
Security Vulnerability Profiles of Mission Critical Software: Empirical Analysis of
Security Related Bug Reports

Katerina Goseva-Popstojanova and Jacob Tyo
Lane Department of Computer Science and Electrical Engineering

West Virginia University, Morgantown, WV 26506, USA

Abstract—While some prior research work exists on charac-
teristics of software faults (i.e., bugs) and failures, very little
work has been published on analysis of software applications
vulnerabilities. This paper aims to contribute towards filling
that gap by presenting an empirical investigation of application
vulnerabilities. The results are based on data extracted from
issue tracking systems of two NASA missions. These data were
organized in three datasets: Ground mission IV&V issues,
Flight mission IV&V issues, and Flight mission Developers
issues. In each dataset, we identified security related software
bugs and classified them in specific vulnerability classes. Then,
we created the security vulnerability profiles, i.e., determined
where and when the security vulnerabilities were introduced
and what were the dominating vulnerabilities classes. Our main
findings include: (1) In IV&V issues datasets the majority of
vulnerabilities were code related and were introduced in the
Implementation phase. (2) For all datasets, around 90% of the
vulnerabilities were located in two to four subsystems. (3) Out
of 21 primary classes, five dominated: Exception Management,
Memory Access, Other, Risky Values, and Unused Entities.
Together, they contributed from 80% to 90% of vulnerabilities
in each dataset.

1. Introduction

Nowadays, space missions provide valuable services to
the society – from navigation, to earth observation, weather
forecasting, and communication. Consequently, space is be-
coming a part of the critical infrastructure, regularly targeted
by attackers. In a typical week NASA experiences 29,000
malicious incidents against its systems, 17,500 suspicious
e-mails, and 250 unique incidents against its Web sites [1].
Among these are sophisticated cyberattacks known as ad-
vanced persistent threats (APTs) [2]. Cyber threats to space
missions are expected to continue to grow in the future [3].
Even more, increased complexity of missions, coupled with
ambitious operational scenarios and cooperation between
government agencies and commercial enterprises, are likely
to lead to increased number of security vulnerabilities. A
multi-tiered approach to cybersecurity management inte-
grates the IT service security, Data and Application security,
and Infrastructure security [1]. This paper is focused on
Application security throughout the software lifecycle. This
is an important aspect of the overall cybersecurity because
once an attacker has gained access to internet-accessible
computer, he/she could use the compromised computer as
a means to exploit vulnerabilities on mission computers
that could significantly disrupt space flight operations and/or

steal sensitive data [4]. Therefore, it is becoming an imper-
ative to use software development and assurance practices
that account for cybersecurity concerns.

A security vulnerability is defined as a weakness in
a system, application, or network that could be subject
to exploitation or misuse that would allow an attacker to
compromise any aspect of cybersecurity (i.e., confidentiality,
integrity, availability, authentication, authorization, and non-
repudiation). The terms ‘vulnerability’, ‘security issue’, and
‘security related bug’ are used interchangeably in this paper.

Our research is based on utilizing the information pro-
vided in issue tracking systems. We believe that issue track-
ing systems are valuable sources of information, with high
potential for conducting empirical studies that could benefit
both the research and practitioners communities. This paper
is focused on studying software bugs reports and specifically
identifying those that are security related. It should be noted
that our study accounts for vulnerabilities that may have
been introduced, found, and fixed throughout the software
lifecycle.

In general, a profile is defined as “a set of data portraying
the significant features of something.” In this work, we
introduce the term security vulnerability profile which is
defined as a set of data that describes where and when the
security vulnerabilities were introduced and what were the
dominating vulnerability classes. Uncovering the security
vulnerability profiles and underling trends helps developers
and Independent Verification and Validation (IV&V) ana-
lysts to focus their efforts on preventing and eliminating
the vulnerabilities in the most effective ways, at the most
effective time.

The results presented in this paper are based on data ex-
tracted from issue tracking systems of two NASA missions.
These data were organized in three datasets: Ground mis-
sion IV&V issues, Flight mission IV&V issues, and Flight
mission Developers issues. In each datasets, we identified
software bugs that are security related and classified them
in specific security classes. This information was then used
to create the security vulnerability profiles and explore the
existence of trends. Our main research questions are as
follows:

RQ1: What are the security issues’ categories and
types?

RQ2: Where are security issues located?
RQ3: When are the security related issues typically

introduced and found?
RQ4: What are the severity levels of security related

issues?

1

https://ntrs.nasa.gov/search.jsp?R=20170010339 2019-08-31T01:43:17+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/141519623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


RQ5 What are the dominating classes of security
issues?

RQ6 Are the dominating classes of security issues
and the other findings consistent across missions
and datasets?

The main findings of our work include:

• Code related security issues dominated both the
Ground and Flight mission IV&V security issues,
with 95% and 92%, respectively. Therefore, en-
forcing secure coding practices and verification and
validation focused on coding errors would be cost
effective ways to improve missions’ security. (Flight
mission Developers issues dataset did not contain
data in the Issue Category.)

• The location of security related issues, as the loca-
tion of software bugs in general, followed the Pareto
principle. Specifically, for all three datasets, around
90% of the security related issues were located in
two to four subsystems.

• In both the Ground and Flight mission IV&V is-
sues datasets, the majority of security issues (i.e.,
91% and 80%, respectively) were introduced in the
Implementation phase. In most cases, the phase in
which the security issues were found was the same
as the phase in which they were introduced. The
most security related issues of the Flight mission
Developers issues dataset were found during Code
Implementation, Build Integration, and Build Verifi-
cation; the data on the phase in which these issues
were introduced were not available for this dataset.

