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Abstract:    The seismic protection of objects contained within Museums is a topic of great interest, especially with reference to 
how they are displayed or stored. This problem is the same as that of a large class of non-structural components, such as me-
chanical and electrical hospital and laboratory equipment that could lose their functionality because of earthquakes. Statues and 
ceramics simply supported on the floor represent a significant set of case. In some cases, like the Bronzes of Riace, isolation 
systems have been developed. However, in general museum exhibits are not equipped with devices capable of mitigating the 
oscillations induced by possible earthquakes. The case study of a marble statue placed on a freestanding squat rigid pedestal is 
examined. The system of algebraic differential equations governing the problem has been derived and included in an ad-hoc 
numerical procedure. It is shown that the insertion of a squat rigid body with low frictional resistance at the lower interface with the 
floor, and high frictional resistance at the upper interface with the artifact significantly reduces the amplitude of the rocking 
response. As a result the artifact rocks without sliding on the rigid base that slides without rocking with respect to the floor. The 
numerical analysis performed can be a tool to help in the choice of the optimal friction values in the surfaces of the flat block, 
designed as a simple isolation system. 
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1  Introduction 
 

Early studies on the rocking response of a rigid 
block supported on a base undergoing horizontal 
motion were presented by Housner (1963), who first 
established and solved the equations of motion of the 
rigid body. The study was devoted to the under-
standing of the behaviour of tall, slender structures 
subjected to ground motion. Only recently have pa-
pers addressed the issue of  the contents of buildings 

in seismic areas, especially art objects in museums 
(Gesualdo et al. 2016a). The seismic safety of arti-
facts is a research field of great interest, being part of 
research and policy in the more general field of Cul-
tural Heritage, and has attracted several local gov-
ernment and European research grants (Erdik et al. 
2010). 

The first paper related to the seismic safeguard-
ing of art objects is that by Agbabian et al. (1991). It 
was developed in the framework of a research pro-
gram sponsored by the Getty Museum in Malibu, 
California. In that study a wide range of objects was 
classified according to their form, and method of 
exhibiting. Analytical and experimental techniques 
were combined in order to evaluate the possible 
damage risk due to earthquakes. One of the problems 
examined concerned the safeguarding of freestanding 
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vases and statues. The problem involves limitation of 
excessive motion of rigid bodies under earthquake 
excitation. Since the late XIX century the behaviour 
of many objects such as hospital devices, statues, and 
storage tanks has been studied in this framework 
(Penta et al. 2014). Six basic conditions (Augusti et 
al. 1992) have been distinguished: rest, slide, rock, 
slide-rock, free flight and impact. Despite their fa-
miliarity and apparent simplicity, the motions of rigid 
bodies in response to earthquake excitations pose 
extremely difficult problems when exact solutions are 
sought (Voyagaki 2014). Shenton (1996) has shown 
that the motion of a rigid object simply supported on a 
uniformly accelerating rigid plane depends not only 
on the object shape and the base acceleration, but also 
on the friction coefficient. According to the author the 
friction required to initiate a rocking mode increases 
with ground acceleration. It has been shown (Monaco 
et al. 2014) that the range of a sliding-rock is larger in 
the case of harmonic excitation. The role of friction 
and its influence on the quality of motion has also 
been considered (Sinopoli 1997). 

A rigid structure placed on a shaking base may 
enter a rocking motion that occasionally results in 
overturning (Guadagnuolo et al. 2009). In some cases 
an appropriate constitutive model of the structure is 
an essential tool for the protection of the museum 
building (Gesualdo et al. 2015, Cennamo et al., 
2017), but in the case of art objects the development 
of a designed exhibit system is needed (Chierchiello 
et al. 2015). In the first studies performed in Japan 
(Ishiyama 1982), a computer simulation showed that 
the horizontal velocity as well as the acceleration 
must be taken into account as criteria for overturning. 
Since the rocking response of a rigid body to base 
motion is sensitive to parameters defining the geom-
etry of the body and details of base motion (Housner 
1963), a limited number of simulated ground motions 
can produce curves giving the probability of the body 
to overturn (Yim et al. 1980). The simplest of the 
mathematical models that has received notable atten-
tion in the past has been the planar rocking of rigid 
rectangular blocks under harmonic base motions 
(Newmark, 1965; Spanos et al. 1984) although also 
the influence of the ground motion properties has 
been analyzed since the first years of 1980’s (Yim et 
al. 1980, Purvance et al. 2008). In the harmonic 
problem, the non-linearity arises not only in the dis-

placements but also in the dissipation of energy due to 
impacts. Using two types of base motions, 50 artifi-
cial earthquakes simulated in a way identical to that of 
Yim et al. and 75 real earthquakes, Shao and Tung 
(1999) showed that real earthquakes give a lower 
probability of overturning than simulated earth-
quakes. The rocking response of a rigid body to 
harmonic shaking as well to simulated earthquake 
motions has been deduced both numerically and by 
laboratory experiment (Aslam et al. 1980, Hogan 
1989). The last-named autor examined stability 
boundaries and  the evolution of motion with different 
starting conditions. 

