
MESA: Message-Based System Analysis Using
Runtime Verification

Nastaran Shafiei, Oksana Tkachuk, Peter Mehlitz

SGT, Inc./NASA Ames Research Center
Moffett Field, CA, USA

Abstract. In this paper, we present a novel approach and framework
for run-time verification of large, safety critical messaging systems. This
work was motivated by verifying the System Wide Information Manage-
ment (SWIM) project of the Federal Aviation Administration (FAA).
SWIM provides live air traffic, site and weather data streams for the
whole National Airspace System (NAS), which can easily amount to sev-
eral hundred messages per second. Such safety critical systems cannot be
instrumented, therefore, verification and monitoring has to happen using
a nonintrusive approach, by connecting to a variety of network interfaces.
Due to a large number of potential properties to check, the verification
framework needs to support efficient formulation of properties with a
suitable Domain Specific Language (DSL). Our approach is to utilize
a distributed system that is geared towards connectivity and scalabil-
ity and interface it at the message queue level to a powerful verification
engine. We implemented our approach in the tool called MESA: Message-
Based System Analysis, which leverages the open source projects RACE
and TraceContract. RACE is a platform for instantiating and running
highly concurrent and distributed systems and enables connectivity to
SWIM and scalability. TraceContract is a runtime verification tool that
allows for checking traces against properties specified in a powerful DSL.
We applied our approach to verify a SWIM service against several re-
quirements. We found errors such as duplicate and out-of-order messages.

1 Introduction

Message-based system is a system that contains multiple components that pri-
marily communicate by exchanging messages over networks. Safety-critical sys-
tems may choose to use a message-based architecture in order to take advantage
of parallelism while avoiding the problems inherent to shared state. Due to the
rise of safety-critical message-based systems, there is a need for formal methods
to verify the quality of such systems.

One example of a safety-critical, message-based system is the Next Genera-
tion Air Transportation System (NextGen) [12]. The data-sharing backbone of
NextGen is the System Wide Information Management (SWIM), which provides
users with sensitive live data feed such as en route flight data. SWIM is a highly
distributed system that consolidates data from many sources. It also deals with

https://ntrs.nasa.gov/search.jsp?R=20170010673 2019-08-31T01:38:37+00:00Z



2

a large amount of data. Our experiments show that the number of messages
received for en route flights varies between 70 and 500 messages per second.

One of our projects at NASA relies on data feeds from SWIM, and we ob-
served that flight data obtained from SWIM exhibited incorrect message se-
quences. This motivated us to closely look into the trace analysis problem (run-
time verification) for safety-critical message-based systems. Section 2 explains
the SWIM system and the problems we observed in more detail.

Our ultimate goal is to provide a tool that extracts sequences of messages
from a message-based System Under Test (SUT) and checks them on-the-fly
against temporal properties specified using an expressive specification language.
Dealing with safety-critical systems requires a nonintrusive approach, since the
source code from these systems is often not available. Even when the source is
available, any potential malfunction that may be introduced by instrumentation
cannot be tolerated. Another challenge is scalability, since the system, especially
the ones producing live feeds, often deal with large messages received in high
volumes.

In this paper, we introduce MESA, a tool written in the Scala program-
ming language. Its main feature is to separate data acquisition, post-processing,
property specification, and runtime verification into dedicated system compo-
nents. The data acquisition component provides the SUT connectivity, the post-
processing ensures scalability, and provides the variables for a type-checked prop-
erty specification language. MESA is built upon two existing tools: RACE [13]
and TraceContract [9].

RACE, Runtime for Airspace Concept Evaluation, is designed as a frame-
work to build airspace simulations. Airspace simulations typically involve com-
ponents that need to incorporate external systems, e.g., live data feeds (servers,
sensors, aircraft), hardware simulators, and data distribution services (bus sys-
tems). RACE provides connectivity to these systems. The architecture of RACE,
explained in Section 3.1, is highly extensible, and provides scalability for the high
volume of messages we see in SWIM.