• The severity levels of most security issues were
moderate, in all three datasets.

• Out of 21 primary security classes, the following five
classes dominated: Exception Management, Memory
Access, Other, Risky Values, and Unused Entities.
Together, these classes contributed from around 80%
to 90% of all security issues in each dataset. This
again proves the Pareto principle of uneven distri-
bution of security issues, in this case across CWE
classes, and supports the fact that addressing these
dominant security classes provides the most cost
efficient way to improve missions’ security.

The rest of the paper is organized as follows. Section 2
summarizes the related works. Section 3 provides details
on the classification approach. The basic facts about the
two NASA missions used as case studies and the created
datasets are given in section 4. The results on the security
vulnerability profiles are presented in section 5, followed
by the comparison of the results across the three datasets in
section 6. The threats to validity are enumerated in section 7
and the conclusion is presented in section 8.

2. Related Work

While some prior research work exists on characteristics
of software faults (i.e., bugs) and failures, very little work
has been published on analysis of software applications
vulnerabilities. We first summarize the papers that explored
the characteristics of software faults in general [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], followed by a few prior

works that were specifically focused on studying software
application vulnerabilities [15], [16].

Fenton and Ohlsson studied a large telecommunication
application from Ericsson Telecom AB [5]. This work was
focused on a range of software engineering hypotheses
related to the Pareto principle of distribution of faults and
failures, the use of early fault data to predict later fault and
failure data, and metrics for fault prediction.

Our previous research work, which was based on data
extracted from a large NASA mission with over two millions
lines of code, was focused on characterizing and quantifying
relationships among faults, failures and fixes. The results
showed that software failures were often associated with
faults spread across multiple files [6]. The results further
showed that a significant number of software failures re-
quired fixes in multiple software components and/or mul-
tiple software artifacts (i.e., 15% and 26%, respectively),
and that the combinations of software components that were
fixed together were affected by the software architecture
[7]. In addition, we studied the types of faults that caused
software failures, activities taking place when faults were
detected or failures were reported, and the severity of fail-
ures [8]. The results showed that both post-release failures
and safety-critical failures were more heavily associated
with coding faults than with any other type of faults. Last
but not least, we explored the effort associated with im-
plementing the fix to correct all faults associated with an
individual failure (i.e., fix implementation effort) [9]. We
also proposed a data mining approach for predicting the
level of fix implementation effort using the data provided in
the software change requests, when the failure was reported.

Another empirical study based on space mission data,
conducted by Grottke et al., analyzed 520 anomalies from
the flight software of eighteen JPL space missions [10]. The
authors defined Bohrbugs as bugs that are easily isolated and
removed during software testing, and Mandelbugs as bugs
that appear to behave chaotically, and reported that 61% of
bugs were Bohrbugs and 37% were Mandelbugs. In a follow
up work, Alonso et al. analyzed the mitigation associated
with the Bohrbugs and Mandelbugs and concluded that
both types of bugs were most frequently mitigated via fixes
instead of other measures such as proactive reboots [11].

Several papers explored some aspects of software faults
for other application domains. Maji et al. utilized bug re-
ports, bug fixes, developer reports, and failure reports to
explore the manifestation of failures in Android and Sym-
bian [12]. Frattini et al. analyzed a small dataset of 146 bug
reports from the open source cloud platform Apache Virtual
Computing Lab [13]. The analysis identified the components
where bugs were likely to be found in future releases, the
phases of the lifecycle during which such bugs may be
discovered, and the modification required to fix them. Xia
et al. utilized the bug databases and code repositories for
the open source software applications Ant, Maven, CMake,
and QMake containing 199, 250, 200, and 151 bug reports,
respectively [14]. Each sample was manually classified into
several fault categories (e.g., external interface category,
logic category, and configuration category).

The number of studies that were focused on studying
software vulnerabilities is even smaller[15], [16]. Alhazmi et
al. used density of vulnerabilities, dynamics of vulnerability

2



discovery, and vulnerability discovery rate to estimate the
magnitude of the undiscovered vulnerabilities still present in
the system [15]. The analysis was based both on commercial
and open-source software systems and the results revealed
that the vulnerability densities fell within a range of values
(similarly to fault density for general faults) and that the
vulnerability discovery can be modeled using a logistic
model. Venter et al. proposed an approach aimed at stan-
dardization of vulnerability categories using self-organizing
maps (SOMs) and data extracted from CVE [16]. This work,
however, did not provide quantification of the results.

3. Classification approach

In order to classify the security related bugs (i.e., vulner-
abilities), a classification schema is needed. An obvious can-
didate for a classification schema is the Common Weakness
and Enumeration (CWE) taxonomy of software weakness
types, which serves as a common language for describing
software security weaknesses in architecture, design, or code
[17]. Each individual CWE represents a single vulnerability
category. For example, CWE 121 is “Stack-based Buffer
Overflow”, CWE 78 is “OS Command Injection” and so
on. The CWEs are organized in a hierarchical structure with
broad category CWEs at the top level. The further down
this hierarchy, the more specific the vulnerabilities become.
The CWE taxonomy has 1004 CWEs and rather complex
structure; each CWE may have one or more parents (expect
the top level CWEs) and zero or more children. Therefore,
using the complete CWE taxonomy for classification of
software vulnerabilities is not very practical, which is the
reason why a number of views have been developed to
ease the grouping of similar CWEs and provide simpler,
more generalized structure. These include: CWE-2000 [18],
CWE-1000 [19], CWE-888 [20], [21], CWE-700 [22], [23],
and CWE-699 [24]. Upon close review, we selected CWE-
888 Software Fault Pattern (SFP) View as classification
schema because it provides very intuitive hierarchical struc-
ture, with a good trade-off between the level of details and
generality. CWE 888 contains 705 CWEs organized in a
three level hierarchical structure, of which the first two
levels (primary and secondary classes) were used for our
classification. Namely, each security related software bug
was assigned a primary (more general) class and a secondary
(more specific) class. Overall, there are 21 primary and 62
secondary classes (see Table 1). More detailed descriptions
and the specific CWEs can be found in [20].

