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Abstract

Age estimation from face images is an important yet difficult task in computer

vision. Its main difficulty lies in how to design aging features that remain dis-

criminative in spite of large facial appearance variations. Meanwhile, due to

the difficulty of collecting and labeling datasets that contain sufficient samples

for all possible ages, the age distributions of most benchmark datasets are often

imbalanced, which makes this problem more challenge. In this work, we try to

solve these difficulties by means of the mainstream deep learning techniques.

Specifically, we use a convolutional neural network which can learn discrimina-

tive aging features from raw face images without any handcrafting. To combat

the sample imbalance problem, we propose a novel cumulative hidden layer

which is supervised by a point-wise cumulative signal. With this cumulative

hidden layer, our model is learnt indirectly using faces with neighboring ages

and thus alleviate the sample imbalance problem. In order to learn more ef-

fective aging features, we further propose a comparative ranking layer which is

supervised by a pair-wise comparative signal. This comparative ranking layer

facilitates aging feature learning and improves the performance of the main age

estimation task. In addition, since one face can be included in many different
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training pairs, we can make full use of the limited training data. It is noted

that both of these two novel layers are differentiable, so our model is end-to-end

trainable. Extensive experiments on the two of the largest benchmark datasets

show that our deep age estimation model gains notable advantage on accuracy

when compared against existing methods.
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1. Introduction

Age estimation, i.e., predicting the age from a face image, has long been

an active research topic in computer vision, with many applications such as

age-based face retrieval [1], precision advertising [2], intelligent surveillance [3],

human-computer interaction (HCI) [4] and internet access control [2].5

The typical methodology for age estimation from face images is to extract

carefully designed handcrafted features representing the aging information and

subsequently solve an age estimator learning problem. Widely used features

include local binary pattern (LBP) [5] and Gabor features [6], with some fur-

ther processing models like the anthropometric model [7], AGing pattErn Sub-10

space (AGES) [8], and the age manifold model [9]. To learn an age estimator,

most approaches use either a multi-class classification framework or a regression

framework. In multi-class classification the age values are treated as indepen-

dent labels and a classifier is learnt to predict the age [1, 10, 8]. However, age

estimation is more of a regression problem than a multi-class classification prob-15

lem due to the continuity of the age space. Based on this observation, many

regression based approaches are proposed [9, 11, 12, 13].

Although these existing methods achieve promising results, the age estima-

tion problem is far from being solved. The main challenges come from the large

appearance variations of face images. Fig. 1 shows some face images from the20

benchmark datasets used in this work. We can see that the face images may be

obtained from people of different races, genders, and under conditions of large

pose variations, bad illumination, and heavy makeups, which make it difficult
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Figure 1: Examples of faces in the two benchmark datasets used in this work. Top row: the

Morph II dataset. Bottom row: the WebFace dataset.

to manually design aging features that are robust to all these disturbances. In

addition, due to the difficulty of collecting and labeling datasets that contain25

sufficient samples for all possible ages, the age distributions of most available

benchmark datasets in the literature are imbalanced which makes accurate age

estimation even harder.

In this work, we try to solve the aforementioned challenges in human age

estimation. Instead of manually design features, we use a convolutional neural30

network (CNN) to extract effective and discriminative aging features from raw

input face images without any handcrafting. To combat the sample imbalance

problem, we propose a novel cumulative hidden layer (Section 3.1). In contrast

with the mainstream CNN models which directly map the last hidden layer to

the output layer, we insert a cumulative hidden layer before the output layer.35

This cumulative hidden layer is supervised by a point-wise cumulative signal

which encodes the target age labels continuously. Thanks to this cumulative

hidden layer, our model can not only learn from one face itself but also from the

faces with neighbouring ages and thus alleviate the sample imbalance problem.

In order to learn more effective aging features, we further propose a novel40

comparative ranking layer (Section 3.2) which is supervised by a pair-wise com-

parative signal, i.e., who is older. The intuition behind this is that it is difficult

to tell accurately the age of one face, but it is relatively easy to tell who is

older, given two faces. For example, in Fig. 1, it is hard to guess the exact age

of these faces, but it is relatively easy to see that the faces to the right of the45
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figure are older than the faces to the left. This comparative signal helps our

model to learn the general concept of “old and young”. This concept is valuable

for the exact age estimation task. We argue that this auxiliary pair-wise signal

facilitates aging feature learning and improves the performance of the main age

estimation task. As one face image can be used in many different pairs, we can50

make full use of the training data. It’s worth noting that both the point-wise

and pair-wise supervision signals can be obtained directly from the age labels,

so our model does not need any additional manual labelling.

There are three main contributions in this work:

1. We propose a novel cumulative hidden layer which alleviates the sample55

imbalance problem and thus improves age estimation. To the best of

our knowledge, this is the first time that a new layer for the CNN has

been designed to combat the sample imbalance problem in human age

estimation literatures.

2. We propose a novel comparative ranking layer which facilitates aging fea-60

ture learning and thus further improve age estimation. We believe that

this is the first work that explicitly take account of the pair-wise informa-

tion between faces during training for human age estimation.

