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ABSTRACT 14 

We present Li isotope measurements of groundwater samples collected during drilling of 15 

the 57 km long Gotthard rail base tunnel in Switzerland, to explore the use of Li isotope 16 

measurements for tracking water-rock interactions in fractured crystalline rocks at temperatures 17 

of up to 43°C. The 17 groundwater samples originate from water-conducting fractures within 18 

two specific crystalline rock units, which are characterized by a similar rock mineralogy, but 19 

significantly different fluid composition. In particular, the aqueous Li concentrations observed in 20 

samples from the two units vary from 1-4 mg/L to 0.01-0.02 mg/L. Whereas δ7Li values from the 21 

unit with high Li concentrations are basically constant (δ7Li=8.5-9.1‰), prominent variations are 22 
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recorded for the samples from the unit with low Li concentrations (δ7Li=10-41‰). This 23 

observation demonstrates that Li isotope fractionation can be highly sensitive to aqueous Li 24 

concentrations. Moreover, δ7Li values from the unit with low Li concentrations correlate well 25 

with reaction progress parameters such as pH and [Li]/[Na] ratios, suggesting that δ7Li values are 26 

mainly controlled by the residence time of the fracture groundwater. Consequently, 1D reactive 27 

transport modeling was performed to simulate mineral reactions and associated Li isotope 28 

fractionation along a water-conducting fracture system using the code TOUGHREACT. 29 

Modeling results confirm the residence time hypothesis and demonstrate that the absence of δ7Li 30 

variation at high Li concentrations can be well explained by limitation of the amount of Li that is 31 

incorporated into secondary minerals. Modeling results also suggest that Li uptake by kaolinite 32 

forms the key process to cause Li isotope fractionation in the investigated alkaline system 33 

(pH>9), and that under slow flow conditions (<10 m/year) this process is associated with a very 34 

large Li isotope fractionation factor (ε ≈ -50 ‰). Moreover, our simulations demonstrate that for 35 

simple and well-defined systems with known residence times and low Li concentrations, δ7Li 36 

values may help to quantify mineral reaction rates if more thermodynamic data about the 37 

temperature-dependent incorporation of Li in secondary minerals as well as corresponding 38 

fractionation factors become available in the future. In conclusion, δ7L values may be a powerful 39 

tool to track water-rock interaction in fractured crystalline rocks at temperature higher than those 40 

at the Earth’s surface, although their use is restricted to low Li concentrations and well defined 41 

flow systems. 42 

 43 

1. INTRODUCTION 44 
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The intensity of water-rock interaction in fractured crystalline rocks forms a key parameter 45 

in various applications within the field of environmental geochemistry. Examples include 46 

enhanced geothermal systems (EGS) where heat extraction mainly depends on accessible 47 

fracture surface areas and where water-rock interaction may cause permeability and porosity to 48 

decrease over time (Alt-Epping et al., 2013; Stober and Bucher, 2015), nuclear waste repositories 49 

to be constructed in crystalline rock environment (e.g., Nordstrom et al., 1989; Molinero et al., 50 

2008; Gimeno et al., 2014) and groundwater contamination affecting fractured crystalline 51 

aquifers. The intensity of water-rock interaction in (fractured) crystalline rocks was also 52 

proposed to be essential for the global carbon cycle because the interaction of meteoric water 53 

with silicate minerals (i.e., chemical weathering) forms an important CO2 sink (e.g., Berner et al., 54 

1983; Gislason et al., 1996; Francois and Godderis, 1998). 55 

Lithium is a trace element that is almost exclusively found in silicate minerals, which 56 

makes it a useful tracer for tracking the interaction between water and silicate minerals such as 57 

during chemical silicate weathering (Kisakürek et al., 2005; Pogge von Strandmann et al., 2006; 58 

Vigier et al., 2009; Millot et al., 2010b; Liu et al., 2015). In particular, tracking Li isotope 59 

fractionation is a powerful tool because the two stable Li isotopes (6Li, 7Li) significantly 60 

fractionate during transformation of primary silicate minerals into secondary minerals (Zhang et 61 

al., 1998; Pistiner and Henderson, 2003; Vigier et al., 2008; Wimpenny et al., 2010). It is 62 

generally agreed that Li isotope fractionation is mainly associated with secondary mineral 63 

precipitation whereas Li isotopes dissolve stoichiometrically during (primary) silicate mineral 64 

dissolution (Pistiner and Henderson, 2003; Huh et al., 2004). Li isotope fractionation is also 65 

promising to track water-rock interaction at temperatures higher than those at the Earth’s surface. 66 

Vigier et al. (2008) experimentally showed that at a temperature of 250°C the Li isotope 67 
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enrichment factor for structural Li incorporation into smectite is -1.6‰ and thus greater than the 68 

measurement uncertainty for Li isotope measurements. Moreover, Marschall et al. (2007) used a 69 

temperature dependent enrichment factor based on a compilation of other studies (Chan et al., 70 

1993; Wunder et al., 2006) to simulate the fate of Li isotopes in subducting slabs suggesting that 71 

the Li isotope enrichment factor at 250°C is on the order of -6‰. 72 

The numerous studies focusing on chemical silicate weathering at the Earth’s surface 73 

demonstrate a large range in δ7Li (2-43‰) of dissolved Li, mostly from river waters (e.g., Huh et 74 

al., 1998; Kisakürek et al., 2005; Pogge von Strandmann et al., 2006; Millot et al., 2010b; 75 

Dellinger et al., 2015; Liu et al., 2015). Whereas the literature agrees that increasing the ratio of 76 

Li uptake by secondary minerals to Li release from primary mineral dissolution drives δ7Li to 77 

higher values, it is still under debate if and how temporal and spatial δ7Li distributions can be 78 

used as a proxy for geomorphic and/or climatic variations. In particular, the increasing seawater 79 

δ7Li values observed over the last ca. 56 Ma (Misra and Froelich, 2012) have been attributed 80 

either to increasing tectonic activities (Misra and Froelich, 2012; Li and West, 2014; Wanner et 81 

al., 2014) or to a decreasing soil production rate and thus to cooler climatic conditions (Vigier 82 

and Goddéris, 2015). In contrast to surface water samples, δ7Li in water from hydro-geothermal 83 

sites with temperatures of up to 335°C varies only in a narrow range of 0-11‰ (Chan et al., 84 

1993; Chan et al., 1994; Millot and Negrel, 2007; Millot et al., 2010a; Henchiri et al., 2014; 85 

Sanjuan et al., 2014; Pogge von Strandmann et al., 2016). Despite this relatively narrow range it 86 

was proposed that for such systems δ7Li may operate as a geothermometer to estimate the 87 

corresponding reservoir temperature. Also it was proposed to use δ7Li from hydro-geothermal 88 

sites as proxy for the origin of the hydrothermal fluid, and/or as proxy for the intensity of water-89 

rock interaction (Millot and Négrel, 2007; Millot et al., 2010a). 90 
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In this study, we present Li isotope measurements of groundwater collected during the 91 

construction of the 57 km long Gotthard rail base tunnel in Switzerland. Major anion and cation 92 

concentrations have been reported by Seelig and Bucher (2010) and Bucher et al. (2012). Our 93 

groundwater samples originate from water-conducting fractures within two specific crystalline 94 

rock units and show on-site temperatures of up to 43°C. The hydrogeochemical conditions are 95 

thus similar to those at future EGS sites although the temperature is significantly lower than the 96 

target EGS temperature of 180°C or greater. The main objective was to explore the use of Li 97 

isotope measurements to track water–rock interaction in an EGS-like system with temperatures 98 

higher than those at the Earth’s surface. Furthermore, an essential part of our study was to 99 

simulate Li isotope fractionation occurring in a fractured crystalline aquifer using the reactive 100 

transport modeling code TOUGHREACT V3 (Xu et al., 2014). In this context, TOUGHREACT 101 

was updated to allow defining a maximum amount of Li that can be incorporated into secondary 102 

minerals. 103 

 104 

2. SITE DESCRIPTION AND SAMPLING 105 

The new 57 km long Gotthard rail base tunnel in Switzerland is the longest and deepest 106 

tunnel in the world. The tunnel crosses the Alps at a base level of ca. 500 m a.s.l. and its 107 

construction was divided into five sections, which were excavated separately by drilling vertical 108 

access shafts. Our study relates to the Amsteg section in the northern part of the tunnel (Fig 1). 109 

This 11.5 km long section was constructed between 2003 and 2006 using a 400 m long tunnel-110 

boring machine (TBM). The section exclusively penetrates crystalline basement rocks of the Aar 111 

massif, which is a NE-SW trending complex of Variscan basement overprinted by Alpine 112 

metamorphism and deformation (Abrecht, 1994; Schaltegger, 1994; Labhart, 1999). The units 113 
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intersected along the Amsteg section show a similar mineralogical composition with dominating 114 

quartz, albite, K-feldspar and chlorite and minor amounts of biotite and muscovite as well as 115 

secondary calcite and accessory pyrite (Bucher et al., 2012). The thickness of the rock column 116 

above the tunnel is up to 2200 m (Fig. 1). According to Bucher et al. (2012) the chemical 117 

composition of groundwater samples at tunnel level is dominated by the infiltration of meteoric 118 

water at the surface and subsequent reaction with the fractured crystalline rocks during transport 119 

to the tunnel level. This infiltration model agrees with steeply dipping rock units (Fig. 1) and the 120 

presence of a predominant, nearly vertical fracture system. Preliminary δ2H and δ18O 121 

measurements indicate a dominating meteoric origin of groundwater collected. More information 122 

regarding the geology and hydrology of the Amsteg section is provided by Bucher and al. (2012) 123 

and references therein. 124 

A total of 122 groundwater samples were collected from water conducting fractures. 125 

Groundwater samples were collected from natural inflows along fractures after these were cut by 126 

the TBM and before they were sealed with concrete. Due to the induced pressure drop the water 127 

was flowing from the fractures with discharge rates between 3x10-4 L/s and 6 L/s. Based on 128 

differences in dissolved Li concentrations, 17 groundwater samples from two distinct geological 129 

units within the Amsteg section, the Bristner Granite and the migmatitic unit called BuMigIII 130 

(Fig. 1) were selected for the analyses of Li and Li isotopes. In addition, Li concentrations were 131 

determined on rock samples of the two units that were retrieved from cored test drillings 132 

performed in front of the TBM. At similar average water influx into the tunnel (Bucher et al., 133 