We conducted manual classification of software bug
reports in all three datasets using the information provided
in the “Title,” “Subject,” “Description,” “Recommended Ac-
tions,” and “Solution” fields from the issue tracking systems.
Two examples of software bugs classification to the CWE-
888 Primary and Secondary classes are described next. A
bug report with description “. . . Null pointer dereference
of ‘getServiceStatusInfo(...)’ where null is returned from
a method,” was classified as the primary class “Memory
Access” and the secondary class “Faulty Pointer Use.” A
bug report with description “. . . The stream is opened on
line 603 of file1. If an exception were to occur at any point
before line 613 where it is closed, then the ‘try’ would exit
and the stream would not be closed,” was classified as the

primary class “Resource Management” and the secondary
class “Failure to Release Resource.”

Similarly to the classification done by static code analy-
sis tools, we adopted a conservative classification approach
that treats as security related every bug report that can be
assigned a CWE class. Note that we did not have access to
the code and other necessary information to determine if the
security related issues (i.e., vulnerabilities) could be easily
exploited or what the overall impact on the system would be
if a vulnerability was successfully exploited. These aspects
are out of the scope of our work.

4. Description of the datasets

The three datasets used for this work were created
by extracting relevant information from the issue tracking
systems of two NASA missions. For all three datasets, only
the issues that were marked as bug reports and were closed
were included in the analysis.

The first dataset was extracted from the IV&V issue
tracking system of a NASA ground mission and is referred
to as Ground mission IV&V issues. The ground mission
software consists of approximately 1.36 million source lines
of code and the issue tracking system contained 1,779 issues
created over four years. Since this is a recent mission, the
IV&V analysts specifically considered the impact of each
issue on security, and as a result 350 of the issues were
marked as potentially security related. The issue descriptions
contained security related information, making this a very
good dataset for our research. Based on the manual classifi-
cation, it appeared that 133 of the 350 security related issues
(38%) could be assigned a specific CWE. The remaining
security issues were tagged by the IV&V analysts as testing
issues. Since testing issues do not deal with the actual
software under investigation and no CWEs exist that cover
such issues, testing issues were excluded from the analysis.

The second dataset consists of the IV&V issues extracted
from the issue tracking system of a NASA flight mission
and is referred to as Flight mission IV&V issues. The flight
mission software had approximately 924 thousand source
lines of code, and the issue tracking system contained 506
issues created over four years. After removal of issues
marked as “Withdrawn” or “Not an Issue,” 383 issues re-
mained. It should be noted that the IV&V issues of the
Flight Mission neither were tagged as security related by
the IV&V analysis nor the security aspects of the issues
were specifically and consistently addressed in the issues’
descriptions. We manually classified these 383 issues, out of
which 157 issues appeared to be security related (i.e., 41%
of all issues).

The third dataset consists of issues extracted from the
Developers issue tracking system of the same NASA flight
mission and is referred to as Flight mission Developers
issues. This issue tracking system consisted of 1,947 Devel-
oper Change Requests (DCRs) created over five and a half
years. Out of these 573 DCRs were marked as ‘Defects’
and were ‘Closed’. As in case of the Flight mission IV&V
issues dataset, security aspects of developers’ issues were
not specifically addressed in the descriptions and issues were
not tagged as security / not security related. The manual
classification of the 573 Developers bug reports led to 374

3



TABLE 1. 21 PRIMARY CLASSES, THEIR DEFINITIONS AND THE CORRESPONDING SECONDARY CLASSES

Primary class Definition and corresponding Secondary classes
Risky Values Relates to the basic uses of numerical values in software systems. Secondary class: Glitch in Computation.
Unused Entities Covers unused entities in code, including unused procedures or variables. Secondary class: Unused Entities.
API Relates to the use of Application Programming Interfaces (API). Secondary class: Use of an Improper API
Exception Management Relates to management of exceptions and other status conditions. Secondary classes: Unchecked Status Condition,

Ambiguous Exception Type, and Incorrect Exception Behavior.
Memory Access Relates to access to memory buffers. Secondary classes: Faulty Pointer Use, Faulty Buffer Access, Faulty String Expansion,

Incorrect Buffer Length Computation, Improper NULL termination.
Memory Management Relates to the management of memory buffers. Secondary classes: Faulty Memory Release.
Resource Management Relates to management of resources (i.e., dynamic entities). Secondary classes: Unrestricted Consumption, Failure to Release

Resource, Faulty Resource Use, Life Cycle.
Path Resolution Relates to access to file resources using complex file names. Secondary classes: Path Traversal, Failed Chroot Jail, Link in

Resource Name Resolution
Synchronization Relates to the use of shared resources. Secondary classes: Missing Lock, Race Condition Window, Multiple Locks/Unlocks,

Unrestricted Lock.
Information Leak Relates to the export of sensitive information from an application. Secondary classes: Exposed Data, State Disclosure,

Exposure Through Temporary File, Other Exposures, Insecure Session Management.
Tainted Input Relates to injection of user controlled data into various destination commands. Secondary classes: Tainted Input to Command,

Tainted Input to Variable, Composite Tainted Input, Faulty Input Transformation, Incorrect Input Handling, Tainted Input
to Environment.