TraceContract is a runtime verifier that provides its own property specifica-
tion language in form of an internal DSL that covers LTL [15] formulas and state
machines. TraceContract previously has been used for the analysis of command
sequences against flight rules [10] for the NASA LADEE (Lunar Atmosphere
And Dust Environment Explorer) mission [3]. In MESA, we use TraceContract
to specify properties on sequences of messages produced by the SUT. Section 3.2
describes TraceContract in more details.

This paper makes the following contributions: (1) identification of the chal-
lenges involved in runtime verification of systems like SWIM, (2) implementation
of solutions to these challenges in a framework, MESA, described in Section 4
and (3) application of MESA in order to identify errors in SWIM sequences of
en route flight data messages, detailed in Section 6.



3

Flight Data

Traffic Flow 
Management

Surveillance 
Data Weather 

Data

Special Activity 
Airspace

SWIM

… RACE
Airlines

Airports

…
…

sfdps

Fig. 1. SWIM Overview

2 Motivating Example

SWIM is considered a key part of the NAS for the NextGen air transportation
systems [7]. It implements a set of information technology principles. It collects
data from many different facilities and resources, and combines them into data
feeds to provide authorized users with relevant and comprehensible information.
As shown in Figure 1, the information provided by SWIM includes flight data,
weather information, surveillance data, airport operational status, etc. Some of
the SWIM users are airlines, airports, external applications such as FlightAware
[2] and RACE. SWIM provides authorized users with access to the NAS data
through publish/subscribe information exchange using a Java Message Service
(JMS) implementation. JMS is a messaging API that allows for asynchronous
sending and receiving of messages. The SWIM messages published in the JMS
server are in standard XML formats.

SWIM is a highly distributed system. Its implementation follows a service-
oriented architecture which is a collection of services that communicate with one
another. In this work, we focus on verifying the SWIM Flight Data Publication
Service (SFDPS). This service publishes en route flight data from 20 different
FAA air traffic control systems. At any given day, there can be more than 4500
simultaneous flights in the US airspace, each of them updated from various input
sources in a 12 seconds interval.

When visualizing en route flight data using RACE, we observed traces that
contain incorrect patterns. Traces that include duplicated messages which are



4

either lexically duplicated or encapsulate the same flight information, including
the same aviation call sign (unique identifiers assigned to aircraft), position,
and time are considered incorrect. Moreover, en route flight messages have a
time stamp attached to them, and messages associated with a call sign should
be ordered by their time stamps. Examining traces obtained from the SFDPS
service revealed traces with duplicated and out-of-order messages.

Our aim is to identify these faulty patterns on-the-fly. Motivated by this
example, we present our work that applies trace analysis against properties for-
malized in LTL and finite state machines.

3 Background

We now discuss the primary features of RACE and TraceContract that MESA
utilizes.

3.1 RACE

RACE [13] is a platform for instantiating and running highly concurrent and dis-
tributed systems. RACE employs the actor programming model, as implemented
in the Akka [1] framework. Akka actors communicate through asynchronous mes-
sages and do not share state. Each actor is associated with a mailbox and pro-
cesses its messages sequentially. RACE is implemented in the Scala [6] program-
ming language, which improves type safety compared to other JVM languages.

RACE is a highly-configurable and extensible platform, which makes it suit-
able for a wide range of applications. Specifically, it can be used to rapidly build
simulations that span several machines (including synchronized displays), in-
terface existing hardware simulators and other live data feeds, and incorporate
sophisticated visualization components. RACE includes many building blocks to
create distributed systems, including actors to import, export, translate, filter,
record, archive, replay, and visualize data.

In this paper, we use RACE to connect to the SWIM server and to filter its
messages based on the topics of interest. Figure 2 shows a RACE sample config-
uration file that enables this use case. The configuration, written in JSON, spec-
ifies the actors to instantiate (using keywords name and class), the channels the
actors use to read or write data to, as well as topics of interest. The example con-
figuration in Figure 2 tells RACE to instantiate 3 actors: (1) JMSImportActor to
import the data of specific topic, sfdps, to channel /swim, (2) TranslatorActor
to translate data from XML to objects, and finally (3) ProbeActor to receive
the resulting data. Note that the JMSImportActor makes use of the user and
password information, which is encrypted in this case (indicated by ??). The
number and types of actors the user needs to specify depends on the task.

