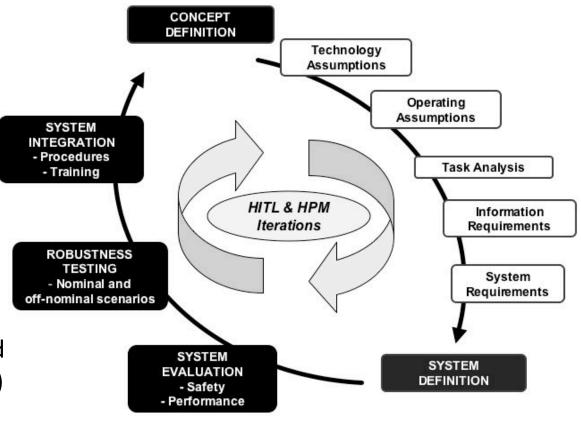


POCs:

David.Foyle@nasa.gov 650-604-3053 Becky.L.Hooey@nasa.gov 650-604-2399

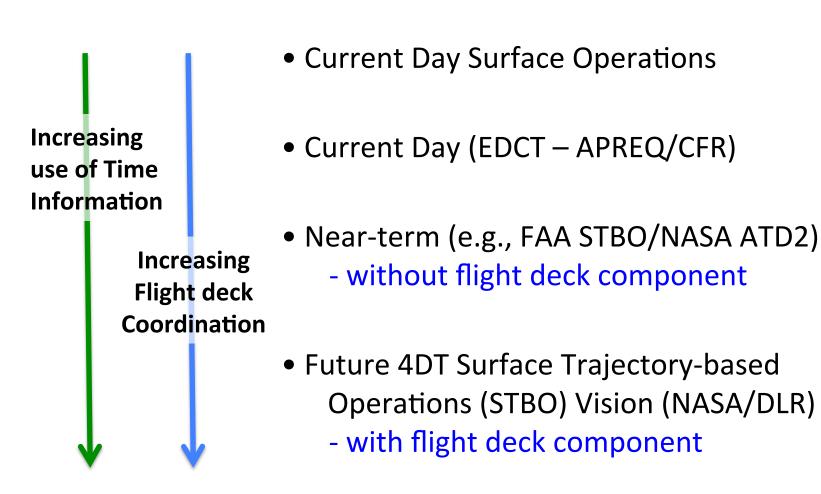
URL: http://humansystems.arc.nasa.gov/groups/HCSL


Mission:

- Develop principled and robust procedures and user interfaces with appropriate human-automation function allocation
- Develop safe and efficient systems that minimize pilots' cognitive/visual workload and increase situation awareness

Research Focus Areas:

- Flight Deck Human Factors
- NextGen surface operations and departure concepts (25+ years)
- KCLT ATD-2 Integrated Arrival,
 Departure & Surface (IADS)
 demonstration project



OVERVIEW

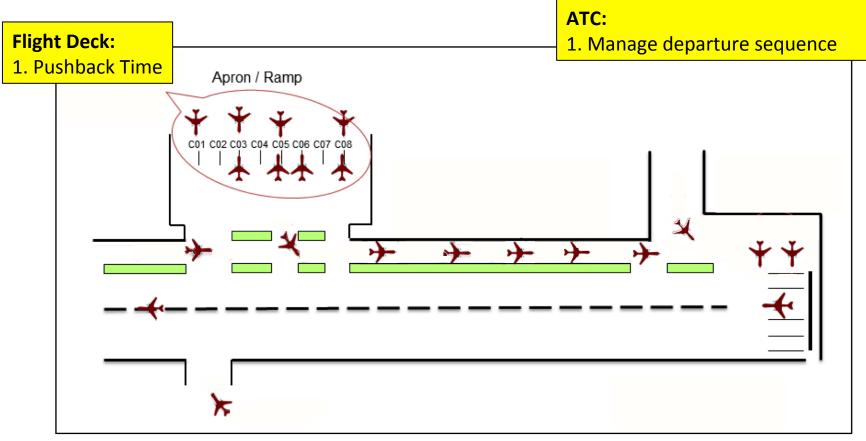
- Airport Surface Operations: Taxi-out/Departures and Surface Trajectory-Based Operations (STBO: taxi with time requirements)
- Continuum of Surface Operations:
 Manual → Aided → Autonomy
- Current-day; near-term and far-term STBO
- Research on Pilot/Flight deck STBO
- 4DT STBO: A candidate for autonomous operations
 - Research Issues

