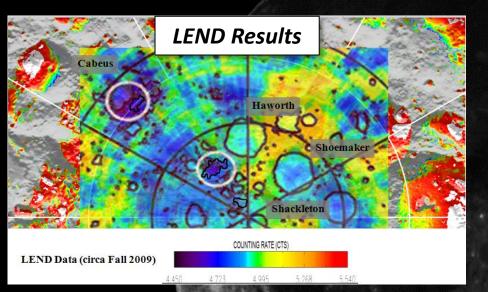
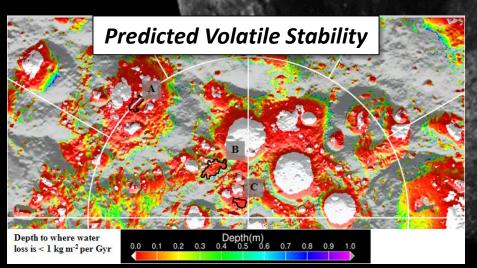
Polar Resources

The Key To Development of Cis-Lunar Space

William E. Larson ISRU Project Manager (Retired)


Going Back to the Moon to Stay


- There are plenty of unanswered science questions regarding the Moon that justify surface missions
 - However the rate of science missions launched remains painfully slow
 - Google X-Prize Landers may offer more opportunities, but the jury is still out
 - Science alone will not be enough to sustain long term interest in the Moon by the Congress (or the Public) nor will it generate a frequent mission rate
- We need something that drives a frequent and continual reason to go to the Moon
 - Lunar tourism not practical in the near term
 - Lunar Resources can be the economic driver that enables regular access to the lunar surface

LCROSS Found Water and Other Useful Volatiles

						Instr	ument	
	Column Density (# m ⁻²)	Relative to H2O(g) (NIR spec only)	Concentration (%)	Temp (K)	UV/Vis	NIR	LAMP	М3
СО	1.7e13±1.5e11		5.7	15			x	
H ₂ O(g)	5.1(1.4) E 19	1	5.50	106		x		
H ₂	5.8e13±1.0e11		1.39	10			x	
H ₂ S	8.5(0.9) E 18	0.1675	0.92	47	х	x		
Са	3.3e12±1.3e10		0.79				х	
Hg	5.0e11±2.9e8		0.48	135			х	
NH ₃	3.1(1.5) E 18	0.0603	0.33	63		х		
Mg	1.3e12±5.3e9		0.19				x	
SO ₂	1.6(0.4)E18	0.0319	0.18	58		x		
C ₂ H ₄	1.6(1.7)E18	0.0312	0.17	~50		x		
CO ₂	1.1(1.0) E 18	0.0217	0.12	50	x	x		
CH₃OH	7.8(42)E17	0.0155	0.09	86		x		
CH ₄	3.3(3.0) E 17	0.0065	0.04	19		x		
ОН	1.7(0.4) E 16	0.0003	0.002	>300 K if adsorbed	х	x		х
H₂O (adsorb)			0.001-0.002					х
Na		1-2 kg		197	х			
CS					х			
CN					х			
NHCN					х			
NH					x			
NH ₂					x			
NH2			2 Cal		x			
ИН					x			
ИНСИ					x			
СИ					×			

LRO Data Suggests Water Ice May Be Found Outside of Permanent Shadow

- LRO Neutron Spectrometer sees elevated hydrogen outside of permanent shadow
- Subsurface temperature models suggest water ice could be stable just 10 cm below the surface

Kick Starting the Cis-Lunar Economy

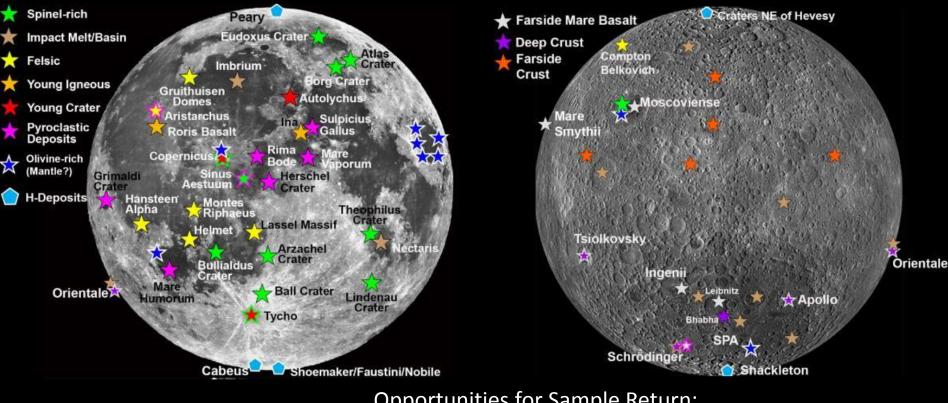
- Is there a market for lunar source propellant?
 - Numerous studies suggest the answer is yes.
 - ULA study* published in 2016 suggests a demand for >1000 MT/year for lunar propellant
- Unknowns and technical risks still inhibit the development of this market
- NASA is key player in buying down that risk
 - Surface prospecting mission is needed to understand the local distribution/concentration of water ice at the poles
 - Pilot plant demonstration of water harvesting and propellant production

Lunar Surface Prospecting

- Prospecting of a lunar pole to take place in the early 2020's
 - Resource Prospector* mission is about to emerge from Phase A and plans for a PDR in 2018 & CDR in 2019.
 - Based on the RESOLVE payload that was initially funded during Constellation Program
 - Will map the vertical and horizontal distribution of water ice in a partially sunlit region and in a permanently shadowed crater

2010 Field Test

2012 Field Test


2015 Field Test

* http://www.nasa.gov/resource-prospector

RP Success Will Trigger Chain of Events

- RP provides the data needed to design follow on mission
- Phase 2 will be a Pilot Scale Demonstration of Fuel Production
- Phase 3 scale up to provide fuel for reusable landers
 - Commercial involvement begins to kick in
- Phase 4 Frequent access to areas of scientific interest on the Moon w/reusable landers and lunar-sourced propellant

Lunar Resources Will Enable Access to All Areas Of LEAG Interest

Opportunities for Sample Return: LEAG Presentation to Decadal Midterm Review