Entry Points Relates to unexpected entry points into the application. Secondary class: Unexpected Access Points.
Authentication Relates to establishing the identity of an actor associated with the computation, or the identity of the endpoint involved in the

computation through a certain channel. Secondary classes: Authentication Bypass, Faulty Endpoint Authentication, Missing
Endpoint Authentication, Digital Certificate, Missing Authentication, Insecure Authentication Policy, Multiple Binds to the
Same Port, Hardcoded Sensitive Data, Unrestricted Authentication.

Access Control Relates to validating resource owners and their permissions. Secondary classes: Insecure Resource Access, Insecure Resource
Permissions, Access Management.

Privilege Relates to code regions with inappropriate privilege level. Secondary class: Privilege.
Channel Relates to various protocol issues. Secondary classes: Channel Attack, Protocol Error.
Cryptography Relates to cryptography issues. Secondary classes: Broken Cryptography, Weak Cryptography.
Malware Relates to any malicious code present in the software systems. Secondary classes: Malicious Code, Covert Channel.
Predictability Relates to random number generators and their properties. Secondary class: Predictability.
UI Relates to security issues of User Interfaces (UI). Secondary classes: Feature, Information Loss, Security.
Other Relates to miscellaneous architecture, design, and implementation issues. Secondary classes: Architecture, Design, Imple-

mentation, Compiler.

bug reports being marked as security related (i.e., 66% of
all issues).

The basic facts of the two missions and the three datasets
are summarized in Table 2.

TABLE 2. BASIC FACTS OF THE THREE DATASETS

Mission Size Total Security Dataset
issues issues

Ground 1.3 MLOC 1,779 133 Ground mission IV&V issues
Flight 924 KLOC 506 157 Flight mission IV&V issues

569 374 Flight mission Developers issues

5. Vulnerability profiles

5.1. Ground Mission IV&V Issues

Figure 1 shows the distribution of security and non-
security issues across different Issue Categories. As shown,
the Code category contained 95% of all security issues (i.e.,
127 out of 133). Even though the Design category had the
highest number of issues, only around 2% (i.e., three out of
133) of security issues belonged to this category.

Figure 2 shows the distribution of security and non-
security issues across different Issues Types, which provide
more detailed categorization than the Issue Category. Two
most dominating issue types were Incomplete Code and
Incorrect Code, which together contained 84% (112 of 133)
of all security related issues.

Figure 1. Issue Categories of the Ground mission IV&V issues

Figure 3 shows the distribution of security and non-
security issues across Subsystems, ordered from the subsys-
tem with the highest total number of issues to the subsystem
with the least issues. Subsystem 1 and 2 contributed 86% of
all security issues and 70% of all issues, which shows that
Pareto principle1 applies to security related issues, as to the
total number of issues.

Figure 4 shows the distribution of security and non-
security issues with respect to the analysis method used to
detect the issues. The largest proportion of total issues (30%
of all issues) was found using Design Analysis; however
this method did not uncover any security issues. The vast
majority of security issues were discovered using Imple-
mentation Analysis (Static Code Analysis). Specifically, this

1. Pareto principle indicates a skewed distribution of software faults, that
is, that majority of faults (e.g., roughly 80%) are located in small percent
(e.g., 20%) of software units (e.g., Subsystems or files.)

4



Figure 2. Issue Types of the Ground mission IV&V issues

method led to finding 91% of all security related issues2. It
should be noted that the amount of time and effort invested
in using each Analysis Method affect the number of issues
(including security related issues) detected by that method.
Unfortunately, the time and effort used for each Analysis
Method were not tracked, and therefore we cannot draw
conclusions about the effectiveness of the Analysis Methods
based on the results presented in Figure 4.

Figure 3. Distribution of Ground mission IV&V issues across subsystems

The distribution of security and non-security issues

2. Static code analysis tools are known to produce high number of false
positives. In this case the output produced by the static code analysis tool
was manually inspected by the IV&V analysts and only true positive warn-
ings were entered as bug reports in the issue tracking system. Remember
that only closed bug reports (i.e., fixed vulnerabilities) are included in the
analysis.

across different Severity levels is shown in Figure 5. NASA’s
Severity levels range from 1 to 5, with 1 being the most
severe. As shown in Figure 5, 86% of all security related
issues had severity level 3, as well as the majority of all
issues (72%).

Figures 6 and 7 detail the phase in which each issue
was introduced and found, respectively. The majority of
security issues (91%) were introduced in the Implementation
Phase, which indicates how hard it is to implement secure
code. This result also shows that efforts to enforce secure
coding standards would lead to cost effective improvement
of mission’s security. Comparing Figures 6 and 7 can be
observed that the phase in which issues were found closely
followed the phase in which they were introduced, which
illustrates the effectiveness of the IV&V activities. (Note
that this mission is under development and has not yet
entered the Test phase.)

