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ABSTRACT
In the context of high performance computing (HPC), software
investments in support of text-based diagnostics, which monitor
a running application, are typically limited compared to those for
other types of IO. Examples of such diagnostics include reiteration
of configuration parameters, progress indicators, simple metrics
(e.g., mass conservation, convergence of solvers, etc.), and timers.
To some degree, this difference in priority is justifiable as other
forms of output are the primary products of a scientific model and,
due to their large data volume, much more likely to be a significant
performance concern. In contrast, text-based diagnostic content is
generally not shared beyond the individual or group running an
application and is most often used to troubleshoot when something
goes wrong.

We suggest that a more systematic approach enabled by a log-
ging facility (or ‘logger’) similar to those routinely used by many
communities would provide significant value to complex scientific
applications. In the context of high-performance computing, an ap-
propriate logger would provide specialized support for distributed
and shared-memory parallelism and have low performance over-
head. In this paper, we present our prototype implementation of
pFlogger – a parallel Fortran-based logging framework, and assess
its suitability for use in a complex scientific application.
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1 INTRODUCTION
The HPC community has invested considerable effort into establish-
ing high-level libraries and frameworks ([3–5, 9]) that orchestrate
fast, parallel access to the file system using standardized file formats.
The existence of these packages obviates the need for individual
applications to develop their own high-performance I/O layer, and
also enables the development of shared analysis and visualization
tools. But there is one category of I/O that is typically not handled
in the manner described above. Namely, the text-based diagnostics
that monitor the execution progress that are an important element
of nearly all HPC applications. Examples of such diagnostics include

• reiteration of input configuration parameters
• progress indicators such as time step or phase of computation
• high-level scientific diagnostics such as min/max of impor-

tant quantities, conservation quantities, convergence mea-
sures, etc.

• timers and other measures of system performance

These diagnostics are generally not used for data analysis, nor are
they typically shared with the community. Rather their value lies
mostly in the person or group that is managing the execution of
the application, especially in the case of troubleshooting problems.

Our motivation for addressing text-based diagnostics stems from
common issues that we have witnessed in multiple large scientific
models. First among these is the tendency of diagnostics to evolve
into a chaotic collection of disparate messages that range in sever-
ity from no-longer needed debugging aids, to vital warnings and
errors. At best such clutter increases the difficulty of obtaining
information from the diagnostics, and at worst important errors
can go unnoticed. The second issue is that of inadequate or ad-hoc
support for parallel diagnostics. Here we may want a report from
a single process, or to have all processes produce output but with
some sort of label indicating the process that produced it, or we may
want each process to write to a separate file. A systematic approach
should provide a clear and simple mechanism for controlling which
of these approaches is to be used for a given diagnostic as well
as a flexible means to specify the process labeling and naming of
files. The final problem relates to the ability to activate/deactivate
diagnostics at run-time. This is particularly valuable for debug-
ging. Custom debugging diagnostics can be extremely useful, but
can also generate absurdly large amounts of data and become per-
formance bottlenecks. Thus, a systematic mechanism to throttle
certain categories of diagnostics would be quite desirable.

In most applications, diagnostic messages are generated via di-
rect print /write statements). The great benefit of this approach
is the versatility. These statements accept an arbitrary list of data
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items of any intrinsic type – a feature that is quite difficult to em-
ulate with user-defined procedures, at least in Fortran. Further,
print statements include a format specifier that can either leave
the details up to the compiler (default formatting) or allow the user
fine-grained control of output precision and alignment. The down-
side of direct print statements is the inability to modify behavior
at run time. Deactivation/activation and format changes all require
recompilation or additional logic in the surrounding code. E.g., if an
application intends to only emit a given message on the root process,
then the print statement must be contained within a conditional.
For simple messages (e.g., just a string), applications often imple-
ment a write_parallel procedure that encapsulates this common
case, but supports only a restricted set of method signatures.

We also recognize that some libraries and frameworks provide
their own internal logging facilities.[2] While such capabilities
are potentially quite useful for their intended purpose, they are
generally not suitable for application-specific diagnostics.

2 PFLOGGER – A PARALLEL FORTRAN
LOGGING FRAMEWORK

While considering possible paths to creating a flexible logging
capability in our development environment, we became aware of the
Python logging[7] package.1 It was immediately apparent that aside
from the lack of support for parallelism, the Python logger included
all of the features we had planned as well as many other attractive
capabilities we had not anticipated. With the advent of object-
oriented features in Fortran 2003[6], adaptation of such packages
is generally relatively straightforward, and we were confident that
only a minor amount of additional development would be required
to provide the planned support for parallelism.