The influence of the slenderness parameter has 
been much investigated (Psycharis et al., 2000, Ma-
kris et al. 2012). Recent works (Prieto et al., 2005) 
have tried to unify the piecewise formulation of 
Housner, with the same hypothesis of a large friction 
coefficient. The traditional piecewise formulation is 
replaced by a single ordinary differential equation, 
and damping effects are no longer introduced by 
means of a coefficient of restitution, but are under-
stood as the presence of impulsive forces. The results 
are in agreement with the classical formalism, and can 
be set as a direct analogy with either a two-body 
central problem in the complex plane, or an inverted 
pendulum through simple variable transformations. 
Unfortunately these elegant formulations are unsuit-
able when rocking motion is to be avoided and sliding 
motion is welcome, as in the case of artifacts (Gesu-
aldo et al., 2014). A limited number of studies take 
into account sliding motion (Voyagaki et al., 2012), 
since in large part the friction coefficient between the 
block and base is assumed sufficiently large to pre-
vent sliding. In the paper by (Kounadis, 2015) the 
combination of rocking and sliding for the simple 
block case is reported. In the slender block problem 
closed form solutions are derived. 

Some studies on the response of this system have 
revealed the presence of a rich variety of non-linear 
resonances and even the possibility of the response 
becoming chaotic. Tackling analytically the equations 
of motion for real earthquake ground motions is not a 
trivial task even for very simple waveforms (Kon-
stantinidis et al., 2010). A range of idealized ground 
acceleration pulses expressed by a generalized func-
tion controlled by a single shape parameter has been 
considered in (Voyagaki et al., 2014). The problem is 
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treated analytically by means of linearized equations 
of motion under the assumption of slender block 
geometry and rocking without sliding. Peak rocking 
response and overturning criteria for different wave-
forms are presented in terms of dimensionless 
closed-form expressions and graphs. Recent attempts 
have been made to derive equivalence between the 
single rocking block and various rocking mecha-
nisms, in order to give an indication for real structures 
(DeJong et al., 2014). 

The problem becomes more complex when the 
behaviour of two stacked rigid bodies is examined: 
the highly nonlinear formulation needs some simpli-
fying assumptions (Psycharis 1990). In the case ex-
amined by Spanos (2001) large friction is considered 
to prevent sliding. In the case of a museum artifact, 
rocking behaviour is not a desired condition, but 
sliding should be sought (Gesualdo et al., 2016b). In 
particular cases, like the Riace Bronzes isolation 
systems have been developed, while in general, mu-
seum exhibits are not equipped with devices capable 
of mitigating the oscillations induced by possible 
earthquakes (Gesualdo et al., 2017). A simple and 
low cost system should be developed in order to 
protect small art objects (Di Egidio et al., 2009). 

In this paper, this last problem is addressed: the 
dynamic behaviour of two stacked rigid bodies is 
considered. The two rigid bodies represent the slender 
artifact and the squat rigid base inserted between the 
floor and the artifact. In Section 2 the dynamic equa-
tions governing the motion of the single block are 
derived. Sliding and rocking motion are taken into 
account. In Section 3 the equations of dynamic be-
haviour of two superimposed rigid blocks under 
harmonic base motion are deduced and solved by 
means of a purpose-built numerical procedure. Ref-
erence is made to two case studies. 

The results could be useful in the determination 
of the optimal frictional coefficient of the interface 
between the art object and the squat base. The anal-
yses show that the proposed system results in a de-
crease of oscillation amplitude and in some cases 
avoids the overturning.  

 
 

2  Rocking and sliding response of a single 
block 

2.1  Rocking 

The pure rocking motion of one rigid block is 
examined. A symmetric rigid block with aspect ratio, 
B/H simply supported on a moving plane with accel-
eration ( )gx t  is shown in Fig. 1. The static friction 

coefficient μs takes into account the amount of force 
that is needed to originally initiate the sliding motion.  

 
 
 
 
 
 
 
 
 
 
 
 

 
The force needed to keep the object sliding is 

proportional to the kinetic friction coefficient μk, with 
μs>μk. The block can rotate alternatively around the 
two base corners O and O′ with rotation angle θ, 
clockwise positive, (see Fig. 2). Energy is lost only 
during impact, when the angle of rotation reverses 
(Moreau et al., 1988). Reference is made to the clas-
sical approach of the dynamics of an inverted pen-
dulum under impulsive excitations (Housner 1963). 

The velocity after a perfect plastic and centered 
impact is related to the pre-impact velocity field by 
means of a restitution coefficient r, assumed constant 
during the motion. The angular velocity of the block 
after the impact is given by:  

 

 ( ) ( ).rt t                            (1) 

 
In these hypotheses the conservation of angular mo-
mentum about point O′ just before and just after the 
impact is: 
 

 2 sin ) )( .(o oI mrb t I t              (2) 

 
The value of r for a rectangular block can be derived 
by a combination of (1) and (2): 
 

 23
1 s .

2
,in 0 1r r                   (3) 
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Fig. 1  The single rocking block 
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When the rotation axis instