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Semantic typing of linked geoprocessing workflows
Simon Scheider a and Andrea Ballatore b

aHuman Geography and Spatial Planning, Universiteit Utrecht, Utrecht, Netherlands; bDepartment of Geography,
Birkbeck, University of London, London, UK

In Geographic Information Systems (GIS), geoprocessing workflows allow
analysts to organize their methods on spatial data in complex chains.
We propose a method for expressing workflows as linked data, and for
semi-automatically enriching them with semantics on the level of their
operations and datasets. Linked workflows can be easily published on the
Web and queried for types of inputs, results, or tools. Thus, GIS analysts
can reuse their workflows in a modular way, selecting, adapting, and
recommending resources based on compatible semantic types. Our
typing approach starts from minimal annotations of workflow operations
with classes of GIS tools, and then propagates data types and implicit
semantic structures through the workflow using an OWL typing scheme
and SPARQL rules by backtracking over GIS operations. The method is
implemented in Python and is evaluated on two real-world
geoprocessing workflows, generated with Esri's ArcGIS. To illustrate the
potential applications of our typing method, we formulate and execute
competency questions over these workflows.
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1. Introduction

Geoprocessing is often seen as the core functionality of Geographic Information Systems (GIS), pro-
viding a mechanism to chain spatial operations over data (Zhao, Foerster, and Yue 2012). Each geo-
processing operation, such as buffer or intersection, takes some data as input and produces new data
as output. The work of GIS analysts consist primarily of identifying and arranging workflows of
operations to produce desired results, such as a risk analysis for flooding, an estimate of crime
rate per district, or a suitability ranking for building sites. The task of assembling geoprocessing
workflows is central to any GIS, and sharing long and intricate workflows over the web can help
organizations save labor and computational resources by reusing methods and data. For this reason,
geoprocessing workflows are increasingly created and executed in collaborative computational
environments.1

The intended semantics of workflows and their input and output datasets – what real-world enti-
ties they are targeting – determines what they can be used for (Scheider et al. 2016). This is usually
expressed by analysts with text documentation attached to the workflows and datasets (Müller, Ber-
nard, and Kadner 2013). In a typical scenario, an analyst might create a textual description of a raster
file, stating that it represents the concentration of carbon dioxide over a city, adding provenance
information about what sensors and geoprocessing tools generated it. This common approach
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provides, however, extremely limited support to search, interpret, and reuse the workflow effectively
in complex analyses, leaving all the difficult work to experienced human agents, who must manually
reconstruct possible uses (Kuhn and Ballatore 2015).

In recent years, many scientists and technologists have stressed the potential of information
ontologies in describing geoprocessing web resources for reuse (Visser et al. 2002; Lutz 2007; Fitzner,
Hoffmann, and Klien 2011), but formal approaches have not found wide adoption (Athanasis et al.
2009; Müller 2015). As a result, GI tools have seen virtually no semantic enrichment, and REST APIs
and JSON-based formats have become the most popular mechanism to share geoprocessing tools
and data on the web.2 While this syntactic approach has indeed simplified access to web resources,
its shallow semantics makes it extremely difficult to automate the construction and sharing of com-
plex workflows (Belhajjame et al. 2015).

In so far as workflows reflect researchers’ methods and goals, they should be treated as a genuine
web resource on a par with data, and independently from whether they are used to chain web services
or local custom software tools (Belhajjame et al. 2015; Hofer et al. 2017). For this purpose, semi-auto-
mated methods to annotate and share workflows and datasets with semantic labels are necessary
(Alper et al. 2015). Furthermore, in order to be useful for eScience (Ludäscher et al. 2006), geopro-
cessing workflows need to become modular, and therefore easy to deploy, adapt, and reuse in new
contexts. A truly semantic approach to workflow modeling would enable analysts not only to share
and annotate resources over the Web, but also to generalize over types of inputs and outputs, tools,
workflow chains, goals, and analysis questions, thus providing an effective way of reusing workflows
including data and operations, as shown in the architecture in Figure 1 (Vahedi, Kuhn, and Ballatore
2016).

In this article, we focus on how to add the necessary semantic information to a ‘raw’ workflow
produced by a GIS in order to make its elements easily publishable and reusable over the web
(see Figure 1). We do not focus on the exploitation of web resources for general workflow construc-
tion or execution, for which satisfactory tools already exist (see Section 2). Our central tenet in this
article is that implicit information contained in GIS operations can be used to propagate types
through a workflow, and thus to automate workflow typing, that is, the assignment of types to work-
flow elements. In this sense, we see geoprocessing workflows in themselves as a valuable and yet neg-
lected source of data semantics (Scheider et al. 2016), which can be exploited to automate the
publication of GIS methods, supporting workflow reuse.

Considering a familiar example, the fact that a raster file was generated, for example, by a least-
cost path operation3 is an essential piece of information that unveils the resulting raster file rep-
resents a path and not, for instance, a temperature field. This is crucial: In contrast to a temperature
field, a path cannot be spatially interpolated (Stasch et al. 2014). However, this information is usually

Figure 1. Linked-data-based GIS workflow architecture, highlighting the role of workflow typing and enrichment on the web with
local GIS.
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kept in the mind of the analyst or, at most, described in vague natural language. In order to reuse the
workflow to generate similar paths in different regions, other analysts would need to read the
documentation, study the workflow structure closely, and substitute appropriate data sources
based on the types of input. Moreover, knowledge about types of results is also crucial for
reuse, for example, to appropriately use the resulting path in a network analysis (Geertman, de
Jong, and Wessels 2003). Our main argument is that the implicit knowledge contained in a geo-
processing workflow can be used to add this essential piece of semantics to data in a partially auto-
mated way, and thus adding the central element of enrichment to a future architecture for
workflow management (Figure 1).

To capture the types of origin and results in workflows, we propose a method for semantically
typing geoprocessing workflows on the level of their operations and datasets. The method explicitly
records the semantics of workflows using linked data as infrastructure. Following the linked data
paradigm (Kuhn, Kauppinen, and Janowicz 2014), workflow resources are described in resource
description framework (RDF), making them shareable on the web. We harness the core concepts
of spatial information (Kuhn 2012), some ideas from typed functional programming, and previous
work on GIS typing and spatio-temporal information generation (Scheider et al. 2016; Scheider and
Tomko 2016). From a technical perspective, we apply SPARQL4 rules for well-known GIS operations
and use OWL2 RL inferences5 to enrich the workflow with semantic types. These types are based on
a suite of GIS ontologies in OWL2.6 The formal ontologies are available online (Section 3), and all
sources implemented in Python are fully available on GitHub (http://github.com/simonscheider/
SemGeoWorkflows).

