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This paper investigates the effect of nonlinear large deflection bending on the aerody-
namic performance of a high aspect ratio flexible wing. A set of nonlinear static aeroelastic
equations are derived for the large bending deflection of a high aspect ratio wing structure.
An analysis is conducted to compare the nonlinear bending theory with the linear bending
theory. The results show that the nonlinear bending theory is length-preserving whereas
the linear bending theory causes a non-physical effect of lengthening the wing structure
under the no axial load condition. A modified lifting line theory is developed to compute
the lift and drag coefficients of a wing structure undergoing a large bending deflection.
The lift and and drag coefficients are more accurately estimated by the nonlinear bending
theory due to its length-preserving property. The nonlinear bending theory yields lower
lift and span efficiency than the linear bending theory. A coupled aerodynamic-nonlinear
finite element model is developed to implement the nonlinear bending theory for a Com-
mon Research Model (CRM) flexible wing wind tunnel model to be tested in the University
of Washington Aeronautical Laboratory (UWAL). The structural stiffness of the model is
designed to give about 10% wing tip deflection which is large enough that could cause the
nonlinear deflection effect to become significant. The computational results show that the
nonlinear bending theory yields slightly less lift than the linear bending theory for this
wind tunnel model. As a result, the linear bending theory is deemed adequate for the
CRM wind tunnel model.

I. Introduction

Modern aircraft are increasingly designed to be highly aerodynamically efficient in order to reduce the
fuel consumption, hence operating cost of modern transports. To achieve this goal, the aircraft industry has
been adopting a high aspect ratio wing design with the advanced composite construction in modern trans-
ports. Aircraft design concepts that take advantage of wing flexibility to increase aerodynamic performance
and maneuverability have been investigated. By twisting a wing structure, an aerodynamic moment can be
generated to enable an aircraft to execute a maneuver in lieu of the traditional flight control surfaces. For
example, a rolling moment can be induced by twisting the left and right wings in the opposite direction.
Similarly, a pitching moment can be generated by twisting both wings in the same direction. Wing twisting
or warping for flight control is not a new concept and was used in the Wright Flyer in the 1903. The U.S. Air
Force conducted the Active Flexible Wing program in the 1980’s and 1990’s to explore the potential use of
leading edge slats and trailing edge flaps to increase the control effectiveness of F-16 aircraft for high speed
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maneuvers.1 In the 2000’s, the Active Aeroelastic Wing research program also investigated a similar wing
twisting technology for improved roll maneuverability of a modified F/A-18 aircraft.2 Wing shaping control
concepts for drag reduction are being studied by NASA to leverage wing flexibility for aerodynamic per-
formance.3,4 By re-twisting a flexible wing and using variable camber aerodynamic flight control surfaces,
aircraft wings can have a mission-adaptive capability to optimize L/D throughout a flight envelope.5 In
recognition of the role of aeroelasticity on aircraft performance and dynamics, NASA Advanced Air Trans-
port Technology (AATT) project is conducting research in the area of Performance Adaptive Aeroelastic
Wing (PAAW). This research develops concepts such as the variable camber continuous trailing edge flap
(VCCTEF) to enable wing shaping control for aerodynamic performance and dynamics.3,6 Currently, a
wind tunnel test is being planned to conduct an active real-time drag minimization control strategy for
a high aspect ratio flexible wing based on the Common Research Model7 equipped with the VCCTEF in
the University of Washington Aeronautical Laboratory (UWAL). The wing is purposely designed with a
reduced structural stiffness to achieve about a 10% wing tip deflection. Efforts are under way to create an
aerodynamic-structural model of this wind tunnel model. It is of interest to investigate the effect of nonlinear
large deflection bending on this wind tunnel model so that a better understanding can be ascertained prior
to the wind tunnel test entry.

Structural deflections of lifting surfaces interact with aerodynamic forces to create aeroelastic coupling
that can affect aircraft performance. Understanding these effects can improve the prediction of aircraft
performance and provide an insight into how to design an aerodynamically efficient high aspect ratio flexible
wing. Generally, high aspect ratio lifting surfaces undergo a greater degree of structural deflections than low
aspect ratio lifting surfaces. As a result, the nonlinear structural deflection could have a significant effect on
the aerodynamic performance.

The purpose of this study is to investigate the effect of nonlinear large deflection bending on the high
aspect ratio CRM flexible wing to ascertain whether or not this effect should be given further consideration
in the analysis of the wind tunnel test data and future optimization efforts. Toward this end, a nonlinear
bending theory is developed along with a modified lifting line theory which includes the effect of the wing
aeroelastic deflections. A nonlinear finite element model is developed to implement the nonlinear bending
theory. The finite element model is then coupled to an aerodynamic model of the CRM wing which is based
on a vortex lattice method with transonic and viscous corrections via a 2D transonic small disturbance
method9 and a 2D integral boundary layer method.10 The coupled aerodynamic-nonlinear finite element
model is analyzed to quantify the aerodynamic performance of this model.8

II. Common Research Model

The aerodynamic model is a wind tunnel sub-scale model of a CRM wing to be tested in the UWAL in
2017 to demonstrate an active real-time drag optimization control strategy. This CRM model is designed to
have about 10% wing tip deflection to represent the current state of the art high aspect ratio wings in modern
transport aircraft such as the Boeing 777. The model is 85 inches in length with an elastic axis sweep angle
of 31.5◦ and includes six active two-segment VCCTEF control surfaces as shown in Fig. 1. These surfaces
are driven by actuators for the real-time drag minimization control strategy. The test conditions are at low
subsonic speed of about Mach 0.1.

An aerodynamic model of this CRM wing is constructed using NASA vortex lattice code VORLAX.
A transonic correction has been developed for VORLAX to account for transonic flow over wings. The
transonic correction is based on the transonic small disturbance (TSD) theory9 and is implemented using a
2D transonic code TSFOIL developed by NASA Ames Research Center.9 For the wind tunnel model analysis,
the transonic correction is not needed, but for a full-scale CRM model, this correction will be required. In
addition, the viscous effect is also corrected for in VORLAX via a 2D integral boundary layer code developed
in-house by NASA Ames Research Center.10 The coupled transonic plus integral boundary layer method
with the vortex lattice method has been shown to be able to produce reasonably accurate aerodynamic
performance prediction as compared to a Reynolds-Averaged Navier-Stokes (RANS) CFD solver which is
computationally much more expensive than the vortex lattice method.9 Moreover, the vortex lattice code
VORLAX has the mesh deformation capability that allows it to be easily coupled to a finite element model for
static aeroelastic analysis,11 whereas the mesh deformation capability is only available for a few NASA RANS
CFD solvers. With the nonlinear finite element capability, the coupling will require more iterations for a
solution to converge. Thus, this will create an additional computational cost that must be taken into account
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for RANS solvers, whereas such cost is very small for the vortex lattice method even with the transonic and
viscous corrections. For conceptual aerodynamic analyses and multidisciplinary design optimization, this
method is very computationally efficient and can generate rapid candidate design solutions.

