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* A Thermal Protection System (TPS) is
required to protect the vehicle from Giants: fi,He
severe heating environments during
high speed entries. Harmehents

* The physics of the entry aeroheating is
controlled by phenomenon like: Boundary Layer
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Background @

* A Thermal Protection System (TPS) is
required to protect the vehicle from Giants: fi,He
severe heating environments during
high speed entries. Harmehents

* The physics of the entry aeroheating is
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Wright, M. 18]

In reality, these processes are coupled due to the surface energy balance.
Assumptions have to be made about their time/length scales.

Thus, allowing the use of uncoupled approaches.
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Motivation @

* Main focus:
Fluid-dynamics and Radiation coupling

« The amount of fluid-radiation coupling can be estimated by
evaluating the Goulard number (I'):

2qR . _ Uncoupled radiative energy flux

[ = =
1 PIRY: Total energy flux
2 oo “*Cco

 Different values for I':
— FIRE 1111 ~ 0.01 to 0.03
— Galileo Probe 8l ~ 0.1
— Titan Aerocapture 8l ~ 0.4

« An uncoupled solution over-predicts the total heating by almost 15%
for FIRE I111],

* For atmospheric conditions such as in Titan or during Jovian entry
the fluid-radiation coupling becomes a must.
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State of the Art @

« Past work on fluid-radiation coupling have mainly used
structured codes:

— Palmer et al. 1l using DPLR-NEQAIR.
— Johnston et al. [’l using LAURA-HARA.

 First attempt to use US3D an unstructured code.

—US3D is developed by University of Minnesota in
collaboration with NASA Ames and other partners.

— Will be the next generation CFD tool for NASA Ames.
— Important to have the capability of fluid-radiation
coupling.
« Develop a loosely coupled methodology using US3D and
NEQAIR.
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Coupling Procedure @

Run the CFD simulation until
convergence US3D

Obtain solution on a 3-D volume

: . US3D
Extract flow data along Lines of Sight post-par
One Coupling
Calculate the radiant energy source Iteration
term NEQAIR
Obtain solution on a 1-D Line of Sight
Run the CFD simulation using the US3D

source term
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» Challenging in an unstructured code.

« Connectivity not explicitly given using grid
iIndex.

« An efficient searching algorithm s
required for searching nearest neighbors.

* The kd-tree algorithm in US3D is used.

It organizes data in a way that a large
chunk of data points can be excluded
during the search.

Y

T

FIRE Il 2-D
axisymmetric

« A zeroth-order interpolation of flow data
along the LOS.

8/10/17 Summer 2017, NASA Ames Research Center 8



Steps in LOS Extraction
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US3D-LOS Tool e

 Serial code runs using the US3D post-processor.

« Time required for extracting 100 lines with 100 points each:
— FIRE Il grid ~ 10% cells = 1 sec.
— EAST grid ~ 106 cells = 60 sec.

User Inputs:
— Grid file - grid.h5, connectivity file - conn.h5 and solution file - data.h5
— No. of points to extract per line.
— The wall boundary name and gas file name used.

Outputs and Capabillities:

— Extract lines at any given point on the wall or between any two given
points.

— Write LOS data in NEQAIR (.h5/.dat) or Tecplot readable (.dat) format.

— Mirror LOS data about the outer boundary (useful for shock tube
problems).



Tangent Slab @

« Tangent Slab approximation:

« The radiation is along a line of sight normal to the wall.

« Johnston et al. ¥l showed that the tangent-slab assumption is sufficient to
model the source term but not the radiative heating on surface.

« Difference in computed values: Ray-tracing vs Tangent-slab 1]

— Source term: under 3% - stagnation line & shoulder, 10% - afterbody.
— Radiative heating: 11% - stagnation line, 17% - shoulder, 40% - afterbody.

Johnston et al. 4

(a) Ray-Tracing (b) Tangent-Slab
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Flow Conditions @
pex (kg/m?)

1636 71.0 11.31 8.57%x10°
1643 53.0 10.48 276 7.80x10+4 640
1645 48.4 9.83 285 1.32x103 1520
Fluxes Modified Steger-Warming
Time integration Data Parallel Line Relaxation (DPLR)
Gas Air — 11 species
Reaction rates Park two-temperature model
Vibrational-Electronic energy NASA Lewis data fits
Transport properties Gupta collision model
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Coupling — FIRE I
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Heating Rates @
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Temperature (K)

Shock Movement @
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Decrease In bow shock
stand-off distance.

Decrease in temperatures
Inside shock layer.
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Shock Movement
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Radiative Source term

On stagnation line
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« The radiative source term typically acts as an

energy sink in the shock layer (due to emission) and
a source in the boundary layer (due to absorption).
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Radiative Cooling @

* Net effect of the radiative source term:
— Lowers convective and radiative heating rates at the wall.

— Reduction in bow shock stand-off distance.
— This effect is known as radiative cooling.

« Tauber and Wakefield [2] derived an approximate relation for the ratio of
the coupled radiative heating to the adiabatic one as a function of the

Goulard number (where k = 3.45).

qgoup _ 1
qu 1+ xI07

Fractional change in radiative heating:

U | T US3D-NEQAIR
(m/s)

11.31 0.036 0.748 0.793 0.779 0.935
10.48 0.031 0.767 0.765 0.782 0.781
9.83 0.011 0.872 0.842 0.881 0.919
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Summary

* Developed a user module for US3D to perform fluid-
radiation coupling simulations with NEQAIR.

* The coupling simulations were performed on the 2-D
axisymmetric FIRE Il grid for three different flow
conditions.

* The effects of the fluid-radiation coupling were seen as
a reduction in the convective/radiative heating rates
and decrease In the shock stand-off distance.

* The reduction in radiative heating rates seems to be
comparable to those predicted by Tauber-Wakefield 2.,



Future Work

« Adding the capability in the LOS tool to extract lines
any given angle.
— Extract a no. of LOS within a given solid angle.

« Evaluate the effects of the Tangent-Slab assumption on
the flow field.

— Computationally very expensive as the radiation on every LOS
emanating from the wall face needs to be computed.

 Better interpolation of source term into the domain.

« Comparison of US3D-NEQAIR simulations with those
done from DPLR-NEQAIR.
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Thank you
Any Questions ?

Special Thanks to:

Joseph C. Schulz
Aaron M. Brandis
Khalil Bensassi
Brett A. Cruden
Suman Muppidi
David B. Hash
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