Figure 5. Severity levels of Ground mission IV&V issues

Figure 6. Ground mission IV&V issues: Phase Introduced

Figure 7. Ground Mission IV&V issues: Phase Found

Next, we focus on the distribution of the security related
issues across the CWE-888 Primary classes. As can be seen
in Figure 8, the IV&V security issues of the ground mission
belonged to only 11 out of the total 21 CWE-888 primary
classes. The Memory Access dominated, containing 53% of
all security issues. Furthermore, only five Primary classes
(i.e., Memory Access, Unused Entities, Exception Manage-
ment, Risky Values, and Resource Management) contained
around 92% of all security issues. Interestingly, this result
shows that the Parato principle applies to the distribution of

5



Figure 4. Distribution of Ground mission IV&V issues across Analysis Methods

the security issues across Primary classes as well.
The remaining dominating primary classes Unused En-

tities, Exception Management, and Risky Values were com-
prised mainly of the secondary classes Dead Code, Am-
biguous Exception Type, and Glitch in Computation, respec-
tively.

Figure 8. Ground mission IV&V issues: Distribution across CWE-888
Primary Classes. The numbers in brackets represent the specific CWE
numbers of the Primary Classes.

5.2. Flight Mission IV&V Issues

As shown in Figure 9, 92% of all security related
issues were associated with the Code Issue Category. This
distribution of security related issues is consistent with the
results for the Ground mission IV&V issues.

Figure 9. Issue Categories of Flight mission IV&V issues

Figure 10 shows the distribution of Flight mission IV&V
issues across Issue Types, which provide more detailed
information than Issue Category. The results show that

security issues were predominately associated with Incorrect
Code, Incomplete Code, Missing Code, and Extraneous
Code.

Figure 10. Issue Types of Flight mission IV&V issues

The distribution of issues across Flight mission subsys-
tems presented in Figure 11 shows that 88% of all security
issues (and 88% of all issues) fell into three out of five
subsystems. (Note that Subsystems in Figure 11 are ordered
by the total number of issues.)

As shown in Figure 12, Severity levels 3 and 4 together
contained 79% of all security issues and 86% of all issues.
The fact that not many security issues had high Severity
levels (i.e., 1 and 2) is consistent with the Ground mission
IV&V security related issues.

Figures 13 and 14 also show results consistent with
the Ground Mission IV&V issues, with the majority of
security issues introduced (85%) and found (85%) in the
Implementation phase. Again, the phase in which an issue
was found closely followed the phase in which the issue

6



Figure 11. Distribution of Flight Mission IV&V issues across Subsystems

Figure 12. Severity levels of Flight Mission IV&V issues

was introduced. The Flight Mission IV&V Issues dataset,
in addition, included information on the phase in which the
issues were resolved. As can be seem in Figure 15, 75% of
security related issues were resolved in the Implementation
phase, and the remaining 25% were resolved in the Testing
phase. Interestingly, no security issues were resolved in the
Design phase, even though some were introduced and found
in that phase.

Figure 13. Flight Mission IV&V issues: Phase Introduced

Figure 14. Flight Mission IV&V issues: Phase Found

Figure 15. Flight Mission IV&V issues: Phase Resolved

Next, we focus on the distribution of security issues

across the CSE-888 Primary classes, which is presented in
Figure 16. Similarly as in the case of the Ground Mission
IV&V Issues dataset, IV&V issues of the Flight mission
belonged to only 9 out of the 21 Primary classes, with four
dominating classes: Other, Risky Values, Memory Access,
and Unused Entities.

Figure 16. Flight Mission IV&V issues - Distribution of issues across CWE-
888 Primary Classes. The numbers in brackets represent the specific CWE
numbers of the Primary Classes.

5.3. Flight Mission Developers Issues

Figure 17 shows the distribution of security and non-
security issues across Issue Types3. The two Issues Types –
Incorrect Implementation and Incorrect Operation or Un-
expected Behavior – significantly outnumbered the other
Issue Types. (The Developer’s issue tracking system did
not contain the Issue Category field, which was present and
populated in the IV&V issue tracking system.)

Figure 17. Issue Types of Flight mission Developer issues

Figure 18 presents the distribution of security and non-
security issues across the Flight mission Subsystems. The
finding is similar to the previous datasets, again proving
the Pareto principle, with 88% of all security issues found
in only four subsystems (out of thirteen), which together
accounted for 89% of all issues.

While the severity levels used by the IV&V analysts
ranged from 1 to 5, the levels found in this dataset were:
Minor, Moderate, and Critical. As shown in Figure 19, the
results related to the severity of the Flight mission Develop-
ers issues were consistent to the previously analyzed datasets
– the moderate severity levels dominated, containing 86%
of the security issues, and 85% of the total number of

3. Note that the values of the Issue Types used in the Flight Mission
Developers Change Requests system are different than the Issues Types
used for both the Ground and Flight missions IV&V issues.

7



Figure 18. Distribution of Flight mission Developer issues across Subsys-
tems

issues. Only 4% of all issues, and 4% of security issues
were determined to be critical.

Figure 19. Severity levels of Flight mission Developer issues

This dataset contained information about the phase in
which the issues were found, but no information on when
they were introduced or resolved. Also note that the values
of the Phases Found are more granular than the ones in
case of the IV&V issues of both the Flight and the Ground
missions. As shown in Figure 20, most issues were found
during the following there phases listed in decreasing order:
Build Verification, Build Integration, and Code Implementa-
tion. These more fine grained phases are consistent with the
Phase Found categories that dominated the IV&V issues.

Figure 20. Flight mission Developer issues: Phase Found

Next we focus on the classification of the security related
issues using the CWE-888 view. Similarly as for the other
two datasets, as shown in Figure 21, only 13 of 21 Primary
class were observed, with three dominating classes: Risky

TABLE 3. COMPARISON OF PRIMARY CLASSES (WITH NONZERO
SECURITY ISSUES) ACROSS THE THREE DATASETS. THE FIVE

DOMINATING CLASSES ARE SHARED GRAY.