Figure 1. Common Research Model Sub-Scale Wind Tunnel Model in UWAL

Figure 2 shows the surface pressure distribution of the full-scale CRM wing at Mach 0.85 and Reynolds
number of 1.88 million per foot. The model shows a transonic region in the wing root area as is typically
the case with transport wings. Figures 3 and 4 shows the computed lift curve and drag polar of the CRM
rigid wing.

Figure 2. Surface Pressure Distribution of CRM Rigid Wing Model at Mach 0.85 Computed by VORLAX
with Transonic and Boundary Layer Corrections
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Figure 3. Lift Curve of CRM Rigid Wing Computed by VORLAX with Transonic and Boundary Layer
Corrections
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Figure 4. Drag Polar of CRM Rigid Wing Computed by VORLAX with Transonic and Boundary Layer
Corrections

The aeroelastic effect on the aerodynamic performance is typically described by the following equation
for the local aeroelastic angle of attack defined with respect to the elastic axis according to the linear bending
theory:

αc =
α

cos Λ
−Wx tan Λ−Θ (1)
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where x is the coordinate of the elastic axis, α is the wing angle of attack, Λ is the sweep angle of the elastic
axis, Θ is the torsional twist (positive nose-down), W is the bending deflection, and the subscript x denotes
∂
∂x .

Thus, the wing bending deflection generally causes a reduction in lift due to the decrease in the local
aeroelastic angle of attack for a sweptback wing with Λ > 0. The torsional twist is generally nose-down
(positive in the sign convention). Thus, the net effect is a reduction in lift as well as a change in the design
spanwise lift distribution which can affect the induced drag. If the effect of the nonlinear large deflection
bending is significant, then clearly this cannot be neglected in the aerodynamic performance analysis of a
high aspect ratio flexible wing structure.

III. Nonlinear Large Bending Deflection Analysis

To analyze the nonlinear large deflection bending effect, we perform a strain analysis. Toward that end,
consider an airfoil section on the left wing as shown in Fig. 5 undergoing a combined axial, bending, and
torsional displacement field. Let (x, y, z) be the undeformed coordinates of point Q on a wing airfoil section
in the reference frame D defined by unit vectors (d1,d2,d3). Let p0 = xd1 be a position vector along the
elastic axis. Then, point Q is defined by a position vector p = p0 + q where q = yd2 + zd3 defines point Q
in the y − z plane from the elastic axis. Then, the undeformed local airfoil coordinates of point Q are[

y

z

]
=

[
cos γ − sin γ

sin γ cos γ

][
η

ξ

]
(2)

where η and ξ are local airfoil coordinates, and γ is the wing section pre-twist angle, positive nose-down.12,13
Differentiating y and z with respect to x gives[

yx

zx

]
= γ

′

[
− sin γ − cos γ

cos γ − sin γ

][
η

ξ

]
=

[
−zγ′

yγ
′

]
(3)

Figure 5. Left Wing Reference Frame of Wing in Combined Bending-Torsion

Let Θ be a torsional twist angle about the x-axis, positive nose-down. Let W and V be flapwise and
chordwise bending deflections of point Q, respectively, and W is allowed to be large relative to V . Let U be
the axial displacement of point Q. Then, the displacement and rotation vectors due to the elastic deformation
can be expressed as

r = Ud1 + V d2 +Wd3 (4)

φ = Θd1 − sin−1Wsd2 + Vxd3 (5)

where the subscripts x and s denote the partial derivatives ofW and V with respect to x and the arc length s.
Note that the term sin−1Ws represents the rotation angle due to the large flapwise bending with respect to
the arc length. If Ws is small, then the usual approximation sin−1Ws ≈Wx applies. Otherwise, Wx = Wssx
applies where

sx =
ds

dx
=
√

1 + y2
x + z2

x =

√
1 + (y2 + z2) (γ′)

2 (6)
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Let (x1, y1, z1) be the deformed coordinates of point Q on the airfoil in the reference frame D and
p1 = x1d1 + y1d2 + z1d3 be its position vector. Then the coordinates (x1, y1, z1) are computed as

p1 = p + r + φ× q (7)

where  x1

y1

z1

 =

 x+ U − yVx − z sin−1Ws

y + V − zΘ
z +W + yΘ

 (8)

Differentiating x1, y1, and z1 with respect to x yields x1,x

y1,x

z1,x

 =


1 + Ux − yVxx + zγ

′
Vx − z Wsssx√

1−W 2
s

− yγ′
sin−1Wx

−zγ′
+ Vx − zΘx − yγ

′
Θ

yγ
′
+ sin−1Wx + yΘx − zγ

′
Θ

 (9)

Note that the term Wss√
1−W 2

s

represents the physical curvature of the nonlinear bending with a large

deflection. This term is consistent with the nonlinear bending curvature formula by Hodges.14 Other
authors15,16 have used the curvature formula Wss

(1+W 2
s )

3
2
based on the elementary calculus which is sometimes

mistaken as the physical curvature of a beam as stated by Hodges.14 The curvature formula Wss√
1−W 2

s

can be

used in the undeformed coordinates whereas the curvature formula Wss

(1+W 2
s )

3
2
must be used in the deformed

coordinates which are impractical for implementation.
Neglecting the transverse shear effect, the longitudinal strain is computed as13

ε =
ds1 − ds

ds
=
s1,x

sx
− 1 (10)

where

s1,x =
√
x2

1,x + y2
1,x + z2

1,x

=

√
s2
x + 2Ux − 2yVxx − 2z

Wsssx√
1−W 2

s

+ 2 (y2 + z2) γ′Θx + (x1,x − 1)
2

+ (y1,x + zγ′)
2

+ (z1,x − yγ′)
2 (11)

s1,x is approximated by a Taylor series expansion as

s1,x ≈ sx+Ux−yVxx−z
Wsssx√
1−W 2

s

+
(
y2 + z2

)
γ

′
Θx+

(x1,x − 1)
2

+
(
y1,x + zγ

′
)2

+
(
z1,x − yγ

′
)2

2
+· · · (12)

The slope of the twist angle γ
′
can play a significant role in structures with large twists such as turboma-

chinery blades. For aircraft wings, this effect is negligible and therefore can be neglected. Thus, for a small
wing twist angle slope, γ

′ ≈ 0 and sx ≈ 1. Then Ws ≈Wx and Wss ≈Wxx. Thus, the longitudinal strain is
then obtained as

ε = Ux − yVxx − z
Wxx√
1−W 2

x

+
1

2
U2
x +

1

2
V 2
x +

1

2

(
sin−1Wx

)2
+

1

2

(
y2 + z2

)
Θ2
x +

1

2
y2V 2

xx

+
1

2
z2 W 2

xx

1−W 2
x

− yUxVxx − zUx
Wxx√
1−W 2

x

+ yzVxx
Wxx√
1−W 2

x

− zVxΘx + y sin−1WxΘx (13)

Assuming that the neutral axis of a wing section passes through the elastic axis, then the axial force and
moments acting on a wing are evaluated as8

Px =

ˆ
EεdA = EAUx +

1

2
EA

[
U2
x + V 2

x +
(
sin−1Wx

)2]
+

1

2
EIxxΘ2

x +
1

2
EIzzV

2
xx

+
1

2
EIyy

W 2
xx

1−W 2
x

−

(
EAeaUx + EIyz

Wxx√
1−W 2

x

)
Vxx (14)
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Mx = GJΘx +

ˆ
Eε
(
y2 + z2

)
ΘxdA =

[
GJ + EIxxUx − (1 + Ux)

