National Aeronautics and Space Administration

The Sky Is Not The Limit: Taking Sensory Into the Final Frontier Grace Douglas, Ph.D. Advanced Food Technology Lead Scientist Human Research Program NASA Johnson Space Center

Space Food System Challenges

- **Closed System** •
- Multi-year shelf stability
- No cold storage
- No cooking
- Limit crumbs and free liquid
- Minimal food transfer
- No washing or reuse of containers
- Minimal crew time for food preparation
- Resource Restricted e.g. 2.5 L water per person per day

Food Systems: Mercury to Apollo

MERCURY

GEMINI

Food Systems: Skylab to early International Space Station

ISS020E007188

SKYLAB

SHUTTLE

INTERNATIONAL SPACE STATION

- 130 options, 6 month missions
- Resupply delays = preference menus did not coincide with correct crew
- Average <u>BODY MASS LOSS ~5%.</u> Results in <u>significant bone and</u> <u>muscle loss</u>, cardio deconditioning (Smith et al. 2015)

International Space Station 2008-Current

200 options in 8 Standard Menu Categories

- 1. Breakfast
- 2. Rehydratable Meats
- 3. Meat and Fish
- 4. Side Dishes
- 5. Vegetables and Soups
- 6. Fruits and Nuts
- 7. Desserts and Snacks
- 8. Beverages

Bulk Overwrap Bag (BOB)

A set of 8 BOBS (one per menu category) will feed a crew of 3 for 7-9 days

Limited crew specific food, fresh food, condiments

No food refrigeration available on ISS

Shelf life of 1-3 years under room temperature storage

Development of Prepackaged Foods

Goal: Exploration Food System that Promotes Crew Health And Performance

Types of Food

- Freeze-Dried
- Retort Pouches
- Irradiated Meats

- Low Moisture/Natural Form
- Powdered Beverages

- Product Development
 - Meat/fish, fruits, vegetables, sides, desserts
 - Sodium reduction
 - Mass reduction
- Shelf Life
 - Up to 5 years
- Scales
 - 9-pt hedonic scale, general attributes
 - Just about right
 - Difference from control
- Volunteers include end user astronauts

Does Taste Change in Flight?

- Anecdotal
- Limitations to spaceflight experiment
- <u>Potential Contributing Factors</u>:
 - Limited pre-mission food evaluations
 - Fluid shift in microgravity
 - Aroma dissipation in microgravity
 - No cooking
 - Eat out of a package
 - Competing odors

- Sodium exacerbates bone loss and may be a factor in intracranial pressure induced visual changes
- Reformulated 90 foods on current menu

Salt Reduction Strategy

Before Reform

- Commercial frozen products
- Salted snacks
- Salt added during processing

After Reform

- More products made from scratch; utilized herbs/spices/natural flavoring enhancers to compensate for reduced sodium
- Advantage: Space food does not have to meet a "brand" flavor profile
- Challenge: Food needs to be acceptable to a wide range of consumers because the system is closed/limited choice.

Food Product	% Sodium Reduction
Broccoli Au Gratin (FD)	70
Mexican Scrambled Eggs (FD)	59
Creamed Spinach (FD)	64
Tomatoes and Artichoke (FD)	72
Grilled Chicken (T)	91
Meatloaf (T)	43

Fruits, Vegetables, and Fish

Include compounds such as:

- Flavonoids
- Lycopene
- Lutein
- Sterols
- Omega-3 fatty acids

Minimum 2 year Shelf Life:

- Rehydration
- Flavor, texture, color

Freeze-Dried Mango Salad

Mangoes, kiwis, peaches, walnuts, cranberries

Freeze-Dried Fish Tacos

Barramundi Fish Mangoes Green Peppers Tomatoes

Thermostabilized Pickled Beets

Beets Olive Oil Apple Cider Vinegar

Exploration Constraints

International Space Station:

- 6 month microgravity missions
- Radiation impact understood
- Regularly scheduled resupply
- No refrigerators or freezers for food storage, all food processed and prepackaged
- 7-9 day standard menu cycle augmented by crew preference foods

Mars Expedition Scenario:

- 2.5 year mission; micro- and reduced gravity
- Radiation impact is unknown
- No resupply; food may be prepositioned
- Availability of refrigerators or freezers for food storage is undecided
- Current food system is mass constraining and will not maintain nutrition/acceptability

https://en.wikipedia.org/wiki/Ferdinand_Magellan

http://www.scottslastexpedition.org/ex pedition/journey-to-the-south-pole/

https://www.defense.gov/Photos/Photo-Gallery/igphoto/2001323110/

1500-1800

1800-1940

Modern US Military

Exploration Food System Challenge: Acceptability and Variety

- Food quality relates to health and performance
- Food variety is limited in a closed system
- Food becomes more psychologically important with increasing mission duration

(Catauro. Journal of Food Science. 2011)

Exploration Food System Challenge: Micronutrient Degradation

Cooper et al. npj Microgravity (In Press). 2017.

Prepackaged Food Strategies: 5 Year Shelf Life

Focus on nutritional stability, acceptability, health promotion

Formulation

Fortification Ingredients and Matrix Functional Foods Variety

Processing

Microwave Assisted Thermal Sterilization (MATS) Lyophilization Improvement Reduced Moisture

Packaging

Improve barrier Reduce Mass Improve Method Improve Processing Compatibility

Environment

21°C -80°C Temperature Atmosphere Radiation Microgravity Partial Gravity

- Orion requires 10% mass reduction
- Meal replacements
 - Nutritional requirements
 - Meet mass and volume requirements
- Mass Reduction Strategies must consider long term acceptability and variety

Nutrition, Acceptability, and Variety Validation

Shelf Life

- Nutritional Degradation
- Sensory Degradation
- Analytical Changes
- Analog Evaluation
 - Variety Impacts
 - Psychosocial Impacts
 - Physiological Impacts

Food System Key Points

- Establish Safety
- Stabilize Nutrition and Acceptability
 - Ensure Variety
 - Reduce Resource Use
 - Promote Human Health and Performance

