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We designed a quantum search algorithm, giving the same quadratic speedup achieved by Grover’s
original algorithm; we replace Grover’s diffusion operator (hard to implement) with a product dif-
fusion operator generated by transverse fields (easy to implement). In our algorithm, the problem
Hamiltonian (oracle) and the transverse fields are applied to the system alternatively. We construct
such a sequence that the corresponding unitary generates a closed transition between the initial state
(even superposition of all states) and a modified target state, which has a high degree of overlap
with the original target state. Let N = 2

n
be the size of the search space. The transition rate is of

order O(1/
√
N), and the overlap is of order O(1/

√
n), yielding a O(

√
N) algorithm up to log(N)

factors. Our algorithm belongs to a class of algorithms proposed by Farhi et al. [1–3], namely the
Quantum Approximate Optimization Algorithm (QAOA).

I. INTRODUCTION

Grover’s algorithm searches for a specified entry in an
unstructured database, achieving a quadratic speedup
over the best classical algorithms [4]. It is optimal for any
quantum algorithm performing such a task [5]. Search-
ing for an unique element in an unstructured database
has many applications, such as the problem of boolean
satisfiability (SAT). The time complexity of Grover’s al-

gorithm is Θ(
√
N), offering a modest quadratic speedup

over any classical counterpart, however, even quadratic
speedup is considerable when N is large. If there are
t solutions then Grover’s algorithm can be modified to
find all the answers with time complexity Θ(

√
N/t) [6].

Grover’s algorithm is probabilistic in the sense that it
gives the correct answer with a probability of less than
1. To get the error probability down to ε one can do
O(log(1/ε)) repetitions (does not grow with N) and out-
put the most frequent outcome.

Recently, Farhi et al. [1–3] proposed a new class
of algorithms—the Quantum Approximate Optimization
Algorithm (QAOA)—to tackle with challenging combina-
torial optimization problems. In such algorithms, a mix-
ing term (usually the transverse field) and the problem
Hamiltonian are implemented alternatively to the sys-
tem; the time sequence of implementing the two Hamilto-
nians are optimized, such that the averaged performance
of the algorithm—measured by the expectation value of
the problem Hamiltonian at the output—is minimized
(or maximized).

Inspired by the circuits used in QAOA, we propose a
quantum algorithm based on the principle of amplitude
amplification to search a unique entry in an unstructured
database consist of n qubits (N = 2n). In our algorithm,
the mixing term and the problem Hamiltonian are ap-
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plied to the system alternatively; the time sequence of
applying these Hamiltonians are selected carefully such
that it generates a closed transition between the initial
state (even superposition of all bit strings) and a modi-
fied target state, which has a high degree of overlap with
the original target state. The transition rate is of order
O(1/

√
N), and the overlap is large O(1/

√
n), yielding a

O(
√
N) algorithm up to log(N) factors.

II. GROVER’S ALGORITHM

Grover’s algorithm has attracted many attentions by
affirmatively demonstrating that a quantum computer
can outperform any classical computer. A technique
known as amplitude amplification is used in Grover’s al-
gorithm, which then inspired a class of quantum algo-
rithms. The key to such technique is to selectively shift
the phase of the particular quantum state given by the
oracle, at each iteration. The amplitude of that state
changes after the phase shift, however, the probability
the system being in that state is unchanged. Subsequent
operations on the system take advantage of the differ-
ence in amplitude to increase the probability of the sys-
tem being in that state. This would be impossible if the
amplitudes did not hold the extra phase information in
addition to the probability. Amplitude amplification is
unique to quantum computing because it has no analog
in classical probabilities. Our algorithm is based on this
principle.