3. By incorporating these two novel layers, we obtain a deep age estimation

model which outperforms by a large margin all previous age estimation65

methods on two of the largest benchmark datasets.

2. Related work

Human age estimation has been studied for decades in the computer vision

community. Previous works on age estimation are mainly focused on the man-

ual design of robust ageing features. Typical features designed specifically for70

age estimation include facial features and wrinkles [7], the learned AGES (AG-

ing pattErn Subspace) [8] features, as well as the biologically inspired features

(BIF) [13]. Other more general features devised for texture description are also
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widely used for age estimation, for example the LBP feature [5, 14], the Gabor

feature [6], etc.75

Based on these carefully designed handcrafted facial aging features, much

attention was paid to the age estimator learning step: age estimation by classi-

fication or regression. Classification models, e.g. linear SVM [13], Probabilistic

Boosting Tree [15], Fuzzy LDA [6], or regression models like Support Vector

Regression [13], Kernel Partial Least Squares [16], Neural Network [17] and80

Semidefinite Programming [18] are all designed to estimate age.

Although a lot of algorithms have achieved promising age estimation results,

many challenges still remain in this problem. One of the most prominent chal-

lenges is the sample imbalance problem. There are several attempts [19, 20, 21]

to alleviate this problem which are based on the concept of label distribution85

learning (LDL) [22]. The label distribution can be seen as an extension of the

one-hot encoding in the classic multi-class classification problem. These LDL

based age estimation methods represent each target age with a label distribution

vector which can capture the correlations between different ages and have been

shown to alleviate the sample imbalance problem to a certain extent. Different90

from these LDL based methods which first design handcrafted aging features and

then train the age classifier separately, our model with the proposed cumulative

hidden layer learns the aging features and the age regressor in an end-to-end

manner, which is more effective to alleviate the sample imbalance problem.

Recently, deep learning models, especially convolutional neural networks95

(CNNs), have achieved great successes in many computer vision tasks [23, 24,

25, 26, 27, 28, 29, 30]. One of the most attractive merits of deep learning is

the automatic learning of the features and the classifier at the same time. Al-

though CNNs have been successful in many computer vision problems, there are

only a very few studies on using CNNs to perform age estimation [31, 32, 33].100

Some of these studies are focused on other objectives, e.g., providing a bench-

mark dataset [31], or exploiting complicated network architectures, such as the

multi-scale architecture with 23 sub-networks in [32], and the tree-structured ar-

chitecture with 36 local sub-networks in [33]. Unlike these existing complicated
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CNN based models which have many hyper-parameters to tune and which are105

hard to implement, our model is based on the widely used AlexNet [24] which

is easy to reproduce.

In contrast with the existing models, which only use the point-wise age label

of one face as supervision signal, our model also exploits the proposed pair-wise

comparative supervision signal between two faces and thus outperforms exist-110

ing models significantly. Pair-wise supervision signal is commonly adopted in

hashing. Representative pair-wise supervision based hashing methods include

sequential projection learning for hashing [34], minimal loss hashing [35], su-

pervised hashing with kernels [36], two-step hashing [37], fast supervised hash-

ing [38] and deep hashing [39]. The pair-wise supervision signal in hashing115

methods is used to indicate whether the semantic labels are similar between

two items. In contrast, our pair-wise comparative supervision signal is used to

indicate the order between the ages of two faces. The purpose of the pair-wise

supervision signal in hashing is to learn compact semantic similarity preserving

binary codes. While our pair-wise comparative supervision signal is used to120

facilitate the aging feature learning.

3. Methodology

In this section we introduce our model, called Deep Cumulatively and Com-

paratively (D2C) supervised age estimation model. Our D2C model simultane-

ously learns aging features and age estimator in an end-to-end framework. The125

D2C model exploits our proposed cumulative hidden layer and comparative

ranking layer which are supervised by the point-wise cumulative and pair-wise

comparative signals, respectively. In the following, we will first introduce the

cumulative hidden layer and the comparative ranking layer, and then describe

in detail the architecture of the entire D2C age estimation model.130

3.1. Cumulative hidden layer

Age estimation can be directly formulated as a multi-class classification

problem. This multi-class classification formulation assumes that the images
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obtained at one particular age are independent of the images obtained at neigh-

bouring ages. In fact, the images obtained at nearby ages are strongly correlated.135

Based on this observation, it is more natural to formulate age estimation as a

regression problem.
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Figure 2: Schematic diagrams of the traditional CNN based age regression model (top), and

our CNN based age regression model with the proposed cumulative hidden layer (bottom). The

feature learning network is a series of convolutional layers, pooling layers and fully connected

layers.

Traditional CNN based age regression models directly map the features ex-

tracted by the network to the age label (cf. Fig. 2(a)). However, in real-world,

usually the age distribution of collected faces is imbalanced. The imbalanced140

training data causes difficulties in learning the regressor directly since there are

only a few samples or even no sample available for certain ages.

