NASA and Telemedicine Now and Beyond

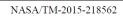
Erik Antonsen MD, PhD, FACEP FAAEM Marlei Walton, PhD, MSE Element Scientist, Exploration Medical Capability Johnson Space Center

May 9, 2017

1

Now: ISS Operations

Beyond: Gateway Missions


The Human System is like any other vehicle system. It requires prevention, maintenance, and repair.

- Dr. Thomas Williams

Outline

- Types of Telemedicine
 - Live remote Guidance
 - Live Monitoring
 - Store and forward
 - Autonomous
- Training
- Current Examples
- Lessons Learned
- Exploration Applications
- Terrestrial directions

Application of Advances in Telemedicine for Long-Duration Space Flight

Karina S. Descartin, M.D. Aerospace Medicine Research Rotation

Richard P. Menger Aerospace Medicine Research Rotation

Sharmila D. Watkins, M.D., M.P.H. Element Scientist, Exploration Medical Capability NASA Human Research Program

Gateway Missions: Phase 0: ISS→ Phase 1: Cislunar→ Phase 2: Deep Space Transport→

Phases 3-4: Mars

ightarrow

Types of Telemedicine Care

Live remote guidance ightarrow

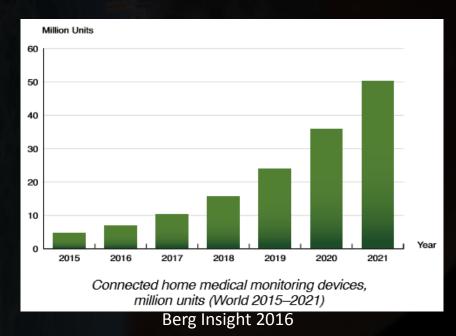
Live monitoring

MEDB 1.3 PMC

MEDB 7.2 PPC

Store and forward ightarrow

Autonomous



Telemedicine is fundamentally an information management problem

ISS Telemedicine Training

- Crew Medical Officer
 - Preflight
 - Initial (2-42 hrs): CPR, DCS, field training
 - Operators (7 hrs): Emergency
 - Specialists (26 hrs): Non-emergent
 - In-flight
 - Emergency drill (4-6 wks of arrival, 45 min)
 - Computer-based training (30 days/25 min)
- Ground Crew
 - communication coaching
 - situational awareness

9

Training: Lessons Learned

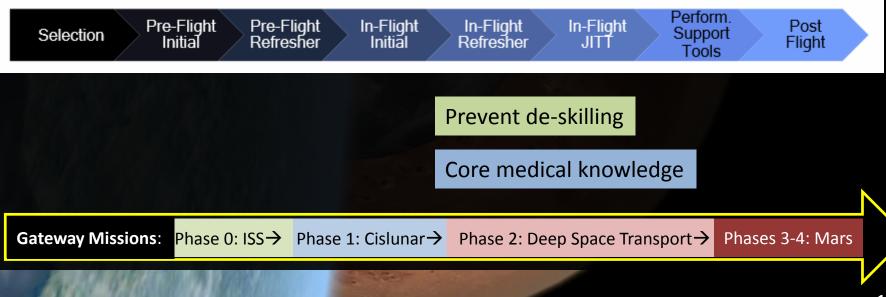
- Hardware ≠ capability
- Field medical training: suggested → required
- Time challenges
 - Competing priorities
 - Task mastery
- Current training not optimized
 - Training = in-flight success?
 - Not used \rightarrow no validation
 - When used \rightarrow no or limited validation (privacy, regulations)
 - No requirement to prove proficiency
 - Subjective instructor assessment
 - No in-flight assessment (crew or ground)

Exploration Telemedicine Training

CMO	
Training: limited ground support	

Limited compliance

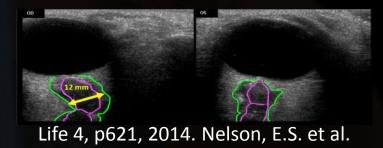
THE TRAINING CONTINUUM


Exploration

CMO

Training: maintain core medical knowledge detailed spaceflight unique

High compliance


Live Remote Guidance

ISS Telemedicine Ultrasound

- Operations
 - Eye (SANS)
 - Spinal
 - Medical event
- Research

In-flight Post-void Ultrasound

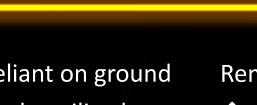
Ground Post-void Ultrasound

AsMA 86th Annual Symposium 2015. Cole, R.W. et al.