A crucial component of Grover’s algorithm is the
Grover’s diffusion operator. Such operator adds a phase
of π to the even superposition state (same amplitude for
all the basis states) and does nothing to all the orthog-
onal states. The Grover diffusion operator is quite hard
to implement in a quantum circuit, because it correlates
all the qubits under consideration. It requires O(logN)
two-qubit gates to implement the Grover’s diffusion op-
erator [7]. This is a drawback in practice, because two-
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qubit gates are very expansive. One way to circumvent
that difficulty is to use a transverse field (acting only
on individual qubits) instead of Grover’s diffusion oper-
ator. The same quadratic speedup in Grover’s algorithm
is believed to be achievable in Adiabatic Quantum Com-
putation (AQC) [8, 9], where the a transverse filed is
gradually replaced by the problem Hamiltonian that en-
codes the answer. A natural question to ask is whether
it is possible to implement quantum search in the circuit
model only using the transverse field. Here, we give an
affirmative answer to this question.

III. PROBLEM SETUP

Suppose we are given a problem Hamiltonian (oracle)

Cµ = −|µ 〉〈µ | , (1)

that encodes an unknown bit string µ of length n (n is
even for simplicity). Our aim is to find out µ using as
few as possible calls of the oracle. We will also use the
following transverse field operator

B =

n∑
j=1

Xj , (2)

where Xj is the Pauli-X operator on the j-th qubit. The
advantage of using the B operator over Grover’s diffusion
operator is that B (acts only on individual spins) is much
easier to implement. The input state of our algorithm is
the +1 eigenstate of all the Xj operators

|Ψ0 〉 =
1√
N

∑
ν∈{0,1}n

|ν 〉 = |+ 〉⊗n . (3)

The unitary operator that flips a subset of qubits S ⊆
{1, 2, . . . , n} reads

FS = F †S =
∏
j∈S

Xj . (4)

Letting S be the set of bits whose value is 0 in the bit
string µ, we have

FS |µ 〉 = |1 〉 , FS CµF
†
S = C1 , (5)

where 1 ≡ (1, 1, . . . , 1). Because FS commutes with B
and stabilizes the initial state |Ψ0 〉, it can be used to
convert our problem of finding the bit string µ to finding
the bit string 1 with the oracle C1 and the operator B.
This drastically simplified our problem, because one only
needs to consider the symmetric subspace of dimension
n+ 1 instead of the whole Hilbert space of dimension 2n.
To simplify notation, we will omit the subscript in C1

thereafter, i.e., C ≡ C1.
To find the target bit string 1, we construct a unitary—

described by a sequence of elementary unitaries gener-
ated by B and C—such that it drives a closed transition

between the initial state |Ψ0 〉 and a modified target state
|Ψ1 〉 which has a big overlap with |1 〉. We choose the
state |Ψ1 〉 as the eigenstate of B with eigenvalue 0 (for
even n),

|Ψ1 〉 ∝ Psym

(
|+ 〉⊗

n
2 ⊗ |− 〉⊗

n
2

)
, (6)

where Psym is the projector into the symmetric subspace.
The probability that one finds the target state |1 〉 with
|Ψ1 〉 is

|〈1 |Ψ1 〉|
2 =

n!

(n/2)!(n/2)!

1

2n
'
√

2

πn
, (7)

which scales as 1/
√
n. Thus, one simply needs to repeat

the experiment for order
√
n times to find the target state

with high probability.

IV. SPIN COHERENT STATES

It turns out that spin coherent states [10, 11] is espe-
cially convenient for our problem. We will only need spin
coherent states on the Y -Z plane,

Ψ(θ) = e−iθB/2
∣∣1 〉 , (8)

where θ ∈ [ 0, 2π). These states already form an over-
complete basis for the symmetric subspace. We pay
particular attention to a set of discrete values of angles
θ = k∆θ, where k = 0, 1, . . . , n − 1 is an integer and
∆θ = 2π/n. Note that these n spin coherent states do not
form a complete basis of the symmetric subspace (with
dimension n+1). The modified target state |Ψ1 〉 can be
represented using these discrete spin coherent states,

|Ψ1 〉 =
1

a1

n−1∑
k=0

e−ikπB/n|1 〉 , (9)

where the normalization factor is

a1 =

n−1∑
k=0

〈Ψ1 |e
−ikπB/n|1 〉 = n〈Ψ1 |1 〉 ∼ n

3/4 . (10)