RACE is developed at NASA Ames Research Center. It is open sourced under
the Apache v2 license and is available at [5].



5

actors = [

{ name = "jmsImporter"

class = ".jms.JMSImportActor"

broker-uri = "tcp://localhost:61616"

user = "??swim.user"

pw = "??swim.pw"

write-to = "/swim"

jms-topic = "nasa.topic05_12.sfdps"

},

{ name = "fixm2fpos"

class = ".actor.TranslatorActor"

read-from = "/swim"

write-to = "/fpos"

translator = { class = ".air.translator.FIXM2FlightObject"}

},

{ name = "fposReceiver"

class = ".actor.ProbeActor"

read-from = "/fpos"

}]

Fig. 2. RACE Configuration

3.2 TraceContract

TraceContract [9] is an API for performing trace analysis. Given a program trace
and a formalized property, trace analysis checks whether the property holds for
the trace. TraceContract is implemented in Scala and takes advantage of Scala’s
support for Domain Specific Languages (DSLs). TraceContract is an internal
(embedded) DSL, that combines DSL with all of Scala’s features, and supports
specification of properties as a combination of data parameterized state machines
and temporal logic.

Figure 3 shows APIs provided by TraceContract. Given a trace as a finite
sequence of Events and a Formula, TraceContract checks whether the formula
holds true for the trace. The two main classes, Monitor and Formula provide
APIs for writing temporal properties (e.g., globally, eventually) and state
machines (e.g., state). For example, consider the following property: a SWIM
server feed should not contain duplicate messages. In other words, it should
always hold that for any message that the receiver actor dequeues from its mail-
box, if the actor sees the same message again, an error should be raised. This
property can be formalized using the following specification in TraceContract:

property (’lex_dup){

always{

case (Dequeue(msg)) =>

state{

case Dequeue(’msg’) => error

}



6

globally(formula: Formula) : Formula
eventually(formula: Formula) : Formula
state(block: Block) : Formula
hot(block: Block) : Formula
…

Formulas

property(formula: Formula) : Unit
monitor(monitor: Monitor) : Unit
verify(trace: List[Event]) : Unit
verify(event: Event) : Unit
end()
getMonitorResult() : MonitorResult
…

Monitor

getPropertyResults() : List[PropertyResult]
…

MonitorResult

getSafetyErrors() : List[SafetyError]
getLivenessErrors() : List[LivenessError]
…

PropertyResult

errorTrace : ErrorTrace
SafetyError

errorTrace : ErrorTrace
LivenessError

getTrace : List[Event]
ErrorTrace

Event

Fig. 3. TraceContract classes

}

}

In section 6, we present a list of properties we checked for SWIM. TraceCon-
tract is developed at NASA’s Jet Propulsion Laboratory (JPL) and is currently
in the process for an Apache license open source release.

4 Approach

MESA performs trace analysis on sequences of messages. The approach is non-
invasive, and applies runtime verification to check for temporal properties that
are specified in LTL or finite state machines. The high-level view of the approach
is shown in Figure 4. The two main functionalities of MESA are (1) extracting
sequences of messages from the messaging system construct of the SUT, and (2)
verifying them against specified temporal properties. MESA utilizes the tools
RACE and TraceContract, respectively, to provide these functionalities.

RACE provides dedicated actors, referred to as importers, that can subscribe
to commonly-used messaging system constructs, such as JMS server, Kafka, and
DDS. To connect to a messaging system, a user needs to specify the respective
importer in the RACE configuration, as shown in Figure 2.

In order to receive message sequences from RACE, we added a functionality
in MESA that allows for retrieving messages from individual actors’ mailboxes.
User can specify which actors’ mailboxes are accessed from MESA to extract
sequences of messages. This functionality is provided using the Akka extension
mechanism, which allows for replacing core classes in Akka. MESA replaces the
type representing actors mailboxes in Akka with a new implementation. The new
implementation extends the mailbox implementation with two trigger points that



7

configmessaging system 

Akka MESA Mailbox 
Extension

m1:
p1,p2,…

m2
p1,p2,…
…

MonitorsMESA

TraceContract

RV Engine

Application 
Under Test

verify(..)

