

Single Operator Control of Multiple UAS: A Supervisory Delegation Approach

Presented to UAS EXCOM Science and Research Panel (SARP) Workshop on Single Operator Control of Multiple UAS Jay Shively

NASA-Ames Research Center

UAS INTEGRATION IN THE NAS

Levels of automation of Decision and Action Selection (Sheridan &

Verplanck, 1978)

1 The computer offers no assistance, human must take all decisions and actions

2 The computer offers a complete set of decision/action alternatives, or

- 3 Narrows the selection down to a few, or
- 4 Suggests one alternative, and
- 5 Executes that suggestion if the human approves, or
- 6 Allows the human a restricted veto time before automatic execution
- 7 Executes automatically, then necessarily informs the human, and
- 8 Informs the human only if asked, or
- 9 Informs the human only if it, the computer, decides to

10 The computer decides everything, acts autonomously, ignores the Human

Supervisory Control

Sheridan (2002) defined supervisory control as an arrangement in which "one or more human operators are intermittently programming and continually receiving information from a computer that itself closes an autonomous control loop," but he also accentuated the human system relationship underlying the definition: "Supervisory control derives from the close analogy between a supervisor's interaction with subordinate people in a human organization and a person's interaction with intelligent automated subsystems"

Supervisory control is a general term for control of many individual <u>controllers</u> or <u>control loops</u>, such as within <u>distributed control system</u>. It refers to a high level of overall monitoring of individual <u>process controllers</u>, which is not necessary for the operation of each controller, but gives the operator an overall plant process view, and allows integration of operation between controllers.

Delegation Control: Playbook[®]

Pass Play that search touchdown again Ohio Itate 1922

Delegation: one way humans manage supervisory control with heterogeneous, intelligent assets

- Playbook[®]: ones means of delegation
- Plays: analogous to football
 - Quick commands complex actions
- A Play provides a framework
 - References an acceptable range of plan/behavior alternatives
 - Requires shared knowledge of domain Goals, Tasks and Actions
 - Supervisor can further constrain/ stipulate
- Potentially facilitates intuitive cooperative control of Unmanned Systems
- Drill-down and modify as required by context

A page from Alonzo Stagg's 1927 Playbook

Example: Troops in Contact Tango

Pointer 36°37'12.44" N 121°44'56.80" W elev 287 ft

Streaming |||||||| 100%

Eye alt 1582 ft

Levels of Automation Simulation

Example: Prosecute Target

Tools:

Arm laser \rightarrow Lase target \rightarrow Send coordinates to weaponized UAV \rightarrow Toggle UAVs \rightarrow Arm missile \rightarrow Fire

Scripts:

Select 'Lase' script \rightarrow Toggle UAVs \rightarrow Arm weapons \rightarrow Fire

Plays:

Select 'Prosecute Target' play → Fire

Primary Task Performance (RT) 60 50 40 Reaction Time Target 30 Acquisition Target 20 Prosecution 10 n Plays Scripts Tools Control Mode

Shorter Reaction Time for Plays

Plays had lower workload

MUM

Level IV Control: Control of Payload and Vehicle Excluding Take-off and Landing

Manned-Unmanned Teaming: MUM

Goals:

- Apply Playbook[®] methodology and DelCon lessons learned to helicopter cockpit; Test in simulation
- Increase capability and efficiency of UAS control by helicopter pilots
- Supervisory control of multiple, heterogeneous UAS
- Develop infrastructure and lay foundation for later efforts

Results

Flight Demonstration 2009

Ft. Ord CA, 23 APR 2009

Goal:

 Demonstrates initial proof of concept of Delegation Control (Playbook) in flight – supervisory control of multiple air/ground assets in MOUT Scenario

Method:

- Live/Virtual Demo Controlling RMAX, CMU MAX Rover and 2 virtual UAS with Delegation Control
- Voice RGN Control (USAF)

Features:

- Delegation control human-machine interface supports control and monitoring 4 payloads
- Automation Transparency
- Live UGV-UAV coordination for slung load drop
- Reduced operator workload/high situation awareness

Top Plays

• Troops in contact

Route Recon

• Area Recon

• Convoy support

• Quick Meds

Flight Demonstration 2011

Ft. Hunter-Liggett CA, 19 May 2011

Purpose:

- Build on previous simulations and flight test examining single operator control of multiple heterogeneous ground/air unmanned systems through delegation control employment
 - Operator performance data collection/workload assessments
 - Heterogeneous flight assets: Boeing Scan Eagle and Yamaha RMAX; two virtual UAS
 - Testing in operationally relevant mission scenarios
 - Multi-sensor cross-cue in support of both targeting and convoy support
- Army AFDD/Boeing CRADA

Key Objective:

 Develop and test DelCon Top Priority Plays; route recon, convoy support, troops in contact

Supervisory Control Summary

Demonstrated in numerous simulations and flight tests (even NOPE simulations)

• AFRL – Base security, UAS ground station

• RCO – Dispatch, cockpit

• Human Automation Teaming (HAT)

Civil UAS Plays

- Monitor Border
 - Fly designated border
 - Alert any "signs of life"
 - UAS1 fly waypoint a to b
 - UAS2 fly WP b to C
 - UAS3 follow-up with any alerts
- Evaluate powerlines
- Transit airspace

Civil Plays

- Search and Rescue
 - Fly designated areas of search zone lawn mower pattern, alert shapes, colors, etc.
 - Survival drop as soon as WP is designated
 - Meds
 - Radio
 - Food/water
 - Shelter

HAT Agent

HAT Attributes

- Pilot directed interface
 - No intent inferencing
 - Directed by pilot actions
 - No set roles and responsiblities
 - Playbook
- Bi-directional Communication
 - Why?
 - How confident ?
 - What if ?
 - Add information
- Transparency
 - Calibrated trust
 - Granularity
 - Time pressure

Problems with Automation

- Brittle
 - Automation often operates well for a range of situations but requires human intervention to handle boundary conditions (Woods & Cook, 2006)
- Opaque
 - Automation interfaces often do not facilitate understanding or tracking of the system (Lyons, 2013)
- Miscalibrated Trust
 - Disuse and misuse of automation have lead to real-world mishaps and tragedies (Lee & See, 2004; Lyons & Stokes, 2012)
- Out-of-the-Loop Loss of Situation Awareness
 - Trade-off: automation helps manual performance and workload but recovering from automation failure is often worse (Endsley, 2016; Onnasch, Wickens, Li, Manzey, 2014)

HAT Solutions to Problems with Automation

- Brittle
 - Negotiated decisions puts a layer of human flexibility into system behavior
- Opaque
 - Requires that systems be designed to be transparent, present rationale and confidence
 - Communication should be in terms the operator can easily understand (shared language)
- Miscalibrated Trust
 - Automation display of rationale helps human operator know when to trust it
- Out-of-the-Loop Loss of Situation Awareness
 - User directed interface; adaptable, not adaptive automation
 - Greater interaction (e.g., negotiation) with automation reduces likelihood of being out of the loop

Working Agreements

- Pre-determined authority sharing agreements with automation
 - If the water cooling level drops below a certain value, open values to emergency cooling

Summary

- Autonomy
 - Not much in today's "approved" UAS
 - Words Matter
 - ICAO
- Business case for single operator supervisory control of multiple UAS
 - Playbook delegation is one successful method
- HAT
 - Cooperative agent with knowledge of work domain
 - Shared world knowledge
 - Can be extended to network supervision