2012), groundwater draining the Bristner Granite shows Li concentration between 1-4 mg/L and 134 

much lower concentrations of 0.01-0.02 mg/L in the BuMigIII. 135 

 136 
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3. METHODS 137 

 138 

3.1. Li concentration measurements 139 

 140 

3.1.1. Solid Li 141 

Bulk rock Li concentrations were measured by atomic adsorption spectroscopy using a 142 

Vario 6 spectrometer from Analytic Jena at the University of Freiburg, Germany. To do so, cores 143 

retrieved from test drillings into the Bristner Granite and into BuMigIII were milled to a fine 144 

powder. For each sample 0.1 g was digested in 5 mL 65% HNO3 and 1 mL 33% H2O2. To ensure 145 

that the entire sample was digested, samples were exposed to 160°C for 6 minutes and to 215°C 146 

for 25 minutes using a MLS microwave. The analytical uncertainty was ±5%. 147 

Selected trace element concentrations including Li of individual mineral phases and phase 148 

mixtures within the Bristner Granite and BuMigIII were measured by Laser ablation ICP-MS at 149 

the University of Bern, Switzerland, on polished thin sections (50 µm). The system at the 150 

University of Bern consists of a Geolas Pro 193 nm ArF Excimer laser (Lambda Physik, 151 

Germany) coupled with an ELAN DRCe quadrupole mass spectrometer (QMS; Perkin Elmer, 152 

USA). Details on the setup and optimization strategies are given in Pettke et al. (2012). Daily 153 

optimization of the analytical conditions were performed to satisfy a ThO production rate of <0.2 154 

% (i.e., Th/ThO intensity ratio < 0.002) and to achieve robust plasma conditions monitored by a 155 

Th/U sensitivity ratio of 1 as determined on the SRM610 glass standard. External standardization 156 

was performed employing SRM610 from NIST with preferred values reported in Spandler et al. 157 

(2011), and bracketing standardization provided a linear drift correction. Internal standardization 158 

was done by summing the major element oxides to 100 wt% or 98-97 wt% for biotite and 159 
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hydrous mineral mixtures (containing muscovite, biotite, minor chlorite and Fe2O3). Data were 160 

reduced using SILLS (Guillong et al., 2008), with limits of detection calculated for each element 161 

in every analysis following the formulation detailed in Pettke et al. (2012). 162 

 163 

3.1.2. Dissolved Li 164 

Li concentrations available from the previous study (Bucher et al., 2012) were determined 165 

using a DX-120 ion chromatograph (IC) with a detection limit of 0.01 mg/L and an analytical 166 

uncertainty of 0.005 mg/L for concentrations below 0.1 mg/L. Because groundwater samples 167 

originating from BuMigIII displayed Li concentrations on the order of the detection limit (0.01-168 

0.02 mg/L), Li concentration measurements were repeated for these samples using an Analytic 169 

Jena ContrAA 700 BU atomic adsorption spectrometer in the graphite furnace mode (GFAAS) at 170 

the University of Bern. Standardization was performed using the Merck 4 Certipur standard and 171 

tested with the Sigma 6 and Merck 4 Li single element standards. Within the standardization 172 

range of 1.25–5 µg/L the Li recovery was >90% yielding an analytical uncertainty of ±10%. 173 

Reported Li concentrations are average values of triplicate analyses. 174 

 175 

3.2. Li isotope measurements 176 

Lithium isotope measurements of groundwater samples were performed as detailed in 177 

Pogge von Strandmann and Henderson (2015) and Pogge von Strandmann et al. (2011). Briefly, 178 

this entailed running approximately 20 ng of Li through a two-step cation exchange column 179 

method, containing AG50W X-12 resin, and using dilute HCl as an eluent.  180 

Samples were then analysed on a Nu Instruments HR MC-ICP-MS at Oxford University, 181 

by sample-standard bracketing with the standard L-SVEC. Individual analyses consisted of three 182 
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separate repeats of 10 ratios (10 s integration time per ratio), giving a total integration time of 183 

300 s/sample during each analytical session. At an uptake rate of 75 µl/min, the sensitivity for a 184 

20 ng/ml solution is ~18 pA of 7Li using 1011 Ω resistors. Background instrumental Li intensity, 185 

typically ~0.01pA, was subtracted from each measurement. Li isotope measurements are 186 

reported as 7Li/6Li ratio in terms of the δ-notation relative to the Li isotope standard L-SVEC 187 

(δ7Li =0.0‰) and are given in ‰  188 

 189 

       (1) 190 

 191 

To assess accuracy and precision, both seawater and the international USGS standard BCR-2 192 

were analysed. Both standards analysed with these samples (seawater: δ7Li = 31.5 ± 0.4‰; BCR-193 

2: 2.7 ± 0.3‰) agree well with their long-term averages (seawater: 31.2 ± 0.6‰, n=46; BCR-2: 194 

2.6 ± 0.3‰, n=17; Pogge von Strandmann et al., 2011, Pogge von Strandmann and Henderson, 195 

2015). The total procedural blank for Li isotopes is effectively undetectable (<0.005 ng Li).  196 

 197 

3.3. Reactive transport modeling 198 

A series of 1D reactive transport simulations using TOUGHREACT V3 (Xu et al., 2014) 199 

was performed to simulate the interaction of infiltrating meteoric water with granitic rock and its 200 

specific effects on aqueous δ7Li. TOUGHREACT has been previously applied to evaluate 201 

isotopic fractionation coupled to water-rock interaction and hydrological processes in a variety of 202 

subsurface environments and laboratory experiments (Sonnenthal et al., 1998; Singleton et al., 203 

2005; Wanner and Sonnenthal, 2013). Specifically, it has been used to simulate Li isotope 204 

fractionation in granitic as well as basaltic systems (Wanner et al., 2014; Liu et al., 2015). 205 
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Furthermore, the TOUGHREACT approach for simulating isotopic fractionation coupled to 206 

mineral precipitation has been recently benchmarked (Wanner et al., 2015).  207 

 208 

3.3.1. Model formulation 209 

 210 

Mineral dissolution and precipitation 211 

TOUGHREACT V3 (Xu et al., 2014) computes mineral dissolution and precipitation 212 

reactions (mol/s/kgH2O) as kinetic reactions based on transition state theory (TST) (Lasaga, 1984) 213 

      (2) 214 

 215 

where Ar refers to the mineral reactive surface area (m2/kgH2O). In case of fracture flow Ar is 216 

assumed to be the same for each mineral (Xu et al., 2014) and corresponds to the reactive surface 217 

area of the simulated vertical fracture system Arfrac. Q and K refer to the ion activity product and 218 

equilibrium constant of a mineral dissolution/precipitation reaction, respectively. Exponents m 219 

and n are fitting parameters that must be experimentally determined. However, for or this study 220 

they were taken to be unity. The temperature and pH dependent rate constant k is formulated as 221 

 222 

 223 

(3) 224 

where k25 refers to reaction rate constants at 25°C (mol/m2/s), Ea is the activation energy (kJ/mol) 225 

and T and R are the temperature (K) and ideal gas constant, respectively. The superscripts n, ac 226 
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and ba denote neutral, acidic and basic conditions, respectively, aH+ refers to the H+ activity, and 227 

mac and mba refer to the reaction order with respect to H+ (i.e., pH) at acidic and basic conditions, 228 

respectively. In order to calculate effective precipitation and dissolution rates (eqs. 2,3), reaction 229 

rate constants were defined according to the compilation of Palandri and Kharaka (2004) 230 

whereas equilibrium constants were taken from the Soltherm.H06 database (Reed and Palandri, 231 

2006). Mineral stoichiometries, thermodynamic and kinetic parameters of minerals considered 232 

for our simulations are summarized in Table 1. 233 

 234 

Simulation of Li isotope fractionation 235 

The fate of individual Li isotopes was simulated according to the approach recently 236 

presented by Wanner et al. (2014). To do so, 6Li and 7Li were defined as primary aqueous 237 

species and were incorporated into the mineral stoichiometry of Li-bearing minerals. Similar to 238 

the model of Bouchez et al. (2013) our approach does not distinguish between Li exchange-, Li 239 

surface complexation or Li incorporation into a crystal. Accordingly, Li isotope fractionation is 240 

solely simulated during Li incorporation of dissolved Li into precipitating minerals. Besides the 241 

lack of fractionation factors distinguishing between Li incorporation, Li exchange and sorption 242 

the low exchange capacity of crystalline rocks (Mazurek et al., 2003) is supportive to such 243 

assumption. Incorporation of Li in secondary clay minerals is limited and occurs only at trace 244 

concentrations in the ppm range (e.g., Tardy et al., 1972). The concentration differences by 245 

orders of magnitudes between major and trace elements in such secondary minerals may pose 246 

convergence problems due to the large differences in exponents in the ion-activity product 247 

included in the rate law (eq. 2). To circumvent this problem, precipitation of Li-bearing 248 

secondary minerals was simulated defining a solid solution with three different endmembers (see 249 
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Wanner et al., 2014): (i) a pure, non Li-bearing secondary mineral endmember, (ii) a pure 6Li 250 

endmember and (iii) a pure 7Li endmember. The pure 6Li and 7Li endmembers are hypothetical, 251 

but their specification solves the above mentioned numerical problems, and their log(K) values 252 

are obtained by fitting to the observed aqueous Li concentration and the amounts of Li analyzed 253 

in secondary minerals. The precipitation rate rprec of the solid solution of Li-bearing secondary 254 

minerals is then calculated as the sum of the individual endmember precipitation rates r2ndmin 255 

(pure secondary mineral), r6Li and r7Li: 256 

 257 

         (4) 258 

 259 

The rate of a specific endmember, rendm, is calculated according to a TST-like expression 260 

 261 

       (5) 262 

 263 

where xendm refers to the mole fraction of a specific secondary mineral endmember. For the 264 

hypothetical, pure 6Li and 7Li endmembers x6Li and x7Li are calculated according to: 265 

 266 

      (6) 267 

      (7) 268 

 269 
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Equations (6) and (7) ensure that the amount of Li that is incorporated into a secondary 270 

mineral reflects the Li concentration of the aqueous solution. Accordingly, the amount of Li 271 

removed by precipitation increases with increasing aqueous Li concentration. By doing so, our 272 

model is in agreement with an experimental study showing that Li concentrations of synthesized 273 

smectites are correlated with corresponding aqueous Li concentrations (Decarreau et al., 2012). 274 

