NATO-STO HFM-247

Human Autonomy Teaming: Supporting Dynamically Adjustable Collaboration

Tech Activity Update US (NASA) HAT-MAPP Model, Agent, Principles & Patterns (MAPP)

Jay Shively NASA-Ames Research Center

May 2, 2017

Goals:

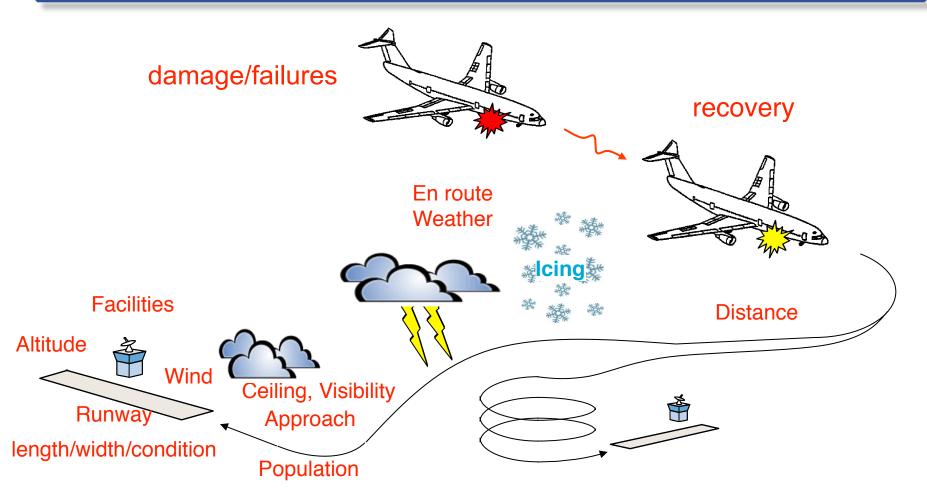
- I. Develop conceptual model of HAT
- II. Test concepts and principles of HAT
- III. Develop pattern(s) of HAT solution(s)
- IV. Develop a re-usable HAT software agent

Develop conceptual model of HAT

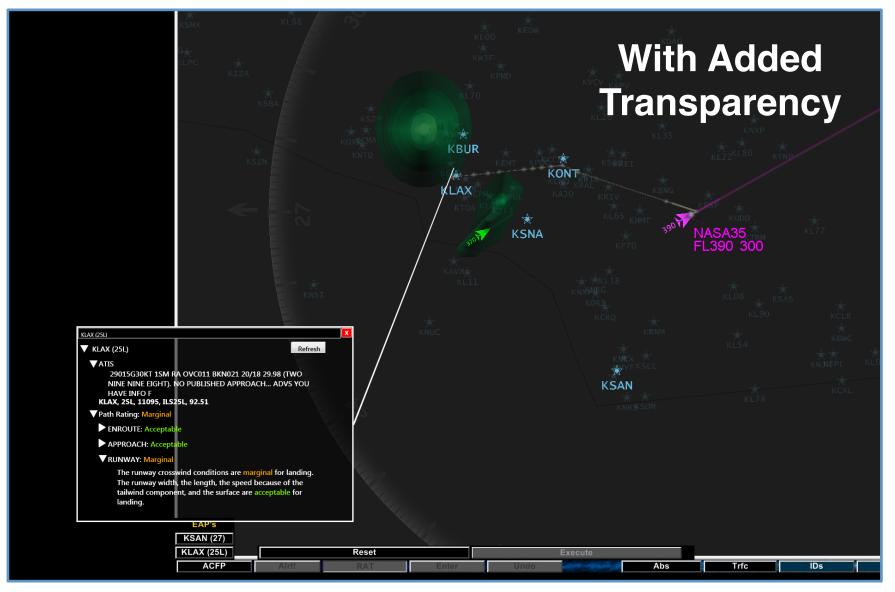
I.

