
  

 

Abstract— This paper discusses the concept and architecture 
of a machine learning based router for delay tolerant space 
networks. The techniques of reinforcement learning and 
Bayesian learning are used to supplement the routing decisions 
of the popular Contact Graph Routing algorithm. An 
introduction to the concepts of Contact Graph Routing, Q-
routing and Naïve Bayes classification are given. The 
development of an architecture for a cross-layer feedback 
framework for DTN protocols is discussed. Finally, initial 
simulation setup and results are given. 

I. INTRODUCTION 

This paper focuses on the development of a machine 
learning based routing algorithm for interplanetary delay 
tolerant networks. Many routing algorithms have been 
developed for both opportunistic and deterministic delay 
tolerant networks. Resource Allocation Protocol for 
Intentional DTN (RAPID )[1], Probabilistic Routing Protocol 
using History of Encounters and Transitivity (PRoPHET) [2], 
Spray-and-Wait [3], and Delay Tolerant Link State Routing 
(DTLSR)[4] are among the most well-known for opportunistic 
networking scenarios. Within the realm of interplanetary 
networking, one of the most popular routing algorithms is 
Contact Graph Routing [5] or CGR, which uses the known 
contact times and distances of scheduled network assets to 
determine an efficient route. Routing algorithms intended for 
delay tolerant networks and in particular space networks must 
address several issues. Flight hardware is often limited in 
terms of processing capability and memory resources, so the 
algorithm must be efficient and not use excessive 
computations or require a large amount of data storage. In deep 
space, there may be a significant propagation delay between 
network nodes, so the trading of network status data becomes 
costly and may not reflect the current state of the network. In 
addition, communication links are often asymmetric, so that a 
large amount of data may be sent from a network node, but 
there may be limited bandwidth to receive acknowledgments 
or other status information.  

The work here is an attempt to take a small step towards a 
more cognitive communications paradigm by studying 
popular machine learning algorithms which may be used to 
enhance the functionality of existing routing algorithms. Two 
methods which readily adapt themselves to cognitive routing 
are reinforcement learning and Bayesian learning. We present 
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a hybridized approach which would apply both to the basic 
Contact Graph Routing algorithm to allow it to more readily 
adapt to changes in the network, while still utilizing many of 
the strengths of CGR. 

 Delay tolerant networking is an overall architecture and 
set of protocols that have been developed to improve 
networking capabilities in a variety of scenarios in which an 
end-to-end path may not always exist and latency between 
nodes may be prohibitively long for some conventional 
protocols. DTN techniques have been applied to networks in 
rural developing regions, mobile networks in which an end-to-
end path may not exist and space networking. This paper 
focuses on techniques that have been applied to space 
networking in particular. Space networks have several 
defining features which impact their communication 
operations. Each node in the network typically has predictable 
periods of contact with other nodes, due to the fact that orbital 
characteristics impact when communication assets will be in 
sight of one another. Deep space communications are 
characterized by long propagation delays which make frequent 
handshaking or trading of feedback signals between nodes 
costly, and algorithms which rely on current information from 
other nodes may make decisions based on old information, 
resulting in poor performance.  In addition, high error rates 
may result in multiple retransmissions and require that data are 
stored until it can be received successfully. Data must also be 
stored between contact opportunities, thus an effective plan of 
managing data storage space must be developed or it is 
possible that the node will have to either stop accepting 
incoming data or begin to delete existing data if its capacity 
has become exhausted.  

Delay tolerant networking uses a store and forward 
approach to mitigate the effects of long delays and disruptions. 
Bundles [6], the protocol data unit used in DTNs, are kept in 
longterm storage until there is an opportunity for contact with 
another node. If this neighboring node is the bundle's 
destination or if it leads to a path to the destination, the bundle 
may be transmitted to the neighboring node. Bundle protocol 
is an overlay protocol which can be used to transfer data across 
heterogeneous networks. As such, a variety of lower level 
protocols including TCP/IP, UDP, and LTP [7] among others, 
may be used.  
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There has been much previous work done regarding 
machine learning routing and extensive work done on the topic 
of probabilistic routing in opportunistic networks. The 
approach taken in this paper differs in several ways. 
Probabilistic approaches such as PRoPHET [2] and 
Opportunistic CGR (OCGR) [8] tend to try to predict the 
likelihood that two nodes will encounter one another. 
Furthermore, machine learning methods such as Q-routing [9] 
have not addressed the challenges specifically found in space 
networks, such as the potentially limited bandwidth and long 
one-way times for feedback data. The method presented here 
attempts to use the attributes of a given contact period to 
classify its degree of reliability among a set of potential routing 
paths. The algorithm will use data already available from the 
lower protocol layers to provide feedback to its decision 
making process. 