- Unique spaceflight applications
 - Atypical target (e.g. pneumothorax)
 - Potential countermeasure (e.g. bone, kidney stone)

Remote Guidance: Lessons Learned

- Current use not optimized → streamline!
 - Eliminate "common sense" procedures
 - Good images easily recognizable
 - Use intrinsic guidance, image enhancement capabilities
 - Time management key skill
 - Timeliness of clinical care
 - A la carte discrete modules organize as needed
- Integrate Research and Ops information
- Evaluate Remote Guidance practices → autonomy



Exploration Remote Guidance

Current ISS Ops

Exploration

Remote guidance: reliant on ground Store and forward underutilized Data downlink:uplink ↑

Instrumentation: larger footprint more resources crew strapped to wall

Remote oversight \rightarrow space-based expertise ↑use store and forward

Data uplink:downlink 个

Best approach: data \rightarrow crew

Instrumentation: streamlined portable

Innovate: clinical ? addressed

Gateway Missions:

Phase 0: ISS \rightarrow Phase 1: Cislunar \rightarrow Phase 2: Deep Space Transport \rightarrow Phases 3-4: Mars

Technology Watch: Remote Guidance

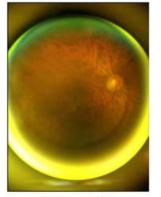
MENU		COMFORT	Baseline	Date: 2/9/2017	ID: 9201		NOTES	EXIT
	FUNDOSCOPY		FOUNDA	ATION SETUP				
	/	Eye Anatomy	CellScop	e Use Taking	Images Eye Pa	thology		

TAKING A GOOD IMAGE: COMPOSITION

Tips for good composition:

To move the optic disc down the subject needs to look up.

To move the optic disc right the subject needs to look right.


In a good composition the optic disc is centered.

Good composition

Bad composition

In poor composition, the optic disc is not centered or not visible.

Bad composition Optic disc is too far right

Bad composition Optic disc is too low

Comfort - NSBRI

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 NEXT 🔿


Technology Watch: Remote -> Autonomy

Live Monitoring

MEDB 7.2 PPC

ISS EVA Telemedicine

- Live monitoring by ground (including prebreathe)
 - Biomedical (update every 2 min)
 - 1-lead heart rate, inlet CO₂
 - MET rate: O₂ tank pressure drop
 - Consumables
- EVA crew focus is mission tasks

Continuous ground:crew communication

ISS EVA: Lessons Learned

- Additional EVA crew bioinformatics needed

 Health
 - Performance (cognitive, physical)
- Suit outlet CO₂ measurement needed
- In-suit maneuverability limited
- Suit = vehicle
 - "The most at home I felt in space was in my suit."
 - In-flight temperature changes extreme (vs training)
 - Airlock- first completely unique spaceflight experience

Exploration EVA

Current ISS Ops

Exploration

Live monitoring: reliant on ground

Live monitoring \rightarrow space-based expertise

Mission tasks Bioadvisory information Navigation

Consumables tracking

Gateway Missions:

Phase 0: ISS \rightarrow Phase 1: Cislunar \rightarrow Phase 2: Deep Space Transport \rightarrow Phases 3-4: Mars

ISS Behavioral Telemedicine

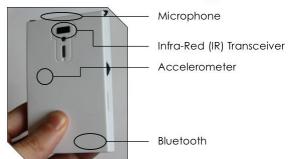
- WinSCAT (5 tests: assess memory, baseline in case of head injury)
- Standard measures (preflight, 3x in-flight)
 - Actigraphy

- Cognition testing (10 tests)
- Self-reporting

Behavioral Telemed: Lessons Learned

- Losing key information
 - Collect, analyze current data
 - Ops impact \rightarrow telemedicine feedback
 - Delay information before critical tasks?
 - Behavioral training
 - Mindfulness
 - Crew \rightarrow effective and empowered
- Team communication more efficient
 - Behavioral training
 - Differing philosophies from international partners
- Guidelines: "countermeasure" → standard