Make the Automation into a Teammate

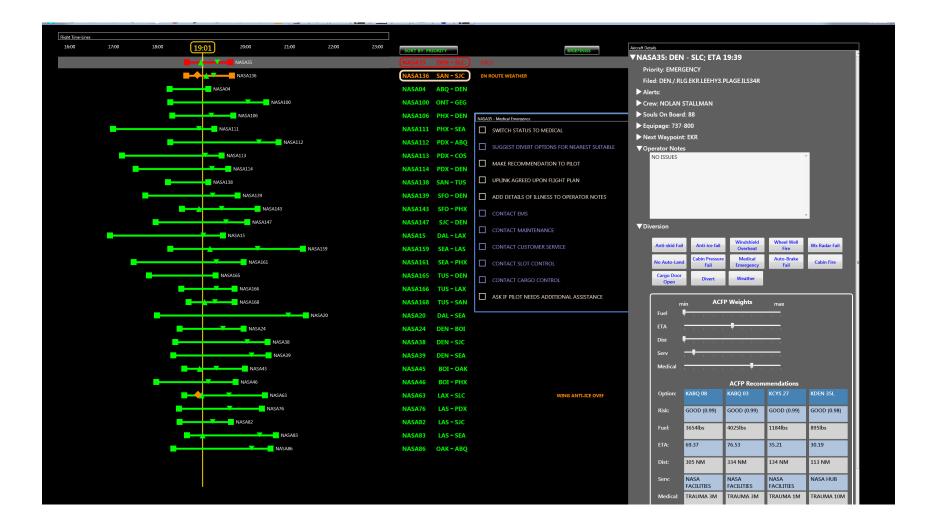
- Bi-Directional Communication
- Transparency
- User Directed Interface
- Requires:
 - Shared goals
 - Shared language or comm channel
 - Shared SA
- Levies req'ts on Auto
 - Explanatory ability
 - Self-confidence
 - Comm

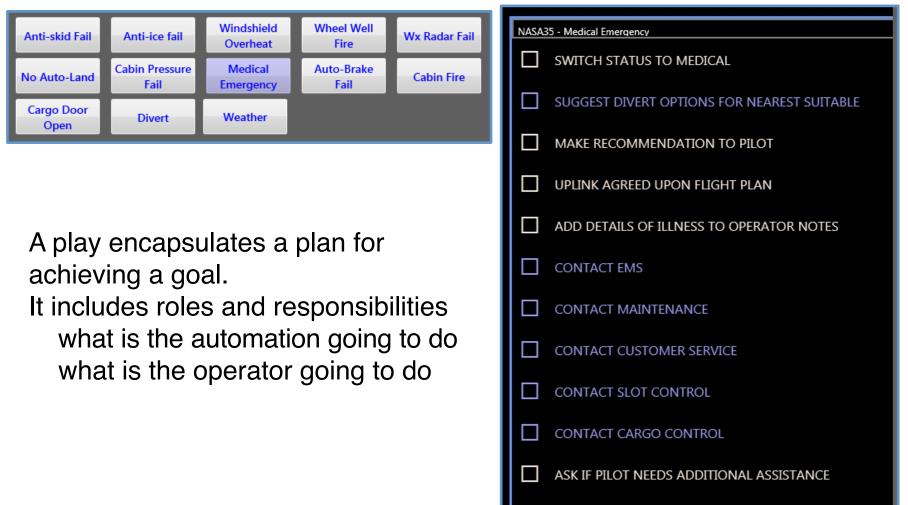

II. Test concepts and principles of HAT (sim 1)

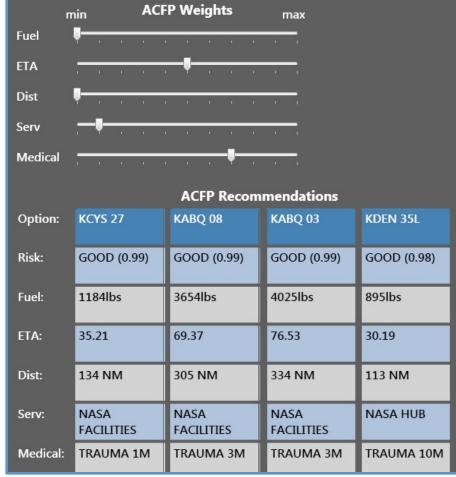
ELP Objective


Find the best landing sites and routes for the aircraft

ACFP Before HAT







• Human-Directed: Operator calls "Plays" to determine who does what

- Transparency: Divert reasoning and factor weights are displayed.
- Negotiation/Dialog: Operators can change factor weights to match their priorities.
- Shared Language/Communication: Numeric output from ACFP was found to be misleading by pilots. Display now uses English categorical descriptions.