Primary CWE-888 Class Ground Mission Flight Mission
IV&V
Issues

IV&V
Issues

Developer
Issues

API (887) 1.9%
Authentication (898) 0.9%
Channel (902) 2.7% 6.0%
Exception Management (889) 10.8% 8.2% 27.2%
Memory Access (890) 54.6% 18.3% 12.8%
Memory Management (891) 0.4%
Other (907) 1.5% 24.5% 7.1%
Predictability (905) 0.8%
Privilege (901) 1.2%
Resource Management (892) 6.9% 3.0%
Risky Values (885) 8.5% 28.3%
Synchronization (894) 0.8% 3.4%
Tainted Input (896) 1.5% 8.2%
UI (906) 0.9% 1.1%
Unused Entities (886) 14.6% 14.5 3.8%

Values, Exception Management, and Memory Access. The
Primary class Memory Access consisted of 22 security
issues in the Secondary class Faulty Buffer Access and the
remaining 12 security issues in the Secondary class Faulty
Pointer Use.

Figure 21. Flight mission Developer issues - Distribution across CWE-888
Primary classes

6. Comparison of the results across datastes

In this section we compare the results across all three
datasets. We start with comparing the distribution of security
issues across the CWE-888 Primary classes, extracted from
the results presented in subsections 5.1, 5.2, and 5.3. As
can be seen from Table 3 and Figure 22, even though there
are fifteen (out of 21) Primary classes that had nonzero
security issues for at least one dataset, the vast majority
of security issues were distributed among five dominant
Primary classes: Exception Management, Memory Access,
Other, Risky Values, and Unused Entities. Specifically, these
five Primary classes together contained 90%, 87%, and
79% of the security issues in the Ground mission IV&V,
Flight mission IV&V and Flight mission Developers issues,
respectively. Interestingly, Primary classes which had zero
security issues in one or two datasets made up for only very
small proportion (from 0.4% to at most 7%) of the security
issues in the dataset they appeared in.

Table 4 shows the dominating CWE-888 Primary classes
along with their corresponding Secondary classes, which
provide more detailed information on the nature of security

8



Figure 22. Distribution of security issues across CWE-888 Primary classes,
for all three datasets

issues. The Secondary classes under the Exception Manage-
ment Primary class included: Ambiguous Exception Type,
Incorrect Exception Behavior, and Unchecked Status Condi-
tion. Security issues assigned to the Primary class Memory
Access were distributed across the Secondary classes Faulty
Buffer Access and Faulty Pointer Use. These categories
include common programming errors such as null pointer
dereferences and buffer overflows.

The Primary class Other had security issues distributed
predominately in the Secondary class Implementation,
which is based around weaknesses such as coding standards
violation or containment errors. The Secondary classes De-
sign and Architecture had significantly less issues. (Note
that issues were assigned to the Primary class Other and the
corresponding Secondary classes when they were related to
these classes and could not be placed into any other class.)

The Primary class Risky Values consisted of the Sec-
ondary class Glitch in Computation, which deals with cal-
culation errors such as divide by zero error or a function
call with an incorrect order of arguments.

The Primary class Unused Entities consisted predom-
inately of the Dead Code and much less of the Unused
Variable Secondary class.

TABLE 4. COMPARISON OF THE SECONDARY CLASSES, ONLY FOR THE
FIVE DOMINANT PRIMARY CLASSES.

Secondary class Ground Mission Flight Mission
IV&V IV&V Developer
Issues Issues Issues

Exception Management (889)
Ambiguous Exception Type (960) 7.7%

Incorrect Exception Behavior (961) 4.5% 14.0%
Unchecked Status Condition (962) 3.1% 3.6% 13.2%

Memory Access (890)
Faulty Buffer Access (970) 4.6% 12.7% 8.3%

Faulty Pointer Use (971) 50.0% 5.5% 4.5%
Other (907)

Architecture (975) 0.9%
Design (977) 2.6%

Implementation (978) 1.5% 23.6% 4.5%
Risky Values (885)

Glitch in Computation (998) 8.5% 21.8% 28.3%
Unused Entities (886)

Dead Code (561) 14.6% 10.0% 3.4%
Unused Variable (563) 4.5% 0.4%

Table 5 summarizes the main findings as they pertain to
RQ1 - RQ5 and helps identifying trends that are consistent
across datasets (i.e., RQ6). The percentage of security issues
was the lowest in the Ground mission IV&V dataset (9%
if testing issues are excluded, 20% if they are included)
followed by the Flight mission IV&V dataset (41%) and
it was the highest in the Flight mission Developers dataset

(66%). The lowest proportion of security related issues in the
Ground mission IV&V dataset may be due to the fact that
this mission is still under development and that the testing
phase has not yet begun. Unfortunately, the Ground mission
Developers issues were not available to the research team, so
we cannot confirm the trend observed in the Flight mission,
which exhibited higher proportion of security issues in the
Developers dataset than in the IV&V dataset.

Interestingly, the Code related security issues dominated
both the Ground mission IV&V security issues and the
Flight mission IV&V security issues, with 95% and 92%,
respectively. This is an important finding because it indicates
that significant number of vulnerabilities are introduced dur-
ing the implementation. Therefore, enforcing secure coding
practices and verification and validation focused on coding
errors (for example by using check list for inspection) would
be cost effective ways to improve mission’s security. (Note
that the Flight mission Developers issues dataset did not
contain the data in Issue Category.)

The location of security issues, as the location of soft-
ware bugs in general, followed the Pareto principle. Specif-
ically, around 90% the security issues were located in two
to four subsystems, for all three datasets. This result is con-
sistent with related works focused on fault characterization
[5], [6], [8], and [25].