To combat the sample imbalance problem, we insert a novel cumulative

hidden layer (CHL) before the age output layer (cf. Fig. 2(b)). Our CHL is

initially inspired by [40]. In [40], the handcrafted features are designed first and

the regressor is learnt separately, while our model learns the aging features and

the age regressor in an end-to-end manner. This CHL is supervised by a binary

cumulative signal which is obtained directly from the age label. Concretely,

suppose given a set of N training face images {xi, li}, li ∈ {1, 2, . . . ,K}, i =
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1, 2, . . . , N , where xi denotes the i-th face image, li denotes its age label, and

K is the number of different ages in the training set. For the i-th face image

xi with age label li, we can construct its corresponding K-dimensional binary

cumulative signal CuSi from li as follows:

CuSk
i =

 1, k ≤ li
0, k > li

, (1)

where k = 1, 2, . . . ,K, and CuSk
i denotes the k-th element of CuSi.

1 0

10A

12B

40C

Figure 3: Three example face images (left), their age labels (middle) and the corresponding

cumulative signals (right). It is apparent that A and B are similar, but C is very different

from A and B. This is consistent with the differences in their cumulative signals.

This cumulative signal has one appealing property: the cumulative signals of

neighbouring ages are more similar than those further apart which is consistent145

with the fact that faces with neighbouring ages are generally more similar in

appearance than faces with widely separated ages. For example, in Fig. 3, the

10-year-old face is more similar to the 12-year-old face than to that of the 40-

year-old face, and the cumulative signal of the 10-year-old face is also more

similar to that of the 12-year-old face (2-bit difference) than that of the 40-150

year-old face (30-bit difference). This nice property is of help in estimating the

ages, especially when the age distribution is imbalanced, because similar ages

can be used to partially depict their neighboring ages that are few or absent

in the learning and thus alleviate the sample imbalance problem. Based on
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the analyses above, we can see that our CHL supervised by this cumulative155

signal can not only capture the correlations between faces of different ages but

also alleviate the sample imbalance problem, both of which are beneficial for

accurate age estimation.

For an input image xi along with its target cumulative signal CuSi and age

label li, we use φi ∈ RD to denote the aging feature of xi learned by the CNN.

Then the output of the CHL is:

oi = Wφi + b, (2)

where W ∈ RK×D, b ∈ RK are the parameters of the CHL. The input to the

final age output layer is the output of the CHL, so the predicted age is calculated

as follows:

l̃i = wToi + b, (3)

where w ∈ RK , b ∈ R are the parameters of the output layer. We want to

minimize the difference between the output of CHL oi and the target cumulative

signal CuSi. At the same time, we want to minimize the difference between the

predicted age l̃i and the target age li. Consequently, the overall loss function of

the model in Fig. 2(b) is defined as follows:

Li = Lossagei + αLossCHL
i = |l̃i − li|+ α||oi − CuSi||1, (4)

where LossCHL
i is the loss of the CHL with output oi, Lossagei is the loss of the

age output layer with the predicted age l̃i, and α is the hyper-parameter to tune160

the importance of each loss. For simplicity, we denote the loss function for a

single face image in Eq. 4. The total loss is averaged over all face images in a

batch during training. It’s worth noting that unlike other regression based age

estimation methods which always use L2-norm to calculate the loss, our model

uses L1-norm in Eq. 4 which is more robust to outliers.165

Our model with this novel CHL is similar to the very successful attribute

based models used in many computer vision problems [41, 42, 43]. Structurally,

these attribute based models are two-stage mapping, i.e., they first map the

visual features to the attribute space and then map this attribute space to the
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label space. The attribute space is design to capture the correlations between170

different classes, so the model can be learned indirectly even if there is little or

no samples of a class. Similarly, our deep age estimation model first maps the

aging features to the cumulative space by using the CHL, and then maps this

cumulative space to the output age label space. The cumulative space captures

the correlations between different ages and thus alleviates the sample imbalance175

problem effectively.

3.2. Comparative ranking layer

It is worth noting that learning a function from face images to ages is a

relatively difficult task. Even human beings find it difficult to estimate age

accurately from a face image, but it is relatively easy to tell who is older between180

two face images. As shown in Fig. 1, it is difficult to tell the exact age of each

face, but we can relatively easy to see that faces on the right are older than

the faces on the left even though we do not know the exact ages of those faces.

Based on this observation, we propose a novel comparative ranking layer (CRL)

which is supervised by a pair-wise comparative signal, i.e., who is older. This185

auxiliary comparative signal helps the model to learn the general concept of

“old and young”. This concept is valuable for the exact age estimation task.

Comparative
Ranking

Layer

Feature Learning 
NetworkFace2

Comparative
Ranking

Layer

Feature Learning 
NetworkFace1

LossShared

Figure 4: Schematic diagram of our proposed comparative ranking layer.

