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A vast literature studies and decomposes the information contained in the nominal Treasury

yield curve. Perspectives vary from latent factors, reduced-form macro-finance models,

through structural settings but most of the time they serve the objective of understanding

the Treasury risk premia and short rate expectations. The majority of the recent term

structure literature has tackled this and related questions assuming constant volatility.

That focus can be justified with tractability and the known difficulties with the joint

modeling of the first and second moments of yields. Consequently, relatively little is known

about information embedded in the Treasury market volatility.

As the largest and the most liquid debt market in the world, US Treasuries provide investors,

central banks and governments worldwide not only with the store of value and liquidity

but also serve as the main source of collateral in various transactions. The fluctuations

in Treasury yields and in their volatility have impact on a range of asset markets. A rise

in interest rate volatility may signal macroeconomic uncertainty, but might also lead to

an increase in haircuts for Treasury bonds used as collateral in about half of the repo

transactions, and thus diminish the lending capacity in the financial system.1 These

considerations make the understanding of interest rate volatility especially compelling.

In this paper, we ask what we can learn about the term structure and the economy by

studying the time-varying second moments of the Treasury yield curve. Relative to the

previous literature, our approach is comprised of several new elements: First, to identify

the properties of interest rate volatility, we rely on nearly 20 years worth of high-frequency

data on transactions in the US Treasury market. The dataset allows us to construct the

realized covariance matrix of zero-coupon yields across different maturities. Additionally,

we augment the realized co-volatility estimates with information from Treasury derivatives,

covering risk-adjusted market expectations of volatility at several points along the yield

curve. Second, we propose a no-arbitrage term structure model that is able to accommodate

the multivariate dynamics of yield volatilities that we find in the data. In particular, we

model the entire stochastic covariance matrix of risks in the economy. This setting imposes

a structure on our data through a joint estimation that involves yields, their realized

1According to SIFMA quarterly report, in the third quarter of 2010 the outstanding volume of repos and
reverse repos among primary dealers in US government securities exceeded $4.62 trillion on average
per day (SIFMA, 2010). The argument that increased volatility of Treasuries can lead to diminished
lending capacity in the system has gained traction in recent years among practitioners as the outlook
for the US economy has become more uncertain and the government debt remains at historically high
levels (see e.g. JP Morgan, 2011).
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covariance matrix and implied volatilities. With its guidance, we uncover and interpret

a factor structure in interest rate volatility.

Our first set of results focuses on the economic interpretation of the volatility dynamics.

Interest rate volatility moves around because of either volatile short rate expectations or

volatile risk premia. To the extent that short rate expectations reflect market expectations

about the path of monetary policy, understanding fluctuations of interest rate volatility

over the business cycle is informative about the amount of uncertainty surrounding that

path.

The model decomposes information in realized covariances and implied volatilities into three

components: two volatility states, which we term as the short- and long-end volatility, and

a covariance state. The short-end volatility is the key element driving the variance of

short rate expectations; the long-end volatility instead determines the variance of the term

premia. The covariance state generates the conditional comovement between shocks to

short rate expectations and premia. We study the empirical properties of these factors at

different maturities and over time. Perhaps not surprisingly, the volatility of the two-year

bond is mostly determined by the expectations part, while that of the ten-year bond by the

term premium part. Volatile short rate expectation rather than term premia produce the

well-known hump in the unconditional term structure of yield volatilities at maturity of

about three years. In terms of time series properties, we find that the short rate expectations

component of volatility is shorter lived and less persistent, with a half-life of about half

that of the term premium volatility.

Consistent with its link to short rate expectations, short-end volatility rises in anticipation

of recessions and during period of distress in asset markets: In our sample period, its highest

levels coincide with monetary policy easings. In those episodes, the long-end volatility

remains contained, suggesting that risk premia are initially relatively stable; their most

pronounced fluctuations, instead, take place at the exit from a recession. A case in point

is the financial crisis of 2007/09. Our estimates suggest that the volatility of short rate

expectations rises dramatically already in the early summer of 2007 when the symptoms of

the subprime crisis become apparent, and it starts to decline as the Fed hits the zero-lower

bound in December 2008. At the same time, the risk premium volatility reaches record

lows just ahead of the Lehman collapse and only begins increase in the first half of 2009,

remaining elevated though the end of our sample in 2010.
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By modeling the stochastic covariance of risks in the yield curve, we are able to study the

comovement between short rate expectations and the term premia. In this way, we cast

new light on the tradeoffs faced by the Fed. During the last two decades, the model implies

that the conditional correlation between the term premium and short rate expectations is

on average slightly positive (average correlation is below 0.2) but highly time varying.

Interestingly, the correlation increases during the long easing episode in 2000/03, and

declines afterwards. The model interprets the Greenspan’s conundrum period as a gradual

decline of the correlation between short rate expectations and the term premium.

As part of our analysis, we document how volatility dynamics determined by the model

can be linked to macro-finance observables. We verify our interpretation of volatility states

using common uncertainty measures that are independent of asset prices. Specifically,

we find that the short-end (short rate expectations) volatility comoves with the level of

uncertainty about the monetary policy visible in professional survey forecasts, whereas the

long-end (term premium) volatility is correlated with the amount of the economic policy

uncertainty. The latter is measured with the index of Baker, Bloom, and Davis (2013), and

captures mostly the uncertainty about taxes, spending and regulatory policies.

Our results suggest that interest rate volatility contains additional information about the

economy that cannot be read from the standard yield curve factors alone. It is known that

the slope of the term structure predicts economic activity at horizons between one and

two years ahead. We show that, over our sample period, the short-end volatility forecasts

growth at horizons up to one year, and its forecasting power is separate from that of the

slope. This is in line with short-rate expectations becoming increasingly volatile ahead of

bad times.

We also establish how interest rate volatility interacts with liquidity in asset markets. There

exists an interesting lead-lag relationship between yield curve volatility and market-wide

liquidity proxies as constructed by Pastor and Stambaugh (2003) for the equities, and Hu,

Pan, and Wang (2012) for Treasury bonds. We find that deteriorating liquidity conditions

forecast an increase in the term premium (long-end) volatility with a lag up to above a

year. However, we fail to find a similarly strong link with the volatility of short rate

expectations. Rather, similar to its ability to predict slowdown in economic activity, an

increased short-end volatility preempts worsening liquidity several quarters ahead.

Our second set of results concerns the channels through which volatility influences the first

moments of interest rates. First, we show that volatility states have a close to imperceptible
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effect on the cross sections of yields. In that we do not impose any a priori restrictions and,

at the same time, ask the model to match the volatility in the data, this result extends the

evidence in the literature on unspanned or hidden factors. For instance, consistent with the

notion of hidden factors, we find that the short-end volatility has less than one basis point

cross-sectional effect on the term structure, but it contains predictive information about

the future macro environment. Second, while we allow volatility risk to be priced, and to

impact bond risk premia, we find also this channel not to be quantitatively important. The

Treasury term premium can be associated almost entirely with the priced yield curve shocks

rather than volatility shocks. Likewise, we do not find evidence that volatility generates

predictable variation in bond excess returns in the last two decades. Nevertheless, the

model generates realistic dynamics of bond variance risk premium implying that on average

investors pay a premium to hedge interest rate volatility risk. The variance risk premium

is the highest at the three-year maturity and declines afterwards.

Related literature

Our paper is related to the literature on realized volatility, term structure models with

stochastic volatility, and the research into the role of US Treasury bonds in liquidity

provision.

Recent advances in high-frequency econometrics have encouraged a model-free look into

the statistical properties of bond volatility. Andersen and Benzoni (2010) test empirically

the volatility implications of affine term structure models (ATSMs) using realized volatility

over the 1991–2000 period. In line with the early evidence in Collin-Dufresne and Goldstein

(2002), they find that systematic volatility factors are largely independent from the cross

section of yields, and call for extensions of the popular models in the volatility dimension.2

In the latent factor domain, several recent papers document that benchmark models with

stochastic volatility face difficulties in explaining variation in yield volatility, and those

difficulties become increasingly severe at the long end of the yield curve. Collin-Dufresne,

Goldstein, and Jones (2009, CDGJ) report that over the 1988–2005 sample, the variance

series generated by a standard three-factor model, A1(3), are essentially unrelated to the

model-free conditional volatility measures. Using the same model, Jacobs and Karoui

(2009) find a correlation between model-implied and EGARCH volatility reaching up to

2Several other papers document a weak relation between the bond volatility, realized as well as derivative-
based, and the spot yield curve factors, e.g. Heidari and Wu (2003), and Li and Zhao (2006).
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75% over the 1970–2003 period. However, in the more recent sample (1991–2003) this

correlation breaks down and becomes negative at the long end of the curve. In a study

of Japanese yields at the zero lower bound, Kim and Singleton (2012) arrive at a similar

conclusion based on several models. These authors suggest that additional volatility factors

may be needed to explain the volatility at the long maturity range. We contribute to this

discussion by proposing a new term structure model that accommodates the multivariate

nature of yield volatilities, and support its estimation with the information from the realized

covariance matrix of yields and implied volatilities. We find that these two elements of our

approach alleviate the problems with generating realistic volatility dynamics documented

in the literature, allowing us to focus on their economic interpretation.

Andersen, Bollerslev, Diebold, and Vega (2007) and Jones, Lamont, and Lumsdaine (1998)

show that relative to other liquid asset markets, bond prices tend to provide a clear and

pronounced reaction to economic news. These studies suggest that a rich economic content

is present in bond volatilities. The model-based decomposition of the yield volatility allows

us to study how its distinct components related to short rate expectations and term premia

interact with measures of economic and financial conditions.

Several studies introduce stochastic volatility into macro-finance term structure models.3

Adrian and Wu (2009) and Campbell, Sunderam, and Viceira (2013) highlight the impor-

tance of a stochastic covariance between the real pricing kernel and expected inflation in

determining excess bond returns. These models attach economic labels to different yield

volatility components. However, understanding the dynamics and the determinants of the

yield volatility per se is not in their direct focus. Our paper is the first to study the

properties of volatilities decomposing them into risk premium and short rate expectations

components. We show that such a decomposition yields new insights about risks in Treasury

bonds that cannot be in inferred from yield levels alone.

Given the role that US Treasuries play in the financial system, it is important to understand

how volatility of bonds relates to the fluctuations in demand for liquidity and collateral. A

growing literature focuses on extracting information about liquidity from the cross section

of bonds with different age (e.g. Vayanos and Weil, 2008; Fontaine and Garcia, 2012).

Recently, Hu, Pan, and Wang (2012) compose a noise illiquidity measure as an average yield

pricing error of Treasury bonds. Using our model-based decomposition of yield volatility,

3Examples of such models are Campbell, Sunderam, and Viceira (2013), Adrian and Wu (2009), Hautsch
and Ou (2008), Bekker and Bouwman (2009) or Haubrich, Pennacchi, and Ritchken (2012).
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we observe differences in the way volatility components comove with liquidity conditions

at leads and lags. Since each volatility state that we identify has an economically different

interpretation, these results suggest that complex interactions between liquidity and interest

rate volatility may be at work.

I. Data

I.A. High-frequency bond data and zero-coupon yield curve tick-by-tick

We use high-frequency nominal US Treasury bond data spanning two long expansions, two

recessions and three monetary policy cycles. We obtain 19 years’ worth of high-frequency

price data of Treasury securities from January 1992 through December 2010 by splicing

historical observations from two inter-dealer broker platforms: GovPX (1992:01–2000:12)4

and BrokerTec (2001:01–2010:12). The merged data set covers about 60% of transactions in

the secondary US Treasury bond market. In total, we work with around 50 million on-the-

run Treasury bond quotes/transactions (Mizrach and Neely, 2006; Fleming and Mizrach,

2009).

GovPX comprises Treasury bills and bonds with maturities three, six and 12 months,

and two, three, five, seven, ten and 30 years. BrokerTec, instead, contains only Treasury

bonds with maturities two, three, five, seven (in part of the sample), ten and 30 years. In

the GovPX period, we identify on-the-run securities and use their mid-quotes for further

analysis. Unlike GovPX, which is a voice-assisted brokerage system, BrokerTec is a fully

electronic trading platform attracting vast liquidity and thus allowing us to consider traded

prices of on-the-run securities. Roughly 95% of trading occurs between 7:30AM and 5:00PM

EST (e.g. Fleming, 1997), which we treat as the trading day. We sample bond prices at ten-

minute intervals taking the last available price for each sampling point. More information

on our dataset is provided in Appendix I.A

The raw data set contains coupon bonds. We use equally-spaced high-frequency price data

to obtain the zero coupon yield curve for every sampling point following the procedure of

Fisher, Nychka, and Zervos (1994). In order to anchor the short end of the maturities range

in the construction of the zero-coupon curve in the BrokerTec period, we supplement the

high-frequency data with the daily observations of the three-month T-bill rate available

from the Fed’s H.15 statistical release. Even though our zero-coupon yield curve spans

4GovPX started operating in 1991.
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maturities below two years, in the estimation of realized volatilities we use the two-year

yield as the shortest maturity due to the lack of reliable high-frequency data at shorter

maturities. Technical details of the zero yield curve construction are delegated to Appendix

I.C.

While the availability of the high-frequency data is a restriction on the length of our sample,

the 1992–2010 period that we focus on captures a homogenous interest rate environment.

There is empirical evidence that the conduct of monetary policy changed significantly

during the eighties (e.g., Ang, Boivin, Dong, and Loo-Kung, 2010). The Treasury market

functioning has also shifted with the advent of automated trading, and with the rise of the

repo, interest rate derivatives and the swap markets.

I.B. Realized yield covariances

The high-frequency zero curve allows us to estimate the realized covariance matrix of yields.

We consider two, three, five, seven and ten-year yields, i.e. the most liquid maturities in

the secondary bond market (see also Fleming and Mizrach, 2009, Table 1).

Let yt be the vector of zero yields with different maturities observed at time t. Time is

measured in daily units. The realized covariance matrix is constructed by summing up

the outer products of a vector of ten-minute yield changes, and aggregating them over the

interval of one day [t, t + 1]:

RCov(t, t+ 1;N) =
∑

i=1,...,N

(

yt+ i
N
− yt+ i−1

N

)(

yt+ i
N
− yt+ i−1

N

)

′

. (1)

N = 58 is the number of equally spaced bond prices (yields) per day t at the ten-minute sam-

pling, and i denotes the i-th change during the day. For frequent sampling, the quantity (1)

converges to the underlying quadratic covariation of yields (Jacod, 1994; Barndorff-Nielsen

and Shephard, 2004). The weekly or monthly realized covariances follow by aggregating

the daily measure over the corresponding time interval. To obtain annualized numbers, we

multiply RCov by 250 for daily, 52 for weekly and 12 for monthly frequency, respectively.

In Appendix I.D we verify the robustness of this estimator, and compare it to alternatives

proposed in the literature (e.g., Hayashi and Yoshida, 2005). Realized volatility is the

square root of the realized variance. Figure 1 plots the zero-coupon yields (panel a) and

the realized weekly volatilities (panel b) for maturities of two, five and ten years.
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We aim to ensure that our volatility measures reflect the views of active market participants

rather than institutional effects. This motivates the following two choices: First, our

construction of the RCov dynamics relies on the within-day observations, excluding the

volatility patterns outside the US trading hours.5 The second choice lies in focusing on

maturities of two years and above. The very short end of the curve (T-bills) is excluded

from the realized covariance matrix computations because over our sample period this

segment exhibited a continuing decline in trading activity, with data available only till

March 2001.6 Moreover, its dynamics is confounded by interactions with the LIBOR market

and monetary policy operations. Such distortions are not directly relevant to the analysis

we perform.