In both the Ground mission and Flight mission IV&V
issues datasets majority of issues (i.e., 95% and 85%, respec-
tively) were introduced in the Implementation phase. This is
consistent with the fact that majority of security issues were
code related. It is important that software vulnerabilities
(i.e., security related issues) are fixed in a timely manner.
The good news is that in most cases the phase in which
the issues were found was the same as the phase in which
they were introduced. The most security related issues of
the Flight mission Developers issues dataset were found
during Code Implementation, Build Integration, and Build
Verification, which is consistent with the other datasets.
However, the data on the Phase these issues were introduced
were not available for the Flight mission Developers issues
dataset.

With respect to severity, the results showed that the
security issues, as the majority of all issues, were with
moderate severity across all three datasets.

The final row in Table 5 lists the five dominating Pri-
mary CWE-888 classes (out of 21 classes), which together
contributed from around 80% to 90% of all security issues
in each dataset. This again proves the Pareto principle of
uneven distribution of security issues across CWE classes
and supports the fact that addressing these dominant security
classes provides the most cost efficient way to improve the
mission security.

7. Threats to Validity

In this section we discuss the threats to validity to our
study. Construct validity is concerned with whether we
are measuring what we intend to measure. The number and
classes of identified security issues depend on the quality
of software artifacts, as well as the level of provided details
related to security. In the case of the Ground mission IV&V
dataset, there was a significant number of security related

9



TABLE 5. MAIN FINDINGS ACROSS ALL DATASETS

Ground mission IV&V issues Flight mission IV&V issues Flight mission Developers issues RQ
% Security Issues 9% 41% 66%
Security Issues
Category 95% Code related 92% Code related Data not available RQ1

Subsystem 86% found in two subsystems
(70% of all issues)

88% in three subsystems (88% of
all issues)

88% in four subsystems (90% of
all issues)

RQ2

Phase Introduced 95% in the Implementation Phase 85% in the Implementation Phase Data not available
Phase Found Followed closely the phase intro-

duced distribution
Followed closely the phase intro-
duced distribution

Most found during Code Imple-
mentation, Build Integration, and
Build Verification

RQ3

Severity of secu-
rity issues Level 3 dominated (86%) Levels 3 and 4 dominated (to-

gether 78%).
Moderate dominated (84%) RQ4

Five (out of 21)
most frequent Pri-
mary Classes

Exception Management 10.8%
Memory Access 54.6%
Other 1.5%
Risky Values 8.5%
Unused Entities 14.6%

Total 90%

Exception Management 8.2%
Memory Access 18.2%
Other 24.5%
Risky Values 21.8%
Unused Entities 14.5%

Total 87%

Exception Management 27.2%
Memory Access 12.8%
Other 7.1%
Risky Values 28.3%
Unused Entities 3.8%

Total 79%

RQ5

issues that were tagged as testing related. Since no CWE
exists that covers such cases and testing issues are not
related to software itself, these testing related security issues
were not included in the further analysis. Another threat to
construct validity is related to the fact that, in general, some
security issues could be correctly classified into multiple
CWE classes. In our case, this threat was partially mitigated
by the fact that the selected classification schema CWE 888
has a hierarchical structure. Even more, the number of issues
fitting into multiple CWE classes was small, and for these
cases the most relevant of the possible classes was selected.

Internal validity threats are concerned with unknown
influences that may affect independent variables. Data qual-
ity is one of the major concerns to the internal validity. It
should be noted that NASA issue tracking systems follow
high record keeping standards, which provides some guar-
antee for the quality and consistency of data. As mentioned
in section 4, in the case of the Flight mission datasets (both
the IV&V issue and Developers issues) software issues were
not tagged as security related and security aspects of soft-
ware bugs were not explicitly addressed in the descriptions.
Therefore, it is possible that the available information did
not account for potential security implications.

Conclusion validity threats impact the ability to draw
correct conclusions. One threat to conclusion validity is
related to data sample sizes. The work presented in this
paper is based on three dataset, with a total of 2,854 issues,
out of which 664 were classified security related. The num-
ber of security issues per dataset ranged from 133 to 374,
which are sufficiently large numbers to develop vulnerability
profiles. The results and conclusions may be affected by the
fact that the types of security issues (and consequently the
identified Primary and Secondary classes) may depend on
the validation and verification (V&V) methods used, as well
as the amount of time and effort expended on using these
methods. The analysis methods in our case were explicitly
available for only one of the datasets. However, we have
confirmed with the NASA personnel that the V&V and
IV&V activities for both missions (and the three datasets)
spanned the whole software lifecycle and were focused on
different software artifacts, including requirements, design,

and code.
External validity is concerned with the ability to gen-

eralize results. The breadth of this study, including the facts
that (1) it is based on two large NASA mission containing
around one millions lines of code each and (2) the missions
were developed by different teams over multiple years, allow
for some degree of external validation. Nevertheless, we
cannot claim that the results would be valid across all
software products. Generalizations are based on multiple
empirical studies that have replicated the same phenomenon
under different conditions. Since most of the analyses were
done for the first time in this paper, the external validity
remains to be established by future similar studies that will
use other software products as case studies.

8. Conclusion

While prior empirical work on characteristics of soft-
ware faults (i.e., bugs) and failures exists, few works focused
on analyses of software application vulnerabilities have
been published. This paper aims at filling out that gap and
contributing towards building an evidence-based knowledge
about different aspects of software vulnerabilities.