The schematic diagram of the network with our proposed CRL is shown in

Fig. 4. Given a pair of face images (xi, xj) along with their ground-truth age

10



labels (li, lj), the comparative signal CoSij is defined as follows:

CoSij =


1, if li > lj

0.5, if li = lj

0, if li < lj

. (5)

We can think of CoSij as the target probability of xi is older than xj , i.e.,

CoSij = 1 represents that xi is older than xj , CoSij = 0 represents that xj is

older than xi, and CoSij = 0.5 represents that xi is the same age as xj . This

pair of images (xi, xj) go though two feature extraction networks with shared

weights, this procedure maps the face images onto D-dimensional feature vectors

(ϕi,ϕj). The aim of the CRL is to learn a ranking function f : RD 7→ R that

shows who is older, e.g., f(ϕi) > f(ϕj) indicates that xi is older than xj . Based

on this consideration, we choose the CRL to be a fully connected layer with a

single output neuron, i.e.,

f(ϕi) = wTϕi + b, (6)

where w ∈ RD, b ∈ R are the parameters of the CRL. After we obtain the

scores of two face images, i.e., f(ϕi) and f(ϕj). In a similar way to [44], we

map from these scores to the posterior probability pij = P (xi � xj) using a

logistic function, i.e.,

pij = P (xi � xj) =
1

1 + e−(f(ϕi)−f(ϕj))
, (7)

where xi � xj denotes that xi is older than xj . The definition of pij in Eq. 7

has a nice consistency property, i.e., given pij > 0.5 and pjk > 0.5, based on

the definition of Eq. 7, we can derive pik > 0.5. In other words, when xi � xj190

and xj � xk then xi � xk.

We use the binary cross entropy loss function to calculate the loss for a face

image pair (xi, xj) along with the target CoSij :

Lossrankij = −CoSij log pij − (1− CoSij) log(1− pij). (8)

Fig. 5 shows the value of Lossrankij as a function of f(ϕi) − f(ϕj) for the three

values of the target CoSij . We can see that when the target CoSij = 1 (0), i.e.,
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Figure 5: The value of Lossrankij for three values of the target CoSij .

xi is older (younger) than xj , minimizing the loss in Eq. 8 pushes f(ϕi) to be

larger (smaller) than f(ϕj) which meets our requirements that the score output195

by f can reflect who is older. Note that when the target CoSij = 0.5, i.e., xi

is the same age as xj . The loss in Eq. 8 becomes symmetric (the green line in

Fig. 5) and with its minimum at the origin, i.e., f(ϕi) = f(ϕj). This gives us

a principled way of training on face pairs that are known to have the same age.

It is noteworthy that not all the training face pairs have the same degree of200

difficulty. For example, suppose given two face pairs (xa, xb) and (xc, xd), where

la = 50, lb = 10, lc = 30, and ld = 25. It is easier to judge xa � xb than to

judge xc � xd. We use |li − lj | to measure the difficulty of a face pair (xi, xj).

Inspired by the concept of “curriculum learning” proposed in [45], we use the

easy face pairs at the beginning and gradually increase the difficulty of the face205

pairs. By using this strategy our model can gradually learn more complex and

discriminative aging features from the subtle facial difference between face pairs

which are critical to accurate age estimation. In addition, we can make full use

of the small amount of face images with specific age since one face image can be

used in a lot of different training pairs, and thus alleviate the sample imbalance210

problem to some extent.
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It is noted that our comparative ranking layer does not take account of the

exact age of each face. Instead, it only uses the relative order between faces.

This information is more stable than exact age values. Compare to the exact

age label supervision signal which only contains the information of one face,215

this comparative signal considers the pair-wise information between two faces

which provides complemental information. By training with face pairs, the

model learns more discriminative aging features by directly learning from the

difference between faces. As is mentioned before, it is easier to distinguish who

is older between two faces than to tell the exact age of one face. We argue that220

this related and relatively easy task is beneficial to the aging feature learning

and thus improve the main exact age estimation task. This is also been verified

in other works such as [30, 46] that some related and easy tasks can boost the

performance the main difficult task.

3.3. D2C network architecture225

Rank
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Loss

Cumulative
Loss

Age
Loss

Age
Loss

Shared

Root Net Cumulative hidden layer Comparative ranking layer Output layerRank Net

Conv1
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Conv2
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4096
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Figure 6: The end-to-end deep architecture of our D2C age estimation model.
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Fig. 6 shows the entire end-to-end architecture of our deep cumulatively and

comparatively (D2C) supervised age estimation model which incorporates the

proposed cumulative hidden layer (CHL) and comparative ranking layer (CRL)

discussed above. Note that there are two CNNs in Fig. 6, however, these two

CNNs are identical in that they have the same structure and parameters. We use230

two CNNs to get a better illustration for the comparative ranking layer which

is based on a pair of face images. We exploit the widely used AlexNet [24] as

the “root” net (the gray part in Fig. 6). Other modern CNN architectures [26,

47] can also be used as the root net, but a comparison of different network

architectures is not the focus of this work. Next, we describe in detail our D2C235

age estimation model.

The root net is the gray network in Fig. 6. The network has five convolutional

layers and two fully connected layers. We use Rectified Liner Units (ReLu) as

the activation function. The first convolutional layer (Conv1) consists of 96

kernels with size of 11 × 11, followed by a local response normalization (LRN)240

layer and a 3 × 3 max pooling (MP) layer. The second convolutional layer

(Conv2) has 256 5× 5 kernels, followed by a LRN layer and a 3× 3 MP layer.