Terrestrial Application: Live Monitoring

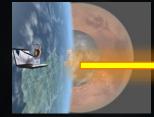

Zephyr's medical grade technology was originally developed in conjunction with Special Forces and NASA and designed to measure and monitor the vital signs of individuals and teams in training or when deployed in hazardous environments

sociometric solutions

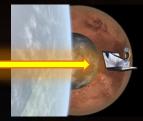
Sociometric Badge

RP-7 remote presence robot, nicknamed "Rosie"

The use of remote presence for health care delivery in a northern Inuit community: a feasibility study


Ivar Mendez^{1*}, Michael Jong², Debra Keays-White³ and Gail Turner⁴

Remote Medicine Program, Division of Neurosargory, Dahousia University and Queon Elizabeth II Health Sciences Centre, Itelifax, NS, Carada: "Faculty of Medicine, Mernardi University, S. John's, NL, Canada; Health Canada, First Nations and Inuit Health Branch Attantic, Halifax, NS, Canada; Nunstsivut Department of Health and Social Development, St. John's, NL, Canada



Exploration Live Monitoring

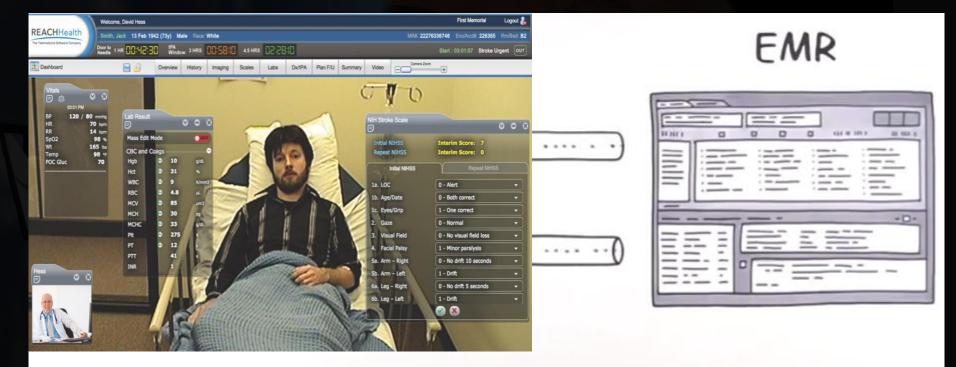
Current ISS Ops

Exploration

Live monitoring: PMCs, PPCs reliant on ground

Ground-based Flight Surgeon

Live monitoring \rightarrow space-based


Crew Medical Officer? Self? Computer?

Physiological monitoring

Automated, integrated, interactive

Gateway Missions: Phase 0: ISS \rightarrow Phase 1: Cislunar \rightarrow Phase 2: Deep Space Transport \rightarrow Phases 3-4: Mars

Technology Watch: Live Monitoring

Eliminate Dual Documentation

Technology Watch: Live Monitoring

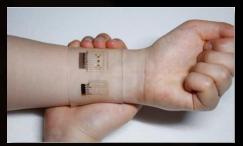
Reveal LINQ ICM

Patient Monitor

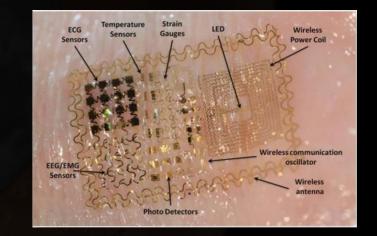
Reveal LINQ[™] ICM Remote Monitoring Wireless Transmission with MyCareLink[™] Patient Monitor Supported by the Medtronic CareLink[™] Network

MyCareLink Patient Monitor is easy to use and features global cellular technology

Medtronic CareAlert™ notifications can result in earlier clinical decisions compared to non-wireless devices¹



Patient compliance is easy and automatic with wireless deviceto-monitor communication²


Continuous and wireless data collection and trending in the world's smallest insertable cardiac monitor.³

Nature Nanotechnology 11, p566, 2016.

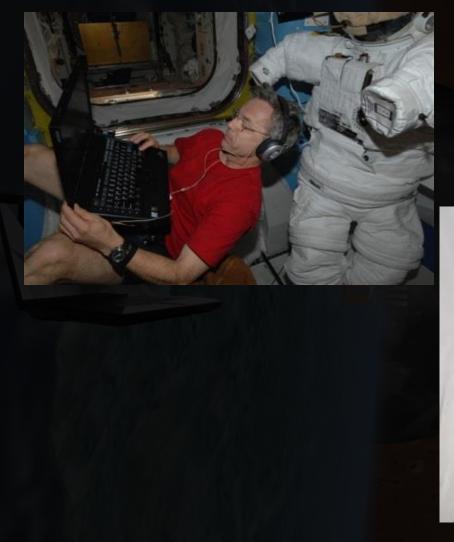
SEEQ Mobile Cardiac Telemetry System: Medtronic

Technology Watch: Live Monitoring

A Multi-Media, Computer-Based, Self-Directed, Autonomous, Stress and Anxiety-Management Countermeasure Project NSBRI

SMART OP

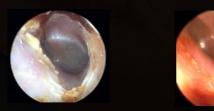
PTSD VR therapy session


Therapist Training on Cognitive Behavior Therapy for Anxiety Disorders Using Internet-Based Technologies

Kenneth A. Kobak¹⁽²⁾ · Kate Wolitzky-Taylor² · Michelle G. Craske³ · Raphael D. Rose³

Cogn Ther Res (2017) 41:252-265

Store and Forward

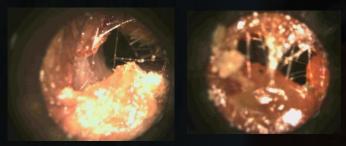


ISS Telemedicine: Audiology

- Videotoscopy
 - Still images (nominal)
 - EVA (before, after)

- **On-orbit hearing assessment (OOHA)**

– 45 days +EarQ software


Match OOHA with acoustic dosimetry

Store and forward data exchange

Audiology: Lessons Learned

- Otoacoustic emissions (OAE)
 - More objective, sensitive than audiometric test
 - Earlier alert to auditory damage
- Match OOHA with time of acoustic dosimetry (taken every 60 days)
- EarQ software reliable
- Cerumen management plan required

Exploration Telemedicine: Audiology

Current ISS Ops

Space vehicle noisy (legacy waivers)

Exploration

New space vehicle quieter waivers

Gateway Missions:

Phase 0: ISS \rightarrow Phase 1: Cislunar \rightarrow Phase 2: Deep Space Transport \rightarrow

Phases 3-4: Mars

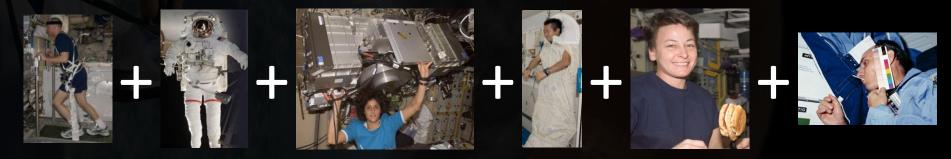
ISS Telemedicine: Exercise

- Exercise application software
 Store and forward data for feedback
 - Limited real time feedback (HR, speed)
- Regular generated report (every 2 wks)
 - In-flight exercise monitoring- ASCRs
 - Exercise data review- crew surgeon

Store and Forward: Lessons Learned

ISS exercise program successful ≠ 100% protective

Peak Exercise Oxygen Uptake During and Following Long-Duration Spaceflight

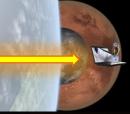

Alan D. Moore, Jr.¹, Meghan E. Downs², Stuart M. C. Lee¹, Alan H. Feiveson³, Poul Knudsen⁴, Lori Ploutz-Snyder⁵ Articles in PresS. J Appl Physiol (June 26, 2014). doi:10.1152/japplphysiol.01251.2013

Isokinetic Strength Changes Following Long-Duration Spaceflight on the ISS

Kirk L. English; Stuart M.C. Lee; James A. Loehr; Robert J. Ploutz–Snyder; Lori L. Ploutz–Snyder