II. INTERPLANETARY SCHEDULING AND ROUTING 

A. Scenario 
The DTN routing problem best lends itself to a network of 

multiple nodes with multiple potential paths as might be 
found in a deep space scenario. An example of such a network 
might consist of multiple surface assets such as Martian 
rovers that perform science data collection on the planet’s 
surface. The resulting data are transmitted to relaying 
satellites such as the Mars Reconnaissance Orbiter, among 
others. The orbiter then sends the data to the earth ground 
station. As the Deep Space Network expands, more nodes and 
more potential route selections will exist. Figure 1 shows the 
conceptual network of nodes this work focuses on. The 
network consists of three deep space surface assets such as 
rovers, three potential relay satellites and three earth ground 
stations. Each rover (nodes 0-2) may transmit and receive 
from each relay satellite (nodes 3-5) which then may forward 
the data to any of the 3 earth ground stations (nodes 6-8). The 
ground stations are interconnected by high bandwidth links. 

 
Figure 1. Conceptual Deep Space Scenario 

B. DTN Routing Algorithms 
Contact Graph Routing [5] (CGR) is a popular DTN 

routing algorithm, particularly for space networks which have 
highly periodic contacts between nodes. It is typical in such 
networks that communication will be scheduled (manually) 
days, weeks or months in advance. In addition to human 
scheduling constraints such as operator availability and 
sharing resources among multiple users, orbital constraints on 
the communication assets make it relatively straight forward 
to know when and for how long two nodes will be physically 
able to contact one another. Contact Graph Routing uses this 
upfront knowledge to determine suitable routes based on 

contact times. To do this, CGR uses a contact plan as input to 
the CGR routing algorithm. The information in the contact 
plan is entered by users either through update commands in a 
DTN administration interface program or as configuration 
files.    

CGR begins with basic network information which is 
obtained from user supplied configuration files. These files 
define a set of contact messages and a set of range messages. 
The contact messages contain the start and stop time that a 
given contact opportunity pertains to, the transmitting node 
number, the receiving node number and the planned data rate 
between the nodes in bytes per second. The range messages 
consist of the start and stop time that a given range pertains to, 
the transmitting node, the receiving node and the anticipated 
distance between the two nodes in light seconds. Upon 
initialization, destination variable D is set to the bundle’s final 
destination and deadline variable X is set to the bundle’s 
expiration time. Bundle forfeit time is set to infinity and the 
best-case delivery time is set to zero. The list of proximate 
(neighboring) nodes is empty. A list of excluded nodes is 
populated with the node from which the bundle was received 
and all excluded neighbors for the destination node. 

When a new bundle arrives to be forwarded to another 
node the CGR algorithm begins with the contact review 
procedure as shown in Figure 2.  

 

CGR Contact Review Procedure: 
Append D to the list of excluded nodes 
For each xmit m in node D’s xmit list: 
 If m’s start time is after the deadline X: 
  Skip xmit m 
 Else: 
  If D is a neighbor of the local node S: 

Compute Estimated Capacity Consumption of 
bundle for tx from local node to D 

If m’s residual capacity < Estimated Capacity 
Consumption: 

     Skip xmit m 
    Else: 

If D is already in the list of proximate nodes: 
      Skip xmit m 
     Else: 
      Is m’s stop time < forfeit time: 
       Set forfeit time to m’s stop time 
       Add D to list of proximate nodes 

Compute forfeit and best case delivery 
times to tx to D 
Remove D from excluded node, revert 
forfeit and best case times 

  Else: 
If node S is already in the list of excluded nodes: 

    Skip xmit m 
   Else: 
    If m’s stop time < forfeit time 
     Set forfeit time to m’s stop time 
     If m’s start time > best-case delivery time 

Set best-case delivery time to m’s start time 
      Compute estimated forwarding latency 

Invoke Contact Review Procedure 
recursively with D=S and X =min(T,L) 
Remove D from list of excluded nodes, 
revert forfeit and best case times 

Figure 2. CGR Contact Review Procedure [5] 



  

For simplicity, we focus on the original algorithm given in 
[5] and do not include the several updates that have been made 
to the algorithm such as ETO-CGR (Earliest Transmission 
Opportunity CGR) [10] and overbooking management [10], 
though it is recognized that these are very relevant 
improvements. 