The third convolutional layer (Conv3) has 384 3 × 3 kernels. It is followed

by the fourth convolutional layer (Conv4) with 384 3 × 3 kernels. The fifth

convolutional layer (Conv5), with 256 3 × 3 kernels, is followed by a 3 × 3245

MP layer. The convolutional layers are followed by two 4096-dimensional fully

connected layers (FC6 and FC7). The FC7 layer is followed by the cumulative

hidden layer discussed in Section 3.1. The dimension of the cumulative hidden

layer is equal to the number of different ages (#Age) in the training data. The

last layer outputs the predicted age.250

Similar to the auxiliary intermediate supervision branch in [47], the input

to the rank net (the blue part in Fig. 6) is obtained from the Conv4 output

of the root net. This choice is also based on the consideration that the main

age estimation task and the auxiliary ranking task are not of the same diffi-

culty. The main age estimation task is a difficult task and thus requires the255

highest-level features. Compared to the main age estimation task, the ranking
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task introduced by the comparative layer is a relatively easy task (i.e., binary

classification) which requires slightly lower-level features. This network passes

the input through a 3 × 3 MP layer followed by two 4096-dimensional fully

connected layers (R FC1 and R FC2). The resulting data is passed to the com-260

parative ranking layer discussed in Section 3.2.

The overall loss of our D2C age estimation model for a pair of input face

images (xi, xj) with the target age labels (li, lj), the target cumulative signals

(CuSi,CuSj), and the target comparative signal CoSij is defined as the weighted

sum of Eq. 4 and Eq. 8, i.e.,

Lossoverallij =
∑

m=i,j

Lossagem + α
∑

m=i,j

LossCHL
m + βLossrankij , (9)

where α, β are hyper-parameters to tune the importance of each loss. Lossage

and LossCHL are equally important since they are the loss functions of the main

age estimation task. Therefore, we fix α = 1 throughout the experiments.

Lossrank is the loss function of the auxiliary task which facilitates aging feature265

learning during training and β is used to balance this auxiliary task and the main

age estimation task. Therefore, we only adjust the value of β in our experiments.

We choose β = 0.5 based on a held-out validation set. Unlike the mainstream

CNN architectures, our D2C model is not a chain-like net. However, it is based

on a directed-acyclic graph which can be trained end-to-end from scratch using270

back-propagation and stochastic gradient descent. Since our main purpose is age

estimation, the rank net is only used to facilitate aging feature learning which

is easier than and converges faster than the main age regression task. Based on

this observation, we early stop the rank net which is similar to the procedure

proposed in [30] to avoid overfitting. Specifically, we remove Lossrankij in Eq. 9275

when its value no longer decreases. At testing time, we only use the network

inside the red dashed line in Fig. 6 to predict the age of an input face. This

procedure is very efficient because it only requires one forward pass through the

network.
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4. Experiments280

In this section, we first describe the age estimation benchmark datasets used

in this work, the age estimation performance evaluation metric, and the exper-

imental settings. Then, we will conduct detailed experiments to validate the

effectiveness of our proposed cumulative hidden layer and comparative rank-

ing layer. Finally, we will compare our D2C age estimation model with the285

state-of-the-art age estimation methods.

4.1. Datasets and experimental settings

4.1.1. Datasets

There are many datasets for age estimation in the literature [48, 9, 49].

Most of these datasets, however, are relatively small. Since training a good290

deep neural network generally requires a large amount of training data, we

select two of the largest benchmark datasets, i.e., the Morph II [50] dataset and

the WebFace [51] dataset as our testbeds.

Table 1: The number of images of the three splits of the Morph II dataset.

Gender Race Black White Others

Female S1:1285 S2:1285 S3:3187 S1:1285 S2:1285 S3:31 S3:129

Male S1:3980 S2:3980 S3:28843 S1:3980 S2:3980 S3:39 S3:1843

Morph II dataset: The Morph II dataset contains about 55,000 face im-

ages of more than 13,000 subjects with ages ranging from 16 to 77 years old.295

Morph II is a multi-ethnic dataset. It has about 77% Black faces and 19% White

faces, while the remaining 4% includes Asian, Hispanic, Indian, and Other. We

follow the previous study [16], and split this dataset into three non-overlapping

subsets S1, S2 and S3 (cf. Table 1). In all the experiments the training and

testing are repeated twice: 1) training on S1, testing on S2+S3 and 2) training300
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on S2, testing on S1+S3. This training and testing set split protocol has become

the standard for the Morph II age estimation dataset.1

WebFace dataset: The WebFace dataset contains 59,930 face images. The

ages range from 1 to 80 years old. The WebFace dataset is also a multi-ethnic

dataset. In contrast with the Morph II dataset, this dataset is captured in the305

wild. The images contain large pose and expression variations, which make this

dataset much more challenging. Following [51], we conduct experiments on this

dataset using a four-fold cross validation protocol.

Fig. 1 shows some example face images in these two datasets. As we can see,

both datasets are very challenging and thus can serve as very good benchmarks310

for evaluating the performance of different age estimation methods.