The empirical findings presented in the paper are based
on the data extracted from the issue tracking systems of
two NASA missions. Using the extracted data, organized
in three datasets, we built so called security vulnerability
profiles that address several aspects of software application
vulnerabilities, such as where and when the security vul-
nerabilities were introduced and what were the dominating
vulnerabilities classes. An important aspect of this paper
is the identification of trends that are consistent across the
three datasets.

The main findings of this work indicate that the majority
of vulnerabilities were code related and were introduced
in the Implementation phase, and that the Pareto principle
(i.e., uneven distributions) applied both to the location of
vulnerabilities across subsystems and to the distribution
across different vulnerability classes. It appears that devel-
opment and testing efforts focused on these vulnerability
prone subsystems and dominant security classes provide
the most cost efficient ways to improve missions’ security.

10



We believe that mining the information related to software
vulnerabilities is helpful for building a knowledge base that
can be reused on other similar systems. Exploring the same
research questions on other case studies (from the space
and other domains) would test the generalizability of our
findings and help establishing characteristics of software
application vulnerabilities that are invariant across different
software systems.

Acknowledgments

This work was funded in part by the NASA Software
Assurance Research Program (SARP) in 2016 fiscal year.
Any opinions, findings, and recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the funding agency. The authors thank
the following NASA personnel for their support: Brandon
Bailey, Craig Burget, and Dan Painter.

References

[1] “NASA cybersecuirty presentation,” NASA Office of the Chief Infor-
mation Officer, Nov 2014.

[2] “NASA cybersecurity: An examination of the agency’s information
security,” Office of Inspector General, Testimony before the Subcom-
mittee on Investigations and Oversight, House Committee on Science,
Space, and Technology, Feb 2012.

[3] K. Osborn, “Air force faces increasing space threats: Shelton,” in
DefenseTech, Sep 2013.

[4] “Inadequate security practices expose key NASA network to cyber
attack,” Office of Inspector General, Audit report, May 2011.

[5] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and fail-
ures in a complex software system,” IEEE Transactions on Software
Engineering, vol. 26, no. 8, pp. 797–814, Aug 2000.

[6] M. Hamill and K. Goseva-Popstojanova, “Common trends in software
fault and failure data,” IEEE Transactions on Software Engineering,
vol. 35, no. 4, pp. 484–496, July 2009.

[7] ——, “Exploring the missing link: an empirical study of software
fixes,” Software Testing, Verification and Reliability, vol. 24, no. 8,
pp. 684–705, 2014.

[8] ——, “Exploring fault types, detection activities, and failure severity
in an evolving safety-critical software system,” Software Quality
Journal, vol. 23, no. 2, pp. 229–265, 2015.

[9] ——, “Analyzing and predicting effort associated with finding and
fixing software faults,” Information and Software Technology, vol. 87,
pp. 1–18, 2017.

[10] M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical investiga-
tion of fault types in space mission system software,” in IEEE/IFIP
International Conference on Dependable Systems Networks (DSN),
June 2010, pp. 447–456.

[11] J. Alonso, M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical
investigation of fault repairs and mitigations in space mission system
software,” in 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), June 2013, pp. 1–8.

[12] A. K. Maji, K. Hao, S. Sultana, and S. Bagchi, “Characterizing
failures in mobile OSes: A case study with Android and Symbian,”
in 21st IEEE International Symposium on Software Reliability Engi-
neering, Nov 2010, pp. 249–258.

[13] F. Frattini, R. Ghosh, M. Cinque, A. Rindos, and K. S. Trivedi,
“Analysis of bugs in Apache Virtual Computing Lab,” in 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), June 2013, pp. 1–6.

[14] X. Xia, X. Zhou, D. Lo, and X. Zhao, “An empirical study of bugs in
software build systems,” in 13th International Conference on Quality
Software, July 2013, pp. 200–203.

[15] O. Alhazmi, Y. Malaiya, and I. Ray, “Measuring, analyzing and
predicting security vulnerabilities in software systems,” Computers
& Security, vol. 26, no. 3, pp. 219 – 228, 2007.

[16] H. Venter, J. Eloff, and Y. Li, “Standardising vulnerability categories,”
Computers & Security, vol. 27, no. 3–4, pp. 71 – 83, 2008.

[17] “Common Weakness Enumeration,” January 2017,
https://cwe.mitre.org/ (accessed May 4, 2017).

[18] “CWE-2000: Comprehensive CWE dictionary, MITRE Corporation,”
https://cwe.mitre.org/data/slices/2000.html.

[19] “CWE-1000: Research concepts, MITRE Corporation,”
https://cwe.mitre.org/data/graphs/1000.html.

[20] N. Mansourov, “Software fault patterns: Towards formal compli-
ance points for CWE,” 2011, [online] https://buildsecurityin.us-
cert.gov/sites/default/files/Mansourov-SWFaultPatterns.pdf.

[21] “CWE-888: Software fault pattern (SFP) clusters, MITRE Corpora-
tion,” https://cwe.mitre.org/data/graphs/888.html.

[22] K. Tsipenyuk, B. Chess, and G. McGraw, “Seven pernicious king-
doms: a taxonomy of software security errors,” IEEE Security Pri-
vacy, vol. 3, no. 6, pp. 81–84, Nov 2005.

[23] “CWE-700: Seven pernicious kingdoms, MITRE Corporation,”
https://cwe.mitre.org/data/definitions/700.html.

[24] “CWE-699: Development concepts, MITRE Corporation,”
https://cwe.mitre.org/data/graphs/699.html.

[25] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul.
2009.

11