RACE

importer

Fig. 4. MESA Architecture

akka {

extensions = ["traceExtraction.MesaExtensionImp"]

}

mesa-mailbox {

mailbox-type = "traceExtraction.MesaMailboxType"

}

akka.actor.deployment {

fposReceiver {

mailbox = mesa-mailbox

}

}

monitor {

class = "SwimSFDPSMonitor"

}

Fig. 5. MESA Configuration

generate events upon enqueueing and dequeueing messages. A message that is
enqueued to or dequeue from a mailbox is wrapped into an object representing
the event, and it is passed over to the corresponding monitor object in MESA. We
consider two types of events that capture enqueueing and dequeueing messages.
In Section 5, we elaborate on the types of these events.

The configuration in Figure 5, written in JSON, shows how MESA can be
configured to access the mailboxes of RACE actors. mesa-mailbox represents the
mailbox extension implemented by the class traceExtraction.MesaMailboxType.
Moreover, the configuration in Figure 5 sets the actor with the name fposReceiver
to use an instance of traceExtraction.MesaMailboxType as its mailbox.

Using configuration, the user can also specify the monitors to be used for ver-
ification. Monitors in MESA are instances of the class MesaMonitor. As it can be
seen in Figure 6, this class extends the class Monitor in TraceContract. Monitor
provides methods needed for writing properties. MesaMonitor extends this class
with a configuration mechanism and methods to identify end of traces, collect
statistics about messages, instantiate monitors on-the-fly, etc. Monitor is param-



8

property(formula: Formula) : Unit
monitor(monitor: Monitor) : Unit
verify(trace: List[Event]) : Unit
verify(event: Event) : Unit
end()
getMonitorResult() : MonitorResult
…

Monitor

…
SwimSFDPSMonitor

isEndOfTrace(event: MesaEvent) : Boolean
verifyAfterEvent(event: MesaEvent) : Unit
newInstance[T](event: MesaEvent): Option[T]
…

MesaMonitor

Event

<<bind>>
<MesaEvent>

Fig. 6. MESA monitors type

eterized with the type of the event used when defining properties. MesaMonitor
binds the event type with MesaEvent described in the next section.

The MESA monitors which represent properties over sequences of messages
must extend the class MesaMonitor. For example, in Figure 6, the monitor
SwimSFDPSMonitor represents properties defined for message sequences obtained
from the SFDPS service. The last section in Figure 5 shows how MESA can be
configured to use the SwimSFDPSMonitor monitor for every actor that uses the
mesa-mailbox extension.

As part of the mailbox extension initialization, the monitors associated with
the actor are created. At runtime, the actor passes events encapsulating messages
to the monitors by calling the method verify(event) on the monitor objects.
After receiving every event, the properties in the body of the monitor are checked
and violations, if any, are reported.

In the next section, we explains how the properties for the SFDPS service
are formalized in the body of the SwimSFDPSMonitor monitor.

5 Formalizing Properties

Table 1 outlines the properties we used for our evaluation along with their natu-
ral language descriptions. In this section, we describe the formalization of these
properties. We specify the properties using the state machine API of TraceCon-
tract. The properties are defined over the sequences of messages retrieved from
the SFDPS service. Note that, for the sake of readability, we present slightly
simplified versions of the formalizations used in our experiments.

Before formalizing the properties, we specify the events. The events used in
our system are defined below.



9

pattern description

lex dup messages must not be lexically identical

flight info dup messages must not encapsulate the duplicate flight data including the
same call sign, position, altitude, and time

flight seq order messages with the same call sign must be ordered by their time tags

Table 1. Properties and their natural language descriptions.

abstract class MesaEvent

case class Enqueue(message: Any) extends MesaEvent

case class Dequeue(message: Any) extends MesaEvent

The abstract type MesaEvent represents the event objects. Two types of
events are defined by Enqueue and Dequeue classes which are subclasses of
MesaEvent. These classes are defined as case classes. case classes allow for
pattern matching over their constructor parameters. Traces analyzed by our ap-
proach are essentially sequences of MesaEvent instances.

