

Medical Data Architecture Capabilities and Design

C. Middour¹, M. Krihak², A. Lindsey³, N. Marker⁴, S. Wolfe³, S. Winther⁵, K. Ronzano⁵, D. Bolles³, W. Toscano³, and T. Shaw³

¹Millennium Engineering and Integration Co, NASA Ames Research Center, Moffett Field, CA

²Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA

³NASA Ames Research Center, Moffett Field, CA

⁴SGT Inc., NASA Ames Research Center, Moffett Field, CA

⁵Wyle Laboratories, NASA Ames Research Center, Moffett Field, CA

2017 NASA Human Research Program Investigators' Workshop

24 January 2017

Overview

- Project Background
- Objectives/Challenges
- System Overview
- Integrated Devices
- Current Status/Next Steps

Project Background

ExMC Element Risk

Risk of Adverse Health Outcomes & Decrements in Performance due to Inflight Medical Conditions

MDA Need

ExMC Gap Med07: We do not have the capability to comprehensively process medical-relevant information to support medical operations during exploration missions.

MDA Goal

The MDA project will develop capabilities that support autonomous data collection, and necessary functionality and challenges in executing a self-contained medical system that approaches crew health care delivery without assistance from ground support.

MDA Project Objectives

- Develop a system to comprehensively manage and process medically-relevant information to support medical operations during exploration missions
- Build a series of test beds that incrementally add capability
- The system will provide the data architecture foundation to:
 - Facilitate autonomous data collection
 - Promote seamless communication with medical and non-medical devices
 - Accommodate data streams in varying formats
 - Provide data management capability for medical operations

Challenges

- Implement NASA Space Flight Human-System Standard NASA-STD-3001
 - Level of Care V: "A high level of potential risk exists that personnel may experience medical problems on orbit at some time during the mission."
 - Increasing levels of autonomous care
- Limited Resources
 - Medical knowledge and skills (Integrated data/knowledge management)
 - Supplies and equipment
 - No resupply
- Autonomous Crew Medical Operations
 - Delayed communications
 - No ability for medical evacuation
- Accommodate future technologies

Test Bed 1 Overview

Test Bed 1 Objectives

- Demonstrate data flow autonomy
- Establish data architecture foundation
- Develop a scalable data management system
- Utilize modular design and standardized interfaces

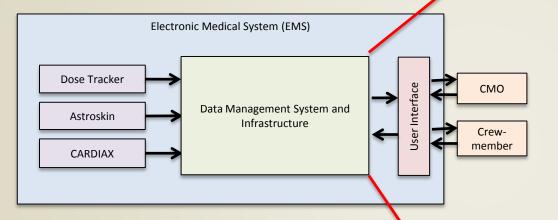
Demo

Provide Information

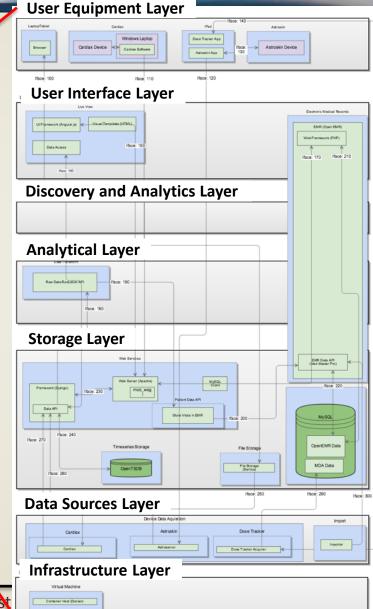
- Display patient medical record
- Display vital signs

Store Data

- Database population
 - Medical history
 - Biosensors' measurements
- Medication consumption


Collect Data

- Astroskin
- Cardiax
- Dose tracker
- CMO data input



Ames Discovery Innovations Solutions

MDA Test Bed 1 Functional Block Diagram

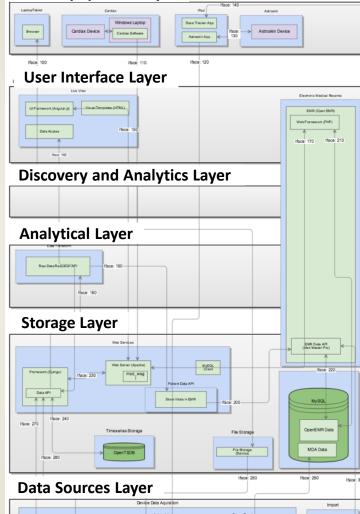
- Modular design
 - Layers allow for organization of code and components
 - Biosensor device adapters are modular
- Subsystems separated by interfaces
 - Drop-in replacements of systems in later versions (upgrades, etc)

User Equipment Layer

Infrastructure Layer

Software Layers

User Equipment Layer


- Standard web browser (Laptop/Tablet) Complete
- ECG monitor (CARDIAX) Complete
- Wearable biosensor vest for vital signs (Astroskin) -Complete
- iPad application currently onboard ISS (Dose Tracker) - Future Work

User Interface Layer

- Electronic Medical Records (OpenEMR) In Progress
- Search and display of biosensor data In Progress