(
EB3Vxx + EB2

Wxx√
1−W 2

x

)

+
1

2
EIxx

[
U2
x + V 2

x +
(
sin−1Wx

)2]
+

1

2
EB4V

2
xx +

1

2
EB5

W 2
xx

1−W 2
x

+ EB6Vxx
Wxx√
1−W 2

x

]
Θx

+
(
−EB2Vx + EB3 sin−1Wx

)
Θ2
x +

1

2
EB1Θ3

x (15)

My = −
ˆ
EεzdA = (1 + Ux)

(
EIyy

Wxx√
1−W 2

x

− EIyzVxx

)
− 1

2
EB2Θ2

x −
1

2
EB7V

2
xx

− 1

2
EB8

W 2
xx

1−W 2
x

− EB9Vxx
Wxx√
1−W 2

x

+
(
EIyyVx + EIyz sin−1Wx

)
Θx (16)

Mz = −
ˆ
EεydA = (1 + Ux)

(
−EIyz

Wxx√
1−W 2

x

+ EIzzVxx

)
− 1

2
EB3Θ2

x −
1

2
EB10V

2
xx

− 1

2
EB9

W 2
xx

1−W 2
x

− EB7Vxx
Wxx√
1−W 2

x

−
(
EIyzVx + EIzz sin−1Wx

)
Θx (17)

where E is the Young’s modulus, G is the shear modulus, A is the tensile area, J is the torsional constant,
and Bi, i = 1, 2, . . . , 10 are defined as

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10



=

ˆ



(
y2 + z2

)2
z
(
y2 + z2

)
y
(
y2 + z2

)
y2
(
y2 + z2

)
z2
(
y2 + z2

)
yz
(
y2 + z2

)
y2z

z3

yz2

y3



dA (18)

For a rectangular wing box structure with the neutral axis in coincidence with the elastic axis, the
constants B1, B4, and B5 are generally much larger than the other constants Bi, i 6= 1, 4, 5 and can be
approximated as  B1

B4

B5

 ≈ 1

A

 I2
xx

IxxIzz

IxxIyy

 (19)

Assuming that the nonlinear contributions of the chordwise bending deflection are small and neglecting
the cross-product inertia Iyz and the small constants Bi, i 6= 1, 4, 5, then the following simplification can be
made:

Px = EAUx +
1

2
EA

[
U2
x +

(
sin−1Wx

)2]
+

1

2
EIxxΘ2

x +
1

2
EIyy

W 2
xx

1−W 2
x

(20)

Mx =
(
GJ + Pxr

2
k

)
Θx (21)

My = (1 + Ux)EIyy
Wxx√
1−W 2

x

(22)

Mz = EIzzVxx − EIzz sin−1WxΘx (23)

where rk =
√

Ixx
A is the radius of gyration.
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Note that the signs of the moments are defined in the positive deflection sense such that

M = Mxd1 −Myd2 +Mzd3 (24)

The resulting equilibrium equations are given by8

∂

∂x

 Px

Py

Pz

 = −

 fx

fy

fz

 (25)

∂

∂x

 Mx

My

Mz

 =

 PyWx − PzVx −mx

PxWx − Pz +my

PxVx − Py −mz

 (26)

These equations become

∂Mx

∂x
+

(
∂Mz

∂x
− PxVx +mz

)
︸ ︷︷ ︸

0

Wx −
(
∂My

∂x
− PxWx −my

)
︸ ︷︷ ︸

0

Vx +mx = 0 (27)

∂2My

∂x2
− ∂ (PxWx)

∂x
− ∂my

∂x
− fz = 0 (28)

∂2Mz

∂x2
− ∂ (PxVx)

∂x
+
∂mz

∂x
− fy = 0 (29)

The resulting nonlinear equations are obtained as

∂

∂x

{
EAUx +

1

2
EA

[
U2
x +

(
sin−1Wx

)2]
+

1

2
EIxxΘ2

x +
1

2
EIyy

W 2
xx

1−W 2
x

}
= −fx (30)

∂

∂x

[(
GJ + Pxr

2
k

)
Θx

]
= −mx (31)

∂2

∂x2

[
(1 + Ux)EIyy

Wxx√
1−W 2

x

]
− ∂ (PxWx)

∂x
= fz +

∂my

∂x
(32)

∂2

∂x2

(
EIzzVxx − EIzz sin−1WxΘx

)
− ∂ (PxVx)

∂x
= fy −

∂mz

∂x
(33)

IV. Static Aeroelasticity

The forces and moments on the right hand side of Eqs. (30) - (33) include all external and inertial forces
and moments due to the acceleration of the wing structure. In order to compute the aerodynamic forces and
moments of a flexible wing structure, static aeroelasticity must be considered.

The relative velocity of the air approaching a wing section includes the contributions from the wing
aeroelastic deflections that result in changes in the local angle of attack. Since aerodynamic forces and
moments are dependent on the local angle of attack, the wing aeroelastic deflections will generate additional
elastic forces and moments. The local angle of attack depends on the relative approaching air velocity as well
as the rotation angle φ from Eq. (5). The relative air velocity in turn also depends on the deflection-induced
velocity. The velocity at point Q due to the aircraft velocity and angular velocity in the reference frame D
is computed as

vQ = v̄ + ω × r = (ub1 + vb2 + wb3) + (pb1 + qb2 + rb3)× (−xab1 − yab2 − zab3)

= (u+ rya − qza)b1 + (v − rxa + pza)b2 + (w + qxa − pya)b3

= xtd1 + ytd2 + ztd3 (34)
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where (b1,b2,b3) are the unit vectors in the standard aircraft body-fixed reference frame B. The coordinate
transformation between the reference frame B and D is given by b1

b2

b3

 =

 − sin Λ cos Γ − cos Λ sin Λ sin Γ

− cos Λ cos Γ sin Λ cos Λ sin Γ

− sin Γ 0 − cos Γ


 d1

d2

d3

 (35)

where Γ is the wing dihedral angle.
(xt, yt, zt) are the velocity components in the left wing coordinate reference frame D and are computed

as  xt

yt

zt

 =

 − (u+ rya − qza) sin Λ cos Γ− (v − rxa + pza) cos Λ cos Γ− (w + qxa − pya) sin Γ

− (u+ rya − qza) cos Λ + (v − rxa + pza) sin Λ

(u+ rya − qza) sin Λ sin Γ + (v − rxa + pza) cos Λ sin Γ− (w + qxa − pya) cos Γ

 (36)

where (u, v, w) are the aircraft velocity components, (p, q, r) are aircraft angular velocity components in the
roll, pitch, and yaw axes, and (xa, ya, za) is the coordinate of point Q in the aircraft body-fixed reference
frame B relative to the aircraft CG (center of gravity) such that xa is positive when point Q is aft of the
aircraft CG, ya is positive when point Q is toward the left wing from the aircraft CG, and za is positive
when point Q is above the aircraft CG.