AEROSPACE MEDICINE AND HUMAN PERFORMANCE Vol. 86, No. 12, Section II December 2015

Challenge seeing crewmember as whole


- Multiple platforms \rightarrow single extensible
 - Data portal, common interface, robust feedback
 - Common wearable/collection, device

Exploration Telemedicine: Store ↔ Forward

Current ISS Ops

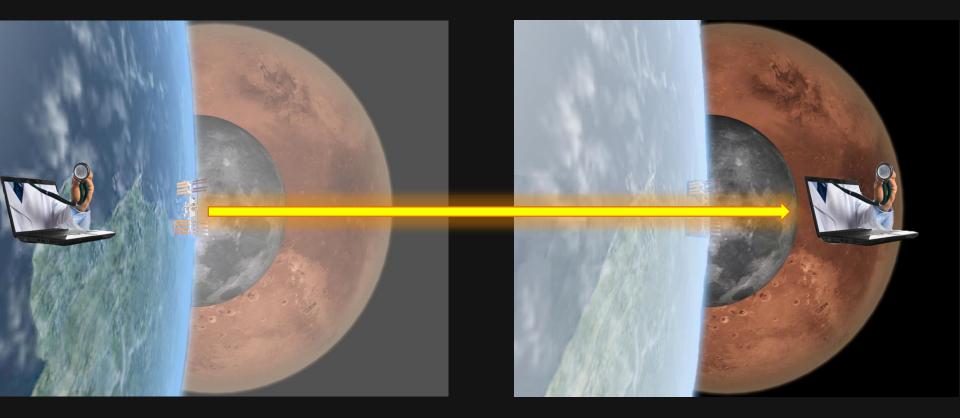
Exploration

Store and Forward: ground support-based

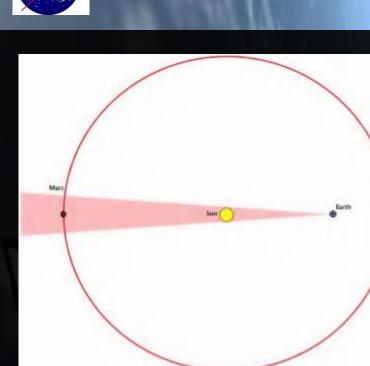
Store and Forward: space-based

Gateway Missions: Phase 0: ISS \rightarrow Phase 1: Cislunar \rightarrow Phase 2: Deep Space Transport \rightarrow