However, Deccareau et al. (2012) also showed that the total amount of Li that can be 275 

incorporated is limited due to structural reasons. We therefore updated TOUGHREACT so that 276 

the user now has the option to specify the maximum amount of Li that is allowed to precipitate in 277 

a given solid solution. To do so the user needs to define the maximum Li mol fraction xmaxLi = 278 

x6Li+x7Li that corresponds to a particular maximum Li content (e.g., in µg/g) in a specific mineral 279 

solid solution phase. For the pure (hypothetical) 6Li and 7Li endmembers the maximum mol 280 

fraction then become  281 

 282 

       (8) 283 

       (9) 284 

 285 

Subsequently, x6Li_max and x7Li_max are compared with x6Li and x7Li as calculated by equations (6) or 286 

(7). If x6Li > x6Li_max and x7Li > x7Li_max the precipitation rate of the pure 6Li and 7Li endmembers are 287 

no longer calculated according to equation (5) and become 288 

 289 

          (10) 290 
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          (11) 291 

 292 

Using the solid solution approach described above allows defining an experimentally determined 293 

or otherwise inferred isotope fractionation factor α and corresponding enrichment factor ε 294 

associated with mineral precipitation for a particular simulation run: 295 

 296 

           (12) 297 

 298 

      (13) 299 

 300 

It should be noted that our approach for simulating Li isotope fractionation is different 301 

from other approaches (Lemarchand et al., 2010; Bouchez et al., 2013; Pogge von Strandmann et 302 

al., 2014). Instead of exclusively focusing on the Li system, we use a fully-coupled reactive 303 

transport modeling code (see Steefel et al., 2015 for a summary of available codes). In doing so, 304 

our approach may simulate the chemical evolution of an entire porous media and parameters 305 

other than aqueous Li concentrations and δ7Li values can be used to constrain the model as well.  306 

 307 

4. RESULTS 308 

 309 

4.1. Solid [Li] measurements 310 

Li concentration data of primary minerals and mineral mixtures from the Bristner Granite 311 

and the migmatitic unit BuMigIII are summarized in Table 2. The full chemical analysis of each 312 

r7Li = rpure2nd ⋅ x7Li_max
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laser ablation ICP-MS measurement is listed in the electronic appendix. Bulk rock Li 313 

concentrations average at 6 for the Bristner Granite and 9 µg/g for BuMigIII. In both units, 314 

elevated average Li concentrations of 463 (Bristner Granite) and 217 µg/g (BuMigIII) were 315 

observed in sheet silicates such as chloritized biotite and muscovite. Further differences between 316 

the two units include higher Li concentrations in K-feldspar (45 µg/g) of the BuMigIII compared 317 

to those in K-feldspar (2.4 µg/g) of the Bristner Granite (Table 2).  318 

 319 

4.2. Aqueous Li concentrations and δ7Li values 320 

Concentrations and δ7Li values of aqueous Li of 17 groundwater samples originating from 321 

the Bristner Granite and BuMigIII are presented in Table 3 in conjunction with field parameters 322 

and major cations and anions concentrations reported in Bucher et al. (2012). Computed 323 

saturation indices of selected primary and secondary minerals are listed in Table 4. Groundwater 324 

temperature correlates with the thickness of the rock column above the tunnel. In the Bristner 325 

Granite groundwater discharges at temperatures from 21.5 to 25.1°C at a corresponding rock 326 

overburden of <500 m. In the BuMigIII groundwater temperature is remarkably constant (42.6-327 

43.7°C) at a corresponding overburden of ca. 2000 m, except for sample A103 (36.7°C), which 328 

also displays differences in the chemical composition (e.g., Ca, Mg, pH). Groundwater sample 329 

A126 displays strongly elevated SO4 and Ca concentrations compared to the majority of 330 

BuMigIII groundwater (Table 3). In accordance with the anhydrite saturation index close to zero 331 

(Table 4) this was attributed to anhydrite dissolution during flow along anhydrite-bearing 332 

fractures (Bucher et al., 2012). Aqueous Li concentrations vary between 1.6 and 3.2 mg/L in 333 

groundwater from the Bristner Granite compared to 0.010 and 0.017 mg/L in groundwater from 334 
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the BuMigIII. The orders of magnitude difference in Li concentration is striking given the 335 

similarity of the bulk rock Li concentrations, which differ only by a factor of about 1.5 (Table 2). 336 

Similar to aqueous Li concentrations, δ7Li values of groundwater from the two units show 337 

a distinct behavior. The high-Li groundwater of the Bristner Granite show very little variation in 338 

their δ7Li values (8.5-9.1‰). In contrast, the low-Li groundwater from BuMigIII show a very 339 

strong variation (10-41‰). These latter groundwaters display a positive correlation between δ7Li 340 

values and pH but a negative correlation between δ7Li and aqueous Li concentrations and the 341 

molar Li/Na ratio, except for the exceptional groundwater samples A103 and A126 as discussed 342 

above (Fig. 2a-c). Moreover, δ7Li and Li seem to follow a Rayleigh-type fractionation model 343 

with α = 0.95 (ε = -50‰) (Fig. 2d), suggesting a single process being responsible for the 344 

observed variation in δ7Li values.  345 

 346 

5. DISCUSSION 347 

 348 

5.1. Source of aqueous Li 349 

Seelig and Bucher (2010) demonstrated that Cl is a passive tracer in groundwater of the 350 

Amsteg section of the Gotthard rail base tunnel and suggested that Cl is derived from porewaters 351 

trapped in the matrix of the crystalline rocks. Further, they proposed that the trapped porewater 352 

represents the remnants of a hydrothermal fluid that evolved during alpine metamorphism. 353 

Interestingly, in the Bristner Granite groundwater Li concentrations correlate well with Cl 354 

concentrations (r2=0.95, Fig. 3) inferring that Li is likely derived from the same porewater source 355 

as Cl. This observation is important because it demonstrates that meteoric water infiltrating into 356 



 

 17 

a crystalline basement may pick up Li from sources other than from interaction with rock 357 

forming minerals.  358 

In contrast to the Bristner Granite groundwater, Cl and Li concentrations in BuMigIII 359 

groundwater are orders of magnitude lower and no clear correlation is observed (Table 3). The 360 

molar Cl/Li ratio, however, is of the same order of magnitude as recorded for the Bristner 361 

Granite water samples (10-30). This observation suggests that a porewater of a similar 362 

composition may form a major Li source for BuMigIII groundwater as well. Alternative Li 363 

sources are the dissolution of Li-bearing minerals or mixing of the infiltrating meteoric water 364 

with an external groundwater (i.e, originating from another lithology) characterized by an 365 

elevated Li concentration and a similar Li/Cl ratio as observed in the Bristner Granite 366 

groundwater.  367 

 368 

5.2. Secondary minerals  369 

Lithium uptake by precipitation of Fe- and Al-bearing secondary mineral or adsorption of 370 

Li to these minerals have been proposed to form the major process for Li isotope fractionation 371 

observed in the shallow subsurface (Zhang et al., 1998; Pistiner and Henderson, 2003; Vigier et 372 

al., 2008; Wimpenny et al., 2010). Based on computed saturation indices (Table 4), kaolinite is 373 

the only secondary Al-bearing secondary phase that is potentially precipitating from the 374 

BuMigIII groundwater under the given condition (SI>0), whereas the Bristner Granite 375 

groundwater is supersaturated with respect to gibbsite and illite as well. To assess the 376 

precipitation of kaolinite from BuMigIII groundwater it has to be acknowledged that the 377 

equilibrium constant of kaolinite is associated with a large uncertainty (Trotignon et al., 1999), 378 

which is reflected by its changing saturation state in BuMigIII groundwater when using different 379 
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thermodynamic databases (Table 4). The range of log(K) values for kaolinite tabulated in 380 

different thermodynamic databases is at least partly related to differences in solubility 381 

experiments (e.g. acid vs alkaline conditions, temperature), but also to analytical difficulties (e.g. 382 

Al and Si colloids). Figure 4 shows the relation of the kaolinite equilibrium constant tabulated in 383 

the Soltherm.H06 (Reed and Palandri, 2006) and EQ3/6 database (Wolery, 1992). Temperature 384 

dependent log(K) tabulated in the Soltherm.H06 database reproduce well log(K) values derived 385 

from kaolinite solubility experiments performed at temperatures of 60, 90 and 110°C and at 386 

similar pH values as observed in our system (up to pH 9) (Devidal et al., 1996). In contrast, 387 

temperature dependent log(K) values derived from the EQ3/6 database (Wolery, 1992) 388 

overestimate the Devidal et al. (1996) values. However, they are within the range of kaolinite 389 

solubilities determined for temperatures between 22-25°C (Polzer and Hem, 1965; Kittrick, 390 

1966; Reesman and Keller, 1968; May et al., 1986; Yang and Steefel, 2008) and the solubility 391 

experiment performed by Nagy et al., (1991) at 80°C and pH 3. Overall, computed saturation 392 

indices (Table 4) and thermodynamic considerations (Fig. 4) supports the use of the 393 

Soltherm.H06 database and suggests that kaolinite is the dominating secondary Al phase 394 

precipitating from the BuMigIII groundwater. The restricted access to water-conducting 395 

fractures, however, did not allow confirmation of the presence of kaolinite although it has been 396 

observed as low–T alteration product in various crystalline rock environments (e.g., Grimaud et 397 

al., 1990; Michard et al., 1996; Gimeno et al., 2014). 398 

Our groundwater samples display dissolved oxygen concentrations below detection limit 399 

demonstrating that reducing conditions are established. Under reducing conditions the formation 400 

of Fe(III)-oxides such as goethite, ferrihydrite, lepidocrocite, and hematite is absent 401 

(Schwertmann, 1988). Accordingly, their formation and corresponding sorption reactions are 402 
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restricted to the domain very close to the surface where the dissolved oxygen concentration in 403 

infiltrating meteoric water is in equilibrium with atmospheric oxygen. The limited formation of 404 

Fe-bearing secondary minerals infers that Li isotope fractionation is primarily caused by Li 405 

uptake by kaolinite (BuMigIII) or other Al-bearing secondary minerals (Bristner Granite).  406 

 407 

5.3. Diffusive Li isotope fractionation and anthropogenic Li contamination 408 

If Li influx into the fracture groundwater were occurring entirely by diffusion from a 409 

porewater Li source, diffusive fractionation is a likely process to cause a δ7Li variation in 410 

addition to Li uptake by secondary minerals (Richter et al., 2006; Bourg and Sposito, 2007). 411 

Owing to the difference in mass the diffusion coefficient of 6Li is larger than that for 7Li leading 412 

to enrichment in 6Li (low δ7Li) in the groundwater. Accordingly, diffusive Li isotope 413 

fractionation would partially mask the δ7Li increase inherited from Li isotope fractionation 414 

associated with secondary mineral precipitation. Indeed it would yield an even higher intrinsic 415 

fractionation factor than the -50‰ obtained from the Rayleigh-type model (Fig. 2d). 416 

