whttps://ntrs.nasa.gov/search.jsp?R=20170009840 2019-08-31T01:54:41+00:00Z

AERONAUTICS

Airspace Technology Demonstration 2 (ATD-2)

ATD-2 CLT Pilot Community Engagement

Feb 23, 2017

Al Capps, <u>Al.Capps@nasa.gov</u>, (817) 858-7779 Becky Hooey, <u>Becky.L.Hooey@nasa.gov</u> (650) 604-2399

Time	Event	Presenter
0800	Opening Remarks and Introductions	Shawn Engelland
0830	ATD-2 Background and Context	Al Capps
0915	Current Operations and ATD-2 Solutions Primer	Becky Hooey
1000	Break	Break
1015	Phase 1 Procedures, Training expectations	Becky Hooey
1200	Lunch	Lunch
1300	Phase 1 Procedures, Training expectations (cont.)	Becky Hooey
1430	Future Opportunities to Engage. Q&A	Al Capps
1445	Break	Break
1500	Research on Integrated Mobile Technology	FAA/MITRE

- Introduce ATD-2 to the CLT pilot community
- Describe likely areas of procedural change (and benefit) to current day CLT procedures in ATD-2 Phase 1
- Identify ATD-2 representatives from each organization
- Describe opportunities for future engagement
- Survey data elements and capability pilots may desire in later phases of ATD-2

	Time	Event	Presenter
	0800	Opening Remarks and Introductions	Shawn Engelland
	0830	ATD-2 Background and Context	Al Capps
/	0915	Current Operations and ATD-2 Solutions Primer	Becky Hooey
	1000	Break	Break
	1015	Phase 1 Procedures, Training expectations	Becky Hooey
	1200	Lunch	Lunch
	1300	Phase 1 Procedures, Training expectations (cont.)	Becky Hooey
	1430	Future Opportunities to Engage. Q&A	Al Capps
	1445	Break	Break
	1500	Research on Integrated Mobile Technology	FAA/MITRE

Field Demo Partners

Goals of ATD-2

Phase 1 Development & Verification Focus

3T Data Exchange & Integration

-Integrated Arrival/Departure/Surface (IADS) footprint
-Onboard into overhead stream (TFDM with IDAC)
-New data shared between FAA & Industry
-TFDM Electronic Flight Data (EFD) integration
-Real-time dashboard for situational awareness
-Use of controller assigned runway and time on surface

Surface modeling, scheduling & metering

- -Trajectory based model of airport operations
- -Latest predictions of flight scheduled out/off/on/in
- -Scheduling for tactical and strategic timeframes
- -Surface Collaborative Decision Making (S-CDM)
- -Predictive capacity estimation technology

Field Demonstration Strategy

Evaluation Requirements Freeze (FRZ) assesses current system capability against Field Demo Partner desires and constraints. A joint decision establishes parameters for the upcoming demonstration phase.

Tactical Surface Metering Concept

- Estimates capacity of current and future runway resources
- Builds an efficient runway schedule based on readiness, EOBT and RBS
- Calculates spot advisories that support the metered runway schedule
- Provides push back advisories from gates that support the spot advisories

East side, mix of arrivals West side West side

TRACON estimated to start offloading flights to 18C here, which lowers 18C departure rate for the remainder of the departure push

TRACON scratchpad entries are helpful for arrival runways, but only about 12-15 minutes prior to landing

ATC2 Capacity Estimation – Tactical Scheduler

- Runway utilization intent from ATC is used by the tactical scheduler to determine the capacity for a bank
- Information used in tactical scheduler capacity estimate
 - Use of converging runway
 - Arrival crossings
 - Mixed/dual use runways
 - Meteorological conditions (IMC, VMC)
 - Flight separation rules (wake vortex, departure fix)
 - Flights subject to FAA restriction (MIT, EDCT, APREQ)
 - Runway and taxiway outages
 - Arrival ON time and runway information from R-TBFM

ATC: Phase 1 Initial Deployment for Metering

ATTO: Key Events – 6 Month Forward Look

- Feb 22 & 23 Shadow 7 CLT pilot engagement
- Week of Mar 5th HITL at NASA Ames leading to FRZ1
- Week of Mar 20 Shadow Area Q&A at CLT leading to FRZ1
- Mar 28 Open lab (all day)
- Mar 29 Demonstration Requirements Freeze (FRZ1)
- Apr 25-27 Engineering Shadow Evaluation 1 (ESE1) A
- May 30-June 1 ESE1 B
- June 27-29- ESE1 C and OSE1 readiness decision
- July-Sept Operational Shadow Evaluation 1 (OSE1)