OVERVIEW Surface Trajectory-Based Operations (STBO)

STBO = Adding time component to Surface Operations (taxi/departure)

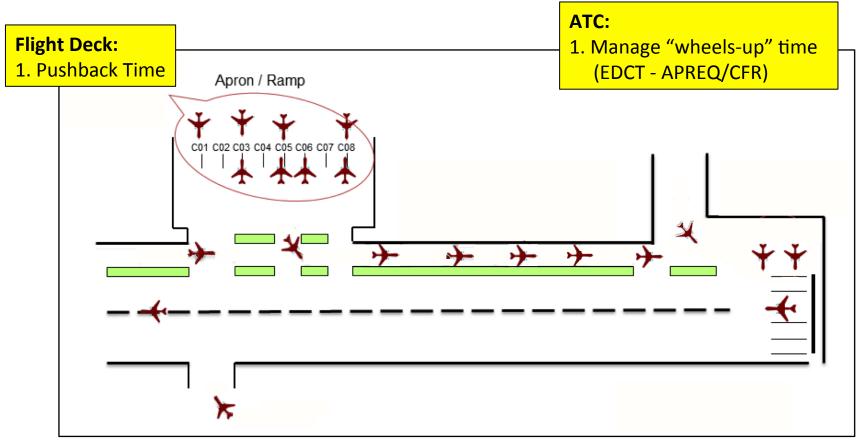
Continuum of Surface Operations Manual → **Autonomy**

		ATC / Surface Traffic Manager (STM		
		Manual (Voice)	Manual (Voice) w/ Decision Aids	Autonomous STM
	Manual A/C Control			
Pilot(s) / Flight Deck	Manual A/C Control w/ Display Aids			
	Autonomous A/C Operations			



Continuum of Surface Operations Manual → **Autonomy**

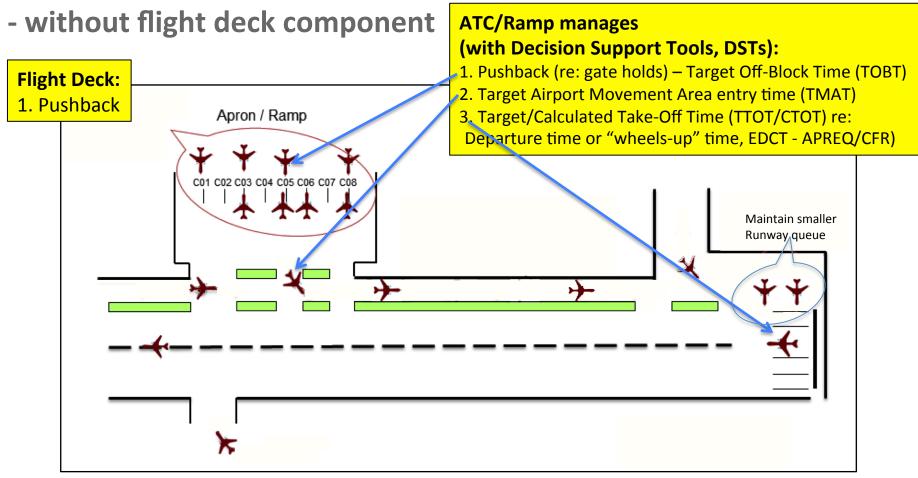
		ATC / Surface Traffic Manager (STM)		
		Manual (Voice)	Manual (Voice) w/ Decision Aids	Autonomous STM
	Manual A/C Control	Current Day		
Pilot(s) / Flight Deck	Manual A/C Control w/ Display Aids			
	Autonomous A/C Operations			


Current Day Surface Operations

- Pilots manage pushback time to meet:
 - Scheduled departure/take-off time

Current Day (EDCT – APREQ/CFR)