Consider a trim problem when β = 0, p = q = r = 0 for steady-state aerodynamics. For simplicity, we
assume Γ = 0. Then,  xt

yt

zt

 =

 −u sin Λ

−u cos Λ

−w

 (37)

The velocity must be transformed from the reference frame D to the airfoil local coordinate reference
frame defined by (µ, η, ξ) as follows: vµ

vη

vξ

 =

 1 0 0

0 cos Θ sin Θ

0 − sin Θ cos Θ


 cosVx sinVx 0

− sinVx cosVx 0

0 0 1

×
×

 cos
(
sin−1Wx

)
0 sin

(
sin−1Wx

)
0 1 0

− sin
(
sin−1Wx

)
0 cos

(
sin−1Wx

)

 xt

yt

zt

 (38)

Making the small angle assumption for Θ and Vx only and neglecting the nonlinear terms that contain
Vx, then the velocity components in the local coordinate reference frame are computed as vµ

vη

vξ

 =

 xt
√

1−W 2
x + ytVx + ztWx

−xt (Vx + ΘWx) + yt + ztΘ
√

1−W 2
x

−xtWx − ytΘ + zt
√

1−W 2
x

 (39)

For a small angle of attack, the usual assumption of α = w
u is valid, but if the rotation angle due to

the flapwise bending is large, then some accuracy in the small angle of attack assumption may be suffered.
Therefore, the exact angle of attack definition α = tan−1 w

u is used. Then, the local aeroelastic angle of
attack on the airfoil section due to the velocity components vη and vξ defined with respect to the elastic axis
is computed as

αc = tan−1 vξ
vη
≈ tan−1 v̄ξ

v̄η
+

∆vξ
v̄η
− v̄ξ∆vη

v̄2η

1 +
(
v̄ξ
v̄η

)2 (40)

where
v̄ξ = −w (41)

∆vξ = u sin ΛWx + u cos ΛΘ− w
(√

1−W 2
x − 1

)
(42)
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v̄η = −u cos Λ (43)

∆vη = u sin Λ (Vx + ΘWx)− wΘ
√

1−W 2
x (44)

Then,

αc = tan−1
( w

u cos Λ

)
− 1

1 + w2

u2 cos2 Λ

u sin ΛWx + u cos ΛΘ− w
(√

1−W 2
x − 1

)
u cos Λ

− 1

1 + w2

u2 cos2 Λ

−uw sin Λ (Vx + ΘWx) + w2Θ
√

1−W 2
x

u2 cos2 Λ
(45)

Using the Taylor series approximation of
√

1−W 2
x ≈ 1− W 2

x

2 and upon simplification, we get

αc = tan−1

(
tanα

cos Λ

)
− cos2 Λ

cos2 Λ + tan2 α

sin ΛWx + cos ΛΘ +
tanαW 2

x

2

cos Λ

− cos2 Λ

cos2 Λ + tan2 α

− tanα sin Λ (Vx + ΘWx) + tan2 αΘ
(

1− W 2
x

2

)
cos2 Λ

(46)

Using the Taylor series approximation of tan−1
(

tanα
cos Λ

)
≈ tanα

cos Λ

(
1− tan2 α

6 cos2 Λ

)
≈ α

cos Λ

(
1 + α2

6

)
×

· · ·
[
1− α2

6 cos2 Λ

(
1 + α2

6

)2
]
≈ α

cos Λ

(
1− α2

6 tan2 Λ
)
, the local aeroelastic angle of attack can be expressed as

αc = αr + αe (47)

where

αr =
α

cos Λ

(
1− α2 tan2 Λ

6

)
(48)

is the rigid angle of attack due to the aircraft velocity and

αe =
tanα sin ΛVx

cos2 Λ + tan2 α
− cos Λ− tanαΘ

cos2 Λ + tan2 α

(
sin ΛWx +

tanαW 2
x

2

)
−Θ (49)

is the elastic angle of attack due to the aeroelastic deflections. Note that the rigid angle of attack is defined
with respect to the elastic axis, hence the term cos Λ in the denominator. For a sweptback wing, the
contribution ofWx is negative, thus effectively reduces the local angle of attack. The bending deflection thus
creates an effective wash-out twist to reduce the local angle of attack for sweptback wings. Consequently,
the trim angle of attack must be increased in order to compensate for the wash-out twist. Equation (49) for
nonlinear large deflection bending should be contrasted with Eq. (1) for linear small deflection bending.

A. Forces and Moments

The aerodynamic and body forces and moments are given by

fx

fy

fz

mx

my

mz


=



cDq∞c sin Λ cos Λ

cDq∞c cos2 Λ

cLq∞c cos Λ−mg
−cmq∞c2 cos2 Λ +mgecg

cmq∞c
2 sin Λ cos Λ

0


(50)

where q∞ is the dynamic pressure, c is the chord length, m is the mass distribution, g is the gravity
acceleration, and ecg is the offset of the center of mass from the elastic axis (positive with the center of mass
aft of the elastic axis).
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The steady-state lift, drag, and pitching moment coefficients in the streamwise direction can be generally
modeled as

cL = cL0
+ cLα (α)αc cos Λ (51)

cD = cD0
+ cDα (α)αc cos Λ + cD2

α
(α)α2

c cos2 Λ (52)

cm = cmac (α) + cL
e

c
(53)

where cL0
and cD0

are the lift and drag coefficients at zero angle of attack, cLα is the lift curve slope, cDα
and cDα2 are the drag derivatives with respect to the angle of attack, cmac is the pitching moment coefficient
at the aerodynamic center, and e is the offset of the aerodynamic center from the elastic axis, positive with
the aerodynamic center forward of the elastic axis. The nonlinear effect of large angles of attack in the
aerodynamic coefficients is reflected in the general functions cLα (α), cDα (α), cDα2 (α), and cmac (α). These
functions take on constant values for small angles of attack below stall.

B. Effect of Nonlinear Bending Theory on Lifting Line Aerodynamics

Consider the case of unswept wings, then fx = 0. The local angle of attack is reduced to

αc = α− 1− tanαΘ

1 + tan2 α

tanαW 2
x

2
−Θ (54)

For linear structures, the wing bending deflection has no effect on the wash-out twist for unswept wings.
In contrast, for nonlinear structures, the contribution of the wing bending deflection to the wash-out twist
is non-zero due to the term W 2

x , although this term is small. Nonetheless, this results in a bending-torsion
aeroelastic coupling even though the wings are unswept. This coupling does not exist in linear bending
theory. This term can significantly affect the lift distribution and the induced drag of a high aspect ratio
flexible wing as will be shown.