I.C. Implied rate volatilities

We obtain implied volatilities from end-of-day prices of individual interest rate options on

two-, five- and ten-year Treasury bond and note futures and the corresponding underlyings

from the Chicago Mercantile Exchange (CME). For maturities of five and ten years we

are able to construct implied volatilities covering the entire 1992–2010 period. In the

early part of the sample, the data on the two-year Treasury option is sparse; therefore

for this maturity we can reliably construct implied volatilities beginning in March 2006.

The underlying of the option is futures on a hypothetical Treasury bond or note that pays

coupons. While we refer to the implied volatility by the maturity of the underlying bond,

in the model estimation below, we convert them to zero-coupon equivalent. We use options

that are closest to at-the-money and one-month maturity, as these are the most active part

of the market. Implied volatilities are obtained using the Black’s model. The at-the-money

implied volatility provides an accurate approximation to the risk neutral expectations of the

yield volatility during the following month (e.g. Carr and Wu, 2006). For analogy with the

5We observe several abrupt spikes in the between-day volatility, which we cannot relate to any major
news in the US market. To account for the total magnitude of volatility, we add to the within-day
number the squared overnight yield change from close (5:00PM) to open (7:30PM). We then compute
the unconditional average of the total and within-day realized yield covariation, respectively, and each
day scale the within-day RCov dynamics by the total-to-within ratio. This procedure follows Andersen
and Benzoni (2010).

6That is when the GovPX sample ends and we switch to using the BrokerTec database. The BrokerTec
platform does not cover trading in bonds with maturities below two years. Alternatively, to cover the
short maturity segment of the market one could consider using high frequency T-bill futures. However,
in the last decade the data becomes sparse. The daily number of trades in the TB contract at the CME
has consistently fallen over our sample period, reaching as few as 5 trades per day on average in 2003.
For this reason, standard sources of high frequency data stopped supplying T-bill futures after 2003
quoting as a cause a very low secondary market activity in these instruments (e.g. Tickdata.com).
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realized yield volatilities, we report annualized implied volatilities on a yield basis. This

convention is also followed by the bond market volatility benchmark index, the Merrill

Option Volatility Estimate (MOVE), which aggregates implied volatilities across a range

of bond maturities.7 Panel c of Figure 1 plots the implied volatilities for two-, five- and

ten-year maturities and superimposes them with the MOVE index. Details about options

data, conversions and robustness of the implied volatility series are contained in Appendix

I.E.

I.D. Empirical facts about interest rate volatility

Table 1 reports summary statistics for the zero-coupon yields (panel A), realized and

implied volatilities (panel B), and unconditional correlations between yields and realized

volatilities, as well as realized and implied volatilities (panel C).

Factors in volatilities. The principal component analysis suggest that, similar to yield levels,

also realized yield volatilities can be described by three factors. The first three principal

components explain 90%, 7% and 1.5% of the realized volatilities with maturities between

two- and ten-years. Their loadings resemble the level, slope and curvature and are plotted

in Figure 2. The recent financial crisis emphasizes the multivariate structure dynamics

of yield volatilities. As seen in panel b of Figure 1, while the two-year realized volatility

increased already during the summer 2007, the ten-year volatility remained relatively low

until the Lehman collapse. Following the extraordinary measures undertaken by the Fed

and the US Treasury, and the promise of low rates for an “extended period of time,” the

two-year realized volatility fell sharply in the beginning of 2009, and reached all-time low

in the second half of 2010. At the same time, the ten-year volatility remained at elevated

levels, perhaps coinciding with the uncertainty about the long-term economic outlook.

Link between interest rates and volatilities. Much of the theoretical and empirical evidence

points to a link between the level of interest rates and their volatility. Affine or quadratic

models, for instance, imply that the same subset of factors determines both yields and

their volatilities. As one example, a single-factor CIR model suggests that the volatility

is high whenever the short rate is high (Cox, Ingersoll, and Ross, 1985). While the

7MOVE is a weighted index of implied volatilities of one-month options on Treasury bonds. The maturities
are weighted as follows: 20% two-year, 20% five-year, 40% ten-year and 20% 30-year bond. These
allocations are based on the estimates of option trading volumes in each maturity segment. Options
are written on cash bonds rather bond futures. Bond options are traded on an OTC basis, and are
therefore less liquid. The data is available only from proprietary sources such as large broker dealers.

9



CIR-type prediction remained valid through the early 1980s (Chan, Karolyi, Longstaff,

and Sanders, 1992), more recently the unspanned stochastic volatility (USV) literature

has argued that the yield-volatility relation is weak (Collin-Dufresne and Goldstein, 2002;

Andersen and Benzoni, 2010). Using realized volatility we find that this relationship can

in fact be nonlinear.8 The shape of a nonparametric regression fitted to the data suggests

a slightly asymmetrically U-shaped pattern: volatility is low for intermediate maturities,

and increases when rates move toward either extreme, more so when interest rates become

low. Naturally, after the short rate reaches the zero lower bound during the recent crisis,

the volatility at the short end of the curve also dies out. Outside this special interest rate

environment, the rise in volatility is more pronounced in low interest rate regimes than it

is in high interest rate regimes. This is reflected in the negative unconditional correlations

between yields and volatilities reported in panel C of Table 1.

Figure 3 plots average yield and realized volatility curves conditional on the monetary

policy stance (easing, tightening or no action).9 A monotonically increasing average term

structure of yields is accompanied by a humped term structure of volatilities, with the

hump most pronounced at the three-year maturity during easing episodes. In our sample,

a monetary policy easing is associated with a rising slope of the yield curve, a higher level

of yield volatility and an increased magnitude of the volatility hump.

Implied vs realized volatilities. Table 1 shows that on average, and most visibly at the short

maturity, implied volatilities exceed realized volatilities, suggesting a negative volatility risk

premium. For the two- and five-year maturity, the difference between the implied and real-

ized yield volatilities is about 22 and 14 basis points, respectively. Relative to the realized

volatilities, implied volatilities are more persistent and have a lower unconditional standard

deviation. The bottom panel of Table 1 reports unconditional correlations between realized

and implied volatilities and the MOVE index. The lowest correlation reaches 0.51 between

the ten-year implied and two-year realized volatility. The correlation between MOVE and

our implied volatility series exceeds 0.9, except for the two-year maturity where we cover

only a short part of the sample. At the weekly frequency, the three principal components of

realized volatilities explain between 45% and 49% of variation in implied volatilities across

maturities. Given that there is a lot of high-frequency variation in realized volatilities,

8The results summarized here are not reported in any table for brevity.
9A period is classified as easing, tightening or no action (stay) if it spans at least three subsequent moves
in the federal funds rate target in a respective direction.
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this share increases to between 68% and 72% when we smooth realized volatilities with a

four-week moving average.

II. The model

We propose a no-arbitrage model for the joint dynamics of nominal yields and their time-

varying second moments. The model introduces multiple factors in yield volatilities, and

allows for priced yield and volatility risks. We use the model to decompose and analyze

the variation in the covariance matrix of yields in a way that is consistent with a small

number of factors in the term structure, and in particular the components of short rate

expectations and the term premia. The model also allows us to study the role of yield

volatilities for the cross section of yields and for the bond risk premia.

II.A. The no-arbitrage framework

We distinguish between yield curve factors Xt, and covariance factors Vt. The physical

dynamics are given by the system:

dXt = (µX +KXXt)dt+
√

VtdZ
P
X,t (2)

dVt = (ΩΩ′ +MVt + VtM
′) dt+

√

VtdW
P
t Q+Q′dW P′

t

√

Vt, (3)

where Xt is a n-dimensional vector, and Vt is a n×n covariance matrix process (Bru, 1991;

Gourieroux, Jasiak, and Sufana, 2009); ZP
X and W P are an n-dimensional vector and a n×n

matrix of independent Brownian motions, respectively; µX is a n-vector of parameters and

KX ,M and Q are n× n parameter matrices.10

We consider a setup in which n = 2, i.e. Xt contains two factors with a time-varying

conditional covariance matrix. Since we do not model the time-varying second moments at

the shortest maturity range, we introduce a third yield curve state ft evolving as:

dft = (µf +KfXXt +Kfft)dt+ σfdZ
P
f,t. (4)

Kf and σf are scalars, KfX is a 1× 2 vector, and ZP
f,t is a Brownian motion independent of

all other shocks in the economy. As such, Xt can impact the conditional expectation of ft

10 To ensure a valid covariance matrix process Vt, we specify ΩΩ′ = kQ′Q with an integer degrees of freedom
parameter k such that k > n− 1, and require that Q is invertible. This last condition guarantees that
Vt stays in the positive definite domain (see e.g., Gourieroux, 2006).
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through the drift. Time-varying volatility enters the model through Vt that describes the

amount of risk in the economy, with off-diagonal elements of Vt determining the conditional

covariance between Xt’s. We focus on modeling the stochastic covariance of yields of

intermediate to long maturities, whose variation we can observe with support of high

frequency data. Given the different institutional properties of shortest maturity yields and

the unavailability of traded high-frequency data, we assume constant conditional volatility

for ft.

We collect Xt and ft factors in a vector Yt = (X ′

t, ft)
′, whose dynamics can be compactly

written as:

dYt = (µY +KY Yt) dt+ ΣY (Vt)dZ
P
t , (5)

where ΣY (Vt) is a block diagonal matrix with
√
Vt and σf on the diagonal, and KY =

(

KX 0n×1

KfX Kf

)

.

The short interest rate is an affine function of Xt and ft:

rt = γ0 + γ′

XXt + γfft = γ0 + γ′

Y Yt (6)

with γY = (γ′

X , γf)
′.

Bonds are priced by no-arbitrage. We specify the stochastic discount factor as:

dξt

ξt
= −rtdt− Λ′

Y,tdZ
P
t − Tr

(

Λ′

V,tdW
P
t

)

, (7)

with market prices of risk:

ΛY,t = Σ−1
Y (Vt)

(

λ0
Y + λ1

Y Yt

)

(8)

ΛV,t =
(

√

Vt

)

−1

Λ0
V +

√

VtΛ
1
V . (9)

This specification assumes that shocks to both yield and volatility factors are priced,

preserving the tractable affine structure of the model. The market price of risk parameters

have the following dimensions: λ0
Y,(3×1), λ

1
Y,(3×3), Λ

0
V,(2×2), and Λ1

V,(2×2). Equation (8) follows

Duffee (2002)’s essentially affine market price of risk. Equation (9) is an analogous extension

for the volatility states.
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Prices of nominal bonds are obtained by solving P τ
t = EQ

t

(

e−
∫ τ
0 rsds

)

. The solution for the

nominal term structure has an affine form:

P (t, τ) = exp{A(τ) +B(τ)′Yt + Tr [C(τ)Vt]}, (10)

where Tr(·) denotes the trace operator. The coefficients A(τ), B(τ) and C(τ) solve a system

of ordinary differential equations:

∂A (τ)

∂τ
= B(τ)′µQ

Y +
1

2
B2

f(τ)σ
2
f + Tr

[

ΩQΩQC(τ)
]

− γ0 (11)

∂B (τ)

∂τ
= KQ′

Y B(τ)− γY (12)

∂C (τ)

∂τ
=

1

2
BX(τ)BX(τ)

′ + C(τ)MQ +MQ′C(τ) + 2C(τ)Q′QC(τ), (13)

where KQ
Y , M

Q and ΩQ are the parameters of the risk neutral dynamics. We split the

B(τ) loadings as B(τ) = [BX(τ)
′, Bf(τ)]

′. The boundary conditions for the system (11)–

(13) are A(0) = 01×1, B(0) = 03×1 and C(0) = 02×2. B(τ) has a standard solution as in

Gaussian models; C(τ) solves a matrix Riccati equation. All technical details are collected

in Appendix II.

Defining yτt = − 1
τ
lnP τ

t , the term structure of interest rates is obtained as:

yτt = −1

τ
{[A(τ)− B(τ)′Yt − Tr [C(τ)Vt]}. (14)

The instantaneous yield covariation is only driven by the covariance factors, Vt:

v
τi,τj
t :=

1

dt
〈dyτit , dy

τj
t 〉

=
1

τiτj
{Tr{[BX(τi)BX(τj)

′ + 4C(τi)Q
′QC(τj)]Vt}+Bf(τi)Bf(τj)σ

2
f}, (15)

and the conditional risk-neutral expectation of the annualized yield variance over horizon

h is:

v
Q,τ
t,t+h = EQ

t

∫ h

0

vτt+sds, (16)

which is available in closed form but omitted from the main text for brevity. Analogously,

v
P,τ
t,t+h is the expected h-period variance under the physical dynamics.
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The model implies that the instantaneous expected return, brpτt , to holding a bond with

maturity τ is:

brpτt =
(

λ0
Y + λ1

Y Yt

)

′

B(τ) + 2Tr
[

(Λ0
V + Λ1

V Vt)QC(τ)
]

. (17)

The first term in (17) is common with the Gaussian dynamic term structure models

(DTSMs), the second term is a new element that captures the effect of volatility on the

bond risk premia. Thus, volatility states are allowed to affect both the levels of yields in

equation (14) and the bond risk premia in (17). The variance risk premium, defined as

the difference between the expected h-period variance under the physical and risk neutral

dynamics:

vrpτt,t+h = v
Q,τ
t,t+h − v

P,τ
t,t+h (18)

is determined by the volatility states Vt and the corresponding market price of risk param-

eters in equation (9).

II.B. Discussion

Our distinction between volatility and yield curve states builds on the Am(n) classification

of ATSMs introduced by Dai and Singleton (2000). The new element is that Vt represents

a covariance matrix, involving an interaction factor which can change sign.11 The form of

Vt leads to a three-factor model for the second moments of yields with two volatility and a

covariance state. This structure helps us to overcome the difficulties of DTSMs in matching

conditional volatilities of long-maturity yields reported in the literature. The combination

of six factors gives the model the flexibility to fit both yields and volatilities. The state

space we consider is large, but involves a relatively small number of identified parameters

(13), excluding the market price of risk parameters in (8)–(9).

The presence of Vt in expression (14) distinguishes our model from the unspanned stochastic

volatility settings, which impose explicit restrictions so that the volatility factors do not

enter the cross section of yields. Such separation usually improves the volatility fit of low-

dimensional ATSMs (Collin-Dufresne, Goldstein, and Jones, 2009). However, as highlighted

by the literature, there appear to be few reasons, except statistical ones, for such constraint

to strictly hold (Joslin, 2007). The volatility variables could appear in the term structure of

11In ATSMs, independent CIR processes generate stochastic volatility one-by-one, and therefore conditional
covariances they imply are a linear combination of the volatility factors.
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yields through at least two channels. One of them is the convexity (e.g. Phoa, 1997). The

second one is the effect that volatility has on the risk premia. We explore the importance

of these channels below.

II.C. Estimation

We estimate the model on a weekly frequency (∆t = 1
52
) combining pseudo-maximum

likelihood with filtering. All technical details on the estimation and identification are

presented in Appendix III.A.