We will need the following states

|Ψ±0 〉 =
1√
2

(
|Ψ0 〉 ± | Ψ̄0 〉

)
(11)

where | Ψ̄0 〉 = | − 〉⊗n. While 〈Ψ−0 |e
−ikπB/n|1 〉 = 0 for

all integer k, |Ψ+
0 〉 has the representation

|Ψ+
0 〉 =

1

a0

n−1∑
k=0

(−1)ke−ikπB/n|1 〉 , (12)

where the normalization factor is

a0 = n 〈Ψ+
0 |1 〉 =

√
2n 〈Ψ0 |1 〉 ∼

n√
N
, (13)
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which is exponentially small. From Eqs. (9) and (11),
one can verify the following eigenvalue equations

e−iπB/n|Ψ±0 〉 = −|Ψ±0 〉 , e−iπB/n|Ψ1 〉 = |Ψ1 〉 . (14)

For any state |Ψ 〉 and a small angel γ, we have

e−iγC |Ψ 〉 = |Ψ 〉+
(
eiγ − 1

)
〈1 |Ψ 〉|1 〉

= |Ψ 〉+ iγ 〈1 |Ψ 〉|1 〉+O(γ2) .
(15)

V. THE ALGORITHM

Having equipped with the basics of the spin-coherent
state representation, we introduce the unitary that is
close in the subspace spanned by |Ψ±0 〉 and |Ψ1 〉. We
introduce the following unitary

Uγ =
(
e−iπB/neiγCe−iπB/ne−iγC

)n/2
, (16)

where γ is a small angle. Using the first identity in

Eq. (14) and noticing e−iγC |Ψ−0 〉 = |Ψ−0 〉, we have

Uγ |Ψ
−
0 〉 = |Ψ−0 〉 . (17)

We also notice that

Uγ |Ψ
+
0 〉 ' |Ψ

+
0 〉+ iγ 〈1 |Ψ+

0 〉
n−1∑
k=0

e−ikπB/n|1 〉

= |Ψ+
0 〉+ iγn 〈1 |Ψ+

0 〉〈Ψ1 |1 〉 |Ψ1 〉 ,

(18)

and

Uγ |Ψ1 〉 ' |Ψ1 〉+ iγ 〈1 |Ψ1 〉
n−1∑
k=0

(−1)ke−ikπB/n|1 〉

= |Ψ1 〉+ iγn 〈1 |Ψ1 〉〈Ψ
+
0 |1 〉 |Ψ

+
0 〉 .

(19)

Thus, the unitary Uγ drives a closed transition between

|Ψ+
0 〉 and |Ψ1 〉, and the transition rate is

r = γn 〈1 |Ψ1 〉〈Ψ
+
0 |1 〉 ' 4

√
2/π γ n3/4N−1/2 . (20)

Applying the unitary Uγ for M = bπ/2rc times on the
initial state |Ψ0 〉, we have

|Ψout 〉 = UMγ |Ψ0 〉 '
1√
2

(
|Ψ1 〉+ |Ψ−0 〉

)
. (21)

Because 〈1 |Ψ−0 〉 = 0, the probability that we find the
target state |1 〉 in the output state is

P1 ' |〈1 |Ψ1 〉|
2/2 ' 1/

√
2πn . (22)

The success of our algorithm, however, is based on the
assumption that γ is small; we still need to know how
small that γ should be. The whole algorithm could be

slower than its classical counterparts if γ was exponen-
tially small. A crucial criteria to choose γ is that the
output state |Ψout 〉 should be mainly in the subspace

spanned by |Ψ±0 〉 and |Ψ1 〉. This condition can be trans-
lated to (

e−ikπB/n − I
)
|Ψout 〉 ' 0 , (23)

for k = 0, 2, . . . , n − 2. The condition (23) says that the
output state |Ψout 〉 does not change under rotations by
any angle that is a multiple of π/n, and a simple way to
guarantee that is to set γ . 1/