A monitor maintains a list of formulas which are all evaluated after receiving
each event. Properties in the body of monitors are presented by calls to the
method property which has two arguments. The first argument is the name of
the property, and the second argument is a Formula object.

The first property of the SFDPS service, named lex_dup, is formalized in
Section 3.2. The method always represents a state, and given a Block instance,
it returns a Formula object. Block represents a list of transitions leading out of
the state. It is a partial function which is defined as follows:

type Block = PartialFunction[Event, Formula]

always is a state at which the monitor always waits for an event to match a
transition in the Block domain. Once an event is matched, the formula returned
by Block is added to the list of formulas of the monitor. For example, for the
property lex_dup, the monitor always waits to observe the event Dequeue. When
the incoming event matches Dequeue of some message, msg, state is added to
the list of formulas. The method call state also represents a state, that given a
Block object, returns Formula. state is a state at which the monitor waits an
event to match a transition the Block domain. Once matched, the monitor moves
to a new state which leads to error in this case which is also of type Formula.
Note that the quoted variable names indicate that the current values must equal
the value of the corresponding variables. For example, for the property lex_dup,
the transition from state represents the Dequeue of the message msg.

The formalization of the second property, named flight_info_dup, is pre-
sented below. The message encapsulated by Dequeue must be of type FlightPos.
The type FlightPos, which is defined in RACE, is used to encapsulate flight
data. The FlightPos instances are generated by the TranslatorActor described
in Section 3.1. The constructor parameters of FlightPos represent the flight



10

identifier, flight call sign, position, altitude, direction, and time associated with
the message data, respectively.

property (‘flight_info_dup) {

always {

case Dequeue(FlightPos(_,cs,pos,alt,_,_,date)) =>

state{

case Dequeue(FlightPos(_,‘cs‘,‘pos‘,‘alt‘,_,_,‘date‘)) => false

}

}

}

}

Note that underscore represents the wildcard pattern which is ignored. The
property flight_info_dup states that it is always the case that, if a Dequeue

of a FlightPos instance is observed, then the monitor advances to a new state,
where if we observe Dequeue of a FlightPos instance with the same call sign,
position, altitude, and time, it is an error.

The formalization of the next property, named flight_seq_order, is shown
below.

property(’flight_seq_order) {

always {

case Dequeue(FlightPos(_, cs, _, _, _, _, date1)) =>

state {

case Dequeue(FlightPos(_, ‘cs‘, _, _, _, _, date2)) =>

date2.isAfter(date1)

}

}

}

The property flight_seq_order states that it is always the case that, if Dequeue
of a FlightPos instance is observed, then the monitor advances to a new state,
where if Dequeue of a FlightPos instance, which includes the same call sign
as the FlightPos instance seen in the previous state, is observed, it checks for
the chronological order of the two FlightPos instances. If date2 is strictly after
date1, the monitor stops monitoring the formula, and it is removed from the
list of formulas maintained by the monitor. Otherwise, it is an error, and the
violation is reported.

In the following section, we present our results when checking sequences of
messages against the properties presented in Table 1.

6 Evaluation

Our experiments include verifying sequences of messages obtained from the
SFDPS service against the three properties presented in Table 1.

As mentioned earlier, our approach can be applied online by connecting
RACE to the messaging system construct of the SUT. Our approach can be
also applied offline by utilizing recorded data and importing them into RACE.



11

This can be accomplished by using ReplayActor in RACE. This actor publishes
data from the given source to a given channel. We perform our experiments in the
offline mode using ReplayActor. Figure 7 presents the configuration used to in-
stantiate ReplayActor in the RACE environment. Replacing the ReplayActor

configuration with the JMSImportActor configuration in Figure 2, RACE im-
ports flight data from the file sfdps.xml.gz instead of directly connecting to
the SWIM messaging system construct. sfdps.xml.gz includes flight data pre-
viously obtained from the SFDPS service.

actors = [

{ name = "sfdpsReplay"

class = ".actor.ReplayActor"

write-to = "/swim"

pathname = "/sfdps.xml.gz"

archive-reader = ".archive.TextArchiveReader"

},

...]