We introduce three types of measurements for yields (ỹτt ), their quadratic covariation (ṽ
τi,τj
t )

and the expected risk neutral variance over the next month (ṽQ,τ
t,t+4):

ỹτt = f1(Yt, Vt; Θ) +
√

R1e1,t (19)

ṽ
τi,τj
t = f2(Vt; Θ) +

√

R2e2,t (20)

ṽ
Q,τ
t,t+4 = f3(Vt; Θ) +

√

R3e3,t. (21)

Functions fi(·), i = {1, 2, 3} denote the model-implied expressions corresponding to the

measurements; Θ collects model parameters. ṽ
τi,τj
t is obtained from the high-frequency

zero-coupon yield curve using the realized covariance estimator (1). The expected risk

neutral variance v
Q,τ
t,t+4 is identified from the squared implied volatility series.

We assume additive, normally distributed measurement errors ei, i = {1, 2, 3} with zero

mean and a constant covariance matrix. In estimation, we use six yield measurements with

maturities of six months and two, three, five, seven and ten years with R1 = σ2
yI(6×6), where

I(6×6) is an identity matrix, and σy is common across maturities. We include four realized

variance measurements: realized variances of the two-, five- and ten-year bond and the

covariance between the five- and ten-year bond, as well as three measurements for the risk

neutral variance with underlying bond maturities of two, five and ten years. The two-year

implied volatility is available only in part of the sample, therefore in estimation we treat

the initial observations as missing. Since our implied volatility series have coupon bonds

as the underlying, we use the average duration of the bond during our sample period to

obtain the zero-coupon implied volatility equivalent. The implied volatility measurements

are therefore matched with the model-based risk neutral volatility v
Q,τ
t,t+4 with τ = 1.9, 4.4

and 7.5 years, respectively.12 In total, we have seven variance measurements, and for each

12These numbers represent the average duration of the underlying coupon bond in our sample.

15



we allow a different measurement error, i.e. R2 and R3 are diagonal matrices with four and

three parameters, respectively.

In order to handle the non-Gaussianity in factor dynamics we use the square-root Unscented

Kalman Filter (UKF), proposed by Julier and Uhlmann (1997).13 We maximize the

likelihood with the global optimization algorithm of Price, Storn, and Lampinen (2005).

Finally, we impose parameter restrictions that ensure econometric identification of the

model. After that, the baseline model has 13 parameters which drive the yield curve (six

of which describe the market prices of risk), and ten parameters which drive the volatilities

(four of which describe the market price of risk).

III. Empirical results

This section uses the model to analyze the empirical properties of interest rate volatility.

First, we discuss a decomposition of volatility into a short rate expectations component

and a term premium component. Second, we study how volatility affects the yield curve

and the level the bond risk premia.

III.A. Estimated factors

The model fits the data well indicating that it has the flexibility to summarize information

in yields, and in realized and implied volatilities. A summary of the model’s performance

is provided in Appendix IV.

Figure 4 plots the model-implied factor dynamics. Panels on the left display the evolution of

the yield curve factors Y = (X1, X2, f), those on the right show the corresponding volatility

states V̄ = (V11, V21, V22),
14 capturing the conditional covariance of the yield curve factors

X1 and X2.

Figure 5 shows how these factors affect the yield curve. Each line presents the model-

implied factor loadings in equation (14), scaled by one standard deviation of each factor.

Panel a displays the B(τ) coefficients. The effect of ft is most pronounced at the short end

of the yield curve. The time series of ft in Figure 4 suggests that this factor closely traces

13See e.g. Carr and Wu (2007) and Christoffersen, Jacobs, Karoui, and Mimouni (2009) for the recent
applications of the unscented Kalman filter to asset pricing.

14We rotate the yield curve factors such that their increase has a positive effect on the yield curve. In
practice this amounts to multiplying X2 by −1. Correspondingly, the sign of the covariance state V21

is switched. Other than convenience, these adjustments have no implications for the results.
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the short-maturity rates: its correlation with the the Fed funds target is 0.96. In that

narrow correlation sense, ft reflects the stance of the monetary policy within the model.

The two remaining factors influence the longer segment of the yield curve: the impact of

X1 increases with the maturity, while X2 affects most strongly the short-to-intermediate

maturities between two and three years.

The volatility factors in panel b behave accordingly: the effect of V11 on interest rate

volatility rises whereas that of V22 declines with the maturity. Respectively, we label them

as the long-end and the short-end volatility. The V21 term drives the conditional covariance

between the yield curve factors. The estimated dynamics suggest that the covariance state

changes sign during our sample period.

As visible in the right-hand panels of Figure 4, the estimates of the Vt process imply that

the long- and short-end volatility have different time series properties. Not surprisingly,

volatility states are substantially less persistent than the yield curve states. A less imme-

diate observation is that the short-end volatility is less persistent than the long-end. The

half-lives under the real world (P) dynamics are below one year (47 weeks) for the short-end

volatility V22 and above 1.5 years (90 weeks) for the long-end volatility V11.

III.B. Volatility of term premia versus volatility of short rate expectations

Our factors are latent, and therefore they are not directly linked to any observable macro

quantities. However, the structure of the model allows us to analyze the interactions

between well-defined economic quantities in the yield curve.

Yield volatility stems from either volatile short rate expectations, or volatile term premia,

and comovement between the two (plus a convexity-related term). If interest rates become

more volatile, one would like to understand which component contributes to the volatility

increase. To the extent that short rate expectations reflect expectations about the future

path of monetary policy, their volatility can be informative about the amount of uncertainty

surrounding that path at different horizons. The conclusion that we draw from this section

is that the model-based volatility factors have separate interpretations in terms of their

link to short rate expectations and term premia.

We compute the conditional volatilities associated with:
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ret,t+τ =
1

τ
EP

t

(
∫ τ

0

rt+s

)

ds (22)

rpyτt =
1

τ

[

EQ
t

(
∫ τ

0

rt+s

)

ds− EP
t

(
∫ τ

0

rt+s

)

ds

]

, (23)

where ret,t+τ denotes the expected average short rate, and rpyτt is the term premium. These

expressions are affine in Vt and have a tractable form provided in Appendix V.

Figure 6 shows how volatility states contribute to the second moments of short rate

expectations (panel a) and risk premium (panel b) across maturities. The loadings reveal an

interesting distinction. The long-end volatility, V11, emerges as the dominant factor for the

variance of the term premium, but it has a minimal contribution to the variance of short rate

expectations.15 The short-end volatility, V22, does the opposite: While its impact on the

term premium part is effectively zero, this factor plays a key role in generating the variance

of short rate expectations. It seems justified to label these factors as the term premium and

short rate expectations volatility, respectively. Below, we use interchangeably the terms

short-end (long-end) volatility and short rate expectations (term premium) volatility. The

covariance state contributes to both, but its effect on the short rate expectations component

is stronger, suggesting that an increase in the comovement between yields across maturities

makes short rate expectations more volatile.

Panels c and d in Figure 6 plot the time series of volatilities of expectations and of term

premia for the two-year (panel c) and the ten-year yield (panel d). The volatility of the

two-year bond is dominated by the expectations part, while that of the ten-year bond—by

the term premium part, even though the volatility of short rate expectations still plays a

significant role at the ten-year maturity. This evidence is consistent with a scenario in which

short rate expectations are mean reverting, and their effect declines with the maturity, i.e.

the Fed has a limited control over the long-end of the yield curve; this is accompanied by

an increasing role of the term premium at the longer maturities range.

Given their different interpretation, it is useful to study the behavior of volatility states

over the business cycle. Figure 7 displays the evolution of long- and short-end volatility

in our sample. Consistent with its link to short rate expectations, the short-end volatility

typically rises before recessions, perhaps on an increased uncertainty about an upcoming

monetary policy easing; in those episodes the long-end (term premium) volatility remains

15The one factor structure for the volatility of the term premium agrees with the result in the literature
that bond risk premia move on a single factor (e.g. Cochrane and Piazzesi, 2005).
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contained. After recessions both tend to rise. This is the case for each post-recession

period in our sample: in 1992 (post 1990–1991 recession) the long-end volatility increased

by more than three standard deviations away from its unconditional mean; similarly in

2003 (post 2001 recession) it moved almost four standard deviations from the mean. The

short-end volatility factor exceeds the four standard deviations mark five times in our

sample all of which concur with monetary policy easings. It also increases during periods

of distress in asset markets such as the LTCM, the Russian crisis or the dot-com bubble,

which in the 1990s and 2000s have been paired with supportive monetary policy actions.

During the recent financial crisis, the short-end volatility reached extreme levels already

in the Fall 2007 and persisted until 2009. The long-end volatility, instead, remained low

until the bankruptcy of Lehman Brothers, after which it peaked in March 2009. Given its

interpretation as the term premium volatility, one could view this as a sign of the bond

market being concerned about the consequences of fiscal and non-standard monetary policy

measures for the future risk of Treasuries. We provide evidence supporting this intuition

in Section IV.

III.C. Comovement between term premia and short rate expectations

From the monetary policy perspective, one important reason for studying the second

moments of yields is the question of how short rate expectations and risk premia comove

over time. For instance, a negative comovement in an easing environment may suggest

that the Fed faces a tradeoff between lowering short term interest rates to stimulate the

economy, and increasing the inflation risk premium. By modeling directly the stochastic

covariance of risks, our setting is uniquely suited to study the empirical properties of this

tradeoff.

Panel e in Figure 6 displays the role of the model-implied factors in generating the comove-

ment between shocks to the term premia and to short rate expectations. To obtain the

loadings, we compute the conditional covariance of the two objects in equations (22) and

(23). Consistent with its interpretation as the covariance state, the figure shows that the

V21 factor has the largest impact on the covariance, which increases upon a positive shock

to the factor.

Panel f in Figure 6 plots the conditional correlation between the shocks to risk premia and

to short rate expectations implied by the model for maturities of two and ten years. Two

features of that correlation are important: First, during our sample period, the correlation
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is low on average and positive, with its unconditional mean reaching 0.14 for two-year

bond and 0.21 for the ten-year bond. Second, the correlation is persistent but clearly time-

varying, changing sign multiple times during our sample. In the plot, we superimpose its

dynamics with the Fed funds target (rescaled to fit the graph). On average, the correlation

between risk premia and expected short rates increases during easings and declines during

tightenings. Interestingly, the model interprets the Greenspan’s conundrum period, i.e.

the lack of response of long-term yields to the Fed’s 2004/05 tightening, as a decline in

the correlation between the expected short rate and the term premium from nearly one to

negative −0.4.

The evolution of the tradeoff between expected short rates and the term premia, along

with their low unconditional correlation, casts new light on the view that in the last two

decades the link between short- and long-term interest rates has been largely severed (e.g.

Thornton, 2012).

III.D. Additional model implications

This section focuses on the channels through which volatility impacts the yield curve. We

find that in terms of modeling the cross-section of interest rates, analyzing priced sources

of risk in the term structure, and the time-varying bonds risk premia, the conclusions from

the model with a rich second moments dynamics are close to these based on a Gaussian

setting. At the same time, in Section IV we show that modeling interest rate volatility is

not a void exercise, in that volatility states contain information about the economy that

cannot be extracted from yields themselves.

III.D.1. Implications for the Treasury risk premia

Expression (17) shows that the model-based bond risk premia have two components loading

on the yield curve and volatility states, respectively. Abstracting from the time-varying

second moments in Yt, the first component arises similarly in Gaussian models and we will

refer to is as the Gaussian part of the bond risk premium. The second component is a

consequence of the priced volatility risk in the Treasury bond market, i.e. the variance risk

premium. We investigate the amount of time-variation in bond excess returns due to each

element. The model implies that during our sample period the variance risk premium does

not contribute significantly to the predictability of returns on Treasury bonds.
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The results are collected in Table 2. We compute the model-implied expected bond excess

returns for an annual holding period which is the horizon customarily used in the literature

on bond return predictability. We then regress the realized excess returns from the data

on the model-implied risk premia. We consider three variants of the regressions. Panel A

is based on the total model-implied risk premium; panel B involves only the Gaussian part

and zeros out the risk premium variation due to the volatility states. Panel C benchmarks

the model-based results to the predictability obtained with the return forecasting factor of

Cochrane and Piazzesi (2005, CP). In our sample, the CP factor predicts between 8% and

19% of the variation in the annual realized excess returns at maturities between two and

ten years. The model-based risk premium gives a slightly lower degree of predictability

ranging between 3% and 13%.16 A comparison of panels A and B of the table suggests

that priced volatility risk does not contribute in a significant manner to the predictable

variation of bond excess returns.

One may wonder how this conclusion depends on the return horizon that we predict. Given

the impersistent nature of yield volatility, one could expect the effect of volatility states on

the risk premium to be material only at short horizons. Panel D and E of Table 2 present

results analogous to the above regressing the realized returns with a holding period of one

month onto the instantaneous model-based risk premium. The results appear to confirm

the previous conclusion that the contribution of the priced variance risk to the bond risk

premium is minute.

However, the model implies a non-zero variance risk premium: on average, investors pay a

premium for the volatility protection. The variance risk premium defined in equation (18)

has a slightly humped pattern across maturities, is the highest at the maturity of three

years, and declines with maturity. In basis points terms, the model implies the volatility

risk premium, measured as the average of
√

v
Q,τ
t,t+h −

√

v
P,τ
t,t+h with h = 4 weeks, equal to

21 (22.5) basis points at the two-year (three-year) maturity and less than 9 basis points

at the ten-year maturity. In that yield volatility at short maturities is mostly driven by

the volatility of short rate expectations, it seems plausible that the variance risk premium

16At longer maturities, the realized excess returns load on the model-based risk premia with a slope
coefficient that exceeds one, suggesting that risk premium from the model is less volatile than the data.
The non-unit coefficient may be a consequence of our relatively short sample period. We can reject
the non-unit coefficient only for maturities of nine and ten years at the 5% level. Using survey data to
measure expected excess bond returns on the two-year bond we also find a non-unit (and insignificant)
coefficient and a R̄2 of about 3%.
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reflects mainly a compensation for the risk related to volatile expectations about monetary

policy.

III.D.2. Role of volatility in the cross-section of yields

A question that has attracted attention is how volatility affects the cross section of inter-

est rates. Quantifying this effect requires a model that is rich enough to accommodate

the empirical properties of both the first and second moments of yields. The literature

summarized in the introduction argues that standard dynamic term structure models lack

the flexibility to generate realistic yield volatilities, especially at the long end of the term

structure. Therefore, potential misspecification complicates a model-based inference about

the linkages between yields and volatilities. Our approach is different in that we equip the

model with a multifactor structure that the data calls for but also ask it to actually match

the observed second moment dynamics.

Panel c of Figure 5 uses equation (14) to measure how the shape of the term structure

changes when the volatility changes. The graph makes clear that this channel is quanti-

tatively small. Even a two standard deviation shock to volatilities has a total (negative)

impact on the ten-year yield of about eight basis points. It is almost entirely driven by the

long-end (term premium) volatility state and, consistent with the usual convexity effect,

most visible at long maturities. Interestingly, we find that the short-end volatility related to

short rate expectations is essentially impossible to uncover from the cross-section of yields:

Its corresponding yield-curve loadings are effectively zero. As such, using terminology of

Duffee (2011), this factor can be interpreted as hidden. In contrast to the USV models,

this result is obtained without imposing constraints on the model parameters that would

prevent a priori the volatility states from entering the cross section of yields.