Semantic typing enables new kinds of interaction with and exploration of workflows and related
resources. Borrowing the term from Gangemi and Presutti (2009), analysts can now ask new kinds of
competency questions, defined as queries that they want to pose to a workflow repository to solve a
given analysis task. In this article, we show how analysts can:

SELECT: Select workflows based on their types of inputs and outputs; Retrieve datasets compatible with a given
operation.
ADAPT: Substitute inputs of workflows with other datasets; Combine compatible workflows into chains.
RECOMMEND: Show possible operations to continue the workflow; Recommend datasets compatible with a
given operation; Recommend operations compatible with a given dataset.

The remainder of this paper is organized as follows. In Section 2, we discuss related work. Section 3
introduces our approach and its ontological foundations, while Section 4 outlines the type enrich-
ment rules and the propagation mechanism. In Section 5, we describe two moderately complex,
real-world ArcGIS workflows with linked data, and Section 6 shows how our automatic enrichments
support the set of competency questions. Finally, we draw conclusions and suggest directions for
future work in Section 7.

2. Related work

The complexity of building and managing scientific workflows has long been recognized, but pro-
gress has been modest. In their influential discussion on scientific workflows, Gil et al. (2007)
noted that usable support tools to develop and document workflows are key needs of the scientific
community. To mitigate the inevitable problem of heterogeneity of computational environments,
tools, datasets, and procedures, ‘scientists should be encouraged to bring workflow representations
to their practices and share the descriptions of their scientific analyses and computations in ways
that are as formal and as explicit as possible’ (p. 26). However, current approaches in workflow
management software focus on workflow construction and execution, and not on their modular
integration and sharing.7 Notably, semantic systems such as Pegasus and Wings8 help prac-
titioners assemble complex computational procedures from smaller parts, and thus to control,
reproduce, and scale up the computational process, but without explicit support for spatial
operations.
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2.1. Re-usability

Current approaches to reproducibility and re-usability of research methods (which often include
geoprocessing workflows) rely on the idea of re-computation (Rey 2009; Müller, Bernard, and Kad-
ner 2013; Singleton, Spielman, and Brunsdon 2016). Reproducing and reusing spatial analysis
methods, however, goes considerably beyond re-computing or replicating workflows (Drummond
2009). In fact, workflow models are usually dependent on a particular software and data environ-
ment, and thus cannot cope well with unavailable data, nor do they allow easy substitution of
parts of a workflow with equivalent data or methods. Research data can be unavailable for various
reasons, including privacy and licensing restrictions. Once cast into software, methods become
dependent on a particular context, making methodological decisions hidden in the parameters of
that particular software environment (Hinsen 2014).

2.2. Web service semantics

One way out of this dilemma consists of increasing the intelligence of workflow specifications,
instead of simply building new applications to manage them (Janowicz et al. 2015). In this direction,
in the early 2000s, Visser et al. (2002) discussed the potential of formal semantics encoded in ontol-
ogies to re-structure GIS into inter-operable pieces. Similarly, many researchers noted that matching
inputs and outputs of geoprocessing Web services with keywords is insufficient and should be sub-
stituted with formal semantics for automation of workflow construction (Lemmens et al. 2006; Lutz
2007; Yue et al. 2007; Fitzner, Hoffmann, and Klien 2011). As a remedy, Lutz designed a method
based on function subtyping to assess for example if two geoprocessing workflows can be chained
(i.e. the output of the first one is compatible with the input of the second one), based on Description
Logics (DL) and First-Order Logic (FOL). Fitzner, Hoffmann, and Klien (2011) demonstrated how
to efficiently match services with requests based on Datalog rules and GIS ontologies. Despite their
conceptual clarity, these approaches have not found yet wide adoption (Hofer 2015). As a matter of
fact, their service orientation makes them dependent on a certain software environment in the form
of web services.

2.3. Linked data workflows

More recently, workflow models based on the linked data paradigm have emerged as a way to
abstract from particular computational contexts, thus making provenance sources explicit and share-
able on the web (Moreau and Groth 2013; Belhajjame et al. 2015).9 These vocabularies have lately
been integrated with standard GIS data models and processes (Closa et al. 2017). However, while
current models describe specific provenance contexts (i.e. what agent and what tool were involved
in the computation of what result at what time), they often lack a way to generalize over types of
input and output data and to highlight their specific roles in the generation process (Daga et al.
2014; Alper et al. 2015). In particular, they lack spatial concepts, such as networks, fields, and objects
(Kuhn 2012), and an account of the inherent logic of GIS operations as analytic tools (Anselin, Rey,
and Li 2014).

Brauner (2015) recently suggested an approach to annotating geo-operators with linked data
to make them comparable across applications. In his survey of this area, Müller (2015) confirms
that a mechanism for the semantic description of functionality is still missing. However, none of
these authors specifically addressed the problem of how to semantically enrich geoprocessing
workflows. To bring workflows out of the current silos, we argue that researchers should focus
precisely on the semantic abstraction of workflows from local environments, such as ArcGIS,
QGIS, or R, and less on developing semantic service infrastructures. This would allow analysts
to share their methods on the web, without having to migrate from their favorite tools and
environments.
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2.4. Semantic typing

Data types generally increase the transparency and clarity of a program, helping developers express
expected inputs and outputs of computational resources, for example specifying whether a function
input is a string, an integer, a raster dataset, or another function. The success of types in object-oriented
programming lies in information hiding, which is a way of abstracting from implementation details
(Guttag and Horning 1978). More specifically, type constraints allow for modularity, that is, they
guide the choice of a function, and open slots can be filled with particular data of a corresponding
type to obtain a desired result. A second advantage is constructivity, the ability to construct a variety
of types by combining primitive ones. And a third advantage is type inference, that is, the possibility to
use inference rules to automatically guess the types of output and input when applying an operation. In
practice, this greatly reduces a programmer’s efforts of documenting code.

Existing languages, however, tend to focus on the construction and execution of code, not on
sharing methods or procedures. The strength of Semantic Web technology and linked data, by con-
trast, lies precisely in the ability to share types on the web and to construct and infer types in a much
more flexible, distributed way (Kuhn, Kauppinen, and Janowicz 2014). Classes and relations that are
used to type and link resources can be used in tractable inferences. For instance, where programming
languages tend to require unique types to remain tractable, a given resource can be typed with an
arbitrary number of OWL classes. While data types in programming focus on technical interoper-
ability, classes in OWL can capture specific semantic content on the level of the application domain.
This was a driver behind the development of ontology-based web service descriptions, such as
WSMO.10 In practice, however, such approaches have been seldom combined with GIS-specific con-
cepts that go beyond basic data formats (Fitzner, Hoffmann, and Klien 2011). Furthermore, WSMO
targets web services, not workflows. For all these reasons, we propose a typing scheme based on
linked data technology, tailored to geoprocessing workflows. As we will show below, our scheme
is modular, to some extent also constructive, and it allows for type inference.