Analytical Layer

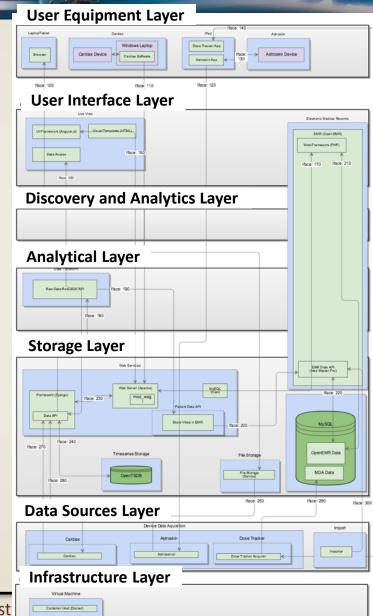
 Data reduction: reduce streams of heart beat events to a single number - In Progress

Software Layers

Storage Layer

- Data API Complete
 - Stores/retrieves biosensor data
 - Backed by relational and time series databases (MySQL, OpenTSDB, HBASE)

Data Sources Layer


- Software supporting
 - CARDIAX In Progress
 - Astroskin Complete
 - Dose Tracker 1.1 Release
- Crew Data Importer In Progress

Infrastructure Layer

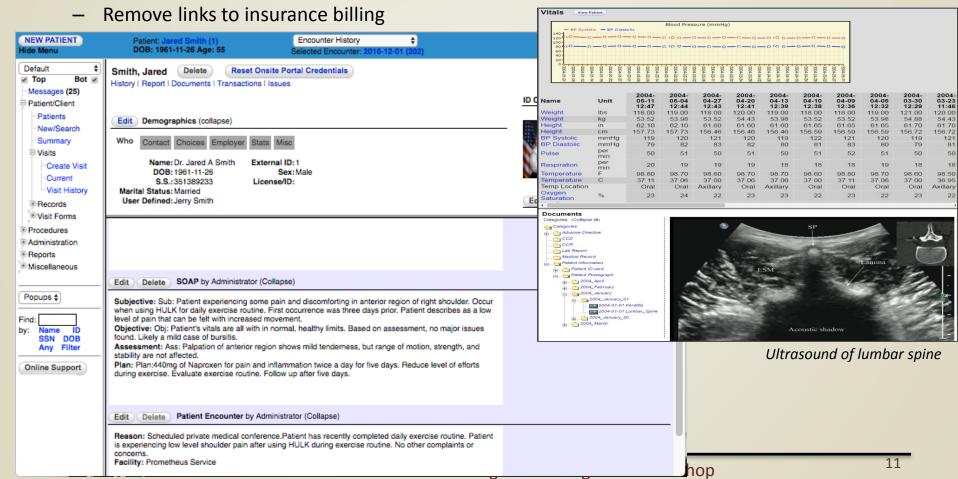
Server(s) - Complete

Discovery and Analytics Layer

No components in Test Bed 1

System Overview

- Integrates biomedical devices with medical records system
 - "Vitals" and ECG data are automatically populated into EMR
- Software deployment options for development, laboratory and analog testing
 - Hardware (stand-alone servers, "cloud" systems, laptops)
 - Operating System (UNIX, Mac, Windows)
- Automated software build
 - Pre-configures with a standard load of patient data
 - Reduces manual data entry
- Uses open-source components
- NASA Class C software and process



Screen captures of patient data entry demonstration

Medical Records System

- Lightly modified open source Electronic Medical Records system "OpenEMR"
 - Integration with biosensor data for auto-populating and plotting data

Devices

Astroskin

- Wearable garment-based monitoring system
- Sensors: Accelerometers, 3-lead ECG, respiration, SpO₂, Systolic Blood pressure, skin temperature

CARDIAX

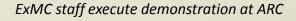
- Wireless, 12-Lead ECG
- ECG Glove: Built-In lead wires attached to prepositioned electrodes

Dose Tracker

- Collects ISS crewmember medication
 - Usage, dosage, frequency
 - Side effects

Current Status

- Passed gate reviews
 - System Requirements Review (SRR)
 - Preliminary Design Review (PDR) / Critical Design Review (CDR)
 - From the final PDR/CDR board report:
 - "As detailed in the 'Review Success Criteria Assessment' section of this report, the project has met, as 'successful', all ToR-defined review success criteria."
 - "ExMC MDA continues to employ a robust incremental phased approach to the Test Beds 1-4, and has documented its technical architecture and allocation of requirements, developed in conjunction with customer's requirements."
 - Currently in implementation phase



Test Bed 1 in the Lab

ExMC staff execute demonstration at ARC

Next Steps

- Scoping potential "Test Bed 1.5" (not baselined)
 - Operate in cooperation with habitat evaluations
 - Integrate exercise device(s)
 - Provide biosensor "telemetry" to spacecraft simulators
- Test Bed 1 Demo April 2017
- Test Bed 1.0 Release June 2017
 - Patch Release 1.1 August 2017 (with Dose Tracker)
- Test Bed 2.0 Scope Completion July 2017
- Test Bed 2.0 SRR August 2017