Since there is no applied axial force at the end of the cantilever wing, the axial displacement equation is
equal to zero

Px = EAUx +
1

2
EA

[
U2
x +

(
sin−1Wx

)2]
+

1

2
EIxxΘ2

x +
1

2
EIyy

W 2
xx

1−W 2
x

= 0 (55)

Solving for Ux from Eq. (55) yields

1 + Ux =

√
1−

(
sin−1Wx

)2 − Ixx
A

Θ2
x −

Iyy
A

W 2
xx

1−W 2
x

(56)

Then, the nonlinear static aeroelastic equations become

∂

∂x
(GJΘx) + cLαq∞ec

(
1− tanαΘ

1 + tan2 α

tanαW 2
x

2
+ Θ

)
= cmrq∞c

2 −mgecg (57)

∂2

∂x2

EIyyWxx

√√√√1−
(
sin−1Wx

)2 − r2
kΘ2

x −
Iyy
A

W 2
xx

1−W 2
x

1−W 2
x

+ cLαq∞c

(
1− tanαΘ

1 + tan2 α

tanαW 2
x

2
+ Θ

)
= cLrq∞c−mg (58)

∂2

∂x2

(
EIzzVxx − EIzz sin−1WxΘx

)
+
(
cDα + 2cD2

α
α
)
q∞c

(
1− tanαΘ

1 + tan2 α

tanαW 2
x

2
+ Θ

)
− cD2

α
q∞c

(
1− tanαΘ

1 + tan2 α

tanαW 2
x

2
−Θ

)2

= cDrq∞c (59)

where cLr = cL0
+ cLαα is the rigid lift coefficient, cDr = cD0

+ cDαα+ cDα2α
2 is the rigid drag coefficient,

and cmr = cmac + cLr
e
c is the rigid pitching moment coefficient about the elastic axis.
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If the torsional twist is small relative to the flapwise bending slope, then the nonlinear static aeroelastic
equation for bending is expressed as

∂2

∂x2

EIyyWxx

√√√√1−
(
sin−1Wx

)2 − Iyy
A

W 2
xx

1−W 2
x

1−W 2
x

+ cLαq∞c
tanαW 2

x

2
(
1 + tan2 α

) = cLrq∞c−mg (60)

For the nonlinear large deflection bending of the wing structure, a modified lifting line theory is used.
The velocity induced by a trailing vortex at x = x0 acting at the quarter chord is given by the Biot-Savart
law according to17

dvi =
r×V

4πV∞r.r

dΓ

ds
ds (61)

where dΓ
ds is the lift circulation distribution along the arc length s of the wing, r = − (x0 − x+ U0 − U)d1−

(W0 − eΘ0 −W + eΘ)d3, and V = V∞d2. This yields the following expression:

dvi =
− (x0 − x+ U0 − U)d3 + (W0 − eΘ0 −W + eΘ)d1

4πr.r

dΓ

ds
ds (62)

Due to the axial displacement and flapwise bending effects, in addition to the induced downwash velocity
component, there also exists an induced sidewash velocity component. The effective downwash along the arc
length of the wing is the induced velocity component normal to the vortex sheet.17 This is given by

dwi = dvi.n0 (63)

where n0 = [Wx,0d1 − (1 + Ux,0)d3] dx0

ds0
and ds0 = dx0

√
(1 + Ux,0)

2
+W 2

x,0. Then,

dwi =
(x0 − x+ U0 − U) (1 + Ux,0) + (W0 − eΘ0 −W + eΘ)Wx,0

4π
[
(x0 − x+ U0 − U)

2
+ (W0 − eΘ0 −W + eΘ)

2
] dx0

ds0

dΓ

ds
ds (64)

where Θ0, U0, Ux,0 W0, and Wx,0 are the wing torsional twist, axial displacement, axial displacement
derivative, bending deflection, and bending slope, respectively, at x = x0.

The total induced downwash at x = x0 is then evaluated by the following expression:

wi (x0) = −
ˆ b

2

− b2

(x0 − x+ U0 − U) (1 + Ux,0) + (W0 − eΘ0 −W + eΘ)Wx,0

4π
[
(x0 − x+ U0 − U)

2
+ (W0 − eΘ0 −W + eΘ)

2
] dx0

ds0

dΓ

dx
dx (65)

Note that if U = 0 and Ux = 0, Eq. (65) recovers the downwash expression given by Cones.17
The general lift circulation distribution is expressed as

Γ = Γr + Γe (66)

where Γr and Γe are the rigid and aeroelastic components of the lift circulation distribution which are given
by

Γr =
1

2
V∞ccLr (67)

Γe =
1

2
V∞ccLα

(
−1− tanαΘ

1 + tan2 α

tanαW 2
x

2
−Θ

)
(68)

Thus, the induced angle of attack is not only a function of the lift distribution but also is a function of
the axial displacement, bending deflection, and torsional twist.

Consider a special case of the ideal elliptical lift distribution for a rigid wing Γr = Γ0

√
1−

(
2x′

b+2Ut

)2

where x
′

= x + U is the coordinate of the elastic axis for the deformed wing and Ut = U
(
b
2

)
. We use the

coordinate of the deformed wing to specify lift distribution to ensure that the solution is physical. Otherwise,
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the lift circulation at x
′

= ± b
2 does not exist since x

′ ∈
[
− b

2 − Ut,
b
2 + Ut

]
. Then, the downwash expression

becomes

wi (x0) = −
ˆ b

2 +Ut

− b2−Ut

(
x

′

0 − x
′
)

(1 + Ux,0) + (W0 − eΘ0 −W + eΘ)Wx,0

4π
[(
x

′
0 − x

′)2 + (W0 − eΘ0 −W + eΘ)
2
] dx0

ds0
×

− 4Γ0x
′

b2

√
1−

(
2x′

b+2Ut

)2
+
dΓe
dx′

 dx′
(69)

For a rigid wing, the ideal elliptical lift distribution produces a uniform induced downwash and the
minimum induced drag. The effect of the wing bending is to alter this uniform downwash for the ideal
elliptical lift distribution. As a result, the ideal elliptical lift distribution design for a rigid wing will not
yield the minimum induced drag due to the nonlinear large bending deflection. Wing twist is normally used
to change the lift distribution design for a flexible wing.

As an example, consider a constant-section high aspect ratio wing with 1-ft chord and 30-ft span. The
cross section is a NACA 0012 with a wall thickness of 0.25 inches and a modulus of elasticity of 10 × 106

psi for aluminum. The cross sectional area and the flapwise area moment of inertia are computed to be
A = 2kActw and I = 4

15kIc
3tw

(
t
c

)2 where kA = 1.02084 and kI = 1.03716. Without considering the

nonlinear large deflection effect, the wing is designed for an elliptical lift distribution l = 100

√
1−

(
2x
b

)2 lb/ft
where l = ρ∞V∞Γ for ρ∞ = 2.37756 × 10−3 slug/ft3 and V∞ = 300 ft/sec corresponding to M∞ = 0.2687.
The lift curve slope is estimated from the formula CLα = 2π√

1−M2
∞+ 2

πAR

where AR = 30 is the aspect ratio.

This yields α = 6.89◦. Figure 6 shows the linear and nonlinear deflections of the wing computed by applying
the Galerkin method with 10 mode shapes to Eq. (60). Both the wing tip bending deflections as predicted
by the linear and nonlinear bending theories are in close agreement The nonlinear bending theory yields a
wing tip deflection of 3.0807 ft or 20.54% of the wing semi-span. In comparison, the linear bending theory
predicts a wing tip deflection of 3.2137 ft or 21.42% of the wing semi-span. Thus, the nonlinear bending
theory predicts a smaller bending deflection than the linear bending theory. This difference is due primarily
to the aeroelastic contribution of the last term in the left hand side of Eq. (60).
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Linear Deflection

Nonlinear Deflection

Figure 6. Linear and Nonlinear Bending Deflections

13 of 26

American Institute of Aeronautics and Astronautics



The significant difference between the linear and nonlinear bending theories is the axial displacement.
For the linear bending theory, the axial displacement is exactly zero since there is no applied axial force. On
the other hand, the nonlinear bending theory predicts an axial displacement of -0.3584 ft or -2.39% of the
wing semi-span. As a result, the linear bending theory actually predicts an increase in the wing length by
2.55% of the wing semi-span, whereas the nonlinear bending theory preserves the length of the wing. This
length-preserving property of the nonlinear bending theory in effect causes a reduction in the wing aspect
ratio, which leads to an increase in the induced drag and decrease in lift as compared to the linear bending
theory.