3. A linked data typing scheme for geoprocessing workflows

Geo-data generated in workflows obtains an implicit semantics as a consequence of applying GIS
operations with certain concepts in mind. Our linked data typing scheme is designed to capture
this semantics. To this end, we first introduce types for spatio-temporal concepts and for GIS. Sub-
sequently, we introduce a linked workflow vocabulary that can be used to add implicit semantic
structures based on provenance.

3.1. Types for spatio-temporal concepts

When designing workflows, spatial analysts commonly think of data at a more abstract level, using
meaningful concepts, such as objects, fields, and networks. GIS data types are not sufficient for this
purpose. As argued in previous work, we can better capture the semantics of spatial data in terms of
spatio-temporal (core) concepts, which are orthogonal to GIS data types (Kuhn 2012; Scheider et al.
2016).

The most fundamental kinds of concepts are references for space, time, quality, and object, sum-
marized in Table 1. These are values that refer to observable or measurable phenomena, such as time
moments, space regions, and qualities that are referenced by measurement scales. For example,

Table 1. Types of spatio-temporal references.

Reference type Example of reference system

Space WGS84
Time UTC
Object National address system (for buildings)
Quality Size, weight, temperature
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coordinate pairs of a statistical region’s boundary refer to locations on the Earth’s surface, and its attri-
bute number might refer to the population counted in that area. Among the references, we also include
objects – discrete entities such as buildings, and cars, including events such as hurricanes. Note our
distinction of objects from qualities, such as a temperature or the number of objects in a community
(Stasch et al. 2014). Additionally, we also consider collections of things, such as object clusters.

The second kind of fundamental spatial concepts are observation procedures, represented in terms
of functions that map from reference domains to other reference domains, as summarized in Table 2
and described in detail in previous work (Scheider et al. 2016). For example, fields (i.e. measures of
spatially continuous phenomena) can be defined as functions from space and time to qualities.
Spatial fields (SField) can be seen as functions from space to quality values, object time series (TSer-
ies) as functions from discrete object identifiers and time to quality, and trajectories as functions
from time to space. Note that these functions are not datasets, but rather stand for the potential
to measure or observe references.

3.2. GIS types

GIS adds more specific references and data types to this scheme. For example, in GIS, certain rela-
tively defined references are common, such as Neighborhood and Path objects (see Table 3). A neigh-
borhood object depends on a host of which it is the neighborhood – an example is a spatial buffer
(Burrough et al. 2015). And a path object is the basic element of a network dataset, representing a
possible move from some start object to an end object, for example, a road segment leading from
intersection to intersection.

As shown in Table 3, qualities in GIS can be complex. Beside unary qualities like Cost, there exist
relational qualities (RelQ) whose values depend on other datasets (Probst 2008). One example for
such a quality is a Density, which derives from a set of objects. Another one is a Distance quality
to a set of objects. A special kind of distance is a CostDistance, which corresponds to the shortest
distance between a source and a sink on a cost surface. Another special relational quality is called
QQuality, a quality derived from another quality of another dataset. Whenever we compute a
sum in map algebra (Tomlin 1990), we generate a raster quality from other raster qualities, for
example comparing luminosity from two different times. To capture such provenance dependencies,
we define the relation of, stating that a density is a density of a particular set of objects, or a distance
to a particular set of objects (cf. Figure 3).

GIS datasets are discrete representations of spatial concepts (Table 4). This idea was introduced as
a linked data pattern11 to handle datasets and references in the context of spatial analysis (Scheider
and Tomko 2016). Datasets, such as GIS layers, have data items as their elements, and these items
have spatial and non-spatial references, just as rows in a GIS table have geometry and attribute values
(Figure 2).

Table 2. Types of functional concepts.

Functions Derived functions

Field (Time � Space � Quality) SField (Space � Quality)
Objects (Object � Time � Quality, Space) TSeries (Time � Quality)
Objects (Object � Time � Quality, Space) Trajectory (Time � Space)

Table 3. GIS-specific types of references.

Reference class Example Super concept

Path Road segment Object
Neighborhood Buffer region Object
Cost Environmental costs Quality
Density Density of objects RelQ
Distance Cost distance, Euclidean distance RelQ
QQuality Map algebra sum RelQ
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In contrast to a pure table schema, we draw a conceptual distinction between references based on
the role they play in observation. A measure denotes an observed reference of a data item, whereas a
support denotes the context of this observation that can be used to compare measures. Supports and
measures are both attributes of a data item (see Figure 2).12 For example, a statistical data record may
have a population count quality as measure, and a spatial region and a time as support, meaning that
the measure was observed for this region and this time (Figure 2). In GIS, raster datasets measure
qualities over regular squares, while vector datasetsmeasure qualities over points, lines, and arbitrary
regions. Tracks, by contrast, measure the locations of some moving object over different times.Object
datasets have object identifiers as supports, and a Network has paths as supports (see Table 4).

Another ontology pattern is used to define these GIS-specific data types.13 Both patterns com-
bined are illustrated in Figure 3. Each black arrow stands for a relation between instances of some

Figure 2. Distinction between data items, supports, and measures.

Figure 3. Concepts for typing geoprocessing workflows. Provenance relations are denoted by the property of. Rectangles: function
classes.
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class, where classes are denoted by ellipses or round boxes, the latter standing for classes of functions.
The relation are in the diagram means that the first class is a subclass of the second.

It is important to distinguish between data types and spatial concepts because concepts can be
represented by almost any arbitrary data type, but only the concepts are relevant for analysis. For
example, depending on how it was generated, a raster dataset can indirectly represent both objects
and fields, and this distinction can only be made based on its provenance.

More precisely, if we measure temperature quality values at points in space, then, implicitly, we
sample a spatial field (SField) in the environment. The type of this data may therefore be called Points
of SField, and needs to be distinguished from a point data file representing the location of objects
(Points of Objects), which was generated by observing objects in the environment (see Figure 4).
While a Points of SField can be interpolated, Points of Objects cannot (Stasch et al. 2014). Further-
more, if we interpolate our point sample file to a raster, then the resulting raster represents the spatial
variations of the underlying field in a discrete form (Raster of SField). In contrast, if we convert a set
of objects represented as vectors to a raster, we obtain an Existence Raster (a raster of the existence of
some objects) (See Figure 4). This raster file represents nothing but the presence of discrete objects,
and thus cannot be interpolated either.