In contrast to diffusive Li isotope fractionation, anthropogenic contamination of Li can be 417 

excluded based on the infiltration area in remote high-alpine area and the high hydraulic pressure 418 

of about 100 bar at the discharge locations (Masset and Loew, 2013). Also, if any artifacts 419 

occurred during sampling major species concentrations were affected as well and their 420 

concentrations could not be approximated by solely simulating water-rock interaction between 421 

meteoric water and pristine granite such as shown below. 422 

 423 

5.4. Hypothesis for observed δ7Li variation  424 
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The most striking observation from our measurements is that significant δ7Li variation only 425 

occurs at low Li concentrations suggesting that the variation is highly sensitive to the aqueous Li 426 

concentration. The second key observation is the negative correlation between δ7Li and the Li 427 

concentration as well as the positive correlation between δ7Li and pH seen in the BuMigIII 428 

groundwater (Fig. 2a,b). Our approach is to first explore the process(es) controlling the Li 429 

system in a single hydrogeochemical system such as the BuMigIII groundwater, before 430 

comparing the different settings (BuMigIII vs. Bristner Granite). 431 

The BuMigIII groundwaters likely have different residence times within the rock column 432 

above the tunnel due to a variation in fracture permeability and connectivity. Variable residence 433 

times are consistent with the 2 orders of magnitude variation in flow rates (Table 3) and the 434 

observed trends in chemical and Li-isotope composition (Fig. 2a,c). In granitic systems, the pH 435 

increases with reaction progress (Nordstrom et al., 1989; Grimaud et al., 1990; Bucher et al., 436 

2012; Gimeno et al., 2014) and the Li/Na ratio may form an excellent proxy for the degree of 437 

water-rock interaction (e.g., residence time, reaction progress) that inversely correlates with δ7Li 438 

(Liu et al., 2015). The Li/Na ratio is indicative because Na concentrations are several orders of 439 

magnitude greater than Li concentrations, and thus not as strongly affected by minor uptake by 440 

secondary mineral precipitation (e.g., kaolinite). In case of a discrete Li influx such as from an 441 

external groundwater source (Fig. 5b) Na release from primary minerals is ongoing, which also 442 

yields a decrease of the Li/Na ratio with flow distance and reaction progress. 443 

Higher residence time of groundwater results in increased water-rock interaction and thus 444 

increased precipitation of Li-bearing kaolinite, which drives δ7Li to higher values (Wanner et al., 445 

2014). Observing a negative correlation between δ7Li and the Li concentration must thus be 446 

inherited form the spatial release rate of the actual Li source along the infiltration path in relation 447 
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to the corresponding Li uptake rate by secondary minerals. The amount of data to quantitatively 448 

assess the role of the potential Li sources (Li-bearing minerals, porewater, external 449 

groundwater), however, is limited. Therefore and in terms of a sensitivity analyses a series of 450 

reactive transport model simulations were performed by varying the Li source as well as the 451 

parameters controlling the Li system in order to unravel how these parameters affect aqueous 452 

δ7Li values and Li concentrations in the BuMigIII groundwater. 453 

 454 

6. REACTIVE TRANSPORT MODELING 455 

 456 

6.1. Model setup  457 

Reactive transport model simulations were performed for a simplified vertical, fully-458 

saturated 2000 m long 1D flow path consisting of 1000 grid blocks of 2 m length (Fig. 5). A 459 

fixed linear temperature gradient of 10 to 43°C was specified from the upstream to the 460 

downstream model boundary. With these specifications, the model represents the geometry 461 

where the tunnel intersects with BuMigIII. In contrast to other studies (DePaolo, 2006; Waber et 462 

al., 2012; Brown et al., 2013), our model does not explicitly consider diffusion between water 463 

flowing along fractures and porewater residing in the intact rock matrix. In doing so, we 464 

exclusively simulate reactive transport along one particular fracture system. The porosity and 465 

permeability relevant for fluid flow in fractured crystalline rocks depends on the fracture spacing 466 

and aperture (Caine and Tomusiak, 2003; MacQuarrie and Mayer, 2005; Sonnenthal et al., 467 

2005). None of these parameters are explicitly known for the present system so that individual 468 

simulations were run at a constant flow rate using a fixed fracture porosity of 1% (Fig. 5). To 469 

account for the unknown residence time within the rock column above the tunnel simulations 470 
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were run for flow velocities ranging from 0.2 to 20 m/year, which approximately reflect the 471 

variation of flow rates observed for the BuMigIII samples (0.01-2.5 L/s). The specified velocity 472 

range also covers the range in hydraulic conductivity (3-7 x 10-8 m/s) reported for fracture zones 473 

along the nearby Sedrun section of the tunnel (Masset and Loew, 2013). 474 

 475 

6.2. Initial and boundary conditions  476 

Water in equilibrium with atmospheric CO2 and O2 was specified as initial and upper 477 

boundary condition to simulate the infiltration of meteoric water into the BuMigIII rock column 478 

above the tunnel (Table 5). The solid part of the model domain is given by the granitic 479 

composition of the BuMigIII rock (Table 5). Plagioclase has only a minor anorthite component 480 

and pure albite was used in the calculations. In contrast, biotite and chlorite were defined as solid 481 

solutions between the corresponding Fe (annite and chamosite) and Mg endmembers (phlogopite 482 

and clinochlore) according to the analyzed Mg/Fe ratios (el. appendix). 483 

 484 

6.2.1. Li source and secondary minerals 485 

Li was introduced by defining two different Li sources: (i) Li-bearing biotite with a Li 486 

concentration of 217 µg/g as measured in chloritized biotite of the BuMigIII rock (Table 2) and 487 

(ii) a hypothetical Li0.04Na0.96Cl solid phase that acts either as a proxy for matrix porewater or an 488 

external, ad-mixed groundwater Li source. The Cl/Li ratio of 25 defined for this hypothetical 489 

phase corresponds to the ratio obtained from the linear correlation between Cl and Li observed 490 

for Bristner Granite groundwater (Fig. 3), while charge balance was maintained by including Na. 491 

An initial δ7Li value of 1.7‰ was assigned to Li-bearing biotite, corresponding to the average 492 

δ7Li value determined for a large series of different granites (Teng et al., 2009). In contrast, the 493 
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average Bristner Granite groundwater δ7Li value of 8.7‰ was assigned to the hypothetical 494 

Li0.04Na0.96Cl solid phase (Table 3) based on our concept that Li in the BuMigIII is derived from 495 

a similar source as in the Bristner Granite. 496 

While all simulations considered the Li-bearing biotite source, two scenarios were run for 497 

the Li0.04Na0.96Cl source. The first scenario considered a constant zero order dissolution rate of 498 

2x10-15 mol/kgH2O/s occurring along the entire model domain and corresponding to a Li influx 499 

from a porewater source (continuous Li influx scenario, Fig. 5a). This yields a Li concentration 500 

of 0.017 mg/L at the tunnel level what corresponds to the maximum concentration observed in 501 

BuMigIII groundwater samples (Fig. 2). The second set considered a single point Li influx after 502 

an arbitrary flow distance of 400 m and simulates a situation where Li in the BuMigIII 503 

groundwater is ad-mixed by an external fracture groundwater to the infiltrating meteoric water 504 

(mixing scenario, Fig. 5b). To do so, the Li concentration of the simulated groundwater mixture 505 

was set to 0.017 mg/L at z = -400m. 506 

Kaolinite is the only secondary Al-phase precipitating in our model and Li uptake by 507 

kaolinite is the only process to cause Li isotope fractionation. Based on the observation that the 508 

SiO2 concentrations of the 122 tunnel waters are solubility-controlled by quartz above a pH of 509 

ca. 9 (Bucher et al., 2012), secondary quartz was allowed to precipitate as well. The same applies 510 

for goethite.  511 

 512 

6.2.2. Sensitivity analyses 513 

Our approach for simulating Li isotope fractionation allows defining a Li isotope 514 

fractionation factor as well as a maximum amount of Li that can be incorporated in secondary 515 

minerals. Since both parameters are unknown simulations were run for Li isotope enrichment 516 
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factors of -25, -37.5 and -50‰ associated with Li uptake by kaolinite and for maximum Li 517 

concentrations in kaolinite of 25, 50 and 75 μg/g to test their impact on the model results. 518 

Whereas these maximum Li concentrations cover the Li concentration range observed in natural 519 

kaolinite (Tardy et al., 1972; Vigier and Goddéris, 2015), Li isotope enrichment factors of -37.5 520 

and -50‰ are outside the range inferred so far for secondary mineral precipitation (≈ -10 to -521 

30‰) (Zhang et al., 1998; Huh et al., 2001; Pistiner and Henderson, 2003; Kisakürek et al., 522 

2005; Pogge von Strandmann et al., 2006; Vigier et al., 2008; Pogge von Strandmann et al., 523 

2010). The range in ε was expanded to higher values because the Li concentration and isotope 524 

data from BuMigIII groundwater revealed an ε-value of -50‰ when applying a Rayleigh-type 525 

model (Fig. 2d). A temperature effect on epsilon such as observed for hydro-geothermal system 526 

(Marschall et al., 2007; Vigier et al., 2008; Verney-Carron et al., 2015; Pogge von Strandmann et 527 

al., 2016) was not considered because within the temperature range of our model (10-43°C) it is 528 

likely smaller than the uncertainty of ε-values reported for Li uptake by secondary minerals as 529 

well as the ε-range considered in the sensitivity analyses. Additional sensitivity simulations 530 

included a reduction of the kaolinite precipitation rate constant by 67% and 33% of the initially 531 

chosen value (base case, Table 1), a variation of the δ7Li value specified for the Li0.04Na0.96Cl 532 

phase and a variation of the location of the input of the external groundwater Li source. An 533 

overview of the simulated parameter combinations is given in Table 6. 534 

 535 

6.3. Model results and discussion 536 

 537 

6.3.1. General system behavior 538 
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The general water-rock interaction progress along the 2000 m model domain is shown for a 539 

general situation where the system is reactive enough to approach chemical equilibrium within 540 

the model domain (Fig. 6). The profiles shown in Figure 6 are referred to such a general reaction 541 

progress because it depends on the product of two unknown parameters such as reactive fracture 542 

surface area (Arfrac) and residence time (eq. (2)). If the system was more or less reactive (e.g., 543 

slower flow velocity, higher Arfrac) the profiles except the temperature profile would be 544 

horizontaly shifted towards lower or greater distances, respectively, whereas the general profile 545 

shape would remain similar.  546 

The relative change in mineral volume fraction demonstrates (Fig. 6c) that albite 547 

dissolution and kaolinite precipitation are driving the general chemical system in addition to 548 

quartz and calcite precipitation, as previously described for low-T crystalline groundwater 549 

environments (Nordstrom et al., 1989; Grimaud et al., 1990; Trotignon et al., 1999; Gimeno et 550 

al., 2014) and as reflected by the calculated mineral states (Table 4). In contrast, other primary 551 

minerals (K-feldspar, chlorite, biotite, muscovite) show only minor volume changes whereas 552 

goethite formation is restricted to the first grid block where pyrite is oxidized by oxygen 553 

dissolved in the infiltrating meteoric water (Fig. 5). A prominent feature typical for the evolution 554 

of crystalline groundwaters is the strong increase in pH from about 8.5 to 9.7, which at the 555 

considered reaction progress occurs between 1000 to 1500 m along the model domain (Fig. 6a). 556 

