly applied to the system comprised of (44),
ol (t)—ad(t)=0(), i=1,..,n—1 (4_15) and (49). However,_sinc:é(t) does not depend on a
wody(t) = a2(t) = O (), i=1,....n—1, simple state transformatian(t) = e(t) — u(t), whereu(t) is

dynamically defined ag(t) = A, p(t)+cx(t), results in the

wheree = 1/w (the proper choice of andw is discussed systems(t) = A,s(t)—a&(t)+a(t), for which the hypothesis

in [2]), and the notatiorO (¢) is adopted from [3] (p. 383). of the Thikhonov's theorem can be verified following the

Proof: Although the error systems (38) and (39) are nosteps from [2], and the last two relationships in (50) can be

in the standard backstepping form, the proof still follolwe t concluded along withs(¢) — §(t) = O (), wheres(t) =

steps from [2]. B é(t) — p(t) and satisfies the exponentially stable dynamics
Now we design the last controller, which is actually im-5(¢) = A,5(t). It follows thate(t) — é(t) = s(t) — 5(t) =

plemented. It is the command filtered version of the cenyaintO (¢), which completes the proof. [ ]



V. PERFORMANCEANALYSIS

The following two lemmas are needed to prove our malﬁenOtem( ) = nl(t) -

result.
Lemma 5.1: Let the command filtered controller for sys-

tem (2) be defined by (31), (32), (33), (35) and (37). Then

all closed-loop signals are bounded and

() —2°(t) =0 (e) . (51)
In addition, if w is sufficiently large, then
ul (t) —u(t) = O (e) . (52)

Proof: Sincee’(t) € L. it follows from (40) that
ef(t) € L, implying thatz/(t) € L. It follows form
Lemma 4.1 and Lemma 4.3 thaf | (t) € Lo, anday,(t) €
Lo fori=1,...,n— 1. Then, (31) implies that/ (t) €
L. Thereforen’(t) € L., hencea!(t) € L., for all
i=1,...,n. Sincee.(t) is exponentially stable, it follows
thatv°(t) € L, and hencei/ (t) € L

It is straightforward to compute the difference

w] (t) = 2l (t) = ef (1) — ed(t) + 001 (t) — a(t).
Sincec/ (1) — l(t) = O () and o, (1) ~ af(t) = O(c),
it follows that =/ (t) — 20(t) = O (¢) forall i = 1,...,n
Next, we compute the difference

ul (1) = u®(t) = =k [0(t) = 2°()] + o (t) — an(t) -

Since£’(t) = O (e), it follows thatv(t) — 2°(t) = O (¢).
On the other hand/(t) — a2(t) = nl(t) — n.(t) +

woy_q5(t) — d%,l(t). Since ¢,,(x) is smooth, we have
o, (@ () — ¢,(x°(t)) = O(c). Then it follows that
(1)~ u(t) = 0 () if w > mas([k]. [6,]). "

Lemma 5.2: Let the command filtered controller for sys-

tem (2) and identification model (4) be defined by (31), (32); = V2/2 and || G2 (s) 3.

(33), (35) and (37). Then all signals are bounded and

& (t)—&(t)=0() . (53)
In addition, if w is sufficiently large, then
ol () —a(t) = O (e) . (54)

The lemma is proved similar to the previous one.
Theorem 5.1: Let the system’s controller be defined ac-

cording to command filtered scheme given by (41), (42),
(43), (45) and (47). Then the input and output tracking error

satisfy the following upper bounds

[a()] < Bse' + T+ O (e) (55)
le(t)] < Bse™"2" + % +0(e), (56)

where a(t) = [|u®(t) — u(t)|, Bs,» B7, Bs, Bo and v are
positive constants defined in the proof.
Proof: It is easy to see that

a(t) = u(t) —ul (t) +u (t) —a’ (t)