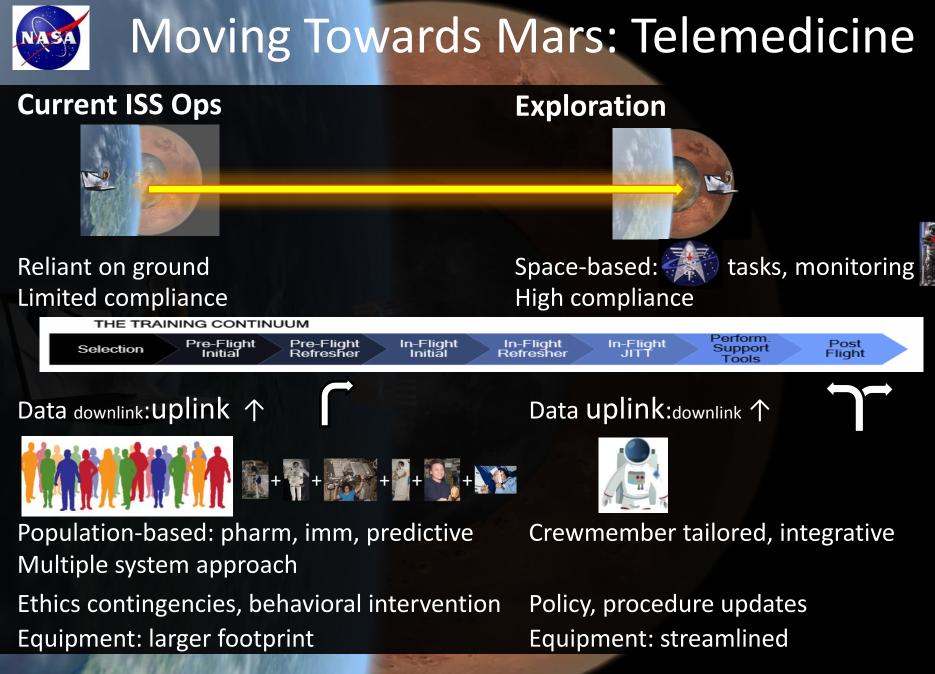
Autonomous



Autonomous: Antarctica


- Ops lessons learned
 - ISS training more streamlined
 - Isolated but telemedicine largely successful
- Lessons learned for Exploration
 - Need to be able to perform autonomous routine exams (including dental)
 - Exploration support
 - Telemedicine simulations (including in-flight training options) need to be refined now
 - Multipurpose supplies
- Excellent ICE analog

Moving Towards Mars



Mars Mission Concept of Operations, Aug 2016. S. Love, E. Nelson

Destination	Distance (kilometers)	One-Way Time Delay	(minutes)
ISS	435	3	
Lunar	38,400,000	0.02	
Mars (close)	545,000,000	3	
Mars (opposition)	4,013,000,000	22.3	

Approximate Comm Delays

Gateway Missions:

Phase 0: ISS \rightarrow Phase 1: Cislunar \rightarrow Phase 2: Deep Space Transport \rightarrow