The length-preserving property of the nonlinear bending theory can be shown by examining Eq. (56)
and ignoring the terms Θ2

x and W 2
xx. This leads to

Ux =

√
1−

(
sin−1Wx

)2 − 1 ≈ −1

2

(
sin−1Wx

)2 ≈ −1

2
W 2
x (70)

Thus, it can be seen that Ux is highly dependent on Wx. As the bending deflection increases, the axial
displacement decreases.

The change in length due to the nonlinear bending theory is computed as

ds

dx
=

√
(1 + Ux)

2
+W 2

x =

√
1 +

W 4
x

4
≈ 1 (71)

which shows the length-preserving property of the nonlinear bending theory.
For the linear bending theory, the length is not preserved. Therefore, the increase in length is computed

as

∆L =

ˆ L

0

(√
1 +W 2

x − 1
)
dx ≈ 1

2

ˆ L

0

W 2
xdx (72)

This implies that the linear bending theory yields a non-physical solution.
Also ignoring the term W 2

xx in Eq. (60), the nonlinear static aeroelastic equation for bending can be
approximated by the Taylor series of sin−1Wx ≈ Wx

(
1 +

W 2
x

6

)
. Then, the resulting equation is expressed

as
∂2

∂x2

[
EIyyWxx

(
1 +

W 4
x

6

)]
+ cLαq∞c

tanαW 2
x

2
(
1 + tan2 α

) = cLrq∞c−mg (73)

Recognizing that W 4
x ≈ 0, then Eq. (73) becomes

∂2

∂x2
(EIyyWxx) + cLαq∞c

tanαW 2
x

2
(
1 + tan2 α

) = cLrq∞c−mg (74)

Thus, the difference in the bending deflection between the linear and nonlinear bending theories is due
to mostly the aeroelastic term in the left hand side which contributes positively to the wing stiffness. For
sweptback wings, truss-braced wings,18 and rotary wings, the effect of the axial tension Px can be a dominant
factor. Then, the significance of the nonlinear large deflection bending can be much more pronounced.

Figure 7 is the effective nonlinear elastic angle of attack due to the term W 2
x in Eq. (54). This shows

that the nonlinear large deflection bending causes a negative angle of attack of about −0.24◦. This results in
a non-elliptical lift distribution as shown in Fig. 8 which is compared to the ideal elliptical lift distribution
for the rigid wing and for the flexible wing using the linear bending theory. To illustrate the effect of length-
preserving property of the nonlinear bending theory, the lift distribution for the nonlinear large deflection
bending is plotted against the displaced coordinate. To restore the ideal elliptical lift distribution, the wing
would have to be re-twisted along the wing span to zero out the effect of the elastic angle of attack. Figure
8 shows the elliptical lift distribution plotted in the displaced coordinate.

Figure 9 is the plot of the induced angle of attack αi = wi
V∞

due to the induced downwash over the wing
as computed by Eq. (69) which, for the constant chord and negligible torsional twist, is expressed as

wi (x0) = −
ˆ b

2 +Ut

− b2−Ut

(
x

′

0 − x
′
)

(1 + Ux,0) + (W0 − eΘ0 −W + eΘ)Wx,0

4π
[(
x

′
0 − x

′)2 + (W0 − eΘ0 −W + eΘ)
2
]

− 4Γ0x
′

b2

√
1−

(
2x′

b+2Ut

)2
+
dΓe
dx′

 dx′

(75)
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which takes advantage of the length-preserving property of the nonlinear bending theory.
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Figure 7. Aeroelastic Angle of Attack due to Nonlinear Bending Deflection
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Figure 8. Lift Distributions for Bending Deflections

Note that for the linear bending theory, Γe = 0 and U = 0. So, the induced downwash is computed from

15 of 26

American Institute of Aeronautics and Astronautics



the following equation:

wi (x0) =

ˆ b
2

− b2

(x0 − x) + (W0 − eΘ0 −W + eΘ)Wx,0

π
[
(x0 − x)

2
+ (W0 − eΘ0 −W + eΘ)

2
] 1√

1 +W 2
x,0

Γ0x

b2
√

1−
(

2x
b

)2 dx (76)

The rigid wing has a constant induced angle of attack for the ideal elliptical lift distribution whereas the
bending deflection causes the induced angle of attack to become non-uniform with the maximum value at
the mid-wing span. The linear bending theory results in a lower induced angle of attack than the nonlinear
deflection. This is due to the difference in the wing span where for the nonlinear deflection there is a reduction
in the wing span which causes an increase in the induced downwash, hence induced angle of attack. The
induced angle of attack at the center of the wing is the greatest with the nonlinear deflection. The results
illustrate the significance of the effect of the nonlinear bending theory on the induced drag of a wing structure.
Also shown in Fig. 9 is the induced angle of attack for the nonlinear deflection when the wing is re-twisted
to remove the effect of the nonlinear elastic angle of attack. This has an effect of lowering the maximum
induced angle of attack for the nonlinear deflection.
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Figure 9. Induced Angles of Attack due to Bending Deflections

The lift coefficient is evaluated by taking into account the wing bending deflection slope and the shortening
of the wing span due to the axial displacement according to

CL =
1

q∞S

ˆ b
2

− b2
ρ∞V∞Γ cos

(
sin−1Wx

)
(1 + Ux) dx =

1

q∞S

ˆ b
2 +Ut

− b2−Ut
ρ∞V∞Γ

√
1−W 2

xdx
′

(77)

The induced drag coefficient is evaluated from the following equation:

CDi =
1

q∞S

ˆ b
2 +Ut

− b2−Ut
ρ∞V∞Γαidx

′
(78)

Table 1 shows the lift and induced drag coefficients and the span efficiency factors ε based on the aspect
ratio of the rigid wing for the linear deflection, nonlinear deflection, and rigid wing. The lift and induced drag
coefficients are evaluated with the reduced wing span by 2Ut for the nonlinear deflection. It can be seen that
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the effect of the nonlinear deflection is to reduce both the lift coefficient and the span efficiency. The linear
bending theory predicts only a 2.34% lift reduction and 1.19% decrease in the span efficiency relative to the
rigid wing. In comparison to the rigid wing, the nonlinear bending theory predicts a 6.69% lift reduction
and 9.02% decrease in the span efficiency. Even with re-twisting, the lift reduction only decreases to 4.88%.
Thus, the linear bending theory tends to yield more optimistic aerodynamic performance characteristics for
a high aspect ratio flexible wing.