=0() - k'a(t) +al(t), (57)

where () = v°(t) — v(t) and a,(t) = of (t) — &f(t).
Obviously,o(t) satisfies the dynamics

o(t) = A 0(t) + cx(t) (58)

with the initial conditionsf;(o) = z(0) — 1(0), where we

Al (t) = 0:(t)p! (t) for eachi =

,n. Similar to (18), one can obtam form (58) that

15()]| < Broe™" + Z2 (59)
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Fig. 1. Adaptive step response and corresponding adaptineot signal
vs ideal step response and ideal control signal.
Next, we observe that the signais: (t) = o}, (t)—01(t)
anda; 2 (t) = oy, (t) — 042(t) satisfy the operator equations
~ ~f 2
Gia(s) = Gi(s)al (s), Gi(s) = mmioerer  (60)
Gia(s) = Ga(5)d] (s),  Gals) = smpgtim
wherea! (t) = of (t) — &! (t). Since||G1(s)||n. = 1 for

= (2¢)71, it follows from [3]
(p. 201) that
(RO O
16i2(D)]l e < (2O)7H@ (B)]l 2o
Now we can recursively compute the bound af(t)

using the definitions (33) and (43). For= 1, we have
af(t) = 7] (t), therefore

(61)

)] < e+ 2 (62)
Fori=2,...,n, we havedlf(t) = —7;(t) + wd; 2(t), hence
Gn(®)] < gufact + 28 (63)

VT
n—1
w

whereg, =1+ 3= ettt 3
Combining the reIat|onsh|ps (57) (59) and (63) we obtain

(55), where3s = ||k||B10+qn B2, B7 = ||| B11+qn s, SinCE
v > 1y for large values ofy (fast adaptation).

To prove (56), we notice thay(t) — y-(t) = #1(¢) +
& (1) — 2,1 (1) = F{ () +e1(t). Sincee (t) = &1(t) + O (),
it follows thaty(t) — y,-(t) = #1(t) + é1(t) + O (g). Using
(18) one can obtain from (29) that

le(®)]] < Brze™" + 22 (64)

\/_ Y



and the relationship (56) follows. The proof is comple®. £, = 8. The identification model is designed with= 495
It follows form Theorem 5.1 that the bounds on the inpuaind~ = 500000. For the command filtering we set= 500
and output tracking errors can be systematically decreasadd( = 0.8. Figure 1 displays systems response to step input

by choosing large values for and~.

Adaptive estimates
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Estimates of); andn2 vs true values for the step input.

Adaptive response
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Control signal
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Ideal control
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time

Fig. 3.

signal vs ideal step response and ideal control signal.

Remark 5.1: The proposed approach can be readily ex-
tended to multi-input-multi-output systems with unmaithe
uncertainties. Also, time variant parameters and extern
disturbances can be introduced in the proposed approach.

VI. SIMULATION RESULTS

As a simulation example we consider a third order system
(65)

@1(t) = 22(t) + O121(t)
ig(t) = $3(t) + 6‘21’1 (t),Tg(t))
a3 (t) = u(t)

with the unknown paramete®, = 3 and 0, = 2. The
reference model is selected with' = [8 10.4 5.2] and

10

Adaptive sinusoidal response and correspondingtadacontrol

along with the command filtered certainty equivalent cdntro
signal vs the systems step response (ideal response) and
control signal (ideal control) for the conventional baekst

ping design assuming parameters are known. The identifier’s
performance is displayed in Figure 2. It can be observed
that good tracking is achieved in all signals for the unit
step command. The proposed controller achieves a similar
performance for the sinusoidal command as can be seen from
Figures 3 and 4.

Adaptive estimates

hat ny

Fig. 4. Estimates of); andn2 vs true values for the sinusoidal input.

VII. CONCLUDING REMARKS

We have presented an indirect adaptive control method for
nonlinear systems with unmatched uncertainties thatallo
the certainty equivalence principle. The approach usesta fa
identification model, which is independent of the control de
sign and achieves desired transient and steady state tiesper
by the proper choice of the design parameters. The controlle
is in the form of the command filtered backstepping control.
The resulting tracking errors can be decreased as desired by
speeding up the adaptation and command filtering processes,
subject to available computational power.
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