"A Lifting ADEPT is considered for aerocapture at Venus. Analysis concerning the heating environment leads to an initial sizing estimate. In tandem, a direct entry profile at Earth is considered to act as a facsimile for the Venus aerocapture heating environment. The bounds of this direct entry profile are determined and it is found that a trajectory from a Geostationary Transfer Orbit with a Lifting ADEPT capable of fitting on a rideshare opportunity is capable of matching certain aspects of this heating environment."

Candidate Earth Entry Trajectories to Mimic Venus Aerocapture Using a Lifting ADEPT

Jimmy Williams

University of Illinois at Urbana-Champaign

Problem Statement

- Can we perform aerocapture at Venus with Lifting ADEPT?
- What size of Lifting ADEPT is required to do this?
- How do we validate Lifting ADEPT aerothermodynamics for Venus at Earth?

Aerocapture

- Aerocapture: Using a body's atmosphere to slow a craft from a hyperbolic to an elliptical trajectory
- Entry Corridor:
 - Undershoot: Lift up, high heat rate
 - Overshoot: Lift down, high heat load
 - Mid-corridor: Lifting out-of-plane, mix of heating

- Aerocapture allows for much higher science payload mass for a similar apoapsis when compared with propulsive insertion
 - Required ΔV ~4 km/s
- Aerocapture is an enabling method for CubeSat-class orbital missions to Venus
- Venus heating environment heavily influenced by ballistic coefficient and target apoapsis

Lifting ADEPT

- ADEPT Adaptable, Deployable Entry and Placement Technology
- Lifting ADEPT is asymmetric variant
- Aerodynamics:
 - Hypersonic invariance
 - Trim Angle of Attack: 10°
 - L/D_{trim}: 0.19
 - CD_{trim}: 1.43
- Configurations are based on previous Lifting Nano-ADEPT study (LNA 2016 CIF)
- Base payload volume is ~4U

Subsystem	Estimated mass (kg)
Decelerator	12.2
Ancillary	34.3
Entry Mass	47

Lifting ADEPT Configurations

- Three sizes of Lifting ADEPT considered
 - 1, 2, 3 *m* deployed diameter
- Upper and lower bounding mass for each considered:
 - Lower Only decelerator and ancillary mass
 - Upper Payload is based on CubeSat Standard
 - Component masses scale differently with size
 - Ancillary ~ Constant
 - Decelerator ~ R²
 - Payload ~ R³

Deployed Diameter (<i>m</i>)	Payload Volume (m ³)	Payload Mass	Mass (kg)	Ballistic Coefficient (kg/m ²)
1	0.012	0	47	42
I	1 0.012	24	71	63
2	0.006	0	65	14
2	0.090	192	256	57
2 0.224		0	88	9
5	0.524	648	736	72

	Entry Velocity (km/s)	Interfa Altituc (<i>km</i>)	ce Targe de Apo. A (<i>km</i>)	et Angle o Alt. Attack	of L/C c	
	11.0	130	1,000	D 10°	0.19	9
Deployed Diameter (<i>m</i>)	Nose Radius (<i>m</i>)	Mass (kg)	Ballistic Coefficient (kg/m ²)	Max Acceleration (Earth g's)	Peak Stag. Point Flux (W/cm ²)	Total Stag. Point Load (J/cm ²)
1	05 -	47	42	7.3	190.00	13.0e3
1 0.5	71	63	7.3	230.00	15.8e3	
2	10 -	65	14	7.2	83.00	5.6e3
2	1.0	256	57	7.3	166.00	11.1e3
2 1 5	88	9	7.2	53.00	3.6e3	
3 1.5 -		736	72	7.3	162.00	10.7e3

All configurations flown at mid-corridor

Venus Aerocapture – TPS Sizing

- Lifting ADEPT makes use of layers of flexible, woven, carbon fiber TPS
 - Each thermal layer ablates after ~0.5 kJ/cm² (Smith, 2015)
 - Design practice adds a layer for thermal margin
 - Design assumes 2 additional layers for structure
- Folding is a key design constraint, especially for smaller sizes
 - 3:1 deployed-to-stowed ratio
- 0.7 m ADEPT used in SR-1 with 4 layers and 8 ribs is near the limit of stowability
- It appears that the 1 m Venus aerocapture variant is unfeasible due to large amount of layers required
 - 2 m full-mass variant is design point

Size (<i>m</i>)	Mass (kg)	Number of Layers
1	47	10
I	71	11
2	65	6
2	256	9
2	88	5
3	736	9