The increase in pH is correlated to the maximum albite dissolution and kaolinite formation (Fig. 557 

6c). Across this interval, coupled albite dissolution and kaolinite precipitation is thus the main 558 

reaction governing the pH increase  559 

 560 

NaAlSi3O8 + H+ + 0.5H2O = 0.5Al2Si2O5(OH)4 + Na+ + 2SiO2   (14) 561 
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 562 

The actual driving force for reaction (14) is the supply of protons by the dissolution and 563 

dissociation of atmospheric CO2  564 

 565 

CO2(g) + H2O =H2CO3 = H+ + HCO3
-        (15) 566 

 567 

Prior to the strong pH increase the system is controlled by calcite, i.e, by the initial 568 

dissolution and subsequent precipitation caused by the calcite solubility decrease with increasing 569 

temperature (Ca2+
(aq) + HCO3

-
(aq) = CaCO3(s) +H+) (Fig. 6c). As the Ca2+ and HCO3

- 570 

concentrations decrease due to continuous calcite precipitation along the flow path, calcite 571 

precipitation is diminished (Fig. 6b,c) and the pH is no longer controlled by calcite precipitation. 572 

At this point coupled albite dissolution and kaolinite precipitation is accelerated by the pH 573 

dependence of the corresponding rates (cf. eq (3), Table 1) as well as by the linear temperature 574 

increase along the flow path (Fig. 6a). As the system approaches equilibrium with respect to 575 

albite (Fig. 6d), further albite dissolution and subsequent kaolinite precipitation is slowed down 576 

and the pH becomes controlled by the speciation of dissolved Si (H4SiO4 = H3SiO4
- + H+), which 577 

becomes important above pH 9-9.5. 578 

The maximum in coupled albite dissolution and kaolinite precipitation is reflected by the 579 

Na concentration profile showing a maximum increase along the same interval as the strong pH 580 

increase (Fig. 6b). In contrast, dissolved Si is controlled by the solubility of quartz, which 581 

strongly increases above pH 9 when H3SiO4
- becomes the dominant Si species. Owing to the 582 

linear temperature increase (Fig. 6a) Na+, Al3+ and Si concentrations are still increasing at the 583 

downstream model boundary (Fig. 6b) because the solubility of albite and quartz are increasing 584 
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with temperature (Table 1). In turn, the pH slightly drops towards the model boundary because 585 

of the temperature-dependence of the equilibrium pH. 586 

 587 

Behavior of Li 588 

The modeled Li concentration of ~0.6 µg/L inherited from biotite dissolution at the tunnel 589 

level is very low (not shown) and demonstrates that only minor amounts of aqueous Li can be 590 

derived from interaction between the infiltrating meteoric water and the BuMigIII rocks. Such a 591 

minor Li contribution is consistent with a molar Mg/Li ratio in the BuMigIII water samples (<14, 592 

Table 3) that is much lower than that in chloritized biotite forming the primary Li host of the 593 

BuMigIII rock (ca. 65-85, Table 2). An additional Li input such as from the matrix porewater, an 594 

external groundwater or an unknown mineral source is thus required to explain the observed Li 595 

concentrations (Table 3).  596 

For both Li influx scenarios modeled with the hypothetical Li0.04Na 0.96Cl phase (Fig. 5), 597 

the model yields a strong δ7Li increase between 1000-1500 m (Fig. 7a,b). At the considered 598 

reaction progress this interval corresponds to the maximum in kaolinite precipitation (Fig. 6c). 599 

This suggests that Li isotope fractionation is coupled to kaolinite precipitation and that δ7Li 600 

values are highly sensitive to the amount of kaolinite precipitation. Consequently, when kaolinite 601 

precipitation slows down towards the downstream model boundary, the δ7Li increase slows 602 

down as well (Fig. 7b) or even starts to decrease (Fig. 7a) depending on the simulated scenario. 603 

For the continuous Li influx scenario (Fig. 5a) the Li concentration increases over most 604 

part of the domain because the Li influx outpaces the Li uptake by secondary kaolinite 605 

precipitation except for a short interval where kaolinite precipitation is maximal (Fig. 7a). 606 

Consequently for this scenario δ7Li is positively correlated to the Li concentration with the 607 
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exception of the downstream model boundary where δ7Li is decreasing (Fig. 7a,c) because the Li 608 

load in the fracture fluid becomes dominated by the ongoing Li influx with a δ7Li of 8.7‰. For 609 

the mixing scenario (Fig. 5b) the Li concentration decreases after the single point Li input 610 

yielding throughout a negative correlation with δ7Li (Fig. 7b,c).  611 

 612 

6.3.2. Application to BuMigIII groundwater 613 

The observation that only the mixing scenario yields a negative correlation between δ7Li 614 

and the Li concentration as observed in BuMigIII groundwater (Fig. 2) suggests that Li is 615 

inherited from a discrete rather than from a continuous Li influx. Whereas mixing with an 616 

external groundwater is a likely candidate for single point Li influx, it is also possible that it 617 

occurred from a not yet identified rock type enriched in Li-bearing mineral(s), with a 618 

composition that is significantly different from that of the BuMigIII rock exposed at the tunnel 619 

level. 620 

To further apply the mixing scenario (Fig. 5b) to the BuMigIII system the model was run 621 

for a variable reaction progress along the 2000 m long flow path by varying the flow velocity 622 

while keeping the reactive fracture surface area constant. Consequently, steady state major 623 

species concentrations computed for the tunnel level (z = -2000 m) are plotted against the pH to 624 

illustrate their dependence on the overall reaction progress and to compare them with measured 625 

BuMigIII groundwater data (Fig. 8). Although the fits are not perfect, the fact that the order of 626 

magnitude is reproducible suggests that the model captures the governing mineral reactions. 627 

Differences between modeled and observed concentrations are likely inherited from the 628 

assumptions of constant flow velocity and homogeneous mineralogy along the flow path. 629 

 630 
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Li system 631 

The sensitivity of our model parameters on the Li system was tested by comparing 632 

measured δ7Li and Li concentrations with computed steady state values obtained at the tunnel 633 

level for a variable reaction progress along the flow path and for 7 combinations of Li isotope 634 

enrichment factors, maximum Li concentrations in kaolinite, and kaolinite precipitation rate 635 

constants. Figure 9 illustrates that all varied parameters have an effect on the Li concentration 636 

and/or on δ7Li. Higher amounts of Li incorporation into kaolinite as well as higher amounts of 637 

kaolinite precipitation increase the δ7Li value and decrease the Li concentration for a given 638 

reaction progress (i.e., pH) because both parameters increase the ratio between the Li uptake by 639 

kaolinite and the external Li input. Increasing the Li isotope enrichment factor also yields an 640 

increase in the δ7Li value for a given reaction progress (i.e., pH), but does obviously not change 641 

the Li concentration. The sensitivity analyses carried out for the location of the single point Li 642 

influx yielded only minor dependence as long as it occurred before the system evolved to the 643 

maximum kaolinite formation rate (not shown). 644 

In general, simulations performed for the mixing scenario approximate the observed pH 645 

dependence of measured δ7Li values (Fig. 9), although in a non-linear manner, and the observed 646 

Li concentrations can be reproduced. The best match between modeled and measured data is 647 

obtained for a Li isotope enrichment factor of -50‰, a maximum Li concentration in kaolinite of 648 

75 μg/g and a slightly reduced kaolinite precipitation rate constant (i.e., simulation M7; Fig. 9). 649 

A similar fit is obtained, however, when setting the δ7Li value of the single point Li source to 1.7 650 

‰ while limiting the amount of Li in kaolinite to 50 μg/g (Fig. 10). The observation that 651 

different parameter combinations result in similar good fits demonstrates that the system is 652 

under-determined and that not all parameters affecting the Li system can be calibrated in a 653 
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quantitative way. However, the observed negative correlation between δ7Li and Li concentration 654 

can only be approximated if the Li isotope enrichment factor is as high as -50‰ (Fig. 9). An 655 

enrichment factor of -50‰ also corresponds to that obtained from the Rayleigh-type model (Fig. 656 

2d). This is an interesting observation because ε=-50‰ is clearly outside the range of Li isotope 657 

enrichment factor reported or inferred for secondary mineral precipitation (≈ -10 to -30‰) 658 

(Zhang et al., 1998; Huh et al., 2001; Pistiner and Henderson, 2003; Kisakürek et al., 2005; 659 

Pogge von Strandmann et al., 2006; Vigier et al., 2008; Pogge von Strandmann et al., 2010), 660 

although vigorous determination of the temperature-dependence of Li isotope fractionation 661 

involving mineral precipitation have so far only been reported for Li incorporation during 662 

smectite precipitation (Vigier et al., 2008). Since a contribution from diffusive Li isotope 663 

fractionation would yield an even higher intrinsic enrichment factor and an anthropogenic Li 664 

contamination is unlikely, the reason for the high apparent Li isotope enrichment factor is 665 

unclear and further research is required to unravel whether this is related to the slow flow rates 666 

and/or alkaline conditions of our system. 667 

Overall, our model results reveal that the large δ7Li variation observed in BuMigIII 668 

groundwater samples (10-41‰) are related to their pH range of 9.3 to 9.8. Over this pH window 669 

the amount of coupled albite dissolution and kaolinite precipitation is at its maximum (Fig. 6). 670 

Consequently, a variation in reaction progress along the infiltration path (e.g., variable residence 671 

time) strongly affects the amount of Li-bearing kaolinite precipitation and thus the δ7Li value. 672 