- Flight deck/pilots manage pushback time to meet:
 - "Wheels-up time"
- Flight deck/pilots have <u>no information</u> about:
 - Expected taxi time
 - Surface congestion
 - Departure queue size



Continuum of Surface Operations Manual → **Autonomy**

		ATC / Surface Traffic Manager (STM)		
		Manual (Voice)	Manual (Voice) w/ Decision Aids	Autonomous STM
	Manual A/C Control		FAA STBO / NASA ATD2	
Pilot(s) / Flight Deck	Manual A/C Control w/ Display Aids			
	Autonomous A/C Operations			

Near-term (e.g., FAA STBO/NASA ATD2)

- Pilots manage pushback time to meet:
 - "Wheels-up time" (at KCLT, about 10% of flights)
- Pilots have no information about:
 - Expected taxi time
 - Surface congestion
 - Departure queue size

Continuum of Surface Operations Manual → **Autonomy**

		ATC / Sui	ATC / Surface Traffic Manager (STM)				
		Manual (Voice)	Manual (Voice) w/ Decision Aids	Autonomous STM			
	Manual A/C Control						
Pilot(s) / Flight Deck	Manual A/C Control w/ Display Aids		NASA Flight Deck / SARDA STM	NASA Flight Deck / DLR STM			
	Autonomous A/C Operations						

- Controller: Manual/voice ops, manual sequencing/ scheduling aids, manual deconfliction
- <u>Pilot</u>: Controls manually, info/displays for 4DT STBO

- Controller: Auto-routing, auto-deconfliction, autosequencing/scheduling, position timing
- <u>Pilot</u>: Controls manually, info/displays for 4DT STBO

Future 4DT Surface Trajectory-based Operations (STBO) Vision (NASA/DLR) - with flight deck component

Okuniak, Gerdes, Jakobi, Ludwig, Hooey, Foyle, Jung, & Zhu, AIAA/ATIO 2016 Transition from "first-Conference, DLR/NASA Concept of Operations for Trajectory-based Taxi Operations come, first-served" Hold at gates until taxi with minimal Apron / Ramp operations interruption is possible Maintain a very small runway queue 4DT = Expected Location + Allowable Deviation, at all Times, t Expected location Allowable deviation

- Requirement to be at locations at specific time; defined (x_t, y_t) with certain tolerance
- DLR TRACC Surface Management System dynamically creates conflict-free routes
- Coordination between Flight Deck ATC/Ramp re: location and times

Future 4DT Surface Trajectory-based Operations (STBO) Vision (NASA/DLR) - with flight deck component

Okuniak, Gerdes, Jakobi, Ludwig, Hooey, Foyle, Jung, & Zhu, AIAA/ATIO 2016 Conference, DLR/NASA Concept of Operations for Trajectory-based Taxi Operations

Hold at gates until taxi with minimal interruption is possible

Apron / Ramp

Con (CO2 CO3 CO4 CO5 CO6 CO7 CO8)

Apron / Ramp

A

Transition from "first-

Expected location Allowable deviation

- Enables dynamic surface flow re-planning
- Enables increasingly precise taxi routing plans for improved surface traffic flow efficiency
- Flight deck component allows for coordination with ATC re: schedule issues (e.g., maintenance, FMS, weights/balances, RWY changes, etc.)
- Extension of FAA/NASA STBO concept
- Would enable aircraft traffic to continue rolling through Active RWY Crossings, instead of stopping aircraft and requiring ATC to do "batch" crossings of arrivals
- Facilitate timed runway take-off window conformance (+/- 5 min EDCTs, -2/+1 min APREQ/CFRs)

4DT STBO: Taxi Clearances w/ Speed Commands: Taxi Time-based Conformance

Summary HITL sim data from: Foyle, Hooey, Bakowski & Kunkle, Int'l Journal of Aviation Psychology, 2015

"NASA 227, Taxi	
to RWY 17L via	
A, B, C at 14 kts"	/

Taxi Clearance	Required time of Arrival (RTA) Performance	Safety
 Non-specified acceleration/deceleration speed profile (n = 8 pilots) 	Not able to achieve accurate RTAs	Slightly increased visual demand, as compared to baseline
 Specified acceleration/deceleration profile (1kt/sec) Speed-conformance bound (+/- 1.5 kts) (n = 18 pilots) 	Good RTA performance	 Increased workload and visual demand 14/18 pilots rated "unsafe"

• Taxiing Captain cannot "tightly control/track" speed, navigate, and maintain separation.