In summary, whenever we apply a GIS operation, we generate new data, but we also, indirectly,
determine its semantics in terms of spatial concepts (cf. Figure 4). For this reason, we must keep
track of these concepts via provenance. The vocabulary discussed in the following section captures
some of the necessary semantic provenance relations inside workflows.

3.3. Typing workflows as linked data graphs with implicit semantic structures

In order to type workflows with provenance relations and concepts, we propose to represent them in
terms of an OWL pattern,14 as illustrated in Figure 5. Workflows must be treated both as individual
entities, recording their creation context, and also as graphs linked with these entities, capturing the
workflow structure. Furthermore, functional dependencies between inputs and outputs need to be

Table 4. GIS data types.

GIS data type Support Measure

Raster Region Quality
ObjectDataset Object Quality, Region/Line/Point
VectorDataset Region/Line/Point Quality
Track Time Point
Network Path Quality

Figure 4. Provenance graph of GIS types derived from the concepts ‘field’ and ‘object’. Black arrows link concepts to predecessors
in the geoprocessing chain. Concepts indirectly represented as data are denoted by dotted boxes (e.g. fields are indirectly rep-
resented by rasters).
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included (Fitzner, Hoffmann, and Klien 2011), as well as implicit concepts that exist in the back-
ground (Scheider et al. 2016).

In order to achieve these objectives, we link workflow individuals to workflow edges via the wf:
edge property. Edges are reified RDF statements, denoting workflow steps, of the form:

[some wf:Operation] [wf:input|wf:output] [some wf:Resource].

To distinguish different types of input, we can introduce sub-properties of wf:input. For example, in
the gis vocabulary, we indicate input parameters as gis:inputdata. Later, we will also use tool specific
input properties in Section 4.2. The reification15 of these statements is implemented using rdf:subject,
rdf:predicate, and rdf:object triples that connect the three elements of a statement to the workflow
edge. For example, the workflow in Figure 6 consists of two such statements for input and output.
Thus, it is possible to query workflow individuals and their graphs at the same time, and to store the
information about inputs and outputs of a workflow through the properties wf:source and wf:result.

The nodes of the edges of the workflow graph, representing resources and operations, can now be
typed using OWL classes. Furthermore, implicit semantic structures can be added. For example, in
Figure 6, interpolation requires an implicit underlying spatial field (in this case of temperature) from
which the workflow source, a point dataset, was sampled. Although this field is an entity outside of
the workflow and thus not represented in terms of data, it can be made explicit with linked data by
introducing a blank node.16 Furthermore, there are also implicit semantic structures hidden in the

Figure 5. Linked data pattern (classes and properties) for modeling workflows. Workflows are linked to their subgraphs via reified
statements. Operations are functions applied to inputs and producing outputs, resources are used to build a workflow (may also be
functions). The of relation links resources to their origins.

Figure 6. Example of usage of the workflow patternwf to add explicit and implicit (dotted) semantic structures between inputs and
outputs in a geoprocessing workflow for point interpolation.
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operation. For instance, interpolation requires an interpolation model, a spatial field (a function
from space to a quality) estimated by the point data set.

By adding implicit semantic structures based on the relation wf:of, we now know that the result of
the workflow is not simply a raster dataset, but it is of the complex type Raster (sample) of an SField
of a Point data set (sample) of an SField, information that simply gets lost in current tools. In order to
distinguish different types of provenance relations, we can further introduce sub-properties for wf:of.
In this article, we use only a single sub-property wf:ofprop, which denotes the provenance relation
between measured qualities (QQuality). Table 5 gives an overview of the three ontologies that we
use in workflow typing.

4. Type enrichment based on GIS operations

In this section, we introduce rules for the semantic enrichment of workflows based on well-known
GIS operations, expressed in SPARQL language.17 We start with algorithms and enrichments based
on single tools, and then proceed to type propagation rules over whole workflows.

4.1. Tool-based semantic enrichment and avoidance of redundancy

Whenever analysts execute a GIS operation in a workflow, they make certain assumptions about the
meaning of its inputs and output. We take the view that these assumptions are made independently
for single tools or a class of tools, based on the idea that classes of geoprocessing tools have a com-
mon purpose and treat spatial concepts behind the data they produce in a comparable manner.
Classes of tools can be built based on OWL subclass relationships, and enrichments can be made
with a corresponding semantic signature for each type of tool.18

The typing of input and output in a workflow is done by applying rules expressed as SPARQL
Update statements.19 The types of tools are in the condition of the statement, and the types of inputs
and outputs are in the statement’s head. However, in order to make our enrichment method reliable,
we have to care about consistency in typing and about linking implicit semantic structures across a
potentially complex workflow. If we just naively added implicit semantic structures to inputs and
outputs of an operation, we would generate many unconnected and redundant nodes. For example,
the dataset represented by node 3 in Figure 7 may receive a similar semantic structure from

Table 5. Vocabularies used in this article.

Vocabulary Prefix URI

Workflow wf: http://geographicknowledge.de/vocab/Workflow.rdf#
GISConcepts gis: http://geographicknowledge.de/vocab/GISConcepts.rdf#
AnalysisData ada: http://geographicknowledge.de/vocab/AnalysisData.rdf#

Figure 7. Backtracking from sources to results to enrich a workflow. For each operation, we first type inputs (if not already present),
then outputs, and then link outputs to inputs, and then proceed to the next operation.
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operations at node 2 as output, as well as node 4 as input, and it would remain unclear how these
structures relate to each other.

In order to prevent the generation of such unconnected structures, we perform the typing in a
specific order, starting from inputs to outputs, from the sources of a workflow to its result. This
way, newly introduced structures on an operation’s output can be reused as input on the next oper-
ation. This can be achieved by searching through a workflow graph with a Depth-First Search (DFS),
starting from its result, and then backtracking on the operations. As a result, blank nodes introduced
as an operation’s output can be linked back to its predecessor’s output.