Fig. 7. ReplayActor Configuration

All of our experiments are performed on a Mac OS X machine with a 2.8
GHz intel Core i7 processor and 16 GB 1600 MHz DDR3 memory. For these
experiments, we use the Scala code version 2.12.1 and the Java HotSpot(TM)
64-Bit Server VM.

Table 2 presents our results. For each property, we include the results from
traces of size 1000 and 2000 messages. Note that, for all the properties, we use
the same sequence of SFDPS messages, and each property is evaluated in a sep-
arate experiment. The first column includes the name of the properties. Column
total time presents the total time. Column verification presents the total
time spent for evaluating formulas in monitors. For every message, this cap-
tures the time from the point that the message is received by a MesaMonitor

instance until it is evaluated against the list of all formulas maintained by
the monitor. The accumulation of these times for all messages is presented by
Column verification. Column event handling represents the time obtained
by subtracting the time in Column verification from the time in Column
total time. This represents the time spent for extracting and handling events.
Finally, the last column represents the number of violations of the respective
property.



12

property seq size total time(s) verification(s) event handling(s) # of violations

lex dup 1000 140968 132320 8647 28

flight info dup 1000 79953 69861 10092 2

flight seq order 1000 77744 67650 10094 3

lex dup 2000 1022483 1013524 8958 133

flight info dup 2000 544889 534485 10404 9

flight seq order 2000 527201 516865 10335 10
Table 2. RV results for the SFDPS service against the properties in Table 1

The results shows that that time used for verifying the property lex_dup (see
the formalization in Section 3.2) is about 1.8 times higher than the other two
properties. This property does not apply any pattern matching on the message
structure, that is, every Dequeue event matches the transition leading out of
the always state, and thus, leads to a new formula. The list of formulas to be
evaluated after receiving every event grows faster for the property lex_dup. For
example, comparing to the property flight_info_dup, where only the events of
type Dequeue that encapsulate a message of type FlightPos match the transition
leading out of the always state, and lead to a new formula.

The result also shows that as the size of the trace doubles, the total time for
the property lex_dup becomes 7.2 times larger, and for the other two properties
becomes 6.8 times larger. This happens because the lists of the formulas in
monitors are growing for all the three properties. The largest trace that we
could analyze without running out of memory for the property lex_dup is about
2100 messages, and for the properties flight_info_dup and flight_seq_order

is about 2600 messages.
In Figure 8, we show how the total, verification, and event handling times

change as the size of the trace increases for the property flight_seq_order. It
can be seen that the time spent in monitors (verification time) is very close to
the total time, and it grows exponentially with the size of the traces.

In a different experiment, we used the following property, which is a modifi-
cation of the property flight_seq_order.

property(’single-flight_seq_order) {

always {

case Dequeue(FlightPos(_, "TCF5934", _, _, _, _, date1)) =>

state {

case Dequeue(FlightPos(_, "TCF5934", _, _, _, _, date2)) =>

date2.isAfter(date1)

}

}

}

By using a concrete value for the call sign, we only monitor the messages of
the aircraft with the call sign ”TCF5934”. For this property, the monitor al-
ways maintains one formula at a time. We applied MESA to verify a message



13

0	

200	

400	

600	

800	

1000	

1200	

1400	

10
0	

20
0	

30
0	

40
0	

50
0	

60
0	

70
0	

80
0	

90
0	

1,0
00
	

1,1
00
	

1,2
00
	

1,3
00
	

1,4
00
	

1,5
00
	

1,6
00
	

1,7
00
	

1,8
00
	

1,9
00
	

2,0
00
	

2,1
00
	

2,2
00
	

2,3
00
	

2,4
00
	

2,5
00
	

2,6
00
	

!m
e	
(s
ec
)	

number	of	messages	

flight_seq_order	

total	1me	 event	handling	1me	 verifica1on	1me	

Fig. 8. Time for verifying the flight-seq-order property against SFDPS message
sequences.

sequence of size 100,000, and 11 violations were detected. In Figure 9, we show
how the total, verification, and event handling times change as the size of the
trace increases for the property single-flight_seq_order. Unlike the prop-
erty flight_seq_order, it can be seen that for this property, the time spent in
monitors is very small, and the time spent on handling the events is very close
to the total time. It can be also seen that the total time grows linearly with the
size of the traces.