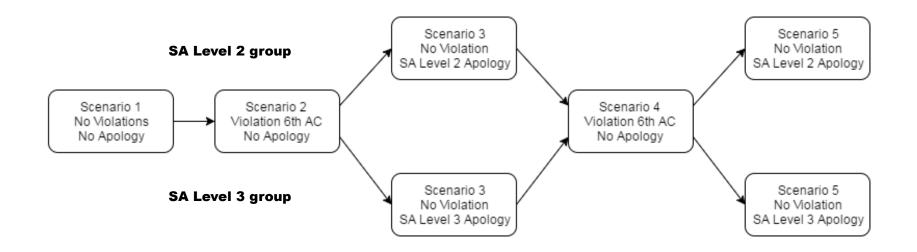
- Participants, with the help of automation, monitored 30 aircraft
 - Alerted pilots when
 - Aircraft was off path or pilot failed to comply with clearances
 - Significant weather events affect aircraft trajectory
 - Pilot failed to act on EICAS alerts
 - Rerouted aircraft when
 - Weather impacted the route
 - System failures or medical events force diversions
- Ran with HAT tools and without HAT tools

- Participants preferred the HAT condition overall (rated 8.5 out of 9).
- HAT displays and automation preferred for keeping up with operationally important issues (rated 8.67 out of 9)
- HAT displays and automation provided enough situational awareness to complete the task (rated 8.67 out of 9)
- HAT displays and automation reduced the workload relative to no HAT (rated 8.33 out of 9)

HAT workload reduction was marginally significant (HAT mean 1.7; No HAT mean 2.3, p = .07)

- Transparency
 - "This [the recommendations table] is wonderful.... You would not find a dispatcher who would just be comfortable with making a decision without knowing why."
- Negotiation
 - "The sliders was [sic] awesome, especially because you can customize the route.... I am able to see what the difference was between my decision and [the computer's decision]."
- Human-Directed Plays/Shared Plans
 - "Sometimes [without HAT] I even took my own decisions and forgot to look at the [paper checklist] because I was very busy, but that didn't happen when I had the HAT."

II. Test concepts and principles of HAT (sim 2) Transparency: Trust Repair (on-going)


- Goal 1: Evaluate the effect of transparency-based trust repair strategies on trust recovery following a poor quality recommendation from an automated recommender system
- Goal 2: Investigate the effect of trust and reliance of internal vs. external root causes of errors committed by the automated system
- 2 x 2 mixed-subjects design
- IVs
 - Apology transparency (between-subjects)
 - Based on Chen et al.'s (2014) SA Transparency Levels
 - Apologies provided with SA levels 2 (comprehension) and 3 (prediction) transparency
 - Internal vs. external attribution (within-subjects)
- DVs
 - Objective measures: time to decision, acceptance/rejection of recommendation
 - Subjective measures: trust, workload, ratings of helpfulness, understanding and confidence
- 24 participants
 - 12 in SA Level 2 apology group, 12 in SA Level 3 apology group
 - Order of internal/external attribution statements counterbalanced

	Internal Attribution	External Attribution
SA Level 2 Apology	"I'm sorry. I made a miscalculation that caused the previous recommendation to be of poor quality."	"I'm sorry. The ATIS broadcast for the previous recommendation was out-of-date and led me to give you a poor quality recommendation."
SA Level 3 Apology	"I'm sorry. I made a miscalculation that caused the previous recommendation to be of poor quality. The bug has been fixed and I will perform better this time."	"I'm sorry. The ATIS broadcast for the previous recommendation was out-of-date and led me to give you a poor quality recommendation. All ATIS broadcasts are now updated and I will perform better this time."

- Five scenarios
 - Six aircraft per scenario
 - All land instruction
 - Trust violations: ACFP returns poor rec for sixth aircraft of Scenarios 2 and 4
 - Trust repair: apology offered at beginning of scenarios 3 and 5 per Robinette et al. 2016

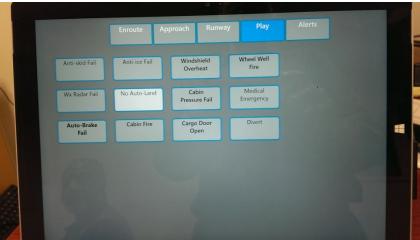
Trust and Transparency Research

- Ran low fidelity and high fidelity HILTS with commercial pilots evaluating a flight re-planning tool
- NASA Ames and Air Force Research Laboratory to conduct HITL activities to evaluate the impact of transparency on trust
 - Completed 2 HITLs with commercial pilots evaluating a flight re-planning tool
 - Transparency was found to impact trust
 - Current study is examining transparency in the context of trust repair