III. MACHINE LEARNING  

As a new approach to routing within a network which may 
adhere to deterministic schedules as well as be subject to 
uncertain disruptions, we propose a machine learning based 
routing framework. This solution will provide the adaptive 
benefits found in opportunistic routing strategies, while still 
adhering to user specified constraints which often exist within 
interplanetary networking. To accomplish this, our intelligent 
router uses a hybrid approach of both Bayesian and 
reinforcement learning. In addition, we leverage many of the 
benefits of the CGR algorithm, in that nodes are not required 
to transmit additional hand-shaking or status update packets, 
since this algorithm uses link state knowledge from the lower 
levels of the network stack. 

A. Reinforcement Learning 
Reinforcement learning is a commonly used machine 

learning algorithm in which the learner discovers how to 
achieve a desired outcome by maximizing a numerical reward 
[11]. Reinforcement learning systems typically consist of four 
elements: a policy, a reward function, a value function, and in 
some cases, a model of the environment [12].  Q-routing is an 
adaptation of the Q-learning algorithm developed for packet 
routing [9]. Q-routing uses the estimated end-to-end packet 
delivery time for the basis of its reward table, or Q-table. The 
table contains a row for each neighbor that a node has. Each 
column corresponds to a destination node. The entry for the 
row-column pairs in the table is the estimated time required 
for a packet to be received at the destination if it was sent from 
one of the possible neighboring node choices. 

Figure 3 shows a single node in the network and links to 
each of its neighboring nodes. Its Q-table contains a row for 
each link to a neighbor and a column for every possible 
destination in the network. The index of each column 
corresponds to each node address. The entry corresponding to 
the node’s own address is given a value of 0 (or some other 
indication of an invalid value), since it will not transmit data 
to itself. There are several approaches that can be taken for 
the initial estimate. All entries may be initialized to zero or a 
random value. Alternatively, a method can be developed to 
try to calculate an initial estimate of the end-to-end delays. 
The learner will determine what neighboring node to send a 
packet to based on which node minimizes the delivery time. 
Once the packet has been sent to the chosen neighboring node, 
the neighbor will reply back with what it believes the 
remaining time will be to deliver the packet to its final 
destination. This response will be used by the first node to 
update its Q-table. Each update should incrementally improve 
the accuracy of the Q-table, since nodes closer to the 
destination should have a more accurate idea of the remaining 
delivery time [9].  

 
Figure 3. Node with 3 Links and Corresponding Q-table 

 
Pseudo-code for the Q-routing algorithm is shown in Figure 

4. The variable η represents the learning rate, t is the 
transmission delay over the link from node x to node y, and q 
is the queuing delay at node y. When a packet arrives it enters 
the node’s inbound queue. The Q-routing algorithm will 
compare the Q-values (delivery time estimates) for 
transmitting the packet to its destination via each neighboring 
node and select the neighbor with the smallest Q value. When 
the packet arrives at its destination, the receiver responds back 
with its own estimated delivery time. This is then used to 
update the Q-table entry corresponding to that destination. 

B. Bayesian Learning 
The concept of Bayesian machine learning is based on the 

conditional probability that a certain outcome has some 
likelihood given that it possesses a particular set of attributes. 
In particular, this paper focuses on the Naïve Bayes classifier. 
This learning method is used to classify a new instance or 
occurrence within a set of possible values based on previous 
training data. The learner will determine the probability that a 
certain set of attributes most likely correspond to a specific 
classification within the training data. When a new occurrence 
is presented to the learner, the training probabilities are used 
to determine the value v of the new instance from a finite set 
of values V  based on its attribute vector <a1,a2,...,an> [11].  