Notional view of fabric folding

SR-1 in its stowed configuration

Earth Direct Entry Facsimile

- A <u>direct entry</u> demonstration at Earth is desired to mimic the aerocapture environment at Venus for 2-m size of ADEPT
- Important parameters:
 - Peak heat flux
 - Total heat load
 - Peak Acceleration
- Variables:
 - Ballistic coefficient
 - Entry Flight Path Angle
 - Entry velocity (LEO or GTO)
- Constraints:
 - ADEPT must fit in adapter for rideshare (mass and volume limits)

Targeted Venus Aerocapture Conditions

Max Acceleration	Peak Stag. Point	Total Stag. Point
(Earth g's)	Flux (W/cm ²)	Load (//cm ²)
7.3	166.00	11.1e3

Increasing entry speeds to those near GTO drastically reduces the required BC

All cases flown at lift-right bank angle

Deployer	Status	Orbits	Payload Mass (kg)	Payload Volume
P-POD	Operational	LEO - GTO	1.33	10 x 10 x 10 cm
C-Adapter Platform	Unlaunched	LEO - GTO	45	23 x 31 x 33 cm
Aft Bulkhead Carrier	Operational	LEO - GTO	80	51 x 51 x 76 cm
ESPA	Operational	LEO - Escape	181	61 x 71 x 96 cm
ESPA Grande	Operational	LEO - Escape	190	125 x 115 x 100 cm
AQUILA	CDR 2012	LEO - MEO	1,000	142-cm dia. x 152 cm

Two separate rideshare opportunities seem feasible

Earth Direct Entry Facsimile – AQUILA and ESPA Grande

AQUILA

- ~ 2.4 m³ capacity
- 1000 kg capacity
- Available on ULA Atlas V and Delta IV
- In development
- ESPA Grande
 - ~ 1 m³ capacity
 - 190 kg capacity (w/provided separator)
 - Available on multiple launch vehicles (Falcon 9, Atlas V, Delta IV)
 - Notable Heritage
 - ORBCOMM OG2 (LEO)
 - LCROSS (ESPA-basic, Lunar impact)

Earth Direct Entry Facsimile – Can we match either conditions with ESPA Grande?

Ballistic Coefficient (kg/m^2)	Entry Velocity (km/s)	Bank Angle	EFPA	Peak Acceleration (Earth G's)	Peak Stagnation Flux (W/cm ²)	Total Stagnation Heat Load (J/cm ²)
55	10.3	90°	-5	23	91	7,312
55	10.3	0° (Lift Down)	-4.15°	13	53	12,264
55	10.3	180° (Lift	-10°	29	165	4,331

It is possible to design a direct entry profile with the 190 kg case which can mimic the peak flux or total load

Up)

Entry

Mass

(*kg***)**

190

190

190

Conclusions

- Venus aerocapture presents a harsh heating environment, which challenges the Lifting ADEPT architecture.
- To test the Lifting ADEPT architecture at Earth with a reasonable ballistic coefficient, a GTO orbit is required
- Rideshare to GTO presents limitations on packaged mass and volume which must be considered for Earth facsimile tests

Questions

References

- Smith, B., et. al., "Nano-ADEPT: An Entry System for Secondary Payloads," IEEE Aerospace Conference, 2015
- Karuntzos, K., "ULA Rideshare Overview," 2015
- Allen, G., Trajectory Analysis Program, 2017
- Wercinski, P., et. al., "Lifting Nano ADEPT Mid-Year Study Status," 2016
- Heritage Venus science orbits sourced from NASA Space Science Data Coordinated Archive

Backup

LNA Sizing

Decelerator Mass Breakdown (<i>kg</i>)	30% MGA Mass (<i>kg</i>)
Ribs	5.5
Struts	3.9
Carbon Fabric Skirt	2.9
Decelerator Mass	12.2

Base Ancillary Mass	30% MGA Mass
Breakdown	(kg)
Deployment System	2.60
Aft Bulkhead/Release	1.43
C-Band Transponder	1.30
Video Cameras	0.78
CORESAT Avionics	1.82
Battery	0.13
Propulsion Module	2.21
Propellant	1.82
Parachute System	5.20
Fasteners	0.65
Cable Harness	0.65
Nominal Mass Totals	34.3

Aerodynamics Verification

Traj software was compared with POST2 to verify correct implementation of aero data, with good results

Earth Entry Facsimile – Low Speed

Extremely high ballistic coefficients required to meet Venus aerocapture requirements

Earth Entry Facsimile – High Speed

Little improvement over GTO case

Ballistic Coefficient	EFPA	Entry Velocity
100 kg/m^2	-5°	10.3 <i>km/s</i>
Size	Entry Mass	Peak G's
2 <i>m</i>	450 <i>kg</i>	460