CL CDi ε

Linear Deflection 0.7166 0.005514 0.9881
Nonlinear Deflection 0.6847 0.005468 0.9098

Nonlinear Deflection with Re-Twist 0.6980 0.005515 0.9375
Rigid Wing 0.7338 0.005716 1

Table 1. Lift and Drag Coefficients and Span Efficiency Factors

V. Weak-Form Numerical Solution

The nonlinear partial differential equations are usually referred to as a strong form. A numerical so-
lution can be performed by converting the strong-form partial differential equations into weak-form in-
tegral equations by letting U (x, t) = Nu (x)u (t), V (x, t) = Nv (x)v (t), W (x, t) = Nw (x)w (t), and
Θ (x, t) = Nθ (x)θ (t). For the Galerkin method, Nu (x), Nv (x), Nw (x), andNθ (x) are the vectors of the
mode shapes over the domain of the solution x ∈ [0, L], whereas for the finite element method they are
the vectors of interpolation functions over the domain of the solution for an element x ∈ [0, l]. The vec-
tors u (t), v (t), w (t), and θ (t) represent the generalized coordinates in the Galerkin method, or the nodal
displacements including the bending slopes in the finite element method.

The term sin−1Wx can be approximated by the first two terms of the Taylor series expansionWx

(
1 +

W 2
x

6

)
.

Pre-multiplying Eqs. (30) to (33) by N>u (x), N>v (x), N>w (x), and N>θ (x), respectively, and integrating over
the domain of the solution yields

−
ˆ

N
′>
u EA

(
1 +

1

2
Ux

)
N

′

uudx−
1

2

ˆ
N

′>
u

[
EAWx

(
1 +

W 2
x

6

)2

N
′

w + EIyy
Wxx

1−W 2
x

N
′′

w

]
wdx

− 1

2

ˆ
N

′>
u EIxxΘxN

′

θθdx = −
ˆ

N>u fxdx (79)

−
ˆ

N
′>
θ

(
GJ + Pxr

2
k

)
N

′

θθdx = −
ˆ

N>θ mxdx (80)

ˆ (
N

′′>
w EIyy

1 + Ux√
1−W 2

x

N
′′

w + N
′>
w PxN

′

w

)
wdx =

ˆ
N>w

(
fz +

∂my

∂x

)
dx (81)

ˆ (
N

′′>
v EIzzN

′′

v + N
′>
v PxN

′

v

)
vdx− 1

2

ˆ
N

′′>
v EIzzΘx

(
1 +

W 2
x

6

)
N

′

wwdx

− 1

2

ˆ
N

′′>
v EIzz sin−1WxN

′

θθdx =

ˆ
N>v

(
fy −

∂mz

∂x

)
dx (82)

The problem is cast as
K (U,W,Θ)x = F (83)

where x =
[
u> v> w> θ>

]>
, K is the nonlinear stiffness matrix, and F is the force vector. The

nonlinear global stiffness matrix and force vector are assembled from the following elemental stiffness matrix
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and force vector:

k =


kuu 0 kuw kuθ

0 kvv kvw kvθ

0 0 kww 0

0 0 0 kθθ

 (84)

f =

ˆ


N>u fx

N>v
(
fy − ∂mz

∂x

)
N>w

(
fz +

∂my
∂x

)
N>θ mx

 dx (85)

where
kuu =

ˆ
N

′>
u EA

(
1 +

1

2
Ux

)
N

′

udx (86)

kuw =
1

2

ˆ
N

′>
u

[
EAWx

(
1 +

W 2
x

6

)2

N
′

w + EIyy
Wxx

1−W 2
x

N
′′

w

]
dx (87)

kuθ =
1

2

ˆ
N

′>
u EIxxΘxN

′

θdx (88)

kvv =

ˆ (
N

′′>
v EIzzN

′′

vdx+ N
′>
v PxN

′

v

)
dx (89)

kvw = −1

2

ˆ
N

′′>
v EIzzΘx

(
1 +

W 2
x

6

)
N

′

wdx (90)

kvθ = −1

2

ˆ
N

′′>
v EIzz sin−1WxN

′

θdx (91)

kww =

ˆ (
N

′′>
w EIyy

1 + Ux√
1−W 2

x

N
′′

w + N
′>
w PxN

′

w

)
dx (92)

kθθ =

ˆ
N

′>
θ

(
GJ + Pxr

2
k

)
N

′

θdx (93)

Note that the flapwise bending stiffness includes both the geometric nonlinear large deflection effect due
to the term 1+Ux√

1−W 2
x

and the nonlinear axial tension stiffening effect due to Px which also exists in the

torsional stiffness. The nonlinear large bending deflection effect thus increases the flapwise bending stiffness
which effectively reduces the bending deflection.

The displacement matrix equation is nonlinear and can be solved for the static aeroelastic deflections by
any nonlinear root search methods. One iterative method is proposed as follows:

• For i = 0, initialize Ui (x) = 0, Vi (x) = 0, Wi (x) = 0, and Θi (x) = 0. Evaluate Ki. Then, compute

xi = K−1
i F (94)

• For i = 1, 2, . . . , n, evaluate Ui (x), Vi (x), Wi (x), and Θi (x). Update Ki. Then, iterate

xi = mxi−1 + (1−m)K−1
i F (95)

with 0 ≤ m < 1 until xi converges. Note that this algorithm will ensure numerical stability and
converge to the ’exact’ solution of Eq. (94) in the limit as n→∞. Equation (95) essentially imposes
the stability condition on the unit circle. Otherwise, if Eq. (94) is used instead which corresponds to
m = 0, numerical stability issues sometimes may be encountered. A suitable value for m is usually in
the range between 1

3 and 1
2 .
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VI. Computational Results

A coupled aerodynamic-nonlinear finite element model is constructed for the CRM sub-scale model.
The flow condition is at Mach 0.1162 and a dynamic pressure of 20 psf. The model is developed within a
multidisciplinary coupled aerodynamic-nonlinear finite element analysis framework as shown in Fig. 10. The
framework consists of four computational modules: 1) NASA vortex lattice code VORLAX19 developed by
Louis Miranda et al. with a pre-processor VORVIEW for providing a graphical user interface (GUI) for model
geometry handling, 2) 2D Euler CFD code MSES with an integral boundary layer method developed by Mark
Drela,20 3) an in-house computational geometry code that manipulates the model geometry deformation,
and 4) an in-house nonlinear 3D beam finite element analysis (FEA) code with structural dynamics and
aeroelasticity capabilities. The framework can compute the solution for a specified lift coefficient input
or angle of attack input. For each solution for lift matching, VORLAX iteratively computes the angle of
attack to match the specified lift coefficient. Then, the solution is corrected for the viscous and, if necessary,
transonic flow effect with MSES which computes the lift and drag coefficients for each wing station in the
VORLAX model. This transonic and viscous correction method requires an iteration loop between MSES
and VORLAX. Once the corrections are made, VORLAX determines the new angle of attack iteratively to
match the specified lift coefficient. At this point, the aerodynamic forces and moments are computed and
then passed to the FEA code. The FEA code computes the wing deflections and then passes this deflection
information to the computational geometry module which computes the geometry of the model deformation.
This updated geometry is then passed to VORVIEW for geometry processing. The solution process is then
repeated until the angle of attack converges to within a specified tolerance.