ConOps Implications:

- Incorporating speed into the taxi clearance alone is not sufficient for the performance/safety balance
- There is a requirement for human-centered flight deck display algorithms

4DT STBO: Flight Deck Display Design/Philosophy

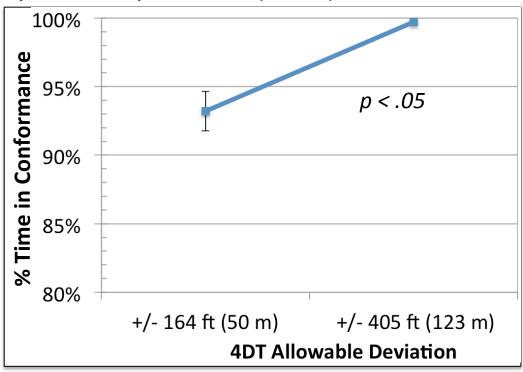
Bakowski, Hooey, Foyle, & Wolter, 2015, AHFE Bakowski, Hooey, & Foyle, 2017

- Status-at-a-glance display to maximize 'eyes-out' time
- Enable strategic use pilots do not need to track speed continuously (anywhere in pink band is 'in conformance')
- Display expected position with tolerance and allow pilots to use expertise to control aircraft (e.g., "human/pilot-centered")

4DT STBO: Flight Deck Display Design/Philosophy

HITL Simulation: Bakowski, Hooey, & Foyle, 2017

Two allowable conformance deviation sizes were used:



4DT Surface Trajectory-Based Operations (STBO)

HITL Sim: Bakowski, Hooey, & Foyle, 2017 (Preliminary Analysis)

- Emulated DLR TRACC 4DT STM system
 - Taxi Routes for Aircraft: Creation and Controlling" Surface Management System
 - Creates conflict free routes/re-routes
 - Non-Conformance within 50 m (164 ft) of deviation from expected x, y position
 - Dynamic, multiple speed changes (up to 5) along taxi route
- Flight Deck/Pilot Manual Control: Steering (tiller/rudder), Navigation, speed (thrust/brakes), other flight deck tasks (checklists, callouts, 2nd engine start)
- Map Display with Route and Allowable Deviation
- Position/time (x_t, y_t) Conformance >90% but decrease with smaller allowable deviation (+/- 164 ft)
- "Eyes-in" time higher, but rated "safe" and "acceptable"

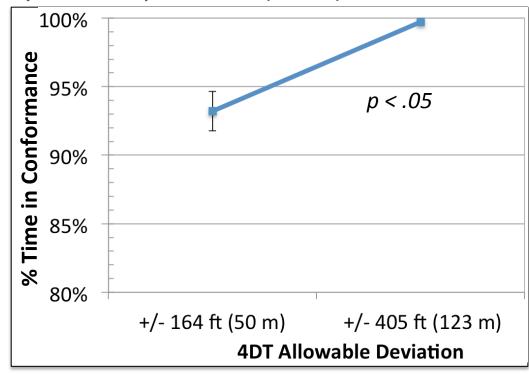
• "Eyes-in" time: 37% for +/- 164 ft 35% for +/- 405 ft

29%* for Speed Clearances & Map

19%* with Map

*HITL Sim: Bakowski, Hooey, Foyle, & Wolter, AHFE, 2015

• Safety rating: 4.7 (out of 5) for +/- 164 ft 4.9 (out of 5) for +/- 405 ft


Acceptability rating: 4.2 (out of 5) for +/- 164 ft
 4.3 (out of 5) for +/- 405 ft

4DT Surface Trajectory-Based Operations (STBO)

HITL Sim: Bakowski, Hooey, & Foyle, 2017 (Preliminary Analysis)

Robustness:

- Flight deck interruptions, offnominals, FMS/equipment problems, etc
- System/integration implications -- speed changes, dynamic updates
- Candidate for automation/ autonomous aircraft control during taxi operations