Since workflows can be viewed as trees with a result as root and branches for distinct inputs, we
have to consider branching inputs of the same type. Also in this case, naively generating output
structures for an input structure can cause redundancy, because update statements need to run
once for each input branch. We prevent this by separating the introduction of blank nodes for inputs
and outputs from linking them, generating different rules for these three aspects of an operation.
Second, we introduce blank nodes in a conservative way, simply by checking whether they already
exist.
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Algorithm 1 illustrates the search procedure that takes into account these problems. The pro-
cedure searches through operations of a workflow, breaking down the problem into steps of intro-
duction and linking of semantic structures for inputs and outputs of a given operation. After this
step, Algorithm 2 illustrates the procedure to apply sequentially the input, output, and link rules
to the workflows.20

4.2. Enrichment rules for classes of GIS operations

To implement our approach, it is necessary to design typing rules, expressed as SPARQL state-
ments, for a selection of tool categories, ranging from format conversions, to map algebra and
topological operations, and least-cost path computations. The choice of these operations was dri-
ven by the two example workflows, which will be described in detail in Section 5. However, the
selection could be expanded to a full-blown GIS operator web repository. To show the practical
applicability of the method to existing systems, we refer to the implementation of these oper-
ations in ArcGIS, using the ESRI terminology. For the sake of brevity, we explain here only
three exemplary operations. Others are explained in the Supplementary Material as they appear
in our workflow examples.21

Raster to vector conversions22 are a ubiquitous and simple GIS operation, but rather complex
from a semantic viewpoint. This is because the input raster is required to be an existence raster of
some single object, which is turned into either a discrete point, a line, or a region in the output.
Such conversion ignores raster measures, taking them as existence qualities of some object, and
therefore rasters of some field are not a meaningful input to this operation. The challenge lies in
the integration of the outputs with the input raster’s existence quality. Note that input (Listing 1)
and output rules (Listing 2) introduce blank nodes for measures and objects, which are then
linked in Listing 3.

The following rules express this semantics: (a) The input data set is an existence raster of objects;
(b) these objects are supports of the output data set.

Listing 1. Raster to Line SPARQL input rule

Listing 2. Raster to Line SPARQL output rule
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Listing 3. Raster to Line SPARQL link rule

Note that we use the filter not exists statement in input and output rules to check whether semantic
structures already exist or not. Because input and output rules only introduce the blank nodes
necessary for linking, we omit them in the following listings.

The cost distance tool takes a cost surface raster and a sink raster, and then generates a raster
measuring the link (i.e. the successor cell) of the least-cost path toward the sink.23 The sink raster
is an existence raster of objects, while the surface raster represents a cost field. Both assumptions
are made explicit, and we also add provenance relations between output data and cost surface
measure with respect to the sink dataset (Listing 4).

Listing 4. Cost Distance SPARQL link rule

The cost path tool takes a link raster to a sink (generated by the cost distance tool) and a source raster,
and generates a raster that represents the least-cost path from source to sink.24 As above in the case
of the sink, the source raster represents the existence of source objects, while the output raster rep-
resents the existence of a new kind of object, namely a path (Listing 5).

Listing 5. Cost Path SPARQL link rule

Other operator rules can be found in the Supplementary Material.
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4.3. Type propagation rules

Further rules can be added that integrate types over more than one operation in the workflow. Such
rules can use property paths in SPARQL in order to express queries over workflows of arbitrary
length.25 Property paths are conceptually similar to regular expressions, widely used in natural
language processing and data mining. For example, we define a rule that propagates provenance
links (wf:of) over paths (using +) of QQuality links (gis:prop, inverted by ^) of arbitrary length,
such that the resulting quality has the same provenance relations. Thus, it becomes possible to preserve
provenance information whenever a property is derived from another one, such as in local map algebra
or in conversions. In the following rule, a is the start quality of the path (assured by the filter state-
ment), and b is the end quality that is enriched with provenance statements (Listing 6).

Listing 6. QQuality SPARQL propagation rule

Another rule connects start and end object vector datasets to a path object by integrating cost dis-
tance and cost path operation inputs and output, taking into account implicit semantic structures
added by conversion operations (Listing 7, see Figure 8).

Listing 7. Path integration SPARQL propagation rule

A last rule generates the transitive closure of part-of statements through a workflow in order to find out
about the sources of spatial aggregations (Listing 8). As usual, a filter is used to avoid redundancies.

Listing 8. Part-of transitivity SPARQL propagation rule

5. Semantic enrichment of ArcGIS workflows

In this section, we describe two well-known and practically relevant workflow scenarios designed
with the industry standard ESRI’s ArcGIS ModelBuilder (Allen 2011). We show how to turn
them into pure untyped linked data, providing a basis for the semantic enrichment that will be
described in Section 6.
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5.1. Workflow #1: Analysis of night lights in China

In an econometric study, the analyst wants to estimate the growth in China spatially – at the
local level – and temporally – at different times – using night light as a proxy of economic
activity (Lowe 2014).26 This research question is translated into a geoprocessing workflow that
operates on the following input datasets: satellite imagery about nocturnal luminosity (raster),
a map of gas flares (vector), country boundaries of the whole world (vector), and road network
in China (vector). While not overly complex, this workflow is a realistic example of geoprocessing
on real data. The workflow, as described by Vahedi, Kuhn, and Ballatore (2016), consists of the
following steps:

(1) Remove gas flares from China region.
(2) Calculate a buffer around train stations.
(3) Intersect China raster without gas flares and buffered train stations.
(4) Convert the resulting vector data to raster.
(5) Mask luminosity rasters for times t1 and t2 with the resulting raster.
(6) Calculate zonal mean, using administrative units as zones for t1 and t2.
(7) For each zone, calculate the change between t1 and t2.

Figure 9 shows an implementation of this geoprocessing workflow, developed with ArcGIS
ModelBuilder. The diagram shows input datasets, GI operations, and output datasets, leading
to the final dataset (Luminosity_change). For the sake of clarity, Figure 10 represents an
example of the change in luminosity from 1993 to 2013 across China, grouped by administra-
tive units.

To enable our semantic typing approach, the workflow must be described according to the
workflow ontology (wf). Listing 9 shows a translation of RDF generated based on the workflow
in Figure 9. The node :wf1 is the workflow, linked to a number of data sources, and to a result.

Figure 8. Schematic map illustration of least-cost path integration. Arrows between RDF types stand for links between their
instances.
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Each node (wf1_x) corresponds to an operation, represented as yellow rectangles in the
model, and is typed according to the GIS operation performed (e.g. gis:Erase), with inputs and
outputs.

Note that this compact RDF annotation does not require any semantic typing of the datasets,
which will be generated automatically by the enrichment mechanism, propagating the types across
the nodes from the inputs to the outputs in a deterministic process. In this sense, a clear advantage
from the user’s perspective is the limited explicit input, yet resulting in a rich and powerful descrip-
tion of the workflows and their associated resources.

Figure 10.Workflow #1: Variation in average nocturnal luminosity over China from 1993 to 2013. Courtesy of Andy Bartle (Birkbeck,
University of London).

Figure 9. Workflow #1: ModelBuilder workflow to calculate the change in night lights in China. The blue ovals are input datasets,
yellow rectangles indicate operations, and the green ovals are output datasets.