	Time	Event	Presenter
·	0800	Opening Remarks and Introductions	Shawn Engelland
	0830	ATD-2 Background and Context	Al Capps
	0915	Current Operations and ATD-2 Solutions Primer	Becky Hooey
r .	1000	Break	Break
	1015	Phase 1 Procedures, Training expectations	Becky Hooey
	1200	Lunch	Lunch
	1300	Phase 1 Procedures, Training expectations (cont.)	Becky Hooey
·	1430	Future Opportunities to Engage. Q&A	Al Capps
	1445	Break	Break
	1500	Research on Integrated Mobile Technology	FAA/MITRE

What does ATD-2 mean for Pilots?

<section-header>

Our goal is to minimize pilot procedural changes while maximizing benefits for pilots. To do this, we need your input:

- How will ATD-2 affect your procedures?
- What training will pilots need?
- What information do pilots need; when and how?
- How can pilots help support the overall goals of ATD-2?

ATD-2 Goal: Increase System Efficiency

Increased System Efficiency: What does it mean for Pilots?

- Earlier identification of gate conflicts
- Hold at gate rather than at runway; Shorter runway queues
- Less stop-and-go taxi
- Conformance to ATC-issued takeoff times to meet flow control

Increased Predictability: What does it mean for Pilots?

Manage work flow:

- Start 2nd engine
- Cabin preparation
- Checklists

Manage delay; Deciding when to:

- Board passengers
- Add fuel
- Push or wait at gate with engines off

Managing Passenger Expectations

Manage time constraints:

- Wheels-Up times
- Long-on-board times
- Crew-duty times

Accurate and reliable estimates of gate hold times and delay
Take the guess-work out of meeting EDCT and wheels-up times

Early and Accurate Information: What does it mean for Pilots?

Improved Safety

- Reduce pilot workload during taxi
- Reduce eyes-in time

Improved Efficiency

- Reduce possibility of arriving at departure runway before ready to take-off

5

Pilot Implication: Receive accurate information earlier (i.e., at the gate, not at the spot or during taxi).

Time	Event	Presenter
0800	Opening Remarks and Introductions	Shawn Engelland
0830	ATD-2 Background and Context	Al Capps
0915	Current Operations and ATD-2 Solutions Primer	Becky Hooey
1000	Break	Break
1015	Phase 1 Procedures, Training expectations	Becky Hooey
1200	Lunch	Lunch
1300	Phase 1 Procedures, Training expectations (cont.)	Becky Hooey
1430	Future Opportunities to Engage. Q&A	Al Capps
1445	Break	Break
1500	Research on Integrated Mobile Technology	FAA/MITRE

- 1. Communicating Expected Runway
- 2. Surface Metering
- 3. Tactical Flow Control / Wheels-Up Time (APREQ/CFR)
- 4. Expect Departure Clearance Time (EDCT)
- 5. Departure Fix Closures

Runway Assignment

Communicating earlier and more consistently:

- Expected runway assignment,
- Specification of runway for operational necessity,
- Runway requests for convenience / efficiency

TODAY	ATD-2 PLAN	PROCEI CHANG	DURE E
Pilots learn about their runway assignment in a	 Ramp will be equipped with ATC's planned runway 	Pilot	No
variety of ways: a. Knowledge of KCLT ops	assignment	Ramp	Yes
b. Ramp Controlc. Ground Control	 Expected runway will be incorporated in pushback clearance phraseology 	ATC	Yes

What does it mean for pilots?

Early and Accurate Information: Pilots will know their runway earlier, allowing more time to prepare for departure.

Runway Assignment: Phase 1

- EOBT = Earliest Off Block time (Aircraft Ready Time)
- TTOT = Target Take-Off Time
- TMAT = Target Movement Area Time (Release from Spot onto Airport Movement Area)
- TOBT = Target Off-Block Time (Pushback)

	TODAY	ATD-2 PLAN	PROCE CHAN	EDURE GE
Operational Necessity	Pilots may specify need to Ramp or Ground Control. If ramp, Ramp communicates need to	Pilots should specify Operational Necessity to Ramp while at gate. Ramp will electronically	Pilot Ramp	Yes Yes

What does it mean for pilots?

Early and Accurate Information: Pilots will know their runway earlier (at gate), allowing more time to prepare for departure.