2.1 Description of the Python logging utility
The Python Logger class provides a handful of methods which
can be used to instrument source code to generate log messages.
These interfaces have identical signatures, differing only in their
name which indicates the desired severity of the requested mes-
sage: debug(), info () , warning(), error () , and critical () . The ar-
guments to these methods are (1) a format string (i.e., text with edit
descriptors), (2) corresponding data arguments, and (3) an optional
key-value dictionary. Each Logger object is associated with a sever-
ity threshold. If the Logger threshold is higher than the severity
of a given request, then no action is taken.2 Suppressed messages
have extremely low overhead. Alternatively, if the request severity
equals or exceeds the Logger threshold, then the framework gen-
erates a LogRecord object and performs further processing. Each
LogRecord object contains the following elements:

• severity level
• name of logger object
• a format string

• list of data arguments
• key-value dictionary

Here is a simple example which demonstrates instrumentation:

1We only subsequently became aware that the Python logging package was itself
based upon Java’s logging class.
2Logger objects can have associated “ancestor” loggers which also processes each
request.

f o o _ l o g g e r = l o g g i n g . g e t L o g g e r ( ' foo ' )
f o o _ l o g g e r . debug ( " i =%d ; j =%d " , i , j )

Each Logger object is associated with one or more Handler ob-
jects, which receive the generated LogRecord objects. The various
Handler classes represent generalizations of output devices, with
the FileHandler subclass corresponding to our usual notions about
routing output to a file. Other subclasses can be defined to update
web pages, send an email notification, send text to a phone number,
etc. Each handler object has its own severity threshold, distinct
from that of the Logger. A common pattern is to have a FileHandler
object that ignores debug and info messages; thereby enhancing
the visibility of warnings and errors.

Each handler object is in turn associated with a Formatter ob-
ject. Formatters provide a mechanism for embedding additional
information in messages as they are processed. A familiar exam-
ple of this is that of desktop system logs in which a time stamp is
prepended to each entry. Formatters can also embed many other
types of information such as the severity level of the message, the
name of the requesting Logger object, and so on.

The Logger and Handler classes are both themselves subclasses
of the abstract Filterer class which provides a further mechanism
for embellishing or suppressing messages. Common uses include
the ability of a handler to be configured to only emit messages from
a specific logger or setting a maximum severity threshold to route
debugging messages.

The Python logger is usually configured with a YAML input file
which provides a simple and intuitive mechanism for specifying
names and configuration parameters for various filters, formatters,
handlers, and loggers. With a handful of edits an end-user can
efficiently toggle various behaviors of the logging system without
any recompilation of the application. Because our Fortran analog
uses a nearly identical mechanism, we will defer providing an
example until the next section.

2.2 Parallel features of pFLogger
As mentioned above, our Fortran logger is mostly a straightfor-
ward translation of the Python design, with the notable exception
of extensions that support parallelism. An alternative approach
could have been to provide Fortran wrappers to directly access the
python implementation. We believe that there are several merits to
that approach, but there would also be significant multi-language
inconveniences when introducing new subclasses. We prefer the
pure Fortran approach when possible. In this section we describe
these extensions as well as a few Fortran-specific details and imple-
mentation difficulties.

The first major extension relates to the ability to have multiple
processes emit messages to the same handler. For this we have
introduced an abstract Lock class with two concrete subclasses:
MpiLock and FileSystemLock. The MpiLock class uses MPI one-
sided semantics to implement a passive lock which can only be
acquired by one process at a time. The alternative FileSystem lock
uses atomic file system operations to prevent more than one process
from opening a file at the same time. This could be used for instance
to allow independent applications to share a log file safely. At this
time, our FileSystemLock implementation is not particularly robust
across different types of file systems. Nonetheless we provide it for



POSITION PAPER – pFLogger: The parallel Fortran logging framework for HPC applicationsSE-CoDeSE, November 2017, Denver, CO USA

users that may find it useful in their environments. We also note
that when using a lock, handlers must open/close files for each
message which does introduce additional overhead.

When multiple processes emit messages to the same file, it is use-
ful to label each message by the rank of its process. To facilitate this,
pFLogger includes an MpiFormatter subclass of Formatter which in-
cludes keywords: mpi_rank and mpi_size that capture these values
for the MPI communicator used. For instance, if the MpiFormatter
is specified with the format string:
' PE=%( mpi_rank ) i 4 . 4 ~ : $ ( message ) a '

output messages would appear as
PE=0172: ...
PE=0001: ...
PE=1854: ...