128 S. SCHEIDER AND A. BALLATORE

D
ow

nl
oa

de
d 

by
 [

B
ir

kb
ec

k 
C

ol
le

ge
] 

at
 0

4:
35

 0
9 

Ja
nu

ar
y 

20
18

 



Listing 9. Semantic description of Workow #1

5.2. Workflow #2: Planning of a new road with LCP

The following workflow is taken from an advanced GIS course given at Utrecht University by the
department of Human Geography and Spatial Planning.27 It was designed by Tom de Jong (Geert-
man, de Jong, and Wessels 2003) and is based on a realistic planning scenario in which the province
of Nordland in the Netherlands intends to improve the accessibility of its highway network by build-
ing a new highway link between existing entries and exits. Students need to suggest possible links
(Figure 12) based on a multi-criteria analysis workflow in GIS, from which we chose only the

Figure 11. Workflow #2: ModelBuilder workflow of planning a new highway (myroute) connecting two highway exits (endraster,
beginraster) based on avoiding built environment, nature areas, and other landuse classes. The latter objects enter the model in
terms of a cost surface on which a least-cost path is computed. Blue ellipses denote root data sets, green ones intermediate data,
and yellow boxes denote function applications.
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first steps (least-cost path analysis), as shown in Figure 11. The following input datasets are used: a
highway exit and entry point (chosen from a digital road network), a landuse dataset (vector), a data-
set of built areas (vector), a dataset of nature habitats (vector).

(1) Compute a raster of Euclidean distances to build up areas and nature habitats with identical
extent and cell area

(2) Reclassify distances to generate a cost criterion (output of 1)
(3) Convert landuse vector dataset into a raster with identical extent and cell area by a polygon to

raster conversion
(4) Use local map algebra to combine criteria (outputs of 2 and 3) into a cost surface based on a

weighted sum
(5) Convert begin and end point objects (highway exits) of a road network to a raster
(6) Compute the least-cost (distance +) path between begin and end point rasters (output of 5) using

the cost surface (output of 4)
(7) Convert least-cost path (output of 6) raster into a polyline

Since it follows a similar structure to Workflow #1, we omit the RDF listing for this workflow.28 Both
these workflows are enriched in the next section.

6. Evaluation of semantic enrichments on example workflows

This section shows how we perform the type enrichment, using ordinary RDFS and OWL RL infer-
ences (Grosof et al. 2003), and how this can help answer competency questions about workflows and
data, as posed in the introduction. In what follows, we distinguish resources of the two workflows
based on the prefixes cnl (Workflow #1, China lights) and lcp (Workflow #2, least-cost path).

6.1. Running inferences on the workflows

The enrichment and propagation process loads the workflows, the relevant ontologies, and then pro-
ceeds to run RDFS and OWL RL inferences. Subsequently, the enrichment and propagation rules are
applied. To show a full iteration of the process, when running on workflow lcp, the script grows an
RDF graph in the following steps:

Figure 12. A map of different road alternatives generated based on the workflow of Figure 11. Courtesy of Tobias Dobbe, Jorn
Neppelenbroek, Thomas Kuijpers and Jip Zinsmeister.
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(1) Loading workflow (32 triples);
(2) Loading ontologies (576 triples);
(3) Running OWL RL inferences (2205 triples);
(4) Running tool-based type enrichments (2292 triples);
(5) Running type propagations (2297 triples);
(6) Running OWL RL inferences again (2912 triples).

The execution of the process above took 12 seconds on an ordinary PC,29 and the majority of the
time is taken up by the OWL RL inferences.30 Running the same procedure only with RDFS infer-
ences took only 3 seconds, resulting still in slightly more than half of the inferences (1658 triples).
Note that even though OWL inferences are not particularly efficient, our procedure scales well
with the number of workflows, since only type enrichments depend on this number, and they are
computationally inexpensive, while inferences can be run independently over all triples. Hence,
we claim that the process is reasonably fast to be executed on ordinary machines and current triple
stores, even in realistic scenarios with large repositories of interconnected workflows.

6.2. Competency question 1: Select data and workflows

Thanks to the semantic enrichments and propagations, we can now perform a more targeted selec-
tion of datasets, data items, and data references used in workflows, including provenance infor-
mation. For example, we can select datasets with path objects, together with the datasets
containing their start and end objects (Listing 10). As shown in Table 6, this query returns the
respective input and output data sets that are origins of the path object generated in the Least-
Cost Path workflow (namespace lcp:). Note that the long hash in the path object column is the iden-
tifier of a blank node.

Listing 10. Get paths together with start and end objects

Similarly, we can obtain all datasets that are spatial aggregations of rasters, together with their aggre-
gation windows (regions of aggregation) and the source raster (Listing 11). Table 7 shows that the
result of the china lights workflow was in fact aggregated from the luminosity raster over the spatial
windows of Chinese border and the neighborhoods of train stations, information that can be used to
interpret and constrain the further usage of this dataset.

Table 6. Result of the query in Listing 10. Path datasets with start and end objects.

Dataset Path object Start dataset End Dataset

lcp:MyRoute N5bbadf73ba1745 lcp:beginpoint lcp:endpoint

Table 7. Result of the query in Listing 11. Aggregated datasets and the input regions.

Aggregated dataset Source Window

cnl:Luminosity_change cnl:F101993_night_lights cnl:CHN_adm0_Erase_Intersect
cnl:Luminosity_change cnl:F101993_night_lights cnl:China_border
cnl:Luminosity_change cnl:F101993_night_lights cnl:Chn_atm0_erase
cnl:Luminosity_change cnl:F101993_night_lights cnl:Ch_Stations_Buffer
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Listing 11. Get windows and sources of spatial aggregations

More generally, using OWL RL inferences to capture data types defined in the GISConcepts ontol-
ogy, we can now search for datasets based on very specific types and provenance relations (Listing
12). The results in Table 8 contain all datasets of the lcp workflow, along with their inferred dataset
types and types of provenances (related by wf:of).

Listing 12. Get datasets their types and provenance

Note that the data nodes in the workflow now have types inferred from the operation and not speci-
fied in the initial workflow descriptions, such as gis:ObjectDataSet, gis:PointDataSet, gis:LineDataSet,
gis:RegionDataSet and gis:Network. For example, the workflow result lcp:MyRoute is not only an
object data set, but is also a line data set, as well as a network. Furthermore, we can now distinguish
datasets according to their provenance. For example, lcp:My_LandUse_2006 is a region data set
that represents some categorical spatial field (namely landuse), while lcp:Beginraster is a ras-
ter that represents an object contained in a point data set. These distinctions can be crucial in helping
a GIS analyst use the dataset according to its intended meaning.

Table 8. Result of the query in Listing 12. Datasets, their types and provenance types.