Bayesian learning is based on calculating the most probable 
outcome, often called the maximum a posteriori or MAP 

Q-Routing Algorithm 
While(true): 
 Select a packet from queue 

Select node y’ from neighboring nodes with 
minimal Q(y,d) 

 Wait for response from y’ 
Update Q(y’,d) in the current node using the new 
estimate from y’ 
Qx(y’, d)=Qx(y’, d)+η[Qy’(z’, d)+t+q-Qx(y’, d)] 

end while 
If packet received: interrupt while and do: 
 Receive packet p from node s 
 Select z’ with a minimal Q(z,d) 
 Send the value of Q(z,d) back to node s 

Figure 4. Q-Routing Algorithm [9] 



  

hypothesis. The Naïve Bayes classifier attempts to find the 
most probable value for a current instance VMAP given its 
known attributes <a1, a2,...,an> [11]. Equation 3 calculates the 
MAP hypothesis as the probabilities of observing the value vj 
in conjunction with the attributes <a1, a2,...,an>. This is easily 
found by taking the product of the conditional probabilities of 
observing vj given each individual attribute.  Naïve Bayes 
classifier becomes [11]: 

 
푉 = max

∈
푃 푣 |푎 ,푎 , … , 푎 															(1) 

Bayes rule can be used to write Eq. 1 as: 

			푉 = max
∈

푃 푎 ,푎 , … , 푎 |푣 푃(푣 )
푃(푎 ,푎 , … ,푎 ) 																			(2) 

This simplifies to: 
푉 = 푃 푎 ,푎 , … ,푎 |푣 푃 푣 																		(3) 

 
																		푉 = max

∈
푃 푣 푃 푎 |푣 . 															(4) 

Naïve Bayes classification and decision tree learning have 
been proposed in [13] to opportunistically select available 
communication channels for cognitive radio sensor networks. 
Context information such as neighboring nodes, sink nodes, 
current time slots and the currently available channel set are 
used to predict link connectivity. An optimal routing path is 
obtained from the consideration of two classifiers which 
predict link stability. 

IV. LEARNING ARCHITECTURE 

A. Cross-Layer Information 
In order to implement a more cognitive routing application, 

some type of feedback is needed to allow the learner to 
improve its selection decisions. Many DTN algorithms trade 
status vectors [1], [2], [4] to inform other nodes in the network 
about its buffer contents, link status and other information. 
This is not always desirable considering that transmitting this 
status information uses additional network resources and may 
become stale due to long distances and link asymmetry (the 
feedback may be transmitted on a much slower link). For this 
reason, this work proposes the use of convergence layer 
protocol report segments to be used as the feedback 
mechanism. This type of approach was first suggested in [14] 
to implement an end-to-end retransmission framework. It is 
following this train of thought that this work follows to 
implement a machine learning based router. 

An example of this approach could be a sending node using 
LTP as a transport protocol. The node will receive reception 
reports when red data (reliably sent) segments are lost and will 
also have knowledge of the LTP checkpoint timer expiration. 
This information can simply be stored in a database and used 
by an intelligent router to better understand packet losses and 
delays within the network. This imposes no changes to the 
LTP protocol and can make use of a very simply logging 
mechanism that can also be used for network troubleshooting 
by operators on the ground. Furthermore, this approach does 
not consume any additional bandwidth as no new packets are 
generated that would not otherwise be used. While this does 
require the data to be stored, the size is rather minimal and as 

stated before, can serve multiple purposes such as network 
administration.  

 Figure 5 shows a conceptual architecture for an intelligent 
router. A source will transmit data to the intelligent router 
node to be forwarded to a final destination. In a similar 
manner to traditional CGR, the router will consult its contact 
plan and range database to attempt to find a suitable path 
through the network. Additionally, the intelligent router will 
have a local database of stored network statistics consisting of 
retransmission requests between a given pair of nodes 
corresponding to a periodic contact opportunity, as well as 
LTP check point timer expiration data, and estimates of the 
amount of data already sent to the prospective nodes. In 
addition, if the destination node is an earth ground station, 
weather at the location of the ground station, historical and 
current for this contact can also be stored in a database and 
used to correlate failed or unreliable transmission attempts on 
this path. Once a neighboring node has been selected as the 
best candidate, data is transmitted in a similar manner to 
standard CGR. Any retransmission or timer expirations for 
this current contact are then stored to the statistics database 
for future routing decisions. It is in this way that the learner 
will begin to determine what historically have been the best 
routes for a specific destination. 