Figure 10. Coupled Aerodynamic-Nonlinear Finite Element Analysis Framework

Figure 11 shows the convergence of the iterative nonlinear solution according to Eq. (95) for three values
of m = 0, 1

3 ,
1
2 . The wing tip deflection Wt at the angle of attack of 7.616◦ is plotted as a function of

the iteration number. The results show that the solution converges the fastest with m = 0 after only two
iterations. As m increases, the convergence is slower. It is noted that in other situations where the nonlinear
effects are much more dominant, experiences support the use of a positive value for m between 1

3 and 1
2 .

Figure 12 shows the linear and nonlinear bending deflections of the CRM sub-scale model along the
aircraft pitch axis y computed for the angle of attack of 9.538◦. The linear deflection at the wing tip is 10.17
inches versus the nonlinear deflection of 10.11 inches. The wing length measured along the elastic axis is
99.69 inches. So the wing tip deflection is about 10% of the wing length. The nonlinear deflection is only
slightly smaller than but essentially the same as the linear deflection.

Figure 13 shows the linear and nonlinear axial displacements of the CRM sub-scale model along the
aircraft pitch axis y. The linear theory predicts an axial displacement of 0.01456 inches at the wing tip
whereas the nonlinear theory predicts an axial displacement of -0.7124 inches. The axial extension with
the linear theory is due to the drag force component along the swept elastic axis. As expected, the axial
displacement computed by the linear theory is non-physical since it predicts a larger elongation of the wing
than is possible. The linear theory predicts an elongation of 0.8396 inches as compared to the nonlinear
theory which predicts an elongation of only 0.1136 inches due to the drag component along the elastic axis.

Figure 14 shows the linear and nonlinear chordwise bending deflections of the CRM sub-scale model along
the aircraft pitch axis y. As expected, the chordwise bending deflections are very small due to the much
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larger chordwise bending stiffness and the small drag force component acting normal to the elastic axis.
Nonetheless, the difference between the linear and nonlinear bending theories is revealing. The nonlinear
bending theory predicts a larger chordwise bending deflection but in the opposite direction than the linear
bending theory. This is due to the contribution of the nonlinear term sin−1WxΘx in Eq. (33) which causes
a negative contribution to the chordwise bending deflection.
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Figure 11. CRM Sub-Scale Model Solution Convergence at α = 7.616◦
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Figure 12. CRM Sub-Scale Model Flapwise Bending Deflection at α = 9.538◦
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Figure 13. CRM Sub-Scale Model Axial Displacement at α = 9.538◦
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Figure 14. CRM Sub-Scale Model Chordwise Bending Deflection at α = 9.538◦

Figure 15 shows the linear and nonlinear torsional twists of the CRM sub-scale model along the aircraft
pitch axis y. Both the linear and nonlinear torsional twists are virtually the same. The nonlinear theory
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predicts a smaller torsional twist than the linear theory due to the presence of the small axial tension caused
by the drag component along the elastic axis which acts to increase the torsional stiffness. This is observed
in the results which show that the nonlinear torsional twist at the wing tip of −0.5502◦ is slightly smaller
than the linear torsional twist of −0.5510◦.
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Figure 15. CRM Sub-Scale Model Torsional Twist at α = 9.538◦
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Figure 16. CRM Sub-Scale Model Flapwise Bending Deflection vs. Bending Stiffness
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Figure 16 shows the effect of the flapwise bending stiffness on the linear and nonlinear bending deflections
at the wing tip. The nonlinear bending deflection is generally smaller than the linear bending deflection,
but as the stiffness is reduced by 50%, the trend is reverse. As the stiffness increases, the nonlinear and
linear bending deflections appear to converge. This is expected because as the stiffness increases the bending
deflection decreases until it is small enough that the linear bending theory holds.
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Figure 17. CRM Sub-Scale Drag Model Lift Coefficient vs. Angle of Attack at M∞ = 0.1162
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Figure 18. CRM Sub-Scale Drag Model Lift Coefficient at α = 7.616◦ and M∞ = 0.1162 vs. Bending Stiffness
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Figure 19. CRM Sub-Scale Model Drag Polar
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Figure 20. CRM Sub-Scale Model Drag Polar

Figure 17 shows the lift curves of the CRM sub-scale model. The rigid wing produces more lift at a given
angle of attack than the flexible wing as expected. Both the linear and nonlinear bending deflections give
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almost the same lift curves. On a closer look, the lift curve for the linear bending deflection is slightly higher
than that for the nonlinear bending deflection. This becomes more apparent in Fig. 18. As the wing becomes
stiffer, the difference in the lift coefficient between the nonlinear and linear bending deflection decreases.

Figure 19 shows the drag polar of the CRM sub-scale model. For the wind tunnel test, a jig shape twist
optimization has been conducted to determine the optimal jig-shape twist that minimizes the induced drag
for the CRM sub-scale model in its deflected state in the wind tunnel. As a result, at a fixed value of the lift
coefficient, the rigid wing produces a higher drag than the flexible wing. The linear and nonlinear bending
deflections both produce nearly identical drag coefficients. On a closer look, the drag coefficient for the
nonlinear bending deflection appears to be slightly smaller than that for the linear bending deflection but
not by much. At the angle of attack of 8◦, the drag coefficients for the linear and nonlinear deflections are
0.020560 and 0.020557, respectively. Figure 20 shows that the drag coefficient for the nonlinear bending
deflection is slightly lower than that for the linear bending deflection as the wing bending stiffness varies.

Figure 21 is the color map of the surface pressure distribution on the CRM sub-scale model.

Figure 21. CRM Sub-Scale Model Surface Pressure Map at α = 7.616◦ and M∞ = 0.1162

VII. Conclusions

This paper presents a nonlinear bending theory for large deflection bending. The nonlinear bending
theory properly accounts for the length preservation when the structure is not subject to axial loading.
While the linear bending theory predicts a similar bending deflection characteristic, it does not account
correctly for the axial displacement. As a result, the linear bending theory is not length-preserving. At
smaller bending deflections, the length-preserving property may not be significant, but when the bending
deflection is sufficiently large, the nonlinear bending theory predicts a reduction in the wing span whereas
the linear theory would fail to predict this effect. As a result, this could cause a significant effect on the wing
aerodynamic performance. A modified lifting line theory is developed to take into account the full deflection
states of the wing deformation. An analysis is conducted via an example of a high aspect ratio unswept wing
to illustrate the effect of nonlinear large deflection bending on aerodynamics based on the lifting line theory.
The results show that the nonlinear bending deflection causes a reduction in lift and span efficiency factor.
The induced downwash for the ideal elliptical lift distribution cannot remain uniform across the wing span
due to the bending deflection.
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A coupled aerodynamic-nonlinear finite element model is developed for a Common Research Model
(CRM) sub-scale wind tunnel model that will be tested at the University of Washington Aeronautical Lab-
oratory to demonstrate an active real-time drag optimization control strategy. The computational results
show that for this particular wind tunnel model there is a slight reduction in lift with the nonlinear bending
theory, but otherwise the nonlinear bending theory does not have a dominant effect on the aerodynamic
performance as compared to the linear bending theory. This study suggests that the linear bending theory
is a good approach for analyzing this wind tunnel model.
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