Simulation results also reveal that the observed Li isotope fractionation is independent of the 673 

origin of Li (ad-mixing of external groundwater, in-diffusion from porewater, dissolution of 674 

unidentified minerals) as long as this addition occurred before the infiltrating meteoric water 675 

evolved to its maximum kaolinite formation. This latter point further argues against a continuous 676 
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addition of Li by diffusion from the porewater as there is no reason why such addition should 677 

stop at a certain point along the flowpath in the same rock unit.  678 

 679 

6.3.3. Application to Bristner Granite groundwater  680 

Based on the finding that the mixing scenario (Fig. 5b) can explain the δ7Li variation 681 

observed in BuMigIII samples (Table 3), the same modeling approach was used to explore the 682 

sensitivity of δ7Li on the Li concentration and to particularly test whether the absence of δ7Li 683 

variation in Bristner Granite groundwater is simply caused by its high Li concentration (Table 3). 684 

To do so, the mixing scenario (Fig. 5b) was run by setting the Li concentration of the simulated 685 

groundwater mixture to 0.017, 0.08, 0.17, and 1.7 mg/L, whereas the other parameters were kept 686 

constant at the values used in simulation M7 (Table 6). As can be seen from Figure 11, the 687 

simulated δ7Li values strongly depend on the Li concentration in the groundwater. At a Li 688 

concentration representing the range of Bristner Granite groundwater (1.7 mg/L), the predicted 689 

δ7Li value does not differ from the value specified for the single point Li influx (δ7Li=8.7‰). A 690 

change in the δ7Li values is only obtained if the Li concentration in the groundwater is lowered 691 

by a factor of 10 or more. The reason for these effects lies in the amount of Li that was allowed 692 

to be incorporated into precipitating kaolinite (75 μg/g). Accordingly, the ratio between Li that is 693 

incorporated into kaolinite and Li obtained from the single point influx decreases with increasing 694 

Li concentration in such influx. Because this ratio is also reflected in the δ7Li value, the 695 

computed δ7Li values become lower as the concentration of Li from the influx increases. The 696 

ability of the model to predict the absence of δ7Li at high Li concentration supports the existence 697 

of a maximum amount of Li that can be structurally incorporated into precipitating kaolinite, 698 

which is in agreement with mineralogical and experimental findings (Tardy et al., 1972; 699 
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Decarreau et al., 2012; Vigier and Goddéris, 2015). Such limitation further constitutes the likely 700 

reason for the low δ7Li values and absence of δ7Li variation observed for the Bristner Granite 701 

groundwater where the Li concentration is up to 500 times higher than in BuMigIII groundwater 702 

(Table 3). 703 

 704 

7. IMPLICATIONS FOR USING δ7Li AS A WATER-ROCK INTERACTION PROXY 705 

The comparison between analytical and simulation results confirms that for a relatively 706 

simple hydrological system aqueous δ7Li is controlled by the cumulative amount of Li-bearing 707 

secondary mineral formation in relation to the Li release from primary mineral or other Li 708 

sources (Wanner et al., 2014; Pogge von Strandmann et al., 2016). Because secondary mineral 709 

formation is coupled to the dissolution of primary minerals, δ7Li may be used in conjunction 710 

with major species concentrations to estimate mineral reaction rates using modeling approaches 711 

such as the one presented here. However, even for mono-lithological systems an accurate 712 

quantification of these rates based on δ7Li remains challenging. The first issue is that δ7Li values 713 

are strongly affected by the reactivity of system (Fig. 9), which is controlled by the flow velocity 714 

(or the residence time, respectively), and the reactive surface areas. Secondly, dissolution and 715 

precipitation rates of silicate minerals are highly pH and temperature dependent (Fig. 6), 716 

demonstrating that the spatial temperature and pH distribution must be known to constrain 717 

reaction rates for a given flow system. Finally, our sensitivity analyses suggest that aqueous δ7Li 718 

values are controlled by the amount of Li that can be taken up by secondary minerals, as well as 719 

the corresponding fractionation factor (Fig. 9). None of these parameters are fully characterized 720 

for the entire suite of Li bearing secondary minerals. For well-constrained hydrogeological 721 

systems, however, the listed challenges are likely resolved in the future once more experimental 722 
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data will become available. Our model results based on actual data from a crystalline 723 

groundwater environment at elevated temperatures and including kaolinite precipitation indicate 724 

that δ7Li values might be especially useful to better constrain the formation rate of secondary 725 

minerals for which kinetic data is still scarce (Yang and Steefel, 2008 and references therein). 726 

Moreover, the strong δ7Li variation observed at temperatures above those at the Earth’s surface 727 

(Table 3) demonstrates the potential for using δ7Li as water-rock interaction proxy at elevated 728 

temperatures. If the sensitivity of δ7Li on the Li concentration, however, is as high as inferred 729 

from Figure 11 the use of δ7Li to constrain mineral reaction rates is restricted to systems with 730 

low Li concentrations, which does usually not apply for hydro-geothermal systems (Chan et al., 731 

1994; Millot and Négrel, 2007; Millot et al., 2010a; Sanjuan et al., 2014; Sanjuan et al., 2016). 732 

In contrast to well-defined systems, we suspect that quantifying continental silicate 733 

weathering rates through time based on sedimentary archives such as the inferred Cenozoic 734 

seawater δ7Li record (Misra and Froelich, 2012) will remain challenging. Due to the strong 735 

sensitivity of δ7Li on the subsurface residence time an accurate quantification requires the 736 

quantification of changes in the average subsurface residence time through time (e.g., discharge 737 

variations) under a changing climate and at an increasing tectonic activity (Misra and Froelich, 738 

2012; Vigier and Goddéris, 2015). Another major challenge is that δ7Li variations are likely 739 

controlled by the corresponding Li concentration such as inferred by our simulation results (Figs. 740 

11) and likely manifested by the absence of δ7Li value observed in the Bristner Granite 741 

groundwater. If the sensitivity of δ7Li on the Li concentration was as high as inferred from our 742 

study, the continental Li flux through time needs to be quantified accurately in addition to 743 

corresponding discharge variations. First Cenozoic Li flux reconstructions have been already 744 

provided by Vigier and Goddéris (2015) and Li and West (2014).  745 
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 746 

8. SUMMARY AND CONCLUSIONS 747 

The use of Li isotope measurements for tracking water-rock interaction in fractured 748 

crystalline aquifers at temperatures of up to 43°C was assessed by performing Li isotope 749 

measurements on 17 groundwater samples collected during drilling of the new Gotthard rail base 750 

tunnel in Switzerland. A particular effort was made to match δ7Li values as well as major species 751 

concentrations by reactive transport model simulations using the code TOUGHREACT V3. In 752 

doing so, the possibility of defining a maximum amount of a trace element that is incorporated 753 

into the structure of a precipitating mineral was added as a new capability to TOUGHREACT 754 

V3. The main conclusions from this study are: 755 

1. The alteration of fracture surfaces by a circulating fluid may lead to a strong variation of 756 

δ7Li values at temperatures of up to 43°C. A strong δ7Li variation, however, was only 757 

observed if the Li concentration was low (0.01-0.02 mg/L). For high Li concentrations on 758 

the order of 1-4 mg/L no variation was observed suggesting that the amount of Li that can 759 

be incorporated into secondary minerals is limited and that the use of δ7Li values as a 760 

proxy for water-rock interaction is restricted to low Li concentrations. 761 

2. Li uptake by kaolinite precipitation or by the precipitation of other Al–bearing phases 762 

forms the key process to cause Li isotope fractionation in fractured crystalline aquifers 763 

characterized by a granitic mineralogical composition. Our data suggests that under slow 764 

flow conditions (<10 m/year), at temperatures <50 °C, and alkaline conditions (pH>9), 765 

this Li uptake is associated with a very large Li isotope fractionation factor (ε≈ -50 ‰).  766 

3. For the samples with low Li concentrations, δ7Li values are mainly controlled by the 767 

cumulative amount of kaolinite precipitation occurring along the flow path. 768 
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Consequently, aqueous δ7Li values are sensitive to fluid residence times, reactive fracture 769 

surface areas, and pH values, all controlling overall silicate mineral reaction rates. 770 

4. Incorporating the fate of Li isotopes into fully coupled reactive transport model 771 

simulations allows a predictive understanding of measured Li isotope ratios. For simple 772 

and well-defined systems with known residence times and low Li concentrations, δ7Li 773 

values may help to quantify mineral reaction rates and associated parameters (e.g., 774 

reactive surface area). An accurate quantification, however, currently suffers from the 775 

lack of thermodynamic data such as the temperature dependent amount of Li that can be 776 

incorporated into secondary minerals as well as corresponding fractionation factors. 777 

5. In crystalline aquifers with high Li concentrations such as in the Bristner Granite 778 

groundwater Li is likely inherited from an ancient hydrothermal fluid still residing in the 779 

pore space of the intact rock matrix. 780 
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Table 1: Simulated mineral dissolution and precipitation reactions 

 

Mineral phase 
a
log(K) 

T=25°C 
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b
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(mol/m
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b
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(kJ/mol)  

b
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Hydrolysis reaction (written with primary species) 

Albite 1.4 0.3
 

2.75e-13 69.8 6.92e-11 65.0 0.457 2.51e-16 71.0 -0.57 NaAlSi3O8 + 4H
+
 = Na

+
 + 3SiO2(aq) + Al

3+
 + 2H2O 

Orthoclase -0.5 -1.3 3.89e-13 38.0 8.71e-11 51.7 0.50 6.31e-22 94.1 -0.82 KAlSi3O8 + 4H
+
 = K

+
 + 3SiO2(aq) + Al

3+
 + 2H2O 

Quartz -4.0 -3.5 4.57e-14 90.1 6.92e-30 65.0 0.457 
d
1.00-14 

d
0.0 -0.5 SiO2(s)  = SiO2(aq)  