Phases 3-4: Mars

2024 Gateway

Test data handling Optimize for 42 day missions

2027 Deep Space

Exercise data handling and ground operations changes

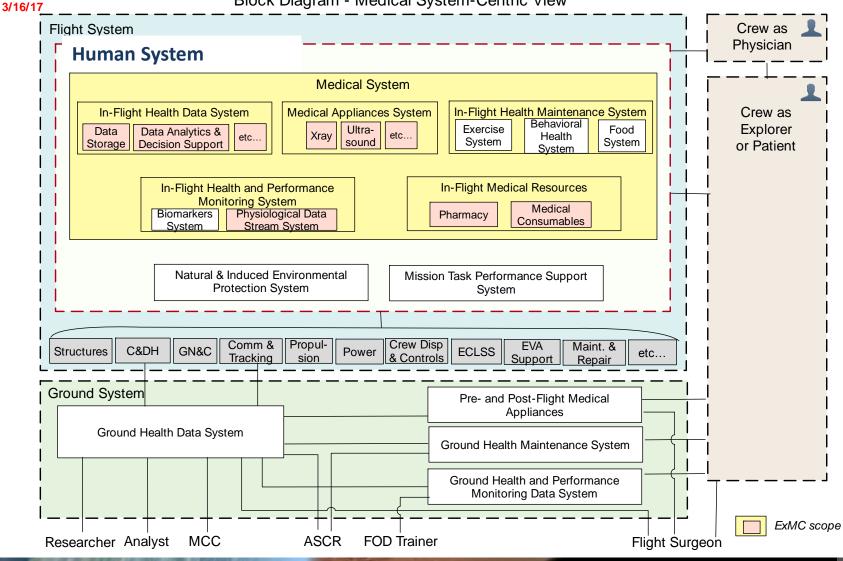
2029 One Year Pathfinder

Exercise deep space comm, automony, and decision paths

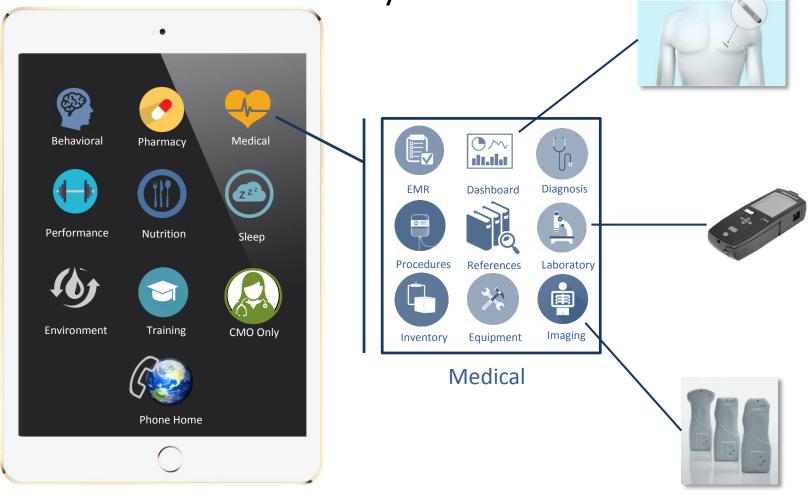
Deploy revised ground con ops

2033 Mars Transit

Fully autonomous health system


Redefined ground operations paradigm

Work in Progress

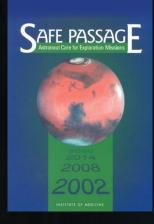

System Integration

Block Diagram - Medical System-Centric View

Moving Towards Mars: Telemedicine

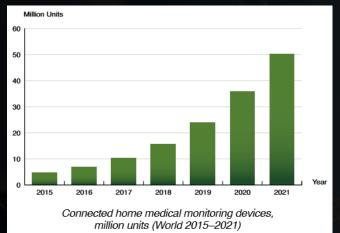
Human System Interface

Notional



INSTITUTE OF MEDICINE

From Conclusion 6: "The human being must be integrated into the space mission in the same way in which all other aspects of the mission are integrated."


Back up slides

From Conclusion 6: "The human being must be integrated into the space mission in the same way in which all other aspects of the mission are integrated."

Technology Watch: Remote Guidance

Berg Insight 2016

Robot-assisted ultrasound imaging: Overview and development of a parallel telerobotic system

REZA MONFAREDI^{1,2}, EMMANUEL WILSON¹, BAMSHAD AZIZI KOUTENAEI¹, BRENDAN LABRECQUE³, KRISTEN LEROY³, JAMES GOLDIE³, ERIC LOUIS³, DANIEL SWERDLOW⁴ & KEVIN CLEARY¹

Augmented Reality Training Tietronix

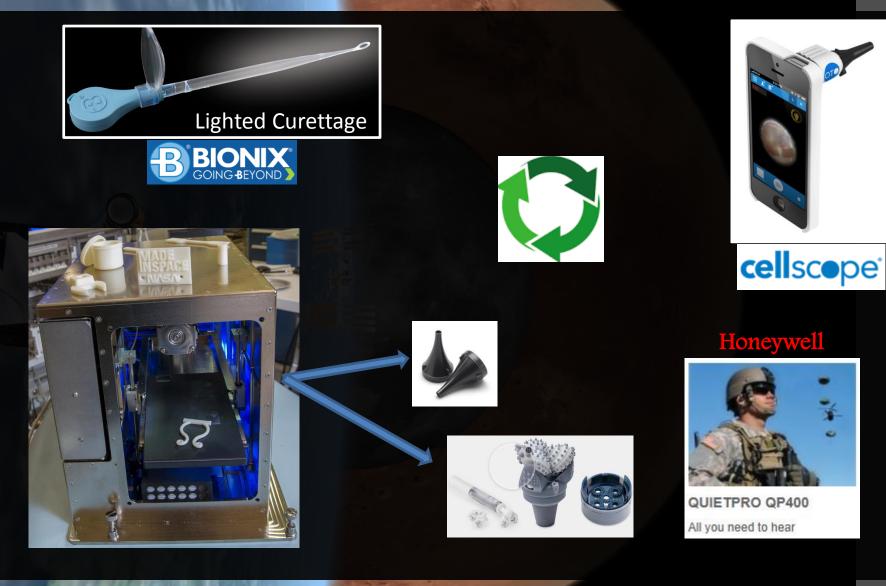
Even where the sonographer is onsite, roboticassisted US imaging could take some of the physical burden from the sonographer...

Lessons learned from the usability assessment of home-based telemedicine systems

"Small pop-up boxes showing the functions of icons could improve the information quality of the system."

"The system has four windows. It's confusing."

"Simple and clean interface"


"I really like the tool tips when I hover over the buttons."

Applied Ergonomics 58 (2017) 424-434

Human Factors matter!

Technology Watch: Store and Forward