Sometimes instead of aggregating messages from multiple pro-
cesses into a single file, developers wish to have a separate log
file for each process. For this scenario, pFLogger provides an Mpi-
Handler factory method which creates a FileHandler object that
opens a different file on each process. The method accepts a file
name template and replaces any occurrences of mpi_rank with the
corresponding MPI value.

Our final MPI-specific extension is to support the situation in
which a message should only be emitted on a single process (usually
the root, or rank 0). The MpiFilter subclass is configured with a
process rank and only emits messages on the process whose rank
matches. This class could easily be extended to work with a set of
ranks by specifying a rank stride.

2.3 Other pFLogger features
We have significantly altered the syntax for format strings in pFLog-
ger as compared with those of the Python logger. We had two pri-
mary motivations for this decision. First, our targeted audience,
Fortran programmers, are far more likely to be familiar with Fortran
edit descriptors than their C analogs. Further, by using a syntax
similar to native Fortran edit descriptors, pFLogger can leverage
the compiler to perform the lowest level of string formatting.3

pFLogger provides a StreamHandler subclass that are specified
with Fortran I/O units instead of file names. This allows pflogger
output to be intermixed with other conventional print statements in
an application, and also provides a convenient mechanism to route
messages to OUTPUT_UNIT and ERROR_UNIT (Fortran 2003 pre-
defined values for standard output and error units).

One final noteworthy feature is support for embedding simula-
tion time in a Formatter. While conventional time stamps are useful
for monitoring progress of a run, simulation time is more appropri-
ate for correlating messages with the state of a simulation. Use this
feature is a bit involved and requires the end user to implement a
function which returns the simulation time in the form of a small
dictionary of user-defined units.

Our Fortran analog of the Python logger would have been far
more difficult to implement without two important advances. First,
the Fortran 2003 standard[6] introduced object-oriented features
3One unfortunate drawback of this choice is that the field widths Fortran edit descrip-
tors follow the type indicator which can lead to some ambiguity in where a descriptor
ends. To resolve this we require descriptors to be followed by a space character or a
tilde character when a trailing space is not desired.

which enable a direct translation of the Python class hierarchy. And
second, we had previously developed FTLC, a Fortran template
library for containers, which provides analogs of C++ Standard
Template Library Vector and Map templates.[1]

One of the more challenging aspects of pFLogger’s implementa-
tion was allowing for a (nearly) arbitrary list of data arguments in
the primary interface methods. Unlike C and Python, Fortran lacks
language support for variable argument lists. To avoid a combina-
torial explosion in the number of supported interfaces we opted
instead to support a long (but finite) list of optional arguments of un-
limited polymorphic type. The dynamic type of unlimited polymor-
phic entities can be of any Fortran type (intrinsic or user-defined).4
The present arguments are aggregated into a vector container for
subsequent processing.

2.4 Configuration examples
Here we provide an example that demonstrates a simple pFLogger
configuration file and a snippet of instrumented Fortran code. The
configuration file below consists of a single logger, ‘main’, which
has a single handler, ‘console’, that routes messages to standard
output:
h a n d l e r s :

c o n s o l e :
c l a s s : s t r e a m h a n d l e r
u n i t : OUTPUT_UNIT
l e v e l : WARNING

l o g g e r s :
main :

p a r a l l e l : . f a l s e .
h a n d l e r s : [ c o n s o l e ]
l e v e l : INFO

With this configuration, only messages with a severity of warning
or above will appear in the output. Below is an instrumented Fortran
program that works with the above configuration:
use p f l o g g e r
c l a s s ( Logger ) , pointer : : l g r
rea l : : x ( 4 )
! Get a p o i n t e r t o t h e l o g g e r named 'main '
l g r => l o g g i n g% g e t _ l o g g e r ( ' main ' )
! Format a s t r i n g and an i n t e g e r
c a l l l g r % i n f o ( '%a ␣ : ␣ % i 2 ␣ ' , month , imon )
! Format 3 comma s e p a r a t e d i n t e g e r s .
c a l l l g r % i n f o ( 'DIMS : ␣ % i 4 ~ ,% i 4 ~ ,% i 4 ' , im , jm , km)
! 4 comma s e p a r a t e d r e a l s i n an a r r ay
c a l l l g r %warning ( ' x =%4( f 1 2 . 2 , 1 x ) ' , WrapArray ( [ x ] ) )
end program

3 DISCUSSION
To assess pFLogger we have partially instrumented modelE[8], a
large climate model developed at the NASA Goddard Institute for
Space Studies. As this was an internal development project, the
metrics of success were informal and broadly amount to whether
other model developers found sufficient value to migrate remaining
4To work with non-scalar arguments, users unfortunately must wrap array arguments
using the provided WrapArray() function, but this inconvenience will disappear once
compilers start supporting the assumed rank features promised in Fortran 2015.
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diagnostics to the new approach. During development, we had
received very positive feedback from several developers, but it was
unclear as to how the features would be perceived in actual use.
Some specific metrics we have considered are:

• Does the package behave as expected in terms of the desired
output?