4.1.2. Evaluation metric

The most widely used evaluation metric for age estimation in the literature

is the Mean Absolute Error (MAE), which is defined as follows,

MAE =
1

N

N∑
i=1

|ŷi − yi| , (10)

where N is the number of testing samples, yi is the ground-truth age and ŷi

is the predicted age of the i-th sample. Smaller MAE values mean better age

estimation performance.315

4.1.3. Experimental settings

The face images in the datasets are preprocessed in a standard way, i.e.,

the faces in the images are detected and aligned, then cropped and normalized

to 256 × 256. Fig. 7 shows some examples of the original images and their

corresponding preprocessed versions. In all the following experiments, we use320

the Caffe [52] toolbox, which provides a flexible framework to develop new

deep learning models, and makes our work easy to reproduce. All the model

protocol files and training results in our experiments will be released in the Caffe

1http://csee.wvu.edu/~gdguo/Data/AgingDataPartition.htm
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Figure 7: Examples of the original face images and their corresponding preprocessed versions

after face detection and alignment. Left two: the Morph II dataset. Right two: the WebFace

dataset.

model zoo.2 We train all the networks using mini-batch (set to 256) stochastic

gradient descent with momentum (0.9) and weight decay (5 × 10−4). For all325

fully-connected layers we use a dropout ratio of 0.5. We use data augmentation

similar to [24], i.e., randomly cropping of 227 × 227 pixels from the 256 × 256

input face image, then randomly flipping it before feeding it to the network.

The initial learning rate is 10−3 which is divided by 10 when the training curve

reaches a plateau. These hyper-parameters are chosen based on the validation330

set. We found that all networks converge well under these settings, so we use

the same hyper-parameters for different models to make fair comparisons.

4.2. Analyses of our novel cumulative hidden layer

To demonstrate the effectiveness of our cumulative hidden layer, we train

two networks, the first without and the second with this layer. The networks335

are denoted by Netbase and NetCHL respectively. The age estimation results of

these two models on the Morph II and WebFace datasets are show in Table 2 and

Table 3. We can clearly see that NetCHL outperforms Netbase on both datasets.

These experimental results validate the effectiveness of our cumulative hidden

layer for age estimation.340

Missing data experiments. In real-world, usually the age distribution

of face images collected is imbalanced or say incomplete with some ages lost.

2https://github.com/BVLC/caffe/wiki/Model-Zoo
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Table 2: The age estimation results of Netbase and NetCHL on the Morph II dataset using the

training and testing set split protocol in Table 1.

Method S2+S3 MAE S1+S3 MAE Average MAE

Netbase 3.31 3.30 3.31

NetCHL 3.15 3.16 3.16

Table 3: The age estimation results of Netbase and NetCHL on the WebFace dataset using the

four-fold cross validation protocol.

Method Fold1 MAE Fold2 MAE Fold3 MAE Fold4 MAE Average MAE

Netbase 6.39 6.33 6.32 6.31 6.34

NetCHL 6.13 6.14 6.07 6.14 6.12

To more explicitly demonstrate that our cumulative hidden layer can alleviate

this problem, we evaluate Netbase and NetCHL while making the training data

more and more imbalanced. To simulate such a scenario, we remove all the345

face images every T years, where T ∈ {6, 5, 4}, so the training data become

more and more imbalanced as T decreases. We retrain Netbase and NetCHL

on both datasets at different values of T . Table 4 and Table 5 show the age

estimation results. It is evident from these two tables that when more training

data are removed and the training data become more and more imbalanced, the350

performance of both Netbase and NetCHL degrades. However, NetCHL perfor-

mances consistently better than Netbase on both datasets under different values

of T . These results show that our proposed cumulative hidden layer dose alle-

viate the sample imbalance problem and therefore improve the age estimation

performance.355

Table 4: The age estimation results of Netbase and NetCHL on the Morph II dataset at different

T values.

Method T = 6 MAE T = 5 MAE T = 4 MAE

Netbase 3.54 3.60 3.87

NetCHL 3.33 3.37 3.50
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Table 5: The age estimation results of Netbase and NetCHL on the WebFace dataset at different

T values.

Method T = 6 MAE T = 5 MAE T = 4 MAE

Netbase 6.64 6.86 7.02

NetCHL 6.39 6.50 6.70

More parameters lead to better performance? The NetCHL has a

total of 9 learnable layers. On the other hand, the Netbase has 8 learnable

layers. As increasing the number of learnable parameters can enlarge the model

capacity and in some cases lead to better performance, one could argue that

the performance improvement in our NetCHL comes merely from the additional360

parameters introduced by the cumulative hidden layer. To disprove this, we

train another model NetAug
base by augmenting Netbase with an additional layer such

that the number of parameters of NetAug
base is the same as NetCHL. We found that

the additional layer leads to a degradation rather than to an improvement in

performance for Netbase: the MAE increases from 3.31 to 3.32 on the Morph II365

dataset. Similarly, the MAE increases from 6.34 to 6.36 on the WebFace dataset.

This suggests that the gain in performance of NetCHL over Netbase derives from

our proposed cumulative hidden layer and the cumulative supervision signal

rather than from an increased number of parameters.