III.E. Comparison with a volatility-only model

To better understand the role of no-arbitrage restrictions for our results, we estimate a

stochastic volatility model that does not impose any consistency requirements on the joint

dynamics of yields and volatilities. Specifically, we estimate a stand-alone volatility process

given by equation (3) using the same volatility measurements as in the case of our term

structure model. Parameter estimates are not reported for brevity. Table 3 provides cross-

correlations between the volatility factors obtained from the two approaches. The highest

correlation of 0.7 pertains to the short-end volatility, while that for the long-end volatility
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is below 0.3. This suggests that the no-arbitrage restrictions are useful in disentangling the

volatility of short rate expectations from the volatility of the risk premia. The stronger

correlation of the short-end volatility is consistent with short rate expectations driving a

higher share of the overall volatility in yields. Figure 9 shows that the largest differences

between factors implied by these two settings arise during recessions. While the short-

and long-end volatility factors from the no-arbitrage model increase in different recession

phases, the factors in the volatility-only model move much more in sync during downturns.

For comparison, Table 3 also reports correlations with the first three principal components

of the realized and implied yield volatilities. The volatility states from the no-arbitrage

model have a significantly weaker relationship to the principal components than those from

the volatility-only model.

IV. A macro-finance link

This section verifies our interpretation of yield volatility factors by linking them to observ-

able uncertainty proxies. We also show that interest rate volatility, and in particular the

volatility of short rate expectations, provides new information about the economy that is

not contained in the standard yield curve factors.

IV.A. Macroeconomic uncertainty

We relate volatility factors from the model to survey-based proxies for expectations and

uncertainties about the macroeconomy. Forecasts of macro variables are from the Blue Chip

Financial Forecasts (BCFF). As documented in the transcripts of the FOMC meetings,

these surveys are regularly used by policymakers at the Fed to read market expectations.17

Appendix I.F provides details about the survey data including their timing within a month.

We use responses of individual panelists to construct proxies for the consensus forecast and

for the uncertainty. Each month, the consensus is computed as the median survey reply.

Uncertainty is measured with the mean absolute deviation of individual forecasts.18 We

consider forecasts of the real GDP growth (RGDP), the federal funds rate (FFR) and all-

items CPI inflation (CPI). For each variable and each month we have a term structure

17Between 1994 and 2007, the FOMC transcripts refer to the forecasts from the Blue Chip survey 146
times during 61 FOMC meetings.

18Disagreement in survey forecasts could be more reflective of differences of opinions rather than
uncertainty (Diether, Malloy, and Scherbina, 2002), so we do not draw a sharp distinction between
the two notions, but we assume that they are correlated.
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of forecasts from the current quarter out to four quarters ahead. To summarize this

information, we compute the average consensus/uncertainty across horizons. We also relate

yield volatility to the economic policy uncertainty index constructed by Baker, Bloom, and

Davis (2013, BBD).

We run contemporaneous regressions of model-based volatility states on the above variables.

Since consensus forecasts can be very persistent, given our relatively short sample, we use

their monthly changes rather than levels. Table 4 summarizes the results for the 1992–2010

sample (panel A), and for the 1992–2007 sample excluding the recent crisis (panel B). For

the full sample, we capture between 38% and 42% of variation in the yield volatility states

and about 14% in the covariance state. These shares remain similar in the 1992–2007

sample. The three volatility states differ in the way they load on the explanatory variables.

In terms of macro consensus, the long-end volatility is positively related to the changes in

the expected RGDP. This link is most visible during the recent crisis, where the long-end

volatility factor peaked after growth expectations started to recover from the bottom of

the recession.19 One interpretation of the positive sign is that despite the initial signals of

recovery, the long-end volatility has moved up on concerns about long-term consequences

of the fiscal and monetary stimulus. The model associates this pattern with an increased

volatility of the term premia. We find support for this interpretation based on the policy

uncertainty index below. The short-end volatility, instead, comoves negatively with changes

in the monetary policy measured with the FFR. A 50 basis points negative change in the

expected FFR raises the short-end volatility by approximately a half standard deviation.

Both short- and long-end volatility increase with the uncertainty about the real economy.

The most important difference between them is that the short-end volatility comoves

positively with the level of uncertainty about the FFR, while the long-end volatility—

with the economic policy uncertainty as measured with the BBD index. This distinction

aligns well the interpretation of these factors as the volatility of short rate expectations

and term premia, respectively. It is also interesting in the context of the findings of BBD,

who argue that their index reflects mainly uncertainties about taxes, spending as well as

monetary and regulatory policies. In particular, they find that since 2008 the increases of

the index have been dominated by the elevated tax, spending and regulatory concerns, but

not concerns about the Fed. This is supported with the behavior of the yield volatility

19The relationship between the long-end volatility and the growth rate of real activity is complex in that
overall the long-end volatility increases in recessions, but it does so at the recession exit when real
activity indicators (e.g. CFNAI) have already bottomed and show first signs of recovery.
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states just before and during the crisis (see Figure 7): The short-end volatility increased

already in 2007 and then declined ahead of the long-end volatility, while the latter remained

low until mid-2008, rose afterwards and remained high through the end of our sample in

2010. A projection of the policy uncertainty index on the volatility states (not reported

in any table for brevity) reveals that the index covaries most strongly with the short-end

volatility before the crisis, and with the long-end volatility from 2007 onwards. Thus, the

behavior of the model-based volatility factors and their respective links to the Fed and to

the economic policy uncertainties suggest that these factors distill and trace consistently

over time particular types of risk.

It is worth noting that the covariance state has the weakest relation to the survey-based

consensus and uncertainty measures. To the extent that it drives the comovement between

the term premium and short rate expectations, linear regressions like the ones we estimate

above may not be appropriate to capture the information this factor contains. However,

we find that covariances between realized macro variables and interactions between survey-

based uncertainty measures are able to explain up to 33% of its dynamics, with the

interaction of uncertainty about the FFR and the CPI being the most significant one.

IV.B. Forecasting growth

The literature has documented that the slope of the yield curve has predictive power for

the economic activity: a higher slope predicts an increase in the real activity, consumption

and investment at horizons between one and two years ahead (Estrella and Hardouvelis,

1991; Harvey, 1989). We show that there is additional information in yield volatility over

and above that contained in the cross section of yields.

We forecast economic activity, measured with the CFNAI (Chicago Fed National Activity

Index)20 by estimating the following regression:

CFNAIt+k = β ′

kXt + εt+k, k = {0, 1, . . . , 24} months, (24)

20The CFNAI is published on the Chicago Fed web page as a weighted average of 85 existing monthly
indicators of national economic activity including (i) production and income, (ii) employment,
unemployment, and hours, (iii) personal consumption and housing, and (iv) sales, orders, and
inventories. The index is constructed to have an average value of zero and a standard deviation of one.
Since economic activity tends toward trend growth rate over time, a positive index reading corresponds
to growth above trend and a negative index reading corresponds to growth below trend. Thus, we can
interpret CFNAI as a growth indicator. We use the monthly unsmoothed reading of the index.
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where as explanatory variables inXt we consider yield curve factors (principal components),

and/or volatility states. We predict activity at horizons ranging from the current month

through 24 months ahead.

Figure 8 shows the results for different specifications of equation (24). Panel a compares the

predictive R̄2 obtained from two regressions using as the explanatory variables: (i) the three

volatility states obtained from the model, and (ii) the first four yield PCs. The figure reveals

different predictability patterns in the two specifications. While in volatility regressions the

highest R̄2s are obtained at short horizons reaching a peak of 37% at k = 7 months, the

yield PCs regressions give initially low predictability which increases at horizons above one

year, and reaches 29% at k = 24.

In panel b, we repeat the same predictive exercise but using only the short-end volatility V22

and the yield curve slope. We find that these two variables account for the main part of the

predictability in the previous regressions. The predictive power of the short-end volatility

is the highest at k = 7 months with R̄2 of 23%. The slope-only regression, instead, gives

the maximum predictability at horizons above one year, which is in line with the evidence

in the literature, e.g. at k = 24 the R̄2 is 25%. In both cases, the regression coefficient is

significant at the 1% level.

Panel c summarizes bivariate regressions with slope and short-end volatility included jointly.

In the plot, we mark horizons for which each regressor is significant at the 1% level. The

pattern of coefficients is consistent with the previous graphs suggesting that yield volatility

operates at shorter horizons than the slope. Importantly, for all specifications, the short-

end volatility has a negative coefficient. Using implications of our model, a rising volatility

of short rate expectations is a signal for lower growth several months ahead.

Panel d compares the properties of the three volatility factors from our model in terms

of forecasting growth, and shows that the short-end volatility dominates the other two

factors. The covariance state does not predict activity at all, and the long-end volatility is

significant (with a negative coefficient) only in contemporaneous regressions (k = 0) and

at the long horizon, although we find that this latter result is not robust to the exclusion

of the crisis years.

Panel d additionally contains the equity market VIX. While both the short-end volatility

and the VIX increase in anticipation of bad times, the importance of VIX decays faster with

the horizon k, indicating that information about future growth contained in the short-end
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volatility is different than that in the VIX. In bivariate regressions (details not reported),

both VIX and the short-end volatility remain significant at the 5% level for k up to about

nine months (VIX) and one year (V22), and both preserve their negative coefficients.

The forecasting power of the short-end volatility and the slope remains robust to the

exclusion of the crisis years. In the pre-crisis sample, the short-end volatility captures

up to 17% of variation in the future CFNAI at short horizons. At the same time, with the

exclusion of the crisis, the predictive power of VIX becomes significantly weaker.

IV.C. Liquidity measures

Liquidity and the highest quality of collateral are important motives driving demand for

the US Treasuries (Krishnamurthy and Vissing-Jorgensen, 2010; Longstaff, 2004). We ask

how these motives are related to yield volatility. These results are summarized in Table 5.

We consider several liquidity measures that have been proposed in the literature and which

capture multifaceted nature of liquidity. First, we use the Hu, Pan, and Wang (2012,

HPW) noise illiquidity, which measures temporary price deviations of Treasury bonds from

a smooth yield curve. HPW show that the illiquidity is related to the availability of

arbitrage capital in the market. An increase in illiquidity signals that arbitrage capital

becomes scarce and the overall market liquidity deteriorates.

As a second measure, we consider the systematic liquidity factor in the equity market from

Pastor and Stambaugh (2003, PS). A lower value of the PS factor indicates a worsening

equity market-wide liquidity.

Third, we use the value funding liquidity proposed by Fontaine and Garcia (2012, FG),

and filtered from on- and off-the-run Treasury bonds. An increase in the value of funding

liquidity is interpreted as a tightening of funding conditions.

Our fourth measure, labeled “Fails,” is the total monthly par value of transaction (in

logarithm) that involve failures to deliver a Treasury bond needed to settled a trade.21

In periods of a large demand for liquid collateral, market participants may choose to fail

to deliver on their repo transaction.22 As increase in the volume of fails should then be

21The data on fails is available from the website of the New York Fed. Alternatively, we could use the
variation in haircuts applied to Treasury collateral to study the collateral channel—an increase in
Treasury volatility lead to an increase in haircuts applied to Treasury collateral which trigger margin
calls and thus decrease the liquidity in the market. Due to the lack of data on haircuts we analyze only
the failures to deliver.

22Because the penalty for the failure is linked to the short term interest rate, such a situation occurs
especially when the interest rates are low. Since May 2009, when a special charge for the failure was

27



informative about the demand pressure in the Treasury market, and the value of liquid

collateral.

Finally, as a fifth variable, we consider the TED spread, i.e. the spread between the three-

month LIBOR and the three-month T-bill rate. An increase in the spread is interpreted as

a sign of rising credit risk in the banking system and thus tightening of credit provision to

the economy.

Panel A of Table 5 presents contemporaneous regressions of each of the above liquidity

proxies on the three volatility states obtained from the model. Endogeneity is a usual

worry in such regression, so our results are merely a statement about the strength and

direction of various correlations. We run regressions in levels and in monthly changes. For

easy comparison of the coefficients all left- and right-hand side variables are standardized.

The regressions reveal a significant link between interest rate volatility and liquidity. While

each of the model-implied volatility states differs in terms of economic interpretation and

macro variables with which it correlates, liquidity is significantly related to all of them. In

general, an increasing yield volatility is associated with deteriorating liquidity conditions.

The liquidity measures differ in the strength with which they load on the long- versus short-

end volatility and the covariance state. With the exception of the FG factor, the financial

crisis is an important event that strengthens the liquidity-volatility link, but this link also

exists and is economically strong in the pre-crisis period. In rows labeled “R̄2 (92-07),” we

report the R̄2 for the sample ending in December 2007.

We find that the three volatility states capture about 10% of variation in the monthly

changes of HPW noise illiquidity. This relationship is stronger than the one found by

Hu, Pan, and Wang (2012) for reasons that can be explained with the way we construct

the volatility states: First, our volatility factors summarize content of derivatives and

the realized variances obtained from high frequency data; second, they aggregate volatility

information across different bond maturities.23 Interestingly, we find a pronounced negative

relationship between changes in the short-end yield volatility and the PS factor: A dete-

riorating equity market liquidity is associated with a simultaneous rise in the volatility of

short rate expectations (t-statistics of −6.35). Before the crisis we observe a strong negative

contemporaneous link between the level of the FG factor and yield volatility: To the extent

introduced, failures to deliver decreased to extremely low levels. See Garbade, Keane, Logan, Stokes,
and Wolgemuth (2010) for more details.

23Hu, Pan, and Wang (2012) measure interest rate volatility as the return volatility of a five year bond
computed with the 21 rolling window. They find a positive but insignificant relationship between
monthly changes in volatility and monthly changes noise illiquidity with R̄2 of below 2%.
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that the value of funding liquidity comoves with the actions of the Fed (empirically the FG

factor decreases during easings when volatility is high), the negative sign is intuitive. The

inclusion of the crisis years weakens this connection. Both the volume of fails and the TED

spread increase together with yield volatility.

In panel B we study leads and lags between long- and short-end volatility factors and

three liquidity measures: PS, HPW and FG. Panel B1 shows regressions when volatility is

predicted with lagged liquidity, panel B2 considers the opposite case. Leads and lags are

from one through 18 months. To be concise, we only report the coefficients, t-statistics

and R̄2 for the lead/lag with the highest R̄2. The general conclusion from the table is

that liquidity conditions forecast the long-end volatility at horizons above six months.

The PS liquidity is significant at a lag of about one year with a negative sign, suggesting

that a worsening liquidity in the equities market today forecasts a higher risk premium

volatility of Treasuries in the future. Even though predictive regressions do not justify

causal statements, this correlation would be consistent with a story in which the Fed

supports the equity market through easier monetary policy trading off a higher risk of

long-term Treasuries in the future. Similarly, the HPW factor predicts long-end volatility

(with a positive and highly significant coefficient) at horizon of about six months. At the

same time, the forecasting power of liquidity for the short-end volatility is much weaker.

Rather, increasingly volatile short rate expectations anticipate declining liquidity conditions

at horizons of about half a year; but the short-end volatility itself does not appear easy to

forecast with lags of the liquidity proxies beyond horizons of one or two months.

V. Conclusions

We study the properties and the information contained in the volatility of the US Treasury

market. We propose a flexible no-arbitrage term structure model that allows for a stochastic

covariance between risk factors in the yield curve, and combine it with an estimation

using nominal yields, their realized covariance matrix and interest rate derivatives. The

model serves to decompose interest rate volatility into short rate expectations volatility

and the volatility of the term premia, respectively, as well as their conditional covariance.