Dataset Type of Type of Type

lcp:Route2_cost gis:Raster gis:SField gis:ObjectDataSet
lcp:My_LandUse_2006 gis:RegionDataSet gis:SField
lcp:my_BuiltUp gis:ObjectDataSet
lcp:CostPat_Begi1 gis:Raster ada:Object
lcp:Beginraster gis:Raster gis:PointDataSet ada:Object
lcp:Route1_cost gis:Raster gis:SField
lcp:My_bu_dist gis:Raster gis:SField gis:ObjectDataSet
lcp:beginpoint gis:PointDataSet
lcp:endpoint gis:PointDataSet
lcp:Route2_backl gis:Raster gis:RegionDataSet gis:Raster
lcp:MyRoute gis:ObjectDataSet
lcp:MyRoute gis:Network
lcp:MyRoute gis:LineDataSet
lcp:my_bu_ext gis:Raster gis:SField gis:ObjectDataSet
lcp:endraster gis:Raster ada:Object gis:PointDataSet
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Using the same logic, we can query for workflows based on which types of results they produce. For
example, we may be interested in all workflows that generate networks (Listing 13). This competency
question can be used to chain workflows, making sure that their inputs and outputs are compatible types.

Listing 13. Get workows by result type

6.3. Competency question 2: Adapt input data in workflows

Given an operation in a workflow, a common task consists of finding possible new input datasets
that make sense in the context. For this purpose, we can query for datasets that have the implicit
semantic structure of our input enrichment rules for a given operation, including classes and prop-
erties. In the two example workflows, this approach obtains meaningful suggestions of data from
other workflow nodes, excluding non-meaningful matches that would occur in naive data type
matching, as illustrated below.

Here is an example of a query for the operation gis:PolygontoRaster, which restricts inputs both by
requiring the existence of structures as well as their absence (no raster allowed). Such negative type
restrictions become necessary since we are considering non-unique types (Listing 14).

Listing 14. Get matching input datasets for a workow operation

The result lists workflow operations together with meaningful input dataset matches (Table 10). As is
possible to notice, we obtain a field-based region dataset (lcp:My_LandUse_2006) as input for
gis:PolygontoRaster, while region data sets that represent objects are excluded. We get other
object-related raster data (e.g. other road objects) as source input (input 2) for gis:CostPath,
while its link input is restricted to those raster datasets which have link qualities (in our case,
only lcp:Route2_backl).

The gis:CostDistance operation is more variable in taking field related raster data as cost
surface input (input 2). For example, it would admit also rasters that represent distance fields (lcp:

Table 9. Result of the query in Listing 13. Select workflows based on their result types.

Workflow Result Type of Dataset

lcp:wf2 lcp:MyRoute gis:ObjectDataSet
lcp:wf2 lcp:MyRoute gis:LineDataSet
lcp:wf2 lcp:MyRoute gis:Network
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My_bu_dist) or the landuse cost raster (lcp:Route1_cost), but object-based rasters are
excluded. However, this operation may take other object-related rasters as its sink input, such as
lcp:CostPat_Begi1 or lcp:Beginraster, similar to the conversion operation gis:
toLine. gis:PointtoRaster would allow other point data sets. gis:LocalMapAlgebra
allows alternative field-based rasters or object-based rasters as input, but excludes rasters with other
qualities as measures, such as link qualities. While we did not find evidence of non-meaningful sug-
gestions in this evaluation, a systematic evaluation of whether such inputs are useful for a given task
goes beyond the scope of this paper.

6.4. Competency question 3: Recommend tools

Given the type enrichments of datasets, we can use an operation’s type restriction to suggest compatible
tools. This competency query is solved in an equivalent way, but reverting the direction: We search over
the input restrictions of each operation’s enrichment rule, and recommend those operation types that
match a given dataset (Listing 15). Table 11 illustrates the results in terms of datasets from both work-
flows. Object datasets from the China lights workflow, for example, cnl:Train_Stations, could
be used for Euclidean Distance analysis, and field rasters, such as cnl:F101993_night_lights
for local map algebra.lcp:CostPat_Begi1 is the raster produced by the cost path tool representing
a path object. For this reason, only tools that deal with object-based rasters are selected.

SELECT DISTINCT ?firstin ?secondin ?opclass

Listing 15. Recommend types of operations for given datasets

Correspondingly, the next step in the workflow (the conversion operation gis:toLine) is part-of
the recommendations. Furthermore, other field-based rasters are recommended as second input to
the gis:CostDistance operation. In a similar way, object-based vector datasets lcp:MyR-
oute lcp:my_BuiltUp may be used as input for the Euclidean distance tool.

Table 10. Result of query in Listing 14. Find possible inputs for operations in a workflow.

Operation Type Matching input 1 Matching input 2

lcp:0 gis:PolygontoRaster lcp:My_LandUse_2006
lcp:7 gis:CostPath lcp:Route2_backl lcp:endraster
lcp:7 gis:CostPath lcp:Route2_backl lcp:CostPat_Begi1
lcp:5 gis:CostDistance lcp:Beginraster lcp:Route1_cost
lcp:5 gis:CostDistance lcp:Beginraster lcp:My_bu_dist
lcp:5 gis:CostDistance lcp:Beginraster lcp:my_bu_ext
lcp:5 is:CostDistance lcp:CostPat_Begi1 lcp:Route1_cost
lcp:5 gis:CostDistance lcp:CostPat_Begi1 lcp:My_bu_dist
lcp:8 gis:toLine lcp:endraster
lcp:8 gis:toLine lcp:Beginraster
lcp:8 gis:toLine lcp:CostPat_Begi1
lcp:4 gis:PointtoRaster lcp:beginpoint
lcp:6 gis:PointtoRaster lcp:endpoint
lcp:3 gis:LocalMapAlgebra lcp:Route2_cost
lcp:3 gis:LocalMapAlgebra lcp:My_bu_dist
lcp:2 gis:LocalMapAlgebra lcp:Route1_cost
lcp:2 gis:LocalMapAlgebra lcp:Route2_cost
lcp:2 gis:LocalMapAlgebra lcp:my_bu_ext
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It becomes also possible to recommend other operations that we have not considered in our list or
do not even appear as tools in ArcGIS. For example, automatic path geometry snapping could be
done whenever a path has known end and start points (based on our second propagation rule),
or interpolation operations could be recommended only for datasets of some field. If embedded
in a workflow design tool, this approach can prevent a wide range of human errors, leading to
more reliable and interpretable results.

7. Conclusion and outlook

In this article, we have proposed a method and tool to semi-automatically type geoprocessing work-
flows on the level of their data and operations, starting from a set of minimal manual annotations.
We take advantage of the fact that GIS operations implicitly constrain their types of input and output
on the semantic level, and thus can be used to propagate types through a workflow based on knowing
the types of operations involved. We have shown that geoprocessing workflows themselves can be
used as a methodological resource on the web, together with RDF and OWL-based vocabularies
for publishing and typing them.

For this purpose, we have proposed an enrichment algorithm with SPARQL-based type enrichment
rules. Based on OWL RL inference, this procedure adds semantic types to workflows and allows ana-
lysts to select, recommend and adapt workflow resources. The method can scale up with the number of
workflows and can be used to type geoprocessing workflows generated with established tools, such as
ArcGIS, as well as within distributed, cloud-based systems. All of the semantic resources described in
this article are freely available online, and are published as creative commons.31

As pointed out by Gil et al. (2007), workflows should become first class citizens in our informa-
tional infrastructure, and our approach is only a first step into exploiting linked data for sharing geo-
processing methods. We envisage a future where GIS users can automatically publish linked
workflows from local GIS, using Semantic Web interfaces. Technically, this might just require a plu-
gin-in for the translation of ArcGIS Model Builder models to linked data. Through automated typing
and enrichment, these linked workflows can then be shared on and retrieved from the Web with
existing technology in a modular fashion. In this way, linked workflows support local composition,
help decide about meaningfulness of steps by type safety, and help suggest meaningful analysis pat-
terns from the pool and data sources available on the web (see Figure 1).

To this end, it is necessary to register local operations on a linked operator repository once, and to
describe them with SPARQL rules on the level of GIS concepts, independently from local software. In
our view, this should be an ongoing and incremental effort of GIS researchers and developers (e.g. by
theQGIS developer community), not users. Once operations are registered, workflow typing and retrie-
val can be done in an automated or semi-automated fashion, without GIS users having to deal with the
complexities of linked data or SPARQL syntax, and without requiring any web GIS service interfaces.
For example, exploratory query interfaces or web forms can be used for retrieval (Scheider et al. 2017).

Table 11. Result for query in Listing 15. Find possible operations for datasets.

Dataset 1 Dataset 2 Matching operation type

cnl:Train_stations gis:EuclideanDistanceTool
cnl:F101993_night_lights gis:LocalMapAlgebra
cnl:Train_stations gis:EuclideanDistanceTool
cnl:Extract_tif1 gis:LocalMapAlgebra
cnl:Extract_tif2 gis:LocalMapAlgebra
lcp:CostPat_Begi1 gis:toLine
lcp:CostPat_Begi1 lcp:My_bu_dist gis:CostDistance
lcp:CostPat_Begi1 lcp:Route1_cost gis:CostDistance
lcp:CostPat_Begi1 lcp:Route2_cost gis:CostDistance
lcp:CostPat_Begi1 lcp:my_bu_ext gis:CostDistance
lcp:MyRoute gis:EuclideanDistanceTool
lcp:my_BuiltUp gis:EuclideanDistanceTool
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Future work should therefore address the development of algorithms to generate enrichment
rules for GIS tools and automated capturing and RDF transformation of workflows, within tools
such as ArcGIS and R. Regularities in the enrichment rules should be identified, and codified into
ontology design patterns, supporting the incremental inclusion of new GIS tools in the framework.
Thus, it will be possible to embed our semantic approach into real-world development tools, sup-
porting GIS analysts and scientists in their work, as well as facilitating the creation of workflow
semantic repositories. A systematic appraisal of what errors GIS practitioners are prone to make
would provide further guidance to structure and refine semantic approaches. Focusing on critical
and recurring semantic errors in data analytics will help automate the design and sharing of complex
geoprocessing workflows, a crucial and yet fragmented component of our technological apparatus.

Notes

1. E.g. See ArcGIS ModelBuilder http://pro.arcgis.com/en/pro-app/help/analysis/
geoprocessing and ArcGIS Workflow Manager for Server http://server.arcgis.com/en/
workflow-manager

2. See for example the Mapbox API: https://www.mapbox.com/api-documentation
3. http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/

creating-the-least-cost-path.htm
4. SPARQL https://www.w3.org/TR/rdf-sparql-query
5. OWL2 RL https://www.w3.org/TR/2009/REC-owl2-primer-20091027/#OWL_2_RL
6. OWL https://www.w3.org/TR/owl-features
7. Examples include ESRI’s ArcGIS ModelBuilder and WorkflowManager for Server, Kepler https://kepler-

project.org, Taverna http://www.taverna.org.uk, and Orange http://orange.biolab.si.
8. http://www.wings-workflows.org
9. Examples include W3C PROV (https://www.w3.org/TR/prov-overview), OPMW (http://

www.opmw.org), and PWO (http://purl.org/spar/pwo).
10. WSMO https://www.w3.org/Submission/WSMO
11. ada: http://geographicknowledge.de/vocab/AnalysisData.rdf#
12. This is comparable to the distinction between dimension and measure in OLAP. See also Sinton’s notions of

control, fix and measure (Sinton 1978).
13. gis: http://geographicknowledge.de/vocab/GISConcepts.rdf
14. wf: http://geographicknowledge.de/vocab/Workflow.rdf
15. Reification: https://www.w3.org/TR/2004/REC-rdf-primer-20040210/#reification
16. A blank node is an RDF resource without URI, acting like an unknown or a variable.
17. SPARQL https://www.w3.org/TR/rdf-sparql-query
18. A signature introduces functions in a formal program together with their types of input and output.
19. SPARQL Update https://www.w3.org/TR/sparql11-update
20. The algorithms are implemented in Python in the code base, using the RDFlib library (https://rdflib.

readthedocs.io).
21. The full specifications are available online in the code base. In case an operation mentioned in the text is

unknown to the reader, we suggest to consult these resources.
22. http://desktop.arcgis.com/en/arcmap/10.3/tools/conversion-toolbox/raster-

to-polyline.htm
23. http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/

cost-distance.htm
24. http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/

cost-path.htm
25. SPARQL Property Paths https://www.w3.org/TR/sparql11-property paths
26. This workflow was used in a simplified form in a GIS course, convened by Andrea Ballatore at Birkbeck, Uni-

versity of London.
27. http://www.uu.nl/en/research/human geography-and-spatial-planning
28. The full specification is available at https://github.com/simonscheider/SemGeoWorkflows/

workflows
29. A 64 bit machine with Intel Core i7-5500U CPU at 2.4 GHz.
30. Note that the implementation http://github.com/RDFLib/OWL-RL by Ivan Hermann is not particu-

larly optimized, see http://www.ivan-herman.net/Misc/2008/owlrl.
31. Code base: http://github.com/simonscheider/SemGeoWorkflows
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