• "Eyes-in" time: 37% for +/- 164 ft 35% for +/- 405 ft

29%* for Speed Clearances & Map

19%* with Map

*HITL Sim: Bakowski, Hooey, Foyle, & Wolter, AHFE, 2015

• Safety rating: 4.7 (out of 5) for +/- 164 ft 4.9 (out of 5) for +/- 405 ft

Acceptability rating: 4.2 (out of 5) for +/- 164 ft
 4.3 (out of 5) for +/- 405 ft

Continuum of Surface Operations Manual → **Autonomy**

		ATC / Surface Traffic Manager (ST		
		Manual (Voice)	Manual (Voice) w/ Decision Aids	Autonomous STM
Pilot(s) / Flight Deck	Manual A/C Control			
	Manual A/C Control w/ Display Aids			
	Autonomous A/C Operations	Future	Future	Future

Automation/Autonomy in 4DT Surface Trajectory-Based Operations (STBO)

TRACC: "Taxi Routes for Aircraft: Creation and Controlling" Surface Management System – Germany's DLR

- Creates conflict free routes/re-routes
- Non-Conformance within 50 m (164 ft) of deviation from expected x, y position
- Dynamic, multiple speed changes (up to 5) along taxi route

Autonomous Surface Operations:

- Enables 4DT STBO efficiencies
- Distributed architecture (Airport/Tower/Aircraft)
- Surface traffic manager
- 4DT STBO operations (i.e., times at AMA entry, taxi merge points, rolling runway crossings, runway departure queue)
- Routing/re-routing
- Traffic de-confliction
- Candidate Auto-taxi propulsion
 - Wheel-bots
 - Electric tugs
 - Auto-taxi aircraft

Automation/Autonomy in 4DT Surface Trajectory-Based Operations (STBO)

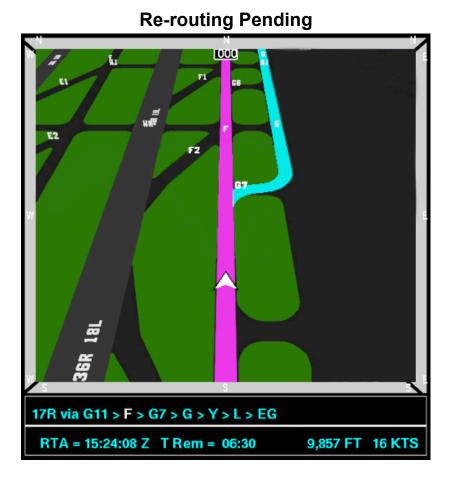
TRACC: "Taxi Routes for Aircraft: Creation and Controlling" Surface Management System – Germany's DLR

- Creates conflict free routes/re-routes
- Non-Conformance within 50 m (164 ft) of deviation from expected x, y position
- Dynamic, multiple speed changes (up to 5) along taxi route

Autonomous Surface Operations:

Candidate initial architecture (NASA/DLR Concept):

- Ground/Tower: Surface Traffic Management
 - Issue STBO Clearances (Routes w/ times)
 - Re-routing for efficiency or nonconformance
 - Traffic deconfliction
- Aircraft:
 - Aircraft navigation
 - Aircraft movement (steering, speeds, turns)
 - Additional On-board Conflict Detection and Resolution (CD&R)


<u>Function</u>	ATC	Aircraft
Scheduling	X	
Routing	X	
Deconfliction	Х	X
Execution		Х

STBO with Autonomous flight deck component Pilot(s) responsible for aircraft/crew & passenger safety

Enabling Pilots/Flight deck Situation Awareness Need for "status-at-a-glance" awareness and intent displays

		ATC / Surface Traffic Manager				
		Manual / Autonomou				
Pilot / Flight Deck	Manual	Current- day	FAA STBO / NASA ATD2			
	Manual / Aided		NASA / DLR	NASA / DLR		
	Autonomous	Future	Future	Future		

STBO with Autonomous flight deck component Pilot(s) responsible for aircraft/crew & passenger safety Enabling Pilots/Flight deck Situation Awareness Need for "status-at-a-glance" awareness and intent displays