B. The Bayesian Model 
 Using the concept of a contact database presented in CGR, 
we will further describe the attributes of each contact to create 
a model of the network to be used with Naïve Bayes. The 
frequency of occurrence of each possible attribute value can 
be mapped to the probability that a given contact opportunity 
behaved in a reliable or unreliable manner. The statistics 
database can contain historical records of the contact 
attributes and the reliability observed for each contact 
opportunity. This will provide training data for the learner to 
determine the probability of reliability for future 
transmissions during similar contact opportunities. 
      In addition to the contact start and stop times, distance and 
data rates, we are interested in other factors which may cause 
a selected route to be a less desirable route in comparison to 
other opportunities. The historical percentage of 
retransmission requests between two nodes at a given time 
during its periodic contact opportunities may be a good 
indication of how reliable a link is. The amount of traffic sent 
to a neighboring node is also relevant to control congestion. 

 

Figure 5. Intelligent Router Architecture 



  

If the bit error rate of a given link is known, this would also 
be an important factor. Furthermore, if knowledge of the 
weather in the vicinity of a ground station is known, this could 
also be an attribute of the model. While knowledge of weather 
conditions may not be possible or even desirable for all nodes, 
one of the strengths of Naïve Bayes is that its attributes can 
easily be omitted without much effect to the algorithm. Table 
I summarizes potential attributes and sources for how this data 
could easily be obtained.  

TABLE I.  CONTACT ATTRIBUTES 

Attribute Source of Attribute 

Retransmission requests Convergence layer, stored in database 

Average incoming data rate Network statistics, stored in database 

Average outgoing data rate Network statistics, stored in database 

Distance Range information from CGR 

Bit Error Rate Network statistics or user supplied 

Weather patterns User supplied, system telemetry 

 
Our routing algorithm begins at the end of the CGR contact 

review procedure in the forwarding decision procedure. It is 
here that the list of proximate nodes has been computed and 
now CGR will determine the best node to select. We will 
consider the prediction of reliability of each candidate 
neighboring node determined by Naïve Bayes and the contact 
attributes pertaining to each node. This probability can be part 
of a multi-criteria decision consisting of the standard selection 
produced by CGR as well as the reliability prediction of Naïve 
Bayes. Weights can be assigned to both values, so that users 
can select which of the criteria, CGR or Naïve Bayes, they 
would like to give preference to. 
 Once the selection of the best contact opportunity has been 
made and the data has been transmitted to the neighboring 
node, if a reliable transport protocol has been used for this 
link, our reinforcement learning strategy can be used. 
Retransmission attempts associated with this contact can be 
stored and examined by the learning algorithm. If this 
decision has been shown to be a reliable choice, more weight 
can be given to this contact for future data bound to the same 
destination. Further, a forgetting parameter can be added such 
that one node may not begin to become the dominate choice, 
thereby creating potentially undesirable congestion in the 
network.   

V. SIMULATION 
We have begun the development of the machine learning 

based router by first implementing a simple Q-routing based 
approach. This serves as a simple starting point as well as 
providing a separate algorithm to be used to compare our 
future results. The simulator used was OMNeT++ [15]. 
OMNeT++ is an open-source discrete event simulator that has 
a generic framework which can be used to develop 
simulations of communication networks, multiprocessors and 
distributed hardware systems and protocol modeling. 
OMNeT++ has a component based architecture that can be 
used to develop a wide variety of models, but it is very often 

used for communication network modeling. The behavior of 
the components or modules are defined in C++ classes, some 
of which are provided as base classes by OMNeT++, and 
some of which are developed by the user. OMNeT++ uses a 
message class to pass information between modules. The 
messages can be further defined by the user to represent 
network packets, status and timing internal messages or any 
other type of message the user requires.  