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

10
0	

5,0
00
	

10
,00
0	

15
,00
0	

20
,00
0	

25
,00
0	

30
,00
0	

35
,00
0	

40
,00
0	

45
,00
0	

50
,00
0	

55
,00
0	

60
,00
0	

65
,00
0	

70
,00
0	

75
,00
0	

80
,00
0	

85
,00
0	

90
,00
0	

95
,00
0	

10
0,0
00
	

!m
e	
(s
ec
)	

number	of	messages	

single_flight_seq_order	

total	1me	 event	handling	1me	 verifica1on	1me	

Fig. 9. Time for verifying the single-flight-seq-order property against SFDPS mes-
sage sequences.



14

7 Discussion

In this section, we discuss the observations learned from our experiments, and
also the current limitations of our approach.

As mentioned before, our experiments presented in Section 6 were performed
offline. Our preliminary experiments show that MESA has similar performance
for both offline and online message processing. However, in both cases MESA
can run out of memory due to a large number of formulas to be monitored.
We also show that monitoring the flight data for only one aircraft can consider-
ably improve the performance, and eliminate the running-out-memory problem.
However, the incoming live messages from the SFDPS service can come from
more than 4,500 aircrafts, which may require maintaining more than 4,500 for-
mulas in the monitor. Our evaluation suggests that a limitation of the approach
is scalability for certain properties. One way to address this issue is to provide
multiple instances of monitors running in parallel. For example, in the case of
SFDPS message sequences, having simultaneously running monitor instances
where each monitor only monitors data coming from certain aircrafts. To ac-
complish this, as part of our future work, we are looking to turn monitors into
actor instances.

Prior to MESA implementation, one of the authors implemented several
RACE actors that check certain properties such as looking for duplicate or out-
of-order messages. Our preliminary experiments showed that checking require-
ments using such actors is faster than running the equivalent monitors in MESA.
However, writing checks as actors is more involved than specifying properties at
a high level, using LTL or state machines. The ease of writing properties seems
to come at the performance cost. For example, consider the property lex-dup,
formalized in 5 lines of code in a Scala DSL (see Section 3.2). A similar check
implemented in RACE consists of 95 lines of Scala code.

In this work, we concentrated on verifying SFDPS feeds with respect to prop-
erties that should hold true for messages produced by SWIM. However, in the
future, we would like to verify cross-component properties about messages that
are both consumed and produced by SWIM. This would require applying MESA
in a distributed setting, where message sequences to be monitored are coming
from more than one source. We have already identified such properties about
SWIM, and we would like to provide runtime verification for such properties.

8 Related Work

Runtime verification is a mature field of research with a large body of work and
tools available. There are many flavors of approaches and tools, which can be cat-
egorized based on the domain of applications being monitored, instrumentation-
based vs. nonintrusive approaches, online vs. offline monitoring, expressiveness of
writing specifications, when the verdicts are returned (violation vs. validation),
efficiency vs. usability, whether corrective action is taken, and many more. In
this section, we mention some approaches related to our work.



15

In Aspect Oriented Programming (AOP), certain features are referred to as
cross-cutting concerns because they cut across multiple modules and are orthog-
onal to the main functionality of the program. Examples of such features include
logging, security management, and gathering metrics. Code instrumentation can
also be implemented as aspects that observe the execution of the program and
update the state of the monitors. All AOP frameworks have support for defining
cross-cutting concerns (e.g., monitor update) as well as a way to specify when
they are applied (e.g., when a specific method is invoked). ASPECTJ and JBoss
are popular implementations of AOP for Java. Building on AOP approaches,
there are domain-specific extensions, e.g., Tracematches [8] and J-LO [11]. Us-
ing these frameworks requires a considerable amount of code instrumentation to
define aspects and their application. However, using TraceContract DSL gives
users a more flexible and powerful interface to specify requirements.