Better Efficiency: Early runway requests can be scheduled earlier and more efficiently.

Surface Metering

Gate-hold metering may be applied when traffic demand exceeds runway capacity

TODAY	ATD-2 PLAN	PROCE CHANG	DURE E
 In previous surface metering programs at KCLT, gate holds began when the number of aircraft at runway queue surpassed a static value. 	 Predictive (Time-based metering) algorithms will consider a number of variables targeted at operational efficiency Ramp will be equipped with pushback advisories for each aircraft: Push or Hold for 'x' minutes. 	Pilot Ramp ATC	Yes Yes No

What does it mean for pilots?

Better Predictability: The length of the gate hold will be known and reliable. Runway queue will be shorter and more predictable.

Better Efficiency: Delay will be taken at the gate, when possible, instead of at the runway. Less congestion in the ramp and AMA, reduced runway queue, reduced fuel burn and emissions.

Surface Metering

What is it?	The ramp controller will be using pushback gate. The pushback advisory indicates eith with a hold time.	k advisories to release aircraft from the her immediate pushback or gate-hold
Which flights will be affected?	 In Phase 1, surface metering will begin in Bank 2 (~ 8:30 a.m. to 10:00 a.m.), this may expand to other banks. All flights that do not have EDCT or Flow Control times will be subject to Metering. (No double delay) Approximately 50% of the flights will receive gate holds 	<figure></figure>
How will Pilot Procedures Change?	 There is no change in how/when pilots in pushback If ramp clears the flight to pushback, fligh If ramp issues a gate hold, remain at gate specified time for immediate pushback 	itiate contact with ramp control for t proceeds as normal e and contact ramp again at the

Surface Metering: Phase 1

Tactical Flow Control (APREQ/CFR)

Controlled Take-Off Times are negotiated between ATC and Center to slot aircraft into the overhead stream.

Typically negotiated close to departure time (~ 10 minutes)

ATC's goal is to depart aircraft within a -2 minute / + 1 minute window

TODAY	ATD-2 PLAN	PROCE CHANG	DURE E
Ramp Control is unaware of wheels-up times.	Flow control restrictions will be negotiated between ATC and Center and electronically communicated to Ramp.	Pilot Ramp ATC	TBD Yes No
No tools are available to help ramp / pilots meet wheels-up time.	Ramp control tools will support pushback coordination and flight prioritization.		
Pilots are often unaware that they have a wheels-up time until AMA spot	These flights will not be subject to surface metering to avoid double delay.		

What does it mean for pilots?

Early and Accurate Information: Pilots will know the wheels-up time at gate, before pushback.

Better Predictability: Ramp will know when to push aircraft in order to meet wheelsup time.

Better Efficiency: Delay can be taken at the gate, when possible, instead of at the runway. Improved scheduling into overhead stream.

Tactical Flow Control (APREQ/CFR): Phase 1

Expect Departure Clearance Time (EDCT)

EDCT is the runway release time ("Wheels Up") assigned to aircraft due to Traffic Management Initiatives (TMIs) that require holding aircraft on the ground at the departure airport.

EDCT's are typically known at least 30 minutes in advance, and are included in the PDC.

ATC's goal is to depart aircraft within a -5 minutes / + 5 minute window

TODAY	ATD-2 PLAN	PROCE CHANG	DURE E
 Pilots receive EDCT from company, CD, or PDC. 	No change	Pilot	No
 Pilots estimate when to push to meet EDCT based on traffic congestion etc. 	 Ramp will be equipped with tools and pushback advisories to enable EDCT conformance. 	Ramp ATC	No No
 Dispatch, ramp, ATC, CD, don't always have the same EDCT times 	 Ramp, and ATC share the same current EDCT information. 		
	 EDCT flights are not subject to surface metering 		

What does it mean for pilots?

Better Predictability: Pilots will know when to pushback in order to meet EDCT time. Delay can be taken at the gate, when possible, instead of at the runway.

EDCT: Phase 1

ATD2 Communicating Long-On-Board Time

Departure Fix / Route Amendments

Departure Fixes may be closed or combined due to weather. This frequently occurs with short notice and therefore may require a change to the previously issued departure clearance.

TODAY	ATD-2 PLAN	PROCI CHAN	EDURE GE
Departure fix closures are typically communicated to	 Ramp will be equipped with Departure Fix Closure information 	Pilot	Yes
pilots by Ground Control, at the spot.	 Ramp Control will communicate to pilots when departure fixes are 	Ramp	Yes
Ramp Control can also communicate departure fix closures, when able.	closed and instruct pilots to contact CD	ATC	No

What does it mean for pilots? <u>Early and Accurate Information</u>: Pilots will know their departure route earlier, allowing more time to communicate with dispatch/clearance delivery and/or prepare for departure.