We show how these components contribute to interest rate volatility across the term

structure. At short maturities, interest rate volatility is mainly driven by volatile short

rate expectations, but as the maturity increases the term premium volatility becomes more

pronounced. Interest rate volatility factors feature distinct dynamics over the business
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cycle, and contain additional information about the economy over and above the standard

yield curve factors. We find that the volatility of short rate expectations predicts economic

activity independently of the term spread. In particular, short rate expectations become

more volatile before recessions and during times of distress in asset markets, whereas

volatility of the term premia rises at the exit from a recession. Our interpretation of

the volatility factors finds support with evidence from survey data and with measures of

monetary and economic policy uncertainty. Studying links between interest rate volatility

and liquidity, we document that risk premia in Treasuries become more volatile following

periods of deteriorating liquidity in equity and bond markets.
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Figure 1: Time series of yields and volatilities

The figure plots the time series of yields, realized volatilities and implied volatilities over the 1992:01–
2010:12 sample. The data are sampled weekly. Yields include maturities of six months and two, five,
and ten years (panel a). Realized volatilities are constructed for bonds with two, five and ten years to
maturity (panel b). Implied volatilities are constructed for the two-, five- and ten-year bond; the implied
volatility series for the two-year note starts in March 2006 (panel c). We additionally superimpose the
implied volatilities with the MOVE index which is a weighted average of yield volatilities for maturities up
to 30-years.
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Figure 2: Factors in yield volatilities

The figure shows the principal component decomposition of the realized yield volatilities. We use the
unconditional correlation matrix of realized weekly volatilities computed for two-, three-, five-, seven- and
ten-year zero-coupon bonds.
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Figure 3: Yield and volatility curves

The figure plots the unconditional means of yields and volatilities for different maturities. It reports the
unconditional means for the whole sample 1992:01–2010:12, and means conditional on the Fed’s tightening
and easing cycles, or no action (denoted as “stay” in the graph). A period is classified as easing, tightening
or stay if it spans at least three subsequent moves in the federal funds rate target in a respective direction.
The realized volatility curves are computed from the weekly data and annualized.

36



1995 2000 2005 2010
−0.05

−0.04

−0.03

−0.02
a. X1

1995 2000 2005 2010
−0.01

−0.005

0

0.005

0.01
b. X2

1995 2000 2005 2010
−0.12

−0.1

−0.08

−0.06

−0.04
c. f

1995 2000 2005 2010
0

0.5

1
x 10

−4 d. V11

1995 2000 2005 2010
−15

−10

−5

0

5
x 10

−5 e. V21

1995 2000 2005 2010
0

1

2

x 10
−4 f . V22

Figure 4: Model-implied factor dynamics

The figure plots the model-implied factor dynamics. The left-hand panels present factors driving the yield
curve. The right-hand panels display factors driving the conditional second moments of yields. The sample
period is 1992:01–2010:12 with weekly sampling.
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Figure 5: Impact of yield and volatility factors on the yield curve

Panel a plots the impact of one standard deviation shock to the yield curve factors on the yield curve. Panel
b shows the impact of one standard deviation shock to volatility factors on yield volatilities at different
maturities. Panel c displays the impact of volatility factors on the yield curve.
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Figure 6: Volatility of short-rate expectations and risk premium

The figure plots the model-based decomposition of yield volatility into short-rate expectations volatility and
the risk premium volatility, as well as the conditional covariance between expectations and premia. Panels
a, b and e show how each volatility factor from the model contributes to the respective volatilities and to
the covariance. All loadings are reported per square root of a unit standard deviation in the corresponding
factor and converted into basis points. Panels c and d present the time series of the respective volatility
components for the two- and the ten-year yield. Panel f shows the conditional correlation between the
term premia and short rate expectations for the two- and the ten-year maturity. The blue step line in
panel f superimposes the (rescaled) FFR target.
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Figure 7: Short- and long-end volatility factors and selected events

The figure plots the model-implied dynamics for the long-end (V11) and the short-end volatility (V22) states.
Shaded areas are the NBER-dated recessions. Vertical lines mark major economic or financial events.
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Figure 8: Predicting economic activity with the yield curve information

The figure presents results of predictive regressions of the Chicago Fed National Activity Index (CFNAI)
on the yield curve and yield volatility states. The regression is

CFNAIt+k = β0 + β′

k
Xt + εt+k

where Xt is a given regressor or a vector of regressors, k is horizon in months (between 0 and 24). In panel
a, we report the R̄2s from two regressions: (i) using three volatility states obtained from the model and (ii)
using the first four PCs extracted from the yield curve. In panel b, we run univariate predictive regressions
with the short-end volatility state V22 and the term structure slope as explanatory variables, respectively.
In panel c, we report the standardized beta coefficients βk from bivariate predictive regressions using slope
and the short-end volatility jointly. Markers (circles) indicate cases in which the regression coefficient is
significant at the 1% level. Panel d displays the R̄2s from univariate regressions run separately on each
yield volatility state, and on the VIX. The data are at the monthly frequency, and the sample period is
1992:01–2010:12.
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Figure 9: Volatility-only versus no-arbitrage term structure model

The figure compares filtered volatility factors from the no-arbitrage term structure model with the factors
from the volatility-only model. Both models are estimated using identical volatility measurements. Shaded
areas mark the NBER-dated recessions. The sample period is 1992:01–2010:12 with weekly sampling. All
factors are standardized.
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Table 1: Descriptive statistics of weekly yields and realized volatilities

The table contains descriptive statistics of weekly yields (panel A) and realized yield volatilities (panel B). Implied volatilities

statistics in panel B are for coupon bonds, which is marked with the superscript “(c)” in the column heading. Panel C shows

unconditional correlations between yields, realized volatilities, and implied volatilities, as well as with the Merrill Option

Implied Volatility (MOVE) index. The sample period is 1992:01–2010:12, except for the implied volatility on a two-year

bond (marked with ⋆), for which the data begins in March 2006. AR(1m) denotes the autoregressive coefficient estimated for

overlapping monthly data sampled at the weekly frequency.

A. Yields (% p.a.)

6M 2Y 3Y 5Y 7Y 10Y

Mean 3.39 3.97 4.23 4.63 4.90 5.18

Skew -0.39 -0.37 -0.36 -0.25 -0.09 0.13

Kurt 1.84 2.00 2.11 2.20 2.24 2.28

AR(1m) 0.998 0.995 0.992 0.985 0.980 0.975

B. Volatilities (bps p.a.)

2Y 3Y 5Y 7Y 10Y

Realized volatilities

Mean 93.19 99.98 101.61 97.81 96.44

Stdev 43.63 46.29 41.41 36.95 34.59

Skew 2.08 2.07 1.65 1.35 1.53

Kurt 10.89 10.45 7.61 5.80 7.31

AR(1m) 0.44 0.39 0.41 0.44 0.42

Implied volatilities 2Y⋆(c) 5Y(c) 10Y(c)

Mean 112.71 115.39 98.72

Stdev 45.04 29.43 24.55

Skew 1.13 0.64 0.69

Kurt 3.79 3.58 4.05

AR(1m) 0.71 0.81 0.83

C. Unconditional correlations of yields, realized volatilities, and implied volatilities

y6Mt y2Yt y3Yt y5Yt y7Yt y10Yt RVol2Yt RVol3Yt RVol5Yt RVol7Yt RVol10Yt

y6Mt 1.00 · · · · · · · · · ·

y2Yt 0.97 1.00 · · · · · · · · ·

y3Yt 0.95 0.99 1.00 · · · · · · · ·

y5Yt 0.88 0.96 0.98 1.00 · · · · · · ·

y7Yt 0.81 0.91 0.95 0.99 1.00 · · · · · ·

y10Yt 0.74 0.85 0.90 0.96 0.99 1.00 · · · · ·

RVol2Yt -0.13 -0.12 -0.10 -0.08 -0.06 -0.04 1.00 · · · ·

RVol3Yt -0.18 -0.15 -0.12 -0.09 -0.06 -0.02 0.95 1.00 · · ·

RVol5Yt -0.27 -0.24 -0.22 -0.20 -0.17 -0.13 0.89 0.90 1.00 · ·

RVol7Yt -0.33 -0.30 -0.28 -0.24 -0.21 -0.17 0.81 0.85 0.97 1.00 ·

RVol10Yt -0.32 -0.27 -0.25 -0.21 -0.17 -0.13 0.75 0.78 0.89 0.93 1.00

Unconditional correlations of implied and realized yield volatilities

RVol2Yt RVol3Yt RVol5Yt RVol7Yt RVol10Yt IV2Y ⋆ IV5Y IV10Y MOVE

IV2Y ⋆ 0.80 0.75 0.70 0.60 0.53 1.00 · · ·

IV5Y 0.62 0.61 0.65 0.66 0.63 0.79 1.00 · ·

IV10Y 0.51 0.52 0.61 0.65 0.66 0.59 0.94 1.00 ·

MOVE 0.61 0.60 0.67 0.69 0.68 0.71 0.91 0.91 1.00
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Table 2: Model-implied expected bond returns

The table reports the regression results for realized annual bond excess returns with maturities 2, 3, 5, 7 and 10 years on the

corresponding model-implied expected returns (panel A), on the Gaussian part of the model-implied returns (panel B) and

on the Cochrane-Piazzesi factor (panel C). The row “p-val β = 1” tests the restriction that the regression coefficient is equal

to one. Rows “AR(1m)” report the monthly AR(1) coefficient for realized and model-implied expected excess returns. Panels

D and E report the regression results for monthly non-overlapping bond excess returns (CRSP portfolios) on model-implied

instantaneous expected excess returns. The monthly frequency of data in panels D and E is dictated by the availability of

the CRSP realized bond returns. The data span the period 1992:01–2010:12. T-statistics in parentheses are Newey-West

adjusted with 18 lags.

rx2 rx3 rx5 rx7 rx10

A. Annual model-implied expected returns

α 0.00 0.01 0.02 0.02 0.03
( 1.08) ( 1.70) ( 2.60) ( 2.87) ( 2.80)

β 0.76 0.98 1.63 2.46 3.79

( 1.74) ( 1.77) ( 2.18) ( 2.74) ( 3.41)
R2 0.03 0.04 0.06 0.09 0.13

p-val β = 1 0.58 0.97 0.40 0.10 0.01
AC(1m) realized ret. 0.95 0.94 0.92 0.90 0.88
AC(1m) model-implied ret. 0.96 0.96 0.96 0.96 0.95

B. Annual model-implied expected returns (Gaussian part)

α 0.01 0.01 0.02 0.02 -0.02
( 1.94) ( 2.30) ( 2.16) ( 1.07) (-0.79)

β 0.77 1.01 1.69 2.59 4.06

( 1.28) ( 1.33) ( 1.70) ( 2.21) ( 2.99)
R2 0.04 0.04 0.06 0.10 0.15

C. Annual expected returns: Cochrane-Piazzesi factor

α 0.00 0.01 0.01 0.01 0.01

( 1.06) ( 0.93) ( 0.86) ( 0.82) ( 0.74)
β 1.12 2.40 4.87 7.10 9.87

( 1.82) ( 1.98) ( 2.31) ( 2.66) ( 3.11)

R2 0.08 0.10 0.14 0.17 0.19

D. Monthly model-implied expected returns (CRSP portfolios)

rx < 24m rx < 36m rx < 48m rx < 60m rx < 120

α 0.04 0.04 0.04 0.03 -0.01
( 5.43) ( 5.10) ( 3.62) ( 2.40) (-0.20)

β 1.74 1.77 2.01 2.32 2.83
( 2.86) ( 2.42) ( 2.45) ( 2.44) ( 2.70)

R2 0.06 0.03 0.02 0.02 0.02

E. Monthly model-implied expected returns (Gaussian part, CRSP portfolios)

α 0.04 0.04 0.03 0.03 -0.02
( 5.19) ( 4.53) ( 2.64) ( 1.52) (-0.71)

β 1.73 1.73 1.93 2.21 2.77

( 2.82) ( 2.34) ( 2.34) ( 2.33) ( 2.75)
R2 0.06 0.03 0.02 0.02 0.02
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Table 3: Correlations of volatility factors

This table reports unconditional correlations of model-based volatility factors and principal components obtained from realized

and implied volatilities. “V NA
ii ” denotes our baseline no-arbitrage model, “V SV

11 ” denotes the volatility-only model and “PCi”

is the i-th principal component. The sample period is 1992:01–2010:12.

V NA
11 V NA

21 V NA
22 V SV

11 V SV
21 V SV

22 PC1 PC2 PC3

V NA
11 1.00 . . . . . . . .

V NA
21 -0.72 1.00 . . . . . . .

V NA
22 0.48 -0.68 1.00 . . . . . .

V SV
11 0.28 0.32 0.16 1.00 . . . . .

V SV
21 -0.77 0.40 -0.44 -0.38 1.00 . . . .

V SV
22 0.19 -0.01 0.70 0.70 -0.41 1.00 . . .

PC1 0.27 0.05 0.55 0.72 -0.42 0.84 1.00 . .

PC2 -0.38 -0.14 0.12 -0.54 0.54 -0.18 0.00 1.00 .

PC3 0.29 -0.08 -0.27 -0.03 -0.08 -0.38 0.00 0.00 1.00
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Table 4: Regressions of filtered states on macroeconomic surveys

This table reports regressions of the model-implied volatility factors on macroeconomic surveys. Monthly factors are obtained

by averaging the weekly numbers returned from the estimation within a given month. Survey data are from the Blue Chip

Financial Forecasts. Forecasters predict the real GDP (RGDP), the federal funds rate (FFR), and the consumer price index

(CPI) at horizons from the current through four quarters ahead. dE(·) denotes the change in the consensus forecast from

one month to the next, where the consensus is defined as a median forecast (averaged across forecast horizons); σ(·) proxies

for the uncertainty, and is computed as the mean absolute deviation of individual forecasts (also averaged across forecast

horizons). σPOL is the economic policy uncertainty index from Baker, Bloom, and Davis (2013). T-statistics are corrected

using Newey-West adjustment with 12 lags and are reported in parentheses. For ease of comparison, both the left and right

hand side variables are standardized.

A. Sample including crisis, 1992-2010

Long-end Cov Short-end

V11 V21 V22

dE(CPI) 0.02 -0.03 -0.06

( 0.43) (-0.70) (-0.90)

dE(FFR) 0.09 -0.02 -0.25

( 1.30) (-0.23) (-3.49)

dE(RGDP) 0.24 -0.16 0.02

( 6.50) (-2.99) ( 0.52)

σ(CPI) -0.10 0.38 -0.07

(-0.73) ( 2.63) (-0.63)

σ(FFR) -0.08 0.14 0.32

(-0.63) ( 0.99) ( 2.63)

σ(RGDP) 0.32 -0.29 0.38

( 2.88) (-1.81) ( 3.53)

σ(POL) 0.43 -0.19 0.05

( 3.52) (-1.61) ( 0.57)

R̄2 0.42 0.14 0.38

B. Sample excluding crisis, 1992-2006

Long-end Cov Short-end

V11 V21 V22

0.01 0.01 0.04

( 0.26) ( 0.36) ( 1.28)

0.14 0.05 -0.22

( 2.23) ( 0.62) (-3.34)

0.15 -0.05 0.05

( 2.81) (-0.75) ( 0.71)

-0.18 0.09 0.05

(-2.82) ( 1.03) ( 0.77)

0.09 -0.04 0.29

( 0.77) (-0.25) ( 2.41)

0.35 -0.31 0.34

( 3.18) (-2.34) ( 3.06)

0.33 0.00 0.15

( 3.59) (-0.01) ( 1.20)

0.36 0.09 0.43
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Table 5: Liquidity measures and yield volatility

Panel A summarizes contemporaneous regressions of liquidity measures on the model-based volatility factors. HPW is the

noise illiquidity of Hu, Pan, and Wang (2012) obtained from Treasuries; PS is the equity market-wide liquidity measures of

Pastor and Stambaugh (2003); FG is the Fontaine and Garcia (2012) funding liquidity from the Treasuries; Fails are the par

value of transactions (in logs) in Treasuries that have failed to be delivered. TED is the spread between the three-month

LIBOR and 3-month Tbill rate. In the two subpanels, the regressions are run in levels and in monthly changes, respectively.