L2-norm vs. L1-norm. The L2-norm is widely used in regression based370

age estimation problem since it has very nice mathematical properties such as

convexity and continuously differentiable. However, the L2-norm is sensitive to

errors in the labels. Since label errors are inevitable in real world datasets, we

use the more robust L1-norm to calculate the loss in Eq. 4. To demonstrate the

superiority of the L1-norm for age estimation, we train another model NetL2CHL375

using the L2-norm in the loss function. Compared with NetCHL which uses

L1-norm in the loss function, the MAE of NetL2CHL increases from 3.16 to 3.18

on the Morph II dataset, and from 6.12 to 6.53 on the WebFace dataset. Since

the WebFace dataset is automatically compiled from images on the Web and
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dataset.

contains many more label errors than the Morph II dataset, the performance380

gap between NetCHL and NetL2CHL is much larger on the WebFace dataset than

on the Morph II dataset. This clearly demonstrates the effectiveness of L1-

norm for age estimation when faced with a noisy data set. We can also see that

even though the Morph II dataset was compiled in a controlled environment

and has few label errors, NetCHL still performs slightly better than NetL2CHL on385

this dataset. This is because MAE is the evaluation metric for age estimation

(Eq. 10) which is defined using the L1-norm, so we can directly optimize this

metric by using the L1-norm as a loss function. This is also the philosophy of

deep learning, i.e., direct optimization of what you want can always improve

the performance. Some people may concern that the loss function in Eq. 4390

has many indifferentiable points which may not be easy to optimize. In fact,

with recent developments in optimizing non-smoothing functions like ReLu [24]

and PReLu [25] in the deep learning framework, the loss function in Eq. 4 can
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Table 6: The age estimation results of NetCLC, NetLDL and NetCHL on the Morph II dataset

using the training and testing set split protocol in Table 1.

Method S2+S3 MAE S1+S3 MAE Average MAE

NetCLC 3.57 3.64 3.61

NetLDL 3.36 3.40 3.38

NetCHL 3.15 3.16 3.16

Table 7: The age estimation results of NetCLC, NetLDL and NetCHL on the WebFace dataset

using the four-fold cross validation protocol.

Method Fold1 MAE Fold2 MAE Fold3 MAE Fold4 MAE Average MAE

NetCLC 6.67 6.84 6.72 6.79 6.76

NetLDL 6.46 6.47 6.34 6.35 6.41

NetCHL 6.13 6.14 6.07 6.14 6.12

be optimized effectively using the stochastic gradient descent algorithm. In

order to make this clear, we plot the validation MAE of NetCHL and NetL2CHL395

during training on the WebFace dataset in Fig. 8 (we don’t plot the training

loss because the training loss based on L1-norm and L2-norm can’t be directly

compared). We can see that NetCHL converges without any difficulties and

obtains consistently better validation performance than NetL2CHL during training.

These experimental results and analyses validate the effectiveness of our choice400

of using L1-norm as the loss function for age estimation.

Comparisons with label distribution learning based methods. La-

bel distribution learning (LDL) based methods are very effective to deal with

the sample imbalance problem in age estimation. Different from the classic one-

hot encoding based multi-class classification for age estimation, the LDL based405

methods represent each age label with a label distribution vector which captures

the correlations between different ages and thus can alleviate the sample imbal-

ance problem to some extent. In order to compare our NetCHL with these LDL

based methods, we train two other networks NetCLC and NetLDL. NetCLC is the

classic one-hot encoding multi-class classification based age estimation network,410
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Table 8: The age estimation results of NetCHL and NetD2C on the Morph II dataset using

the training and testing set split protocol in Table 1.

Method S2+S3 MAE S1+S3 MAE Average MAE

NetCHL 3.15 3.16 3.16

NetD2C 3.06 3.05 3.06

Table 9: The age estimation results of NetCHL and NetD2C on the WebFace dataset using the

four-fold cross validation protocol.

Method Fold1 MAE Fold2 MAE Fold3 MAE Fold4 MAE Average MAE

NetCHL 6.13 6.14 6.07 6.14 6.12

NetD2C 6.03 6.07 5.99 6.06 6.04

and NetLDL is an age estimation network based on the LDL proposed by Geng

et al [19]. The age estimation results of these three networks on both datasets

are show in Table 6 and Table 7. We can see that NetLDL outperforms NetCLC

on both datasets. This is because compared with NetCLC which treats each age

label independently, NetLDL captures the correlations between different ages415

and improves the age estimation performance. We can also see that our NetCHL

with the proposed cumulative hidden layer obtains better results than NetLDL.

There are two reasons to explain these results. First, on the whole, our NetCHL

is a regression based age estimation method, while NetLDL is a classification

based method. Compared to the classification based formulation, the regression420

based formulation is more favorable owing to the inherent characteristic of age

estimation, i.e., the age of an individual is measured by the time passed from

the individual’s birth, and thus is a continuous process. Second, compared with

NetLDL using the Kullback-Leibler (KL) divergence as the loss function, our

NetCHL is an end-to-end framework using MAE as the loss function which can425

directly optimize the evaluation metric of age estimation.
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4.3. Analyses of our novel comparative ranking layer

In this section we demonstrate the effectiveness of our proposed compara-

tive ranking layer in improving age estimation performance. It is noted that

our NetCHL has already obtained state-of-the-art results on both datasets. A430

question arises: can the comparative ranking layer further improve age estima-

tion? To answer this question, we train our D2C age estimation model NetD2C

by incorporating both the cumulative hidden layer and the comparative ranking

layer (Fig. 6). The results are shown in Table 8 and Table 9. From these tables,

we can see that NetD2C is better than NetCHL on both datasets. This shows435

that our proposed comparative ranking layer indeed can further improve the

age estimation performance.
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Figure 9: Loss observed during training on the Morph II dataset.

In order to better illustrate the role of our comparative ranking layer, we

plot the age estimation MAE loss observed during training on the Morph II and

the WebFace datasets in Fig. 9 and Fig. 10. We can see that the NetD2C, which440

includes the comparative ranking layer, can find better minimum than NetCHL
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Figure 10: Loss observed during training on the WebFace dataset.

without this layer. This validates our hypothesis that the comparative ranking

layer can facilitate the aging feature learning process.

Some age estimation results obtained from NetCHL and NetD2C are shown in

Fig. 11. We can see that even though the left face is younger than the right face445

in each pair by ground truth, NetCHL predicts the opposite in these examples.

In contrast, thanks to our proposed comparative ranking layer which explicitly

consider the pair-wise information between faces during training, so the NetD2C

can learn discriminative aging feature from the subtle facial difference between

face pairs with similar ages and thus makes more accurate predictions than450

NetCHL. All the above results and analyses validate the effectiveness of our

comparative ranking layer for human age estimation.

Sensitiveness of the hyper-parameter β. As show in Eq. 9, the hyper

parameter β is used to balance the auxiliary ranking loss and the main age esti-

mation loss. It is known that adjusting hyper-parameters for hybrid loss terms455

are critical for heterogeneous learning goals. Based on this consideration, we

conduct experiments to investigate the sensitiveness of β on the age estimation

25



Morph II Dataset WebFace Dataset

ground truth

NetCHL

NetD2C

20

20

20

22

19

22

23

25

23

24

23

24

25

24

25

26

23

26

68

69

69

70

68

70

Figure 11: Some age estimation results made by NetCHL and NetD2C. NetD2C corrects some

mistakes made by NetCHL and makes more accurate predictions.

results. Specifically, we vary β from 0 to 1 to learn different models, the valida-

tion MAE of these models on both datasets are shown in Fig. 12 and Fig. 13.

It is very clear that the models using the comparative ranking layer outperform460

the models without using it (in this case β = 0). We can also observe that the

validation performance of our D2C model remains largely stable across a wide

range of β. These experimental results and analyses demonstrate that our D2C

age estimation model is insensitive to the value of β.
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Figure 12: The validation MAE of NetD2C on the Morph II dataset with different β.
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Table 10: Comparison with the state-of-the-art methods on the Morph II dataset.

Methods Age MAE

BIF [13] 5.09

KPLS [16] 4.18

KCCA [53] 3.98

Ridge [51] 4.80

Tree-a-CNN [33] 3.61

Multi-scale-CNN [32] 3.63

Our D2C model NetD2C 3.06

4.4. Comparison with the state-of-the-art methods465

Table 10 and Table 11 compare our D2C age estimation model NetD2C with

several recently published methods on the Morph II and the WebFace datasets.

Our D2C model outperforms all the other state-of-the-art methods on both

datasets by a large margin. On the Morph II dataset, our D2C model reduces

the age estimation MAE by 0.55 years which is a 15.2% relative improvement.470

To the best of our knowledge, this is the first time an MAE value near to 3

years has been obtained on this dataset.

On the WebFace dataset, our D2C model improves on the previous best

27



Table 11: Comparison with the state-of-the-art methods on the WebFace dataset.

Methods Age MAE

BIF [13] 10.65

RF [54] 9.38

Ridge [51] 9.75

Tree-a-CNN [33] 7.72

Our D2C model NetD2C 6.04

results by 1.68 years which is about a 21.8% relative improvement. Since the

WebFace dataset is compiled from faces in the wild, there have been fewer ex-475

periments on this challenging dataset. We compared the results from our model

with all the published results that we could find for this dataset, including the

latest in [33]. Our 21.8% relative improvement is significantly better than the

state-of-the-art methods, considering the difficulty of this dataset. The perfor-

mance of our D2C model indicates the effectiveness of our proposed cumulative480

hidden layer and comparative ranking layer for human age estimation.

5. Conclusion

In this paper, we have proposed a deep cumulatively and comparatively

(D2C) supervised age estimation model. To combat the sample imbalance

problem we proposed a novel cumulative hidden layer which is supervised by485

a point-wise cumulative signal. By incorporating this cumulative hidden layer,

our model can not only learn from one face itself but also from faces with

nearby ages. This alleviates the sample imbalance problem effectively. In order

to learn more discriminative aging features, we further propose a novel compar-

ative ranking layer which is supervised by a pair-wise comparative signal. This490

comparative ranking layer facilitates aging feature learning and further improves

the age estimation performance. Our D2C age estimation model is evaluated on

two of the largest benchmark datasets and outperforms the state-of-the-art by

a large margin. The network used in this work is relatively shallow compared
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with modern very deep architectures. Future work will investigates the use of495

deeper networks to improve estimates of age.
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