Departure Fix Change: Phase 1

Phase 1 Changes		
1. Runway Assignment	 Expected runway will be provided by Ramp Pilot should specify operational necessity before pushback 	
2. Surface Metering	 Expect gate holds when Surface Metering is on Contact ramp promptly Push without delay when cleared 	
3. Tactical Flow Control Wheels-Up Times	 Contact CD for wheels-up time Contact ramp and pushback promptly 	
4. EDCT	 Ramp will coordinate pushback to meet EDCT, Aircraft will remain at gate, unless gate conflict. 	
5. Departure Fix Closures	 Fix closures will be communicated by Ramp Flight will be held at gate if route not available, unless gate conflict 	

Data Type	Data Element	From Pilot/Airline	To Pilot
Runway Assignment	Expected Runway Assignment		•
	Operational Necessity Specification	•	
	Taxi for Convenience Request; on/off		
Airport Configuration	Runway Utilization / Flow Direction		
	Departure fix closed/combined		•
Aircraft/ Flight	Long-on-board time	•	
	Crew duty time		
Surface Metering	Surface Metering on/off		
	Earliest Off Block Time (EOBT), Flight Ready time	•	
	Target Off Block time (TOBT), Pushback time		
	Target Movement Area Time (TMAT), Spot Release		
	Target Take-Off Time (TTOT), Departure Clearance		
Controlled Take-Off Times	Expected Departure Clearance Time (EDCT)		•
	Flow Control Wheels-Up time (APREQ / CFR)		•
	Miles In Trail (MIT)		

Time	Event	Presenter
0800	Opening Remarks and Introductions	Shawn Engelland
0830	ATD-2 Background and Context	Al Capps
0915	Current Operations and ATD-2 Solutions Primer	Becky Hooey
1000	Break	Break
1015	Phase 1 Procedures, Training expectations	Becky Hooey
1200	Lunch	Lunch
1300	Phase 1 Procedures, Training expectations (cont.)	Becky Hooey
1430	Future Opportunities to Engage, Q&A	Al Capps
1445	Break	Break
1500	Research on Integrated Mobile Technology	FAA/MITRE

Key Events – 6 Month Forward Look

- Feb 22 & 23 Shadow 7 CLT pilot engagement
- Week of Mar 5th HITL at NASA Ames leading to FRZ1
- Week of Mar 20 Shadow Area Q&A at CLT leading to FRZ1
- Mar 28 Open lab (all day)
- Mar 29 Demonstration Requirements Freeze (FRZ1)
- Apr 25-27 Engineering Shadow Evaluation 1 (ESE1) A
- May 30-June 1 ESE1 B
- June 27-29- ESE1 C and OSE1 readiness decision
- July-Sept Operational Shadow Evaluation 1 (OSE1)

• Backup

Operational Concept Graphic (OV-1)

- TFDM EFD is controller interface to ATD-2 scheduling and metering
- Better predictability improves
 TMI compliance

- Tactical pushback advisories build on SARDA research
- Manage ramp traffic and meet strategic TMATs
- Ramp and gate status and intent information

- Builds on Surface CDM concept engineering effort
- Identify need to meter and compute ration-by-schedule strategic TMATs
- Accommodate airline priorities

Surface Components

ATCSCC

Multi-center coordination

Industry Apps

Information exchange with

commercial applications

Strategic TMIs

Surface delays

- Earliest off block times
- · Airline priorities via CDM
- Flight data

- Airport conditions
- Additional flight operators

External interfaces via SWIM and SWIM extensions

- Tactical departure scheduling builds on IDAC and PDRC
- Manage traffic to satisfy TMIs and departure metering

- Integrate TBFM/IDAC with ATD-2 surface system
- Improve TBFM departure trajectory predictions
- Departures into overhead and metered arrival streams

- Local TMIs and demand predictions for all airports
- Metroplex coordination and planning functions
- Explore departure controller advisory requirements

Airspace Components

Operational Environment for the ATD-2 Concept

ATD-2 is Technology Integration

ATD-2 combines existing and emerging FAA technologies with technologies developed through NASA research to create an Integrated Arrival/Departure/Surface (IADS) traffic management system for the metroplex.