II. Test concepts and principles of HAT (sim 3) Flight Deck HAT/no HAT (June, 2017)

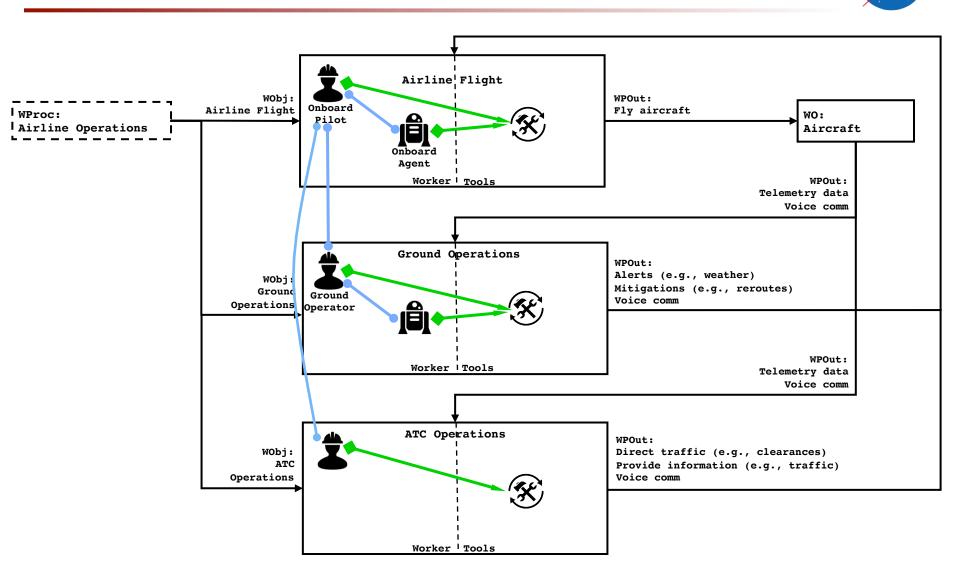
- Independent Variable: No HAT vs HAT
 - No HAT
 - HAT: Inclusion of Transparency, Negotiation, and Pilot Directed interface improvements
- Twelve Pilot Participants
- Dependent Variables:
 - Behavioral
 - Eye movements/scan patterns (to determine which display the pilot is fixated on)
 - Pilot inputs between recommendation and acceptance: does pilot bring up charts, or modify view of charts prior to accepting/ rejecting recommendation?
 - Subjective
 - Subjective responses: during the scenario (ATWIT workload, recommendation quality) and at the end of the scenario (workload, situation awareness, trust, etc.)

- HAT condition
 - Transparency
 - ACFP shows divert reasoning and factor weights
 - Negotiation
 - Allow operator to change factor weights
 - Allow operator to suggest different airport
 - Pilot-directed
 - Allow operator to explicitly call plays
 - Plays use smart checklists with automated steps
- no HAT condition
 - Current operations
 - No ACFP
 - Paper checklist



Status

- Status
 - Adapted ground station scenarios & checklists for flight deck tablet
 - Established Multi Aircraft Control System & TeamSpeak connectivity between CSULB and OPL
 - Autonomous
 Constrained Flight
 Planner running at
 CSULB and connected to OPL
 - Subjects running in early June



III. Develop pattern(s) of HAT solution(s)

- A. Graphical Representation
- B. Textual Description

Top-Level System Work

Specific Slides to be presented in Dialog Mgt. Section (1:40 - 2:20)

Initial Gamma Pattern Heading	s 15 Dec
Sent to Gilles	15 Jan
Gilles feedback	15 Feb
• Skype	24 March
Revision	21 April

IV. Develop a re-usable HAT software agent Delivery Oct 2017

- Design and develop technologies and interfaces for automated systems that can facilitate teamwork between the human operator and automation
 - Ability to adjust levels of automation (working agreements)
 - Manage multiple plays, each with multiple aircraft
 - Context sensitive
 - Dynamic play manipulation
- Delivered
 - Analysis of on- and off-board technologies that could support improvements in safety or reduction in crew complement
 - Software requirements
 - Interface prototype
- On-going
 - Programming of HAT agent
 - Integration of HAT agent with NASA ground station
 - Demonstration of HAT agent technologies
 - Publication of 1st year results

- Excellent Progress
- Proposing follow-on work in:
 - Safety
 - UAS in the NAS