√
n. In Appendix B, we

argue that our algorithm even works for γ of order Θ(1).
To “find” the bit string 1 in the output, we can apply

the unitary e−iθB/2 with a random angle θ ∈ [0, 4π/n).
This step maps the output state to a mixed state of
|Ψ0 〉〈Ψ0 |, | Ψ̄0 〉〈 Ψ̄0 |, and |Ψ1 〉〈Ψ1 |. One then makes
a measurement in the computational basis. For roughly
half of the times, he get a random string due to the con-
tributijon from |Ψ0 〉 and | Ψ̄0 〉. For the other half times,
he finds the solution with a polynomially small probabil-
ity O(1/

√
n). He then test the result by applying a π/2

pulse on an arbitrary qubit, creating an even superposi-
tion of the initial bit string and a flipped bit sting. Then

he applies the unitary eiπC to the system, this step flips
the sign of the target bit string. He then apply a −π/2
pulse and measure in the computational basis. One of the
two bit stings must be the target if he finds the measure-
ment outcome is the flipped bit sting. Otherwise, neither
of the two bit strings is the target. To distinguish the two
possible target bit strings, he only needs to flip another
qubit in the initial bit string.

The complexity of our algorithm is Θ
(
n
√
nM

)
, or

equivalently, Θ
(
n3/4N1/2). While the scaling of N1/2

cannot be be improved, the scaling of n might be im-
proved.

VI. ROBUSTNESS

We have assumed that the implementation of the quan-
tum gates are perfect, however, no quantum gate is per-
fect in reality. One of the most detrimental noise in our
algorithm is the uncertainly in the transverse field B.
This kind of noises destroy the relative phase between the
states |Ψ+

0 〉 and |Ψ1 〉. Because our algorithm engages
amplitude amplification, it stops working when phase co-
herence is destroyed. It is crucial to design a method to
stabilize the relative phase of the two states, and quan-
tum control might be useful for that purpose.

Another kind of important noises is decoherence on in-
dividual spins. There is no easy way to deal with these
noises without a fault-tolerant computer, and one simply
need to finish the computation before the qubit deco-
hered. Luckily for us, we only need deal with two very
special states. Maybe there is a way to find a decoherence
free subspace for the two states.
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VII. CONCLUSION

We have proposed a quantum algorithm to search a
unique entry in an unstructured database using ampli-
tude amplification. We show that Grover’s diffusion op-
erator can be replaced by the transverse field without
sacrificing the quadratic speedup. Although this modifi-
cation does not offer more insights to complexity theory,
it is important to the realization of the quantum search
algorithms as single-qubit gates can usually be imple-
mented much more precisely and faster than multi-qubit

gates. Our algorithm is based on constructing a closed
transition between the initial state and a modified target
state; the probability of finding the solution in the modi-
fied target state is O(1/

√
n). In Grover’s algorithm, one

has to change the basis back and forth to implement the
diffusion term and the oracle term. Our algorithm does
not require changing between basis, and thus might be
easier to made more robust to errors. It is also interest-
ing to compare our algorithm to AQC, since the same
elements are used therein. A potential advantage of us-
ing circuit model instead of the adiabatic model is the
flexibility of implementing quantum error-correcting and
control protocols.
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Appendix A: Phase space representations

Any state in the symmetric subspace can be uniquely
determined by its inner products with spin coherent

states, and we introduce the following representation of
a quantum state |Ψ 〉 in the symmetric subspace,

χ
(
|Ψ 〉, θ

)
=
〈
1
∣∣eiθB/2∣∣Ψ 〉 . (1)