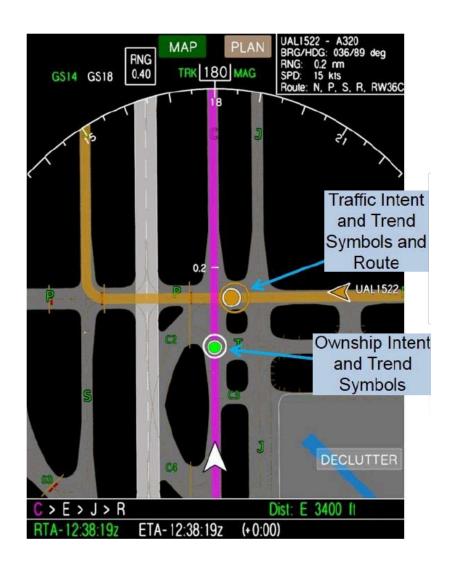
STBO with Autonomous flight deck component Pilot(s) responsible for aircraft/crew & passenger safety Enabling Pilots/Flight deck Situation Awareness and Flight Deck workflow/procedure integration

Research issues, re: Pilot roles:

- Taxi clearance (how to load? pilot approve if auto-load?)
- 4DT STBO speed/time updates (approve? Auto-load?)
- Departing Runway (changes, FMS, weights, temps, etc)
- Runway crossings, "wheels up" times
- Braking hot brakes (take-off abort)
 - Airports are not flat; KCLT, DFW varies 50ft
 - 747-8 <u>1 Million lbs</u> fully loaded
- Monitoring: Traffic (aircraft, pedestrian, vehicle) Separation assurance
 - Ownship aircraft intent (stopping, turning, waiting to cross active runway)
- (Non) Conformance: Mid-taxi stopping / abort FMS, passengers, weights
 - For 4DT STBO interactions re: dynamic STM system; # updates
- Pilot Intervention? Revert to manual or abort taxi, or unable to make time b/c of flight deck, equipment, passenger, baggage, etc. issues

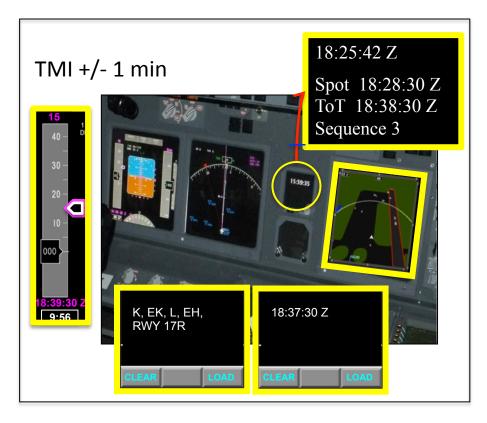
POCs:

David.Foyle@nasa.gov 650-604-3053 Becky.L.Hooey@nasa.gov 650-604-2399

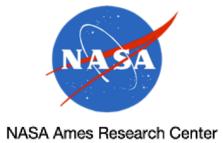

URL: http://humansystems.arc.nasa.gov/groups/HCSL

Additional Slides

4DT Flight-Deck Display



Jones et al NASA TP 2016-219172


STBO with flight deck component and Information Sharing Displays

Enables better flight deck workflow prior to departure

"For NextGen time-based operations, how useful were the following pieces of information in supporting time-based taxi (your ability to meet your takeoff time?)"

	Response frequency (n=10 of usefulness ratings				
		E	Border	^_	Very
Information Source	at all 1	2	line 3	4	much 5
Assigned Pushback time	-	-	1	4	5
Spot-release time	1	1	1	5	3
Takeoff Time	-	1	ı	7	3
Departure Sequence	-	2	ı	2	6
Speed Advisory on PFD	-	1	4	2	3
Time Remaining to Takeoff Time	-	-	4	4	2

David Foyle, PhD, NASA Becky Hooey, PhD, NASA Debi Bakowski, MS SJSU Glenn Meyer, MA Dell Capt. Rob Koteskey, MA

POCs:

David.Foyle@nasa.gov 650-604-3053 Becky.L.Hooey@nasa.gov 650-604-2399

URL: http://humansystems.arc.nasa.gov/groups/HCSL