Monitoring Oriented Programming framework MOP [4, 14] allows one to
specify properties in several logical formalisms (LTL, finte state machines, ex-
tended regular expressions, etc.), which then get compiled into ASPECTJ as-
pects. Aspects can be embedded into the monitored system and the user can
provide code to handle property violations or validations. MOP has different
instances: JavaMOP for Java programs and BusMOP (for monitoring PCI bus
traffic). MOP tools tightly integrate the generated monitors with the code and
have the capability to change the program execution depending on the monitor
handling code. However, our current goals do not include changing or repairing
of the SWIM feed. We want to detect errors, report them and have SWIM errors
fixed at the source of the problems.

9 Conclusion

In this paper, we presented MESA, a Message-Based System Analysis framework
for runtime verification of safety-critical message intensive systems like SWIM
used at NASA. MESA is built on top of RACE and TraceContract to address the
main challenges of SWIM verification: RACE addresses connectivity and scala-
bility issues and TraceContract enables nonintrusive trace analysis and property
specification using a powerful internal DSL. We applied MESA to the SWIM
flight data feed and caught duplicate and out-of-order messages.

As part of our future work, we would like to provide a functionality that
allows for running monitors in a distributed setting to check for cross-component
properties. We would also like to turn monitors into actors, where each actor
monitors a property. In general, we plan to make MESA more efficient in terms
of time and memory by utilizing functionalities that RACE provides in terms of
data acquisition and data processing.

Acknowledgments

Authors would like to thank Klaus Havelund for help with TraceContract and
specifying properties in TraceContract DSL. In addition, we would like to thank



16

Misty Davies and Klaus Havelund for helpful comments on the draft of this
paper.

References

1. Akka - scalable realtime transaction processing, http://doc.akka.io/docs/akka/
current/scala.html

2. FlightAware, https://flightaware.com
3. Lunar Atmosphere Dust Environment Explorer, https://www.nasa.gov/mission_

pages/ladee/main/

4. MOP: Monitoring-Oriented Programming, http://fsl.cs.uiuc.edu/index.php/
MOP

5. RACE: Runtime for Airspace Concept Evaluation , https://github.com/

NASARace/race

6. Scala Programming Language, http://www.scala-lang.org/
7. FAA Telecommunications Infrastructure NEMS User Guide (2013)
8. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,

de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with
free variables to aspectj. In: Proceedings of the 20th Annual ACM SIGPLAN Con-
ference on Object-oriented Programming, Systems, Languages, and Applications.
pp. 345–364. OOPSLA ’05, ACM, New York, NY, USA (2005)

9. Barringer, H., Havelund, K.: Tracecontract: A Scala DSL for trace analysis. In:
FM: Formal Methods - 17th International Symposium on Formal Methods. pp.
57–72 (2011)

10. Barringer, H., Havelund, K., Kurklu, E., Morris, R.: Checking flight rules with
tracecontract: Application of a Scala DSL for trace analysis (2011)

11. Bodden, E.: J-lo, a tool for runtime-checking temporal assertions (2005)
12. Luckenbaugh, G., Landriau, S., Dehn, J., Rudolph, S.: Service oriented architecture

for the next generation air transportation system. In: Integrated Communications,
Navigation and Surveillance Conference, 2007. ICNS’07. pp. 1–9. IEEE (2007)

13. Mehlitz, P., Shafiei, N., Tkachuk, O., Davies, M.: Race: building airspace simula-
tions faster and better with actors. In: DASC: Digital Avionics Systems Conference
(2016)

14. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP
runtime verification framework. STTT 14(3), 249–289 (2012)

15. Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symp. Founda-
tions of Computer Science. pp. 46–57 (1977)