The χ function fully determines the state |Ψ 〉, since the

spin-coherent states e−iθB/2
∣∣1 〉 for θ ∈ [ 0, 2π) are over-

complete. Its advantage is to represent both the B and
C operations in concise forms. For the initial state in
Eq. (3), we have

χ
(
|Ψ0 〉, θ

)
=
〈
1
∣∣eiθB/2∣∣Ψ0

〉
=
e−inθ/2√

N
. (2)

For the modified target state |1 〉, we have

χ
(
|1 〉, θ

)
=
〈
1
∣∣eiθB/2∣∣1 〉 = cos(θ/2)n . (3)

Note that χ
(
|1 〉, θ

)
is peaked at θ = 0, whose width is

of order 1/
√
n. It is convenient to represent the unitary

e−iφB/2 using the χ function,

χ
(
e−iφB/2|Ψ 〉, θ

)
= χ

(
|Ψ 〉, θ − φ

)
. (4)

The action of the unitary generated by C on an arbitrary
state is also simple

χ
(
e−iγC |Ψ 〉, θ

)
= χ

(
|Ψ 〉, θ

)
+ (eiγ − 1) cos(θ/2)n χ

(
|Ψ 〉, 0

)
.

(5)

For θ = 2kπ/n, we use the following notation for the χ
function,

χk
(
|Ψ 〉

)
=
〈
1
∣∣eikπB/n∣∣Ψ 〉 . (6)

For k = n (n even), we have

χn
(
|Ψ 〉

)
=
〈
1
∣∣eiπB∣∣Ψ 〉

= (−1)n〈1 |Ψ 〉 = 〈1 |Ψ 〉 = χ0

(
|Ψ 〉

)
.

(7)

We will use the relation

χk
(
e−iπB/n|Ψ 〉

)
= χk−1

(
|Ψ 〉

)
. (8)
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For the initial state, we have

χk
(
|Ψ0 〉

)
= χk

(
| Ψ̄0 〉

)
=

(−1)k√
N

, (9)

where | Ψ̄0 〉 = | − 〉⊗n. The above equation says that
the values χ1, χ2, . . . , χn−1 do not uniquely determine a
quantum state in the symmetric subspace, because the
dimension of the Hilbert space is n + 1. Since the state

|Ψ1 〉 remain the same under the rotation e−iθB/2, its χ
function is simply

χk
(
|Ψ1 〉

)
= χ0

(
|Ψ1 〉

)
' 4
√

2/πn . (10)

Appendix B: Large angles

Here, we discuss the case of large γ with the represen-
tation introduced in Section A. The advantage of using
larger γ is to shorten the circuit depth as well as reducing
implementation errors.

We will need the elementary building block of our al-
gorithm,

Vγ = e−iπB/neiγCe−iπB/ne−iγC , (1)

where γ is not necessary small. Applying Vγ for ` times

on the state |Ψ+
0 〉, we have

|Φ` 〉 = V `γ |Ψ
+
0 〉 . (2)

where ` is a positive integer. Because Vγ commutes with

V `γ , we have∣∣(V kγ − I)|Φ` 〉∣∣ =
∣∣(V kγ − I)|Ψ+

0 〉
∣∣ ∼ 1/

√
N , ∀` , (3)

where k = 1, . . . n− 1. For any normalized state |Ψ 〉, we
have

〈Ψ |
(
V kγ − I

)
|Φ` 〉 ∼ 1/

√
N , ∀` . (4)

Using the phase space representation, it can be proved

that 〈Ψ |
(
V kγ − I

)
|Ψ 〉 & 1/n if the normalized state |Ψ 〉

is orthogonal to both |Ψ±0 〉 and |Ψ1 〉. Thus, the output
state can only have exponentially small support in that
subspace. The transition rate between the state |Ψ+

0 〉
and |Ψ1 〉 can be calculated by using the phase space
representation.
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