For comparison, rows denoted “R̄2 (92-07)” report the corresponding R̄2 for the sample ending in 2007:12. Panel B summarizes

the lead and lag relationship between the short- and long-end volatility factors and PS, HPW and FG liquidity. Panel B1

(leads of vol) reports the results for predicting volatility with liquidity measures; Panel B2 (lags of vol) reports the results for

predicting the liquidity measures with the lags of volatility. While we consider leads and lags up to 18 months, we report only

results for the horizon where the predictability is the highest as measured by the R̄2. k is the horizon in months, βk is the

standardized regression coefficients, t(βk) is the t-statistics, “Before crisis” summarizes whether the relationship is stronger

(S) or weaker (W) or qualitatively similar (Unch) before the crisis (i.e. sample ending in 2007:12). The predictive regressions

are estimated in levels. In panels A and B, the regression coefficients are standardized and t-statistics are with Newey-West

adjustment with 12 lags. The data is at the monthly frequency. The sample is 1992:01–2010:12.

A. Contemporaneous regressions

HPW PS FG Fails TED

Levels

Long-end vol, V11 0.74 -0.20 -0.02 0.42 0.04

( 2.49) (-2.20) (-0.08) ( 2.72) ( 0.15)

Cov, V21 0.57 -0.37 0.10 0.55 0.50

( 2.35) (-4.18) ( 0.41) ( 4.16) ( 2.04)

Short-end vol, V22 0.33 -0.30 -0.26 0.29 0.50

( 3.54) (-4.87) (-1.46) ( 2.69) ( 2.85)

R̄2 0.46 0.11 0.09 0.22 0.28

R̄2 (92-07) 0.26 0.08 0.38 0.10 0.20

Monthly changes

Long-end vol, V11 0.19 -0.05 -0.06 0.26 0.12

( 3.14) (-0.75) (-0.84) ( 5.62) ( 2.18)

Cov, V21 0.31 -0.11 0.05 0.20 0.27

( 3.11) (-2.52) ( 0.61) ( 3.23) ( 3.60)

Short-end vol, V22 0.16 -0.34 0.08 0.27 0.51

( 2.57) (-6.35) ( 1.37) ( 3.95) ( 3.09)

R̄2 0.09 0.10 0.00 0.11 0.26

R̄2 (92-07) 0.10 0.06 0.02 0.05 0.11

B. Leads and lags

B1. Leads of vol B2. Lags of vol

Measure k βk t(βk) R̄2 Before k βk t(βk) R̄2 Before

(m) crisis (m) crisis

Long-end vol, V11

PS 15 -0.27 -2.69 0.07 S 5 0.12 1.90 0.01 W

HPW 5 0.69 13.96 0.48 W 1 0.38 2.66 0.14 Unch

FG 1 -0.15 -0.72 0.02 S 7 -0.45 -2.85 0.20 S

Short-end vol, V22

PS 1 -0.22 -2.42 0.04 W 7 -0.16 -1.67 0.02 W

HPW 1 0.31 2.27 0.09 S 4 0.45 1.93 0.20 S

FG 2 -0.31 -1.87 0.09 S 9 -0.41 -1.89 0.17 S
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I. Data description

This section gives a brief description of the high-frequency Treasury data, our zero curve construction
methodology, and macroeconomic surveys.

I.A. GovPX and BrokerTec

The US Treasury market is open around the clock, but the trading volumes and volatility are concentrated
during the New York trading hours. Roughly 95% of trading occurs between 7:30AM and 5:00PM EST (see
also Fleming, 1997). This interval covers all major macroeconomic and monetary policy announcements,
which are commonly scheduled either for 9:00AM EST or 2:15PM EST. We consider this time span as a
trading day. Around US bank holidays, there are trading days with a very low level of trading activity. In
such cases, we follow the approach of Andersen and Benzoni (2010) and delete days with no trading for
more than three hours.

We choose the ten-minute sampling frequency so that it strikes the balance between the non-synchronicity
in trading and the efficiency of the realized volatility estimators (Zhang, Mykland, and Ait-Sahalia, 2005).
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The microstructure noise does not appear to be an issue in our data, as indicated by the volatility signature
plots and very low autocorrelation of equally spaced yield changes, see Figure 1.

The liquidity in the secondary bond market is concentrated in two-, three-, five- and ten-year securities (see
also Fleming and Mizrach, 2009, Table 1). We assume that the dynamics of this most liquid segment spans
the information content of the whole curve. Since any method for bootstrapping the zero curve is precise
for maturities close to the observed yields, for subsequent covolatility analysis we select yields which are
closest to the observed coupon bond maturities.

Table I reports some basic statistics on the Treasury bond transaction data in the period 1992:01 through
2010:12. For the GovPX period (1992:01–2000:12), we report the average number of quotes per trading day
and for the BrokerTec period (2001:01–2010:12) we report the average number of transactions per trading
day. The number of Treasury bonds and bills totals to 1148 in our sample period. These were transacted
or quoted more than 49.3 million times in the on-the-run secondary market.

Table I: Average number of quotes/trades per day in the GovPX and BrokerTec
databases

Bond maturity GovPX period BrokerTec period

3M 374 –

6M 352 –

2Y 2170 1414

3Y 1385 1017

5Y 3128 2801

7Y 637 1500

10Y 2649 2659

30Y 793 1114

I.B. Testing for microstructure noise

To avoid potential bias in the estimates of the realized volatility using high-frequency data, we apply several
tests for the presence of noise caused by the market microstructure effects. In a first step, we compute the
first order autocorrelation in high-frequency price returns. Table II reports the first order autocorrelation
of equally-spaced ten-minute yield changes in the US Treasury zero curve in the period 1992:01–2007:12.
The autocorrelation is statistically significant for the maturities of three, five and ten years. However, the
magnitude of all autocorrelations is very small, which makes them economically insignificant.

Table II: Autocorrelation of high-frequency yield changes

2Y 3Y 5Y 7Y 10Y

Autocorrelation 0.0039 0.0154 -0.0064 -0.0040 -0.0175

p-value (0.0648) (0.0001) (0.0025) (0.0589) (0.0001)

In a second step, we use the volatility signature plots displaying the average realized volatility against
the sampling frequency (Figure 1). In the presence of microstructure noise, the average realized volatility
increases with the sampling frequency. The reason is the dominance of noise at the very high-frequency
sampling (see e.g., Bandi and Russell, 2008). None of the above diagnostics suggests that the microstructure
noise present in our data is large and could overwhelm our results.

2



5 10 15 20 25 30
5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

6.1

6.2

sampling frequency (min.)

av
er

ag
e

w
ee

k
ly

R
V

(b
p
s)

Volatility signature plot, 1992:01-2007:12

2Y
3Y
5Y
7Y
10Y

Figure 1: Volatility signature plot

We plot the average weekly realized volatility (RV) against the sampling frequency for the whole sample 1992:01–
2007:12. We consider five maturities in the zero coupon curve: two, three, five, seven, and ten years.

Table III: Correlation of zero coupon yields with CMT and GSW yields

2Y 3Y 5Y 7Y 10Y

Corr CMT 1.000 1.000 0.999 0.996 0.997
Corr GSW 1.000 0.999 0.999 0.998 0.997

I.C. Extracting zero coupon yield curve from high-frequency data

We fit the discount curve using smoothing splines. One of the important steps in the procedure is to select
the appropriate number of knot points. We make the number of knot points dependent on the number of
available bonds and locate them at the bond maturities. In our setting, the number of knot points varies
between three and six. The fact that we consider only one specific part of the zero coupon yield curve
allows us to use constant roughness penalty as in Fisher, Nychka, and Zervos (1994) for estimating the
whole curve. Waggoner (1997) proposes a varying roughness penalty for the smoothing splines procedure
with a low penalty at the short end and a high penalty at the very long end of the curve. In the period
2001:01–2010:12, the intraday quotes on Treasury bills are not available from the BrokerTec database.
In order to anchor the very short end for the smoothing splines procedure, we include the daily data on
the three-month Treasury bill obtained from the FRED database at the FRB St. Louis. Before using
the constructed zero curve for the realized volatility estimation, we compare our zero coupon yields with
the daily Constant Maturity Treasury rates (CMT) from the Fed, as well as with zero yields compiled by
Gürkaynak, Sack, and Wright (2006) (GSW). Our daily yields are almost perfectly correlated with the
CMTs as well as with the GSW yields. Table III summarizes the results.

I.D. Realized covariance matrix estimation

This section discusses the robustness and efficiency of the realized second moment estimator proposed in
the paper that are critical for our results. In the paper, we use the outer product estimator given by:

RCov(t, t+ 1;N) =
∑

i=1,...,N

(
yt+ i

N
− yt+ i−1

N

)(
yt+ i

N
− yt+ i−1

N

)′

. (1)
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In case of asynchronous trading, the realized covariance matrix estimator defined in Eq. (1) can be
biased toward zero (see e.g. Hayashi and Yoshida, 2005; Audrino and Corsi, 2010). The bias is to a large
extent generated by the interpolation of non-synchronously traded assets, and its severity depends on the
difference in liquidity of the assets considered.1 Hayashi and Yoshida (2005, HY) propose a covariance
estimator which corrects for the bias in (1). The estimator sums up all cross-products of returns which
have an overlap in their time spans, and thus no data is thrown away. The covariance of two bond yields
reads:

RCovHY
i,j (t, t+ h;Ni, Nj) =

Ni∑

k=1

Nj∑

l=1

(
yti+ kh

Ni

− y
ti+

(k−1)h
Ni

)(
ytj+ lh

Nj

− y
tj+

(l−1)h
Nj

)
I (τi ∩ τj 6= 0) (2)

where τi and τj denote the interval of the return on the first and second bond, respectively.

To verify the robustness of our realized covariance estimator (1), we implement the HY approach for the
realized covariance of ten- and five-year bond. Both estimators deliver very similar results in terms of
magnitude and covariance dynamics. They are highly correlated (90%) and the t-test for the difference in
means does not reject the null that µouter = µHY (p-val = 0.57).

There at least two reasons why we stick to the simple outer-product realized covariance estimator (1). For
one, estimators of Hayashi and Yoshida (2005), Audrino and Corsi (2010) are not directly applicable in our
case because for the construction of the zero curve we require a synchronized set of yield changes. More
importantly, on-the-run Treasury bonds are largely homogenous in terms of liquidity, which is well proxied
by the average number of quotes/trades per day reported in Table I of Appendix I.B.

I.E. Constructing yield implied volatilities

We use at-the-money options on Treasury futures to obtain Black implied price volatility IV Black
n,t,T . The

yield implied volatility is obtained as follows (e.g. Hull, 2005):

IVn,t,T = IV Black
n,t,T /Dc

n,t

√
NC

NT
, (3)

where n is the maturity of underlying Treasury coupon bond in years, Dc
n,t denotes the duration of the

coupon bond with maturity n, (T − t) is the maturity of the option, NC denotes the number of calendar
days between t and T while NT indicates the number of trading days in the same period. Following Carr
and Wu (2006), we annualize the implied volatility using the formula below:

NT = NC − 2× int(NC/7). (4)

To obtain the weekly series used in the model estimation, we use the last business day of the week. One
could consider an alternative way of constructing implied volatilities for bonds relying on the model-free
methodology (Britten-Jones and Neuberger, 2000), similar to the one applied by the CBOE for the new
equities VIX. This approach exploits prices of all available options across strikes, and not just at-the-
money volatilities. While model-free implied volatility may have a better theoretical justification in terms
of measuring the risk neutral expected variance, its construction becomes problematic in less liquid markets
where the coverage of available strikes is irregular and sparse. The truncation of the strikes range in implied
volatility estimates introduces a measurement error that may outweigh the theoretical advantage of the
model-free approach (Andersen and Bondarenko, 2007). Since we want to cover a range of bond maturities,
the at-the-money Black’s volatility is likely to offer a more robust estimate of the implied volatilities in the
bond market.

1Audrino and Corsi (2012) offer a thorough discussion of the bias in realized covariance.
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I.F. Survey data

BlueChip Financial Forecasts. BlueChip Financial Forecasts (BCFF) survey contains monthly forecast of
yields, inflation and GDP growth given by approximately 45 leading financial institutions. The BCFF
is published on the first day of each month, but the survey itself is conducted over a two-day period,
usually between the 23rd and 27th of each month. The exception is the survey for the January issue which
generally takes place between the 17th and 20th of December. The precise dates as to when the survey
was conducted are not published. The BCFF provides forecasts of constant maturity yields across several
maturities: three and six months, one, two, five, ten, and 30 years. The short end of the term structure
is additionally covered with the forecasts of the Fed funds rate, prime bank rate and three-month LIBOR
rate. The forecasts are quarterly averages of interest rates for the current quarter, the next quarter out to
five quarters ahead. The figures are expressed as percent per annum. In addition, panelist provide forecasts
for macroeconomic quantities: real GDP, GDP price index and Consumer Price Index (CPI). The numbers
are seasonally adjusted quarter-on-quarter changes.

II. Model solution

We provide solutions for the general version of the model, which incorporates both correlation between the
dW and dZ shocks and a general form of the market prices of risk. In the paper, we analyze a version of
the model in which the correlation parameter is set to zero.

II.A. Dependence between X and V factors

In the general case, Xt and Vt can be correlated, i.e.:

dZX = dWρ+
√
1− ρ′ρ dB (5)

= dWρ+ ρ̃dB, (6)

where dB is a (2× 1)-vector of Brownian motions which is independent from dW , and ρ is a (2× 1)-vector
such that ρ ∈ [−1, 1] and ρ′ρ < 1 (e.g., da Fonseca, Grasselli, and Tebaldi, 2006; Buraschi, Porchia, and
Trojani, 2010). We use short notation ρ̃ :=

√
1− ρ′ρ.

II.B. General form of the market prices of risk

Let us write the shocks to Y under the physical dynamics as (for brevity we omit the superscript P):

dZ =

(
dZX

dZf

)
=

(
dWρ+ ρ̃dB

dZf

)
=

(
dWρ
01×2

)
+

(
ρ̃I2×2 02×1

01×2 11×1

)

︸ ︷︷ ︸
R

(
dB
dZf

)

︸ ︷︷ ︸
dZ̃

=

(
dWρ
01×2

)
+RdZ̃,

(7)

where

R =

(
ρ̃I2×2 02×1

01×2 11×1

)
, dZ̃ =

(
dB
dZf

)
. (8)

The change of drift is specified as:
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dZ̃ = dZ̃Q − ΛY,tdt (9)

dW = dWQ − ΛV,tdt (10)

ΛY,t = Σ−1
Y (Vt)

(
λ0
Y + λ1

Y Yt

)
(11)

ΛV,t =
(√

Vt

)−1

Λ0
V +

√
VtΛ

1
V , (12)

where λ0
Y and λ1

Y are a (n + 1)-vector and (n + 1) × (n + 1) matrix of parameters, and Λ0
V and Λ1

V are
n×n constant matrices. To exclude arbitrage, the market price of risk requires that the parameter matrix
Q be invertible, so that Vt stays in the positive-definite domain. This specification implies the risk-neutral
dynamics of Yt given by:

dYt =

[(
µY −

(
Λ0
V ρ
0

)
−Rλ0

Y

)
+
(
KY −Rλ1

Y

)
Yt −

(
VtΛ

1
V ρ
0

)]
dt+ΣY (Vt) dZ

Q
t . (13)

Let:

µQ
Y = µY −

(
Λ0
V ρ
0

)
−Rλ0

Y (14)

KQ
Y = KY −Rλ1

Y . (15)

The dynamics of Vt is given as:

dVt =
[(
ΩΩ′ − Λ0

V Q−Q′Λ0′
V

)
+
(
M −Q′Λ1′

V

)
Vt + Vt

(
M ′ − Λ1

V Q
)]

dt+
√
VtdW

Q
t Q+Q′dWQ′

t

√
Vt.
(16)

Let

ΩQΩQ′ = ΩΩ′ − Λ0
V Q−Q′Λ0′

V = (k − 2v)Q′Q (17)

MQ = M −Q′Λ1′
V , (18)

where, to preserve the same distribution under P and Q, we assume Λ0
V = vQ′ for a scalar v such that

(k − 2v) > n− 1.