Annite
c1

 29.4 24.2 2.82e-13 22.0 - - - - - - KFe3AlSi3O10(OH)2 + 10H
+
 = Al

3+
 + K

+
 + 3Fe

2+
 + 6H2O + 3SiO2 

Phlogopite
c1,e

 37.4 31.5 2.82e-13 22.0 

- - - - - - 
K1.026 Mg2.974Li0.026AlSi3O10(OH)2 + 10H

+
 = Al

3+
 + K

+
 + 3Mg

2+
 + 

6H2O + 3SiO2 + 0.00199 
6
Li

+ 
+ 0.02401 

7
Li

+
 

Muscovite 8.7 4.62 1.0e-13 22.0 - - - - - - KAl2AlSi3O10(OH)2 + 10H
+
 = 3Al

3+
 + K

+
 + 6H2O + 3SiO2 

Chamosite
c2

 41.1 32.9 3.02e-13 88.0 - - - - - - (Fe)5Al(AlSi3O10)(OH)8+16H
+
 = 5Fe

2+
 + 2Al

3+
 +3SiO2 +12 H2O 

Clinochlore
c2

 55.9 46.0 3.02e-13 88.0 - - - - - - (Mg)5Al(AlSi3O10)(OH)8+16H
+
 = 5Mg

2+
 + 2Al

3+
 +3SiO2 +12 H2O 

Kaolinite
c3

 3.2 0.7 1.98e-13 22.2 - - - - - - Al2Si2O5(OH)4 + 6H
+
 = 2Al

3+
 +2SiO2(aq) + 5H2O 

6
Likaolinite

c3
 -4.9409764 -4.9409764 1.98e-13 22.2

 - - - - - - 6
Li = 

6
Li

+
 

7
Likaolinite

 c3
 -4.9187 -4.9187 1.98e-13 22.2

 - - - - - - 7
Li = 

7
Li

+
 

Pyrite 217.4 191.1 2.80e-5 56.9 - - - - - - FeS2 + H2O +3.5 O2(aq) = Fe
2+

 + 2SO4
2-

 + 2H
+
 

Calcite 1.8 1.3 1.55e-6 23.5 - - - - - - CaCO3 + H
+
 = HCO3

-
 + Ca

2+
 

Li-source
f
 

f f
 

f
 

f
 - - - - - - Li0.04Na0.96Cl = 0.00305 

6
Li

+
 + 0.03695 

7
Li

+
 + 0.96Na

+
 + Cl

-
 

Secondary 
species 

AlOH
2+

, Al(OH)2
+
, HAlO2, AlO2

-
, KAlO2, NaAlO2, AlSO4

+
, Al(SO4)2

-
, CO2(aq), CO3

2-
, CaCO3(aq), CaHCO3

+
,CaCl

+
, CaCl2, CaOH

+
, CaSO4, HCl, FeCl

+
, FeCl2, FeO, FeOH

+
, HFeO2, FeSO4, KCl, KHSO4, KOH, 

KSO4
-
, MgCO3,  MgHCO3

+
, MgCl

+
,  MgOH

+
, MgSO4, NaCl, NaOH, NaCO3

-
, NaHCO3, NaSO4

-
, OH

-
, HSO4

-
 , HS

-
, S

2-
, H2S(aq) , HSiO3

-
, H2SiO4

2-
, CaHSiO3

+
, MgHSiO3

+
, NaHSiO3 

a 
equilibrium constants log(K) were defined according to the Soltherm.H06 database (Reed and Palandri, 2006). The temperature dependence is calculated according to log(K)T[K]=a*ln(TK) + b + c*TK* d/TK + e/TK

2
. a,b,c,d and e 

are constants defined in the database. For the listed mineral phases, however, the interpolation between 25 and 60°C is almost linear. 
b 
Reaction rate constants k, activation energies Ea and rate dependence on ph (mac and mba) were defined according to Palandri & Kharaka (2006) 

cx 
Endmbember of solid solution x. 

d 
A constant value for k25

ba
 of 1e-14 refers to a temperature of ca. 65°C according to equation 3 and taking into account an activation energy of 108366 (Palandri & Kharaka, 2006). A rate constant slightly higher than proposed 

in the Palandri & Kharaka (2006) compilation was required to get quartz solubility controlled SiO2 concentrations such as observed for our water samples (Bucher et al., 2012). 
e
Corresponds to a phlogopite Li concentration of 217 ppm to get an initial bulk rock Li conc. of 8.8 μg/g (Table 2) (at a phlogopite vol. fraction of 0.02), and a δ

7
Li value of 1.7‰. 

f 
Hypothetical solid phase defined to simulated a porewater or unknown mineral Li source with a δ

7
Li value of 8.7‰. Corresponding parameters are given in the text for each scenario. 

- No pH dependence of the rate constant considered at acidic and/or basic conditions 

 

Table



Table 2: 
Solid Li concentration measurements performed using AAS for bulk rock concentrations and 
laser ablation ICP-MS for individual mineral phases 

    Mineral stoichiometry
a
 Li (μg/g)

b
 Stdv. (1ε) N

c
 Mg/Li 

B
ri

s
tn

e
r 

G
ra

n
it

e
 

Plagioclase NaAlSi3O8 2.1 ±1.1 7 1-3 

K-Feldspar KAlSi3O8 2.4 ±1.6 2 <1 

Quartz SiO2 4.4 ±0.9 3 <1 

chloritized biotite K0.5Fe3-3.5Al<1(AlSi3O10(OH)5-8 464 ±90 2 4 
e
Muscovite KAl2(AlSi3O10)(OH)8 462 ±53 4 2 

bulk rock     6.1 ±0.2 2 3 

B
u

M
ig

II
I 

d
Plagioclase NaAlSi3O8 7.7 ±5.1 10 25-35 

K-Feldspar K0.6Na0.4AlSi3O8 45 - 1 35 

Quartz SiO2 <0.1 - 3 - 

chloritized biotite K0.03-0.3(Mg,Fe)2-3Al<1(AlSi3O10(OH)2-8 217 ±32 5 65-85 
d
Muscovite 

  
- 10 - 

bulk rock     8.8 - 1 138 
a
Inferred stoichiometry based on the full chemical composition of the specific mineral phases lis isted in the electronic 

appendix 
b
Concentrations refer to average concentrations obtained from N measurements and are derived from 

7
Li  

measurements (see electronic appendix) taking into account the bulk earth Li isotope abundance. 
 

c
Number of

 
measurements performed on specific mineral phases 

d
In case of BuMigIII, plagioclase is heavily altered to sericitic muscovite. Also, muscovite is too small to perform 

individual measurements. Accordingly, plagioclase measurements including the reported Mg/Li value also contain a 
muscovite component . 
e
Muscovite measurements for the Bristner Granite refer to a mixture between chloritized biotite and muscovite 

 
 
 
 
 
 
 
 
 
 
 



Table 3: Aqueous δ
7
Li and Li concentration measurements (this study) and major species concentrations reported by Bucher et al. (2012) 

  Sample 
Tunnel 
meter 

Over-
burden 
(m.a.t) 

Temp 
(°C) 

pH 
Flow 
rate 
(L/s) 

Li
+
 

(mg/L) 
δ

7
Li (‰) 

Ca
2+

 
(mg/L) 

Mg
2+

 
(mg/L) 

Na
+
 

(mg/L) 
K

+
 

(mg/L) 
Fe 
(mg/L) 

Al 
(mg/L) 

a
C(4) as 

HCO3- 
(mg/L) 

SO4
2-
 

(mg/L) 
Cl

-
 

(mg/L) 
F

- 

(mg/L) 
SiO2 
(mg/L) 

Mg/Li 
(mol 
ratio) 

Cl/Li 
(mol 
ratio)

 

B
ri

s
tn

e
r 

G
ra

n
it

e
 

A005 8509 320 22.0 9.11 0.10 1.62 8.6±0.2
b
 1.8 0.1 251 10.0 0.27 0.747 264 93 155 19.0 18.9 0.01 18.6 

A038 8566 315 24.2 9.03 0.002 1.60 8.5±0.0 5.2 0.1 266 11.6 <0.02 0.101 318 82 149 23.8 24.2 0.01 18.1 

A042 8903 350 25.1 8.67 0.04 3.09 9.0±0.2 3.7 0.2 511 17.2 <0.02 0.016 395 216 386 27.2 24.0 0.02 24.3 

A035 8381 345 21.5 8.74 0.00 2.60 8.6±0.2 3.0 0.2 405 9.9 0.35 <0.01 371 157 297 27.6 19.1 0.03 22.3 

A039 8575 305 21.4 8.78 0.15 2.86 9.0±0.5 3.0 0.1 461 13.9 <0.02 0.024 314 187 350 26.8 17.8 0.01 23.8 

A043 8920 350 24.1 8.70 0.03 3.23 9.1±0.2 3.0 0.2 499 17.3 0.07 0.012 365 214 387 26.6 20.1 0.02 23.3 

A037 8432 325 21.5 8.91 0.01 2.16 8.5±0.4 1.9 0.1 348 12.5 <0.02 0.008 310 129 242 26.9 22.8 0.01 21.8 

A007 8611 325 21.9 8.89 0.01 2.10 8.5±0.7 1.6 0.1 311 10.3 0.18 0.392 316 116 213 24.4 18.9 0.01 19.7 

A041 8737 330 22.1 8.73 0.10 3.06 9.0±0.2 3.3 0.2 512 15.6 <0.02 0.054 354 213 383 27.1 22.9 0.02 24.4 

B
u

M
ig

II
I 

A099 14850 1975 42.6 9.40 0.02 0.013 14.8±0.3 5.6 <0.1 26.1 0.9 <0.02 0.093 11.0 40 1.2 1.6 28.2 <2.1 17.4 

A100 14951 2050 43.7 9.31 0.07 0.014 10.7±0.5 5.2 <0.1 26.6 0.7 <0.02 0.135 13.9 40 0.8 1.6 28.2 <2.0 10.5 

A102 14986 2090 43.4 9.47 0.20 0.013 19.7±0.1 5.5 <0.1 25.0 0.5 <0.02 0.098 13.5 36 0.7 1.7 23.3 <2.2 11.1 

A029 15095 2100 42.8 9.80 2.50 0.010 41.1±0.6 9.0 0.5 30.2 1.2 1.03 0.033 13.9 38 1.2 3.1 30.7 13.7 24.3 

A103 15106 2095 36.7 8.29 0.01 0.016 22.3±0.1 13.5 0.2 26.8 1.5 0.29 0.641 68.0 31 2.6 1.8 30.2 4.0 32.5 

A104 15136 2090 43.4 9.36 0.15 0.017 17.4±0.3 11.0 <0.1 27.5 0.8 <0.02 0.077 13.1 54 1.2 3.9 28.3 <1.7 13.9 

A027 14794 1920 43.0 9.44 0.02 0.012 27.2±0.4 5.0 <0.1 26.6 0.9 <0.02 0.094 9.1 39 0.8 1.6 32.2 <2.4 13.1 

A126 15334 2035 43.2 9.27 0.02 0.054 17.9±0.1 412.0 <0.1 86.1 1.4 0.31 0.042 17.7 1189 7.8 2.6 26.6 <0.5 25.2 
a
In case of BuMigIII HCO3