The routing sample project provided with the OMNeT++ 
installation was used as the basis for our Q-routing 
simulation. Within the simulation model, the network is 
implemented as a set of nodes. Each node consists of three 
modules: an application module, a routing module and a 
queue module. The application generates and receives 
network packets, just as a software application would 
generate network traffic. The routing module determines 
where to send the packets that are generated by the application 
module. The queue module implements a vector of queues for 
transmitting and receiving the packets. The connections 
between nodes are defined as bidirectional and each has a 
delay time and data rate associated with it.  

Network packets are generated by the application module. 
The rate at which packets are generated is configurable. The 
packet format is very simple and consists of a source address 
field, a destination address field, the current hop count, the 
last hop taken and the first hop taken. These fields are used by 
the routing modules to help determine where to send the 
packet. For Q-routing, a feedback message is generated by the 
routing module of each node and sent as a reply to the node 
that last transmitted a packet to the current node. The 
feedback message contains the address of the node sending 
the feedback message, the final destination address of the 
packet that replying node received, the remaining time 
estimate until the packet reaches its destination and the 
creation time of the packet. This information is used by the 
router modules to update their Q-table time estimates.  

The routing module will check an incoming packet’s 
destination address and choose which of its neighboring 
nodes to send the packet to based on which one has a smaller 
delay associated with reaching the packet’s destination. In 
addition to this policy, network exploration is encouraged by 
forcing the router to choose a random link on every 500th 
packet. This will ensure that all paths will continuously get 
updated once the receiving node sends its response with the 
improved time estimate. 

Initial simulations have been conducted using a 9 node 
mesh as shown in Figure 1. Each node application generates 
50 kB packets to transmit to a randomly selected node 
following an exponential distribution with a mean which was 
varied from 1 to 0.1 seconds. Each simulation executed for 
2.7 hours in simulation time (10000 simulation seconds). 
Table II shows the link characteristics used. The link 
characteristics have been selected such that multiple possible 
paths to a destination will have the same number of hops but 
a longer propagation delay and/or slower data rate. This was 
done as a test to determine that the Q-routing algorithm can 
successfully choose the quicker path based the average end-
to-end delays of packets sent on a particular route. Q-routing 
was found to react to the network load quite well and as 



  

expected, performed similarly to the shortest path algorithm 
under low network load but out-performed the shortest path 
algorithm as the network load increased. This shows that 
previous end-to-end delays may be a good indication of 
congestion or link unreliability along a particular path. 

TABLE II.  NETWORK SIMULATION PARAMETERS 

Link Propagation Delay (s) Data Rate 
0-3 
0-4 
0-5 
1-3 
1-4 
1-5 
2-3 
2-4 
2-5 
3-6 
3-7 
3-8 
4-6 
4-7 
4-8 
5-6 
5-7 
5-8 

1 to 30 
1 
1 
1 

1 to 30 
1 to 30 

1 
1 

1 to 30 
1 
1 

1 to 30 
1 

1 to 30 
1 
1 
1 

1 to 30 

200 kbps 
2 Mbps 

200 kbps 
2 Mbps 

200 kbps 
2 Mbps 

200 kbps 
200 kbps 
200 kbps 
200 kbps 
2 Mbps 
2 Mbps 

200 kbps 
2 Mbps 

200 kbps 
2 Mbps 

200 kbps 
2 Mbps 

 

 
 

 
Figure 6. End-to-end Delays of Q-routing vs. Shortest 
Path Algorithms 

VI. FUTURE WORK 
While our machine learning based router is still very much 

a work in progress, we have developed a concept and 
architecture for an intelligent router that will not require 
additional status packets to provide feedback for the learner. 
To improve the fidelity of our network simulation we have 
investigated several simulators and emulators focused on 
delay tolerant and mobile networks. Particularly, the ONE 

(Opportunistic Network Environment) [16] simulator and 
CORE (Common Open Research Emulator) [17] have been 
used for modelling space DTNs. Going forward, it is our plan 
to use CORE to develop a more realistic scenario using Linux 
containers to run multiple instances of actual flight-like 
software with separate network stacks. CORE has already 
been released with an ION-based DTN development kit, 
which will give us access to a bundle protocol and LTP 
implementation to use as the basis for our development 
efforts. In addition, CORE supports custom mobility models 
which will allow us to more fully test our routing techniques 
during intermittent contact periods.  
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