II.C. Solution for bond prices

Since both components of the state vector, i.e. Yt, Vt, are affine, bond prices are of the form:

F (Yt, Vt; t, τ) = exp
{
A (τ) +B (τ)

′
Yt + Tr [C (τ) Vt]

}
. (19)

By discounted Feynman-Kac theorem, the drift of dF equals rF, thus:

L{Y,V }F +
∂F

∂t
= rF, (20)

where L{Y,V } is the joint infinitesimal generator of the couple {Yt, Vt} under the risk neutral measure. We
have:

L{Y,V }F = (LY + LV + LY,V )F (21)

LY F =
∂F

∂Y ′

[
µQ
Y +KQ

Y Y −
(

VtΛ
1
V ρ
0

)]
+

1

2
Tr

[
∂F

∂Y ∂Y ′
ΣY (V )Σ′

Y (V )

]
(22)

LV F = Tr
[(
ΩQΩQ′ +MQV + VMQ′

)
RF + 2VRQ′QRF

]
(23)

LY,V F = 2Tr

[(
RQ′ρ

∂

∂X ′

)
FV

]
. (24)
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R is a matrix differential operator: Rij :=
(

∂
∂Vij

)
. Substituting derivatives of (19) into (20) gives:

B′
τ

(
µQ
Y +KQ

Y Y
)
− Tr

(
Λ1
V ρB

′
X,τV

)
+

1

2
Tr

(
BX,τB

′
X,τV

)
+

1

2
B2

f,τσ
2
f (25)

+ Tr
(
ΩQΩQ′Cτ

)
+ Tr

[(
CτM

Q +MQ′Cτ + 2CτQ
′QCτ

)
V
]

(26)

+ Tr
[(
CτQ

′ρB′
X,τ +BX,τρ

′QCτ

)
V
]

(27)

=
∂Aτ

∂τ
+

∂Bτ

∂τ

′

Y + Tr

(
∂Cτ

∂τ
V

)
+ γ0 + γ′

Y Y (28)

By matching coefficients, we obtain the system of equations:

∂A

∂τ
= B′

τµ
Q
Y +

1

2
B2

f,τσ
2
f + Tr

(
ΩQΩQ′Cτ

)
− γ0 (29)

∂B

∂τ
= KQ′Bτ − γY (30)

∂C

∂τ
=

1

2
BX,τB

′
X,τ + Cτ

(
MQ +Q′ρB′

X,τ

)
+
(
MQ′ +BX,τρ

′Q
)
Cτ + 2CτQ

′QCτ − Λ1
V ρB

′
X,τ (31)

To obtain the solution provided in the text, set ρ = 02×1.

II.D. Instantaneous volatility of yields

The instantaneous volatility of yields is given as:

1

dt
〈dyτ1t , dyτ2t 〉 = 1

τ1τ2
Tr

[
Bf,τ2Bf,τ1σ

2
f +

(
BX,τ1B

′
X,τ2

+ 2Cτ2Q
′ρB′

X,τ1
+ 2Cτ1Q

′ρB′
X,τ2

+ 4Cτ1Q
′QCτ2

)
Vt

]
.

(32)

Proof. The only term which requires clarification is B′
τ1
dYt × Tr [Cτ2dVt] = B′

X,τ1
dXt × Tr [Cτ2dVt]

B′
X,τ1

dXt × Tr [Cτ2dVt] = B′
X,τ1

√
V dZX × Tr

[
Cτ2

(√
V dWQ+Q′dW ′

√
V
)]

= B′
X,τ1

√
V (dWρ+ ρ̃dB)× 2Tr

(
QCτ2

√
V dW

)

= 2Tr
(
Cτ2Q

′ρB′
X,τ1

V
)

Where we use the following fact:

Tr
[
C
(√

V dWQ+Q′dW ′
√
V
)]

= 2Tr
(
QC

√
V dW

)
. (33)

II.E. Conditional covariance of X and V

We consider the conditional covariance matrix of X and V

d

〈


Xt,1

Xt,2

ft



 ,




Vt,11

Vt,12

Vt,22




〉

=




d (X1, V11) d (X1, V12) d (X1, V22)
d (X2, V11) d (X2, V12) d (X2, V22)
d (f, V11) d (f, V12) d (f, V22)



 (34)

The elements of the covariance matrix are given by:
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d 〈Xk, Vij〉 = ρ′ (Q:,jVik +Q:,iVjk) , (35)

where Q:,j denotes the j-th column of matrix Q.

Proof. The expression follows by simple algebra:

1

dt
d 〈Vij , Xk〉 =

[
e′i

(√
V dWQ

)
ej + e′i

(
Q′dW ′

√
V
)
ej

] (
e′k
√
V dWρ

)

= Tr
(
eje

′
i

√
V dWQ

)
× Tr

(
ρe′k

√
V dW

)
+ Tr

(
eje

′
iQ

′dW ′
√
V
)
× Tr

(
ρe′k

√
V dW

)

= vec
(√

V eie
′
jQ

′
)′

vec
(√

V ekρ
′
)
+ vec

(√
V eje

′
iQ

′
)′

vec
(√

V ekρ
′
)

= Tr (Qeje
′
iV ekρ

′) + Tr
(
Qeie

′
jV ekρ

′
)

= ρ′ (Q:,jVik +Q:,iVjk) , (36)

where ei is the i-th column of the identity matrix.

II.F. Moments of the state variables

This section derives moments of the state variables necessary for the implementation of the unscented
Kalman filter.

II.F.1. Moments of the Vt process

The first conditional moment of the volatility process Vt is given as:

Et (Vt+∆t) = kµ̄V,∆t +ΦV,∆tVtΦ
′
V,∆t, (37)

where

ΦV,∆t = eM∆t (38)

µ̄V,∆t =

∫ ∆t

0

eMsQ′QeM
′sds = −1

2
Ĉ12(∆t)Ĉ′

11 (∆t) , (39)

with (
Ĉ11(∆t) Ĉ12(∆t)

Ĉ21(∆t) Ĉ22(∆t)

)
= exp

[
∆t

(
M −2Q′Q
0 −M ′

)]
.

See Van Loan (1978) for the derivation of the above expression. Assuming stationarity (i.e. negative
eigenvalues of M), the unconditional first moment of Vt follows as:

lim
∆t→∞

vecEt (Vt+∆t) = kvec (µ̄V,∞) = −k [(I ⊗M) + (M ⊗ I)]
−1

vec(Q′Q). (40)

The conditional and unconditional covariance matrix of Vt reads:

Covt [vec (Vt+∆t)] = (In2 +Kn,n)
[
ΦV,∆tVtΦ

′
V,∆t ⊗ µ̄V,∆t + k (µ̄V,∆t ⊗ µ̄V,∆t) + µ̄V,∆t ⊗ ΦV,∆tVtΦ

′
V,∆t

]
.

(41)

lim
∆t→∞

Covt [vec (Vt+∆t)] = (In2 +Kn,n) k (µ̄V,∞ ⊗ µ̄V,∞) . (42)

Kn,n is the commutation matrix with the property that Kn,nvec(A) = vec(A′). These moments are derived
in Buraschi, Cieslak, and Trojani (2010) and thus are stated without a proof.
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Gourieroux, Jasiak, and Sufana (2009) show that when ΩΩ′ = kQ′Q, k integer, the dynamics of Vt can
be represented as the sum of outer products of k independent Ornstein-Uhlenbeck processes with a zero
long-run mean:

Vt =

k∑

i=1

vitv
i′
t (43)

vit+∆t = ΦV,∆tv
i
t + ǫit+∆t, ǫit ∼ N(0, µ̄V,∆t). (44)

Taking the outer-product implies that the exact discretization of Vt has the form:

Vt+∆t = kµ̄V,∆t +ΦV,∆tVtΦ
′
V,∆t + uV

t+∆t, (45)

where the shock uV
t+∆t is a heteroskedastic martingale difference sequence.

II.F.2. Moments of the Yt dynamics

We assume that the dimension of Xt is n = 2 and ft is a scalar process. Let Yt = (X ′
t, ft)

′
:

dYt = (µY +KY Yt) dt+Σ(Vt) dZt. (46)

It is straightforward to show that the conditional and unconditional first moment of Yt has the form:

Et (Yt+∆t) =
(
eKY ∆t − I

)
K−1

Y µY + eKY ∆tYt (47)

lim
∆t→∞

Et (Yt+∆t) = −K−1
Y µY , (48)

where KY is assumed to be lower triangular with negative eigenvalues.

To compute the conditional covariance of Yt, let VY (t, T ) := Covt (YT ) . Following Fisher and Gilles (1996),
the application of Ito’s lemma to Ŷ (t, T ) := Et (YT ) reveals that:

dŶ (t, T ) = σ̂Y (t, T )dZt, (49)

where σ̂Y (t, T ) := ΦY (t, T )Σ (Vt) , with

ΦY (t, T ) = eKY (T−t) (50)

and

ΣY (Vt) =

( √
Vt 0
0 σf

)
. (51)

Then, integrating dŶ (t, T ) yields:

YT = ŶT,T = Ŷt,T +

∫ T

s=t

σ̂Y (s, T )dZs. (52)

Therefore, we have:

VY (t, T ) = Covt

[∫ T

s=t

σ̂Y (s, T )dZ
Y
s

]
= Et

[∫ T

s=t

σ̂Y (s, T )σ̂Y (s, T )
′ds

]
(53)

=

∫ T

s=t

ΦY (s, T )Et

(
Vs 0
0 σ2

f

)
Φ′

Y (s, T )ds. (54)

Note that since KY is lower triangular, ΦY (t, T ) = eKY (T−t) is also lower triangular, and we have:
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ΦY (t, T ) =

(
ΦX (t, T ) 0
ΦXf (t, T ) Φf (t, T )

)
. (55)

Let us for convenience define two matrices:

M1Y (t, T ) =




ΦX(t, T )⊗ ΦX(t, T )
ΦX(t, T )⊗ ΦfX(t, T )
ΦfX(t, T )⊗ ΦX(t, T )
ΦfX(t, T )⊗ ΦfX(t, T )


 and M0Y =

(
08×1

Φ2
f (t, T )σ

2
f

)
. (56)

With help of simple matrix algebra applied to (54), the conditional covariance of Yt has the (vectorized)
form

vecVY (t, T ) =

∫ T

s=t

M1Y (s, T ) [ΦV (s, T )⊗ ΦV (s, T )] ds× vec (Vt) (57)

+

∫ T

s=t

kM1Y vec [µ̄V (t, s)] ds+

∫ T

s=t

M0Y (s, T )ds. (58)

The unconditional covariance of Y is given as:

lim
T→∞

vecVY (t, T ) = lim
T→∞

∫ T

s=t

kM1Y (s, T )vec [µ̄V (t, s)] ds+

∫ T

s=t

M0Y (s, T )ds. (59)

This expression exists if the mean reversion matrices M and KY are negative definite.

The expressions for the conditional mean (47) and covariance (58) give rise to an exact discretization of
the process Yt.

Remark 1. In order to avoid the numerical integration, we can resort to a discrete-time approximation
of the unconditional covariance matrix of Y factors. To this end, we discretize the dynamics

dYt = (µY +KY Yt) dt+ΣY (Vt) dZt (60)

as

Yt+∆t = µ̄Y,∆t +ΦY,∆tYt +ΣY (Vt)
√
∆tεt+∆t, (61)

where µ̄Y,∆t =
(
eKY ∆t − I

)
K−1

Y µY . The second moment of the discretized dynamics is straightforward to
obtain as:

vecE (Y Y ′) = (I − ΦY,∆t ⊗ ΦY,∆t)
−1 ×

×vec
{
µ̄Y,∆tµ̄

′
Y,∆t + µ̄Y,∆tE (Y ′)Φ′

Y,∆t +ΦY,∆tE (Y ) µ̄′
Y,∆t + E

[
ΣY (Vt)ΣY (Vt)

′]
∆t

}
(62)

vec [V ar (Y )] = vecE (Y Y ′)− vecE (Y ) [vecE (Y )]
′
.

We check that for the weekly discretization step ∆t = 1
52 this approximation works well, and implies a

significant reduction of the computational time.

II.G. Discrete approximation to the unconditional covariance matrix of X and V

We can use the discretized dynamics of X and V to compute the unconditional covariance matrix:

Xt+∆t = µ̄X,∆t +ΦX,∆tXt +
√
Vt∆t (Ut+∆tρ+ ρ̃bt+∆t) (63)

Vt+∆t = kµ̄V,∆t +ΦV,∆tVtΦ
′
V,∆t +

√
Vt∆tUt+∆tQ+Q′U ′

t+∆t

√
Vt∆t, (64)
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where Ut is a 2 × 2 matrix of Gaussian shocks, and bt is a 2-vector of Gaussian shocks. The covariance
between X and V is computed as :

Cov [X, vec(V )] = E
[
Xvec (V )

′]− E (X)E
[
vec (V )

′]
. (65)

The element E
[
Xvec (V )′

]
reads:

vecE
[
X (vecV )

′]
= [In3 − (ΦV ⊗ ΦV )⊗ ΦX ]

−1
(vecA+ vecB) , (66)

where A is given as:

A = µ̄Xvec (kµ̄V )
′
+ µ̄Xvec [ΦV E (Vt)Φ

′
V ] + ΦXE(Xt)vec(kµ̄V )

′, (67)

and the elemtent (k, ij) of matrix B, associated with the covariance of Xk and Vij has the form:

Bk,ij = ρ′ (Q:,jVik +Q:,iVjk)∆t, (68)

where B =

(
B1,11 B1,12 B1,21 B1,22

B2,11 B2,12 B2,21 B2,22

)
. Note that the second and third columns of B are identical.

III. Model estimation

III.A. Discretization and vectorization of the state space

This section collects the details about the vectorization of transition dynamics for Yt and Vt.

The transition equation for Yt is specified as an Euler approximation of the physical dynamics given by
equation (5) in the paper:

Yt+∆t = µ̄Y,∆t +ΦY,∆tYt + uY
t+∆t, (69)

where uY
t is a vector of heteroskedastic innovations uY

t = ΣY (Vt)
√
∆tǫt+∆t. The transition equation for

the matrix process Vt is obtained by an exact discretization of the dynamics (3) in the body of the paper:

Vt+∆t = kµ̄V,∆t +ΦV,∆tVtΦ
′
V,∆t + uV

t+∆t, (70)

where uV
t represents a symmetric matrix of heteroskedastic innovation. µ̄Y,∆t, µV,∆t, ΦY,∆t and ΦV,∆t are

explicit functions of the continuous-time parameters.