-
 concentrations were calculated to maintain charge balance 

b
2σ uncertainty 



Table 4: Saturation indices of selected primary and secondary minerals calculated using TOUGHREACT in conjunction with the Soltherm.H06 database 
(Reed and Palandri, 2006) 

  
Sample pH Quartz 

Chalce-
dony 

Orthoclase Albite Calcite Anhydrite 
Kaolinite 

(Soltherm.H06)
a
 

Kaolinite 
(EQ3/6)

a
 

Gibbsite Al(OH)3 (am) Illite log fCO2 

B
ri

s
tn

e
r 

G
ra

n
it

e
 

A005 9.11 0.41 0.09 3.64 3.35 0.15 -3.59 6.83 4.13 1.69 -1.96 4.33 -3.74 

A038 9.03 0.54 0.22 3.22 2.89 0.61 -3.19 5.51 2.80 0.90 -2.75 2.90 -3.57 

A042 8.67 0.60 0.28 2.73 2.51 0.16 -3.02 4.71 2.00 0.45 -3.21 1.81 -3.12 

A035 8.74 0.50 0.17 0.42 0.34 0.14 -3.19 0.83 -1.87 -1.39 -5.05 0.81 -3.21 

A039 8.78 0.45 0.13 2.37 2.20 0.09 -3.15 4.55 1.85 0.52 -3.14 1.49 -3.33 

A043 8.70 0.52 0.20 2.36 2.13 0.07 -3.11 4.24 1.53 0.29 -3.36 1.21 -3.18 

A037 8.91 0.54 0.22 2.13 1.88 0.04 -3.45 3.53 0.82 -0.08 -3.74 0.50 -3.46 

A007 8.89 0.47 0.15 3.53 3.32 -0.05 -3.57 6.81 4.11 1.63 -2.03 4.14 -3.43 

A041 8.73 0.56 0.24 3.12 2.94 0.13 -3.07 5.58 2.87 0.91 -2.74 2.81 -3.23 

B
u

M
ig

II
I 

A099 9.40 0.08 -0.22 0.25 0.11 -0.01 -2.97 1.95 -0.55 -0.46 -3.83 -1.77 -5.34 

A100 9.31 0.13 -0.17 0.40 0.42 -0.02 -3.00 2.54 0.05 -0.21 -3.58 -1.22 -5.14 

A102 9.47 -0.04 -0.34 -0.41 -0.25 0.12 -3.03 1.61 -0.89 -0.51 -3.88  -2.42 -5.34 

A029 9.80 -0.15 -0.45 -0.78 -0.98 0.54 -2.83 -0.22 -2.71 -1.31 -4.69  -3.86 -5.77 

A103 8.29 0.51 0.20 2.72 2.35 0.04 -2.78 7.21 4.65 1.75 -1.70 3.66 -3.41 

A104 9.36 0.10 -0.20 0.13 0.11 0.30 -2.58 1.90 -0.60 -0.51 -3.88 -1.91 -5.23 

A027 9.44 0.12 -0.19 0.33 0.23 -0.10 -3.02 1.95 -0.55 -0.50 -3.87 -1.70 -5.47 

A126 9.27 0.09 -0.22 -0.03 -0.33 1.29 -0.26 1.42 -1.08 -0.73 -4.10 -2.56 -5.34 
a 
To discuss the possible precipitation of kaolinite, the saturation index was calculated using log(K) values tabulated in the EQ3/6 database (Wolery et al., 1992) in addition to the ones tabulated in 

the Soltherm database (Table 1, Reed and Palandri, 2006). 
 
 
 



Table 5: Initial and boundary conditions defined for performing reactive transport model 
simulations. 
 

  
Initial 
condition 

Boundary 
condition 
(infiltrating fluid) 

Temperature °C variable 10 

pH - 5.67 5.67 

C(4) as HCO3
-
 mol/kgH2O 1.5e-5 1.5e-5 

Na
+
 mol/kgH2O 1.0e-10 1.0e-10 

K
+
 mol/kgH2O 1.0e-10 1.0e-10 

Mg
2+

 mol/kgH2O 1.0e-10 1.0e-10 

Ca
2+

 mol/kgH2O 1.0e-10 1.0e-10 

Al
3+

 mol/kgH2O 1.0e-10 1.0e-10 

Li
+
 mol/kgH2O 1.0e-10 1.0e-10

 

SiO2(aq) mol/kgH2O 1.0e-10 1.0e-10 

O2(aq) mol/kgH2O 3.86e-4
 

3.86e-4 

Fe
2+

 mol/kgH2O 1.0e-10
 

1.0e-10 
b
Albite vol frac (of solids) 0.31 0.0 

Orthoclase vol frac (of solids) 0.03 0.0 

Quartz vol frac (of solids) 0.48 0.0 
a1

Annite vol frac (of solids) 0.02 0.0 
a1

Phlogopite vol frac (of solids) 0.02 0.0 

Muscovite vol frac (of solids) 0.1 0.0 
a2

Chamosite vol frac (of solids) 0.0075 0.0 
a2

Clinochlore vol frac (of solids) 0.0075 0.0 

Pyrite vol frac (of solids) 0.01 0.0 

Calcite vol frac (of solids) 0.01 0.0 

Kaolinite
 a3

 vol frac (of solids) 0.0 0.0 
6
Likaolinite

 a3
 vol frac (of solids) 0.0 0.0 

7
Likaolinite 

a3
 vol frac (of solids) 0.0 0.0 

Porosity - 0.01 1.0 
ax

end-member of solid solution x 
a
Specified nineralogical composition is based on XRF analyses performed on BuMigIII (Seelig and Bucher, 2010) as well as on laser 

ablation ICP-MS measurements (electronic appendix). 
 
 
 

Table 6: Parameters chosen for the various model runs 
 

Scenario 
Scenario 
# 

Max [Li]kaolinite 
(ppm) 

*kkaolinite  εkaolinite 
δ

7
LiLi0.04Na0.96Cl 

(‰) 
Li influx 
location (m) 

Continuous 
Li influx 

C1 75 base case -50 8.7 - 

Mixing 
scenario 
(single point 
Li influx) 

M1 25 base case -50 8.7 -400 

M2 50 base case -50 8.7 -400 

M3 75 base case -50 8.7 -400 

M4 75 base case  -37.5 8.7 -400 

M5 75 base case -25 8.7 -400 

M6 75 base case x 2/3 -50 8.7 -400 

M7 75 base case x 1/3 -50 8.7 -400 

M8 75 base case -50 8.7 -200 

M9 75 base case -50 8.7 -1200 

M10 50 base case -50 1.7 -400 

*base case: k25=1.98e-13 (Table 1) 

 
 
 
 
 



 
 
 
 



Figure 1: Geological cross section through the Amsteg section of the Gotthard rail base 
tunnel. The two sections from which water and rock samples were taken for Li concentration 
and Li isotope measurements are highlighted (Bristner Granite and BuMigIII) (modified from 
Bucher et al., 2012). 

 

 
 
 
 
 
 
  

Figure



Figure 2: δ
7
Li values of BuMigIII water samples plotted against the pH (a), the [Li] (b), and the 

molar Li/Na ratio (c).The shown correlations were obtained by not considering the two 
samples with special features (e.g., anhydrite dissolution and low temperature). d Rayleigh 
model.The Rayleigh model shown in (d) (δ

7
Li= δ

7
LiIni+1000)f

α-1
)-1000)  was obtained using an 

enrichment factor ε of -50‰ (ε=(α-1)*1000), an initial δ
7
Li of 7‰ and a [Li] of 17 μg/L at f=1. 

 
  



Figure 3: Excellent linear correlation between Li
+
 and Cl

-
 observed for groundwater samples 

collected from the Bristner Granite. 

 

 
 
 
Figure 4: Comparison between experimentally determined and tabulated log(K) values for the 
following kaolinite hydrolysis reaction: Al2Si2O5(OH)4 +3H2O = 2Al(OH)4

-
 + 2SiO2 + 2H

+
.  

 

 
 
  



Figure 5: Li influx scenarios and corresponding model setups for simulating the infiltration of 
meteoric water into the BuMigIII rock column above the tunnel. 

 
 
 

 
 
  



Figure 6: General behaviour of the simulated interaction between infiltrating meteoric water 
and the granitic BuMigIII. Steady state profiles along the model are shown for temperature 
and pH (a), total major species concentrations (b), changes in mineral volume fractions 
relative to t=0 after a simulated time of 10’000 years (c), and saturation indices of selected 
mineral phases (d) and refer to a general situation where chemical equilibrium is approached 
along the flow path (e.g., v=1 m/year and Arfrac=0.01 m

2
/m

3
fractured_medium) 

 

 
  



Figure 7: General behavior of Li in the two Li influx scenarios (Fig. 5) at the same reaction 
progress as shown in Fig. 6. (a) continuous Li influx sceneario. (b) mixing scenario. (c) 
correlation between δ

7
L and Li. Results correspond to an Li isotope enrichment and maximum 

amount of Li in kaolinite of -50‰ and 25 μg/g, respectively (simulations C1 and M3, Table 6). 
 

 
  



Figure 8: Major species concentrations computed for the tunnel level and plotted against the 
pH to illustrate their behavior with respect to a variable reaction progress along the model 
domain (e.g., variable residence time). Also shown are corresponding measurements of 
BuMigIII groundwater samples. 

 
 
 
  



Figure 9: Sensitivity analyses performed for the mixing scenario (Fig. 5b). (a) compares 
measured δ

7
Li and [Li] with values computed as a function of the reaction progress along the 

model domain (i.e., as a function of pH/residence time) and for a variable maximum Li 
concentration in kaolinite (simulations M1-M3, Table 6). (b) shows the same parameters as in 
a, but for a varying Li isotope enrichment factor (simulations M3-M5). In (c) the comparison 
between model and observations is shown for a varying kaolinite precipitation rate 
(simulations M3,M6,M7). 
 

 
 
 
 
 
 
 
  



Fig. 10. Two parameter combinations (simulation M7 and M10, Table 6) that can well 
approximate the correlations between δ

7
Li, Li and pH observed in the BuMigIII groundwater 

when running the model for a variable reaction progress (e.g., by varying the residence time).  

 
 
 
 
Figure 11: Sensitivity of δ

7
Li values on the aqueous Li concentration. Computed Li 

concentration (a) and δ
7
Li (b) at the tunnel level are shown for a varying Li concentration of 

the simulated groundwater mixture (Fig. 5b) as a function of the reaction progress (i.e., pH). 

 

 