• Is the run time overhead within tolerable limits?
• Are the interfaces and configuration sufficiently understand-

able by physical scientists?
Unfortunately, very early in the deployment we encountered a

significant issue that we had not anticipated – compilation over-
head. While pFLogger itself compiled quickly, the compilation of
modelE stalled after simply inserting a single 'USE pflogger ' into
a low-level modelE module. We found similar issues with a second
compiler. Investigation revealed that the ".mod" files produced by
the compilers were effectively doubling in size at each level in the
use hierarchy. The problem is not intrinsic to Fortran nor our design,
as yet another compiler clearly maintained modest file sizes for
".mod" files. Unfortunately modelE itself did not support that com-
piler which prevented its use for that aspect of our evaluation. We
were able to implement some workarounds that enabled a complete
build the instrumented model with both of the original compilers,
but still with significant increase in build time. Table 1 shows the
average times for compiling modelE with and without pFLogger
and using the Fortran compilers from Intel and GNU. Problem re-

GCC 7.1 Intel 17.0 Intel 18.0 beta
Baseline 44 81 80
pFLogger 95 210 119

Table 1: Typical compilation time in seconds for 3 different
compilers.

ports have been filed with vendors and as the times for the beta
release of Intel 18 indicate, this issue should improve in the future.
Unfortunately, the existing overhead was sufficient for rejection
of pFLogger by modelE developers, and we therefore cannot yet
evaluate other measures of user acceptance.

To evaluate run-time performance we have measured the par-
tially instrumented version of modelE and crafted several synthetic
use cases that stress different. Ideally pFLogger performance would
be nearly identical to hard-coded print statements, but some per-
formance overhead is unavoidable due to the greater run-time
flexibility. We anticipate that modest performance impacts will
be acceptable to most users in trade for the improved capabilities.
Production runs can leverage the tool to eliminate or minimize
low-severity log messages, and debugging runs can tolerate a larger
performance impact. For modelE, with only 1% of the output instru-
mented, there was no measurable impact to performance. We will
measure again when a larger fraction of the model is instrumented,
but do not expect any significant overhead.

Our first three synthetic use cases compare the relative perfor-
mance of equivalent pFLogger and native logging.

(i) A text message with basic pFLogger processing.
(ii) A message that formats a few scalar variables

(iii) A parallel log message, with each process writing to a separate
file.

For these cases, we report the time ratio of pFLogger to hard-coded
implementations. The remaining two use cases do not have simple
native analogs:
(iv) A below-threshold message.
(v) A parallel log message written to a shared file.

Case (iv) evaluates the effectiveness of suppressing a message at
runtime. This capability is of limited value unless it at least mea-
surably faster than a normal print statement. Case (v) measures
synchronization overhead by comparing against a linear extrapola-
tion from one process. Table 2 summarizes the results.

These results show that the initial performance is likely accept-
able for many applications/environments but that further opti-
mization is desirable. We note that there is actually considerable
variability (as much as 5x) among these vendors for their baseline
performance. Based upon separate microbenchmarks, we surmise
that these are due to differences in the provided I/O libraries as
well as in the management of small dynamically allocated strings.
Variations in the reported performance ratios for pFLogger are to a
large extent a reflection of this baseline variability.

Use case Intel 17.0a GCC 7.1b NAG 6.1
(i) 5.5x 10x 15x
(ii) 8x 16x 5x
(iii) 1.1x 7x -
(iv) 0.004x 0.03x 0.15x
(v) 5x 8x -

a Intel MPI 5.1 b OpenMPI 2.1
Table 2: Measured times and performance ratios for use
cases (i)-(v) for 3 different compilers.

We believe that tools such as pFLogger will be of significant
benefit to HPC application developers and end users in the future
by allowing a more coherent and flexible approach to application
diagnostics. To this end, we have started NASA’s internal process
for releasing pFLogger as open source and hope to make it available
to the community in the coming year.
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