Parameters for discretized transition dynamics of Yt are given by:

µ̄Y,∆t =
(
eKY ∆t − I

)
K−1

Y µY (71)

ΦY,∆t = eKY ∆t. (72)

Parameter matrices ΦV,∆t and µ̄V,∆t for discretized transition dynamics of Vt are given by:

µ̄V,∆t =

∫ ∆t

0

ΦV,sQ
′QΦ′

V,sds (73)

ΦV,∆t = eM∆t, (74)

The closed form solution for the integral µ̄V,∆t is given by
∫ ∆t

0 ΦV,sQ
′QΦ′

V,sds = −Ĉ12(∆t)Ĉ′
11(∆t), where

(
Ĉ11(∆t) Ĉ12(∆t)

Ĉ21(∆t) Ĉ22(∆t)

)
= exp

[
∆t

(
M −Q′Q
0 −M ′

)]
.

See Van Loan (1978) for the proof.
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We recast the discretized covariance matrix dynamics Vt in a vector form:

vec(Vt+∆t) = kvec(µ̄V,∆t) + (ΦV,∆t ⊗ ΦV,∆t)vec(Vt) + vec(uV
t+∆t). (75)

Since the process Vt lives in the space of symmetric matrices, its lower triangular part preserves all
information. Let us for convenience define two linear transformations of some symmetric matrix A: (i)
an elimination matrix: Envec(A) = vech(A), where vech(·) denotes half-vectorization, (ii) a duplication
matrix: Dnvech(A) = vec(A). Using half-vectorization, we define V̄t := vech(Vt) = Envec(Vt), which
contains n̄ = n(n+ 1)/2 unique elements of Vt:

V̄t+∆t = kEnvec(µ̄V,∆t) + En(ΦV,∆t ⊗ ΦV,∆t)DnV̄t + Envec(uV
t+∆t). (76)

Collecting all elements, we can redefine the state as: St = (Y ′
t , V̄

′
t )

′, whose transition is described by the
conditional mean:

Et (St+∆t) =

( (
eKY ∆t − I

)
K−1

Y µY + eKY ∆tYt

kEnvec(µ̄V,∆t) + En(ΦV,∆t ⊗ ΦV,∆t)DnV̄t

)
, (77)

and the conditional covariance of the form:

Covt (St+∆t) =

(
Covt(Yt+∆t) 0n×n̄

0n̄×n Covt
(
V̄t+∆t

)
)
. (78)

The block diagonal structure in the last expression follows from our assumption that shocks in Yt be
independent of shocks in Vt. The respective blocks are given as:

Covt(Yt+∆t) = ΣY (Vt)ΣY (Vt)
′∆t (79)

Covt
(
V̄t+∆t

)
= EnCovt (Vt+∆t) E ′

n

= En (In2 +Kn,n)
[
ΦV,∆tVtΦ

′
V,∆t ⊗ µ̄V,∆t + k (µ̄V,∆t ⊗ µ̄V,∆t) + µ̄V,∆t ⊗ ΦV,∆tVtΦ

′
V,∆t

]
E ′
n,

(80)

where Kn,n denotes a commutation matrix (see e.g., Magnus and Neudecker, 1979). Buraschi, Cieslak, and
Trojani (2010) provide the derivation of the last expression.

III.B. Econometric identification

This section details our econometric identification procedure and parameter restrictions. To ensure econo-
metric identification, we consider invariant model transformations of the type Ỹt = v+LYt and Ṽt = LVtL

′,
for a scalar v and an invertible matrix L. Such transformations result in the equivalence of the state
variables, the short rate and thus yields (Dai and Singleton, 2000). If allowed, they can invalidate the
results of an estimation.

To prevent the invariance, we adopt several normalizations for the risk-neutral Q dynamics of the process
Yt: (i) Setting µQ

Y = 0 allows to treat γ0 as a free parameter. (ii) Restricting γf = 1 makes σf identified.
(iii) Since both KX and Vt determine interactions between the elements of Xt, they are not separately
identifiable. We set KQ

X to a diagonal matrix, and allow correlations of the Xt factors to be generated

solely by Vt. By the same token, the last row of matrix KQ
Y , i.e.

(
KQ

fX ,KQ
f

)
is left unrestricted, as ft does

not interact with Xt via the diffusion term.

The identification of volatility factors Vt is ensured with three restrictions: (i) MQ is lower triangular
and (ii) Q is diagonal with positive elements. (iii) The diagonal elements of Q are uniquely determined
by setting γX = 1n×1, where 1n×1 is a vector of ones. These normalizations protect Vt against affine
transformations and orthonormal rotations of Brownian motions. Finally, to guarantee the stationarity of
the state, we require that the mean reversion matrices KQ

Y and MQ be negative definite. Due to the lower
triangular structure of both, this is equivalent to restricting the diagonal elements of each matrix to be
negative.
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III.C. Implementation of the filter

This section summarizes the algorithm for the unscented Kalman filtering. We recast the transition and
measurement equations above into one state space. The compound transition equation is given by:

St+∆t = A+BSt + εt+∆t, (81)

and the compound measurement equation is given by:

mt = h(St; Θ) + ϑt. (82)

St = (Y ′
t , V̄

′
t )

′ and A are (n+ n̄+ 1)× 1-dimensional vectors, A is given by:

A =

(
(ΦY,∆t − I)K−1

Y µY

k · Envec(µ̄V,∆t)

)
. (83)

B is a block-diagonal matrix of the form:

B =

(
ΦY,∆t 0n×n̄

0n̄×n En(ΦV,∆t ⊗ ΦV,∆t)Dn

)
. (84)

The vector shocks is of the form:

εt+∆t =

(
uY
t+∆t

Envec(uV
t+∆t)

)
, (85)

and its covariance matrix is given by a block-diagonal matrix:

Covt(εt+∆t) =

(
Covt(Yt+∆t) 0n×n̄

0n̄×n Covt(V̄t+∆t)

)
. (86)

mt is a vector of observed yields and volatility measures given by mt = (yτt , v
τi,τj
t , vQ,τ

t,t+4)
′. Model implied

yields and volatilities are affine in the state vector. Function h(·) translates the state variables to model
implied yields and volatilities:

h(St; Θ) =




f1(St; Θ)
f2(Vt; Θ)
f3(Vt; Θ)



 . (87)

The vector of measurement errors:

ϑt =




√
R1e1,t√
R2e2,t√
R3e3,t



 (88)

is Gaussian with the covariance matrix, for six yields and three volatility measurements, is given by:

Cov(ϑt) =

(
σ2
yI6 06×7

07×6 diag(σ2
i,v)i=1,...,7

)
. (89)

The core of UKF is the unscented transformation which approximates a distribution of a nonlinear
transformation of any random variable by a set of sample points. In the UKF framework, we apply
the unscented transformation recursively to B and h(·).

We define LS := n+ n̄+ 1. Assume that we know the mean S̄ and the covariance PS of St at each point
in time t. We form a matrix S of 2LS + 1 sigma vectors:

13



S0 = S̄ (90)

Si = S̄ +
(√

(LS + λ)PS

)

i
, i = 1, ..., LS (91)

Si = S̄ −
(√

(LS + λ)PS

)

i−LS

, i = LS + 1, ..., 2LS, (92)

where λ = α2(LS − κ)− LS is a scaling parameter governing the spread of sigma points around the mean

and
(√

(LS + λ)PS

)

i
is the i-th column of matrix PS . Sigma points S are propagated through function

h(·) to get M. The first two moments of mt are approximated by:

m̄ ≈
2LS∑

i=0

Wµ
i Mi (93)

PS ≈
2LS∑

i=0

W σ
i (Mi − m̄)(Mi − m̄)′, (94)

where Wµ and W σ denote weights for the mean and the covariance matrix, respectively and are defined
as:

Wµ
0 =

λ

LS + λ
(95)

W σ
0 =

λ

LS + λ
+ 1− α2 + β, i = 1, ..., LS (96)

Wµ
i = W σ

i =
λ

2(LS + λ)
, i = LS + 1, ..., 2LS. (97)

Parameters α and β, mainly determine higher moments of the distribution.

The UKF Algorithm

1. Initialize at unconditional moments:2

Ŝ0 = E[S0] (98)

PS0 = E[(S0 − Ŝ0)(S0 − Ŝ0)
′] (99)

for k ∈ 1, ...,∞:

2. Compute the sigma points:

Sk−1 =
[
Ŝk−1 Ŝk−1 +

√
(LS + λ)PS,k−1 Ŝk−1 −

√
(LS + λ)PS,k−1

]
(100)

3. Time update:

Sa
k|k−1 = B(Sk−1) (101)

Ŝ−
k =

2LS∑

i=0

Wµ
i Sa

k|k−1 (102)

P−
Sk =

2LS∑

i=0

W σ
i (Sa

ik|k−1 − Ŝ−
k )(Sa

ik|k−1 − Ŝ−
k )′ + Covt(εt+∆t) (103)

2We borrow the algorithm from Wan and van der Merwe (2001).
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4. Augment sigma points:

Sk|k−1 =
[
Sa
k|k−1 Sa

0k|k−1 +
√
(LS + λ)Covt(εt+∆t) Sa

0k|k−1 −
√
(LS + λ)Covt(εt+∆t)

]

(104)

Mk|k−1 = h(Sk|k−1) (105)

m̂−
k =

2LS∑

i=1

W σ
i Mi,k|k−1 (106)

5. Measurement equations update:

P−
mk

=

2LS∑

i=0

W σ
i (Mik|k−1 − m̂−

k )(Mik|k−1 − m̂−
k )

′ + Covt(ϑt+∆t) (107)

PSkmk
=

2LS∑

i=0

W σ
i (Sik|k−1 − Ŝ−

k )(Mik|k−1 − m̂−
k )

′ (108)

Kk = PSkmk
P−1
mk

(109)

F̂k = F̂−
k +Kk(mk − m̂−

k ) (110)

Pk = P−
k −KkP

−
mk

K′
k. (111)

III.D. Pseudo-maximum likelihood estimation

Collecting all measurements in vector mt+1, let m̂
−
t+1 and P̂−

m,t+1 denote the time-t forecasts of the time-
(t + 1) values of the measurement series and of their conditional covariance, respectively, as returned by
the filter (for convenience 1 means one week). By normality of measurement errors, we can compute the
quasi-log likelihood value for each time point in our sample:

lt+1(Θ) = −1

2
ln |P−

m,t+1| −
1

2

(
m̂−

t+1 −mt+1

)′ (
P−
m,t+1

)−1 (
m̂−

t+1 −mt+1

)
, (112)

and obtain parameter estimates by maximizing the criterion:

Θ̂ := argmin
Θ

L
(
Θ, {mt}Tt=1

)
with L

(
Θ, {mt}Tt=1

)
=

T−1∑

t=0

lt+1 (Θ) . (113)

with T = 999 weeks. The initial log-likelihood is evaluated at the unconditional moments of the state
vector (see Section II.F for the expressions).

IV. Estimation results

Table IV reports parameter estimates and the corresponding standard errors for the model outlined in
Section II in the body of the paper. At the bottom of the table, we report the contributions of yields,
realized and implied volatility to the likelihood function. Table V reports the in-sample fit of the model to
yields, realized and implied volatilities.
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Table IV: Parameter estimates

This table reports parameter estimates for the baseline model outlined in Section II in the body of the paper. Panel

A reports the yield curve parameter estimates and Panel B shows the estimates of volatility related parameters.

BHHH standard errors are in parentheses. The last section of the table shows the log-likelihood values divided by

the number of observations T .

A. Yield curve parameters B. Volatility parameters

Parameter Estimate Parameter Estimate

K
Q
11

-0.022 MQ
11

-0.979

(3.8e-4) (0.196)

K
Q
22

-1.157 MQ
21

-1.348

(0.057) (0.369)

K
Q
31

0.990 MQ
22

-1.848

(0.088) (0.029)

K
Q
32

-6.485 Q11 2.8e-3

(0.403) (2.1e-4)

K
Q
33

-0.565 Q22 7.6e-3

(0.023) (6.8e-4)

γ0 0.148 k 6.000

(0.020) (0.264)

λ0

Y,11 -1.8e-3 v -2.120

(5.5e-4) (0.121)

λ0

Y,21 -2.2e-3 σf 0.006

(6.2e-4) (1.6e-4)

λ0

Y,31 -0.049 Λ1

V,11 205.9

(0.010) (66.27)

λ1

Y,22
0.061 Λ1

V,12
187.1

(0.114) (74.71)

λ1

Y,31
-1.227 Λ1

V,22
142.3

(0.077) (39.40)

λ1

Y,32
0.491 – –

(0.595) – –

σMY 7.65e-7 – –

(6.6e-9) – –

Loglik yτt /T 38.76 Loglik vτ
t,RV

/T 35.85

– – Loglik vτ
t,IV

/T 4.83

Table V: Model fit

This table gives the in-sample fit for baseline model specification presented in Table IV. Additionally, we report its

ability to match the realized and implied volatility dynamics. We report root mean squared error (RMSE) in bps

per annum.

Yields Realized vol. Implied vol.

6 month 4.69 – –

2 year 3.68 25.11 17.87

3 year 3.46 – –

5 year 4.10 23.21 10.52

7 year 3.17 – –

10 year 4.50 18.43 9.57
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V. Expressions for the volatility of the short rate expectations and term premium

This section provides the formulas for a model-based decomposition of yield volatility into volatility of short
rate expectations and term premium volatility. Treasury yield with maturity τ -years can be decomposed
as follows:

yτt =
1

τ
EP

t

(∫ τ

0

rt+s

)
ds+

1

τ

[
EQ

t

(∫ τ

0

rt+s

)
ds− EP

t

(∫ τ

0

rt+s

)
ds

]

− 1

τ

[
lnEQ

t

(
e−

∫
τ

0
rt+sds

)
+ EQ

t

(∫ τ

0

rt+s

)
ds

]
,

where the first term is the expected average short rate during the life of the bond, the second term is the
term premium and the third term is the convexity. We are interested in the conditional volatilities of the
first and second term. This requires the computation of the following matrix integrals:

SP
τ =

∫ τ

0

eK
P
Y sds

SQ
τ =

∫ τ

0

eK
Q

Y
sds,

where KY is the mean reversion matrix of the Yt process. We compute this integral using the result from
Van Loan (1978). Let

P =

(
03×3 I3×3

03×3 KY

)
,

then the integral can be obtained from the upper right block of the following matrix exponential:

ePτ =

(
I

∫ τ

0
eKY sds

0 ×

)
.

The conditional variance of the term premium of a τ -maturity is given as:

V arrpy,τt =
1

τ2
Tr

[(
SQ
τ − SP

τ

)′
γY γ

′
Y

(
SQ
τ − SP

τ

)
Σ(Vt)Σ(Vt)

′
]
.

Similarly, the conditional variance of the short rate expectations is:

V arEr,τ
t =

1

τ2
Tr

[
SP′
τ γY γ

′
Y S

Q
τ Σ(Vt)Σ(Vt)

′
]
.

Finally, for each τ -maturity yield, the conditional covariance between the short rate expectations component
and the risk premium component can be obtained as:

Covrpy,Er,τ
t =

1

τ2
Tr

[
SP′
τ γY γ

′
Y (S

Q
τ − SP

τ )Σ(Vt)Σ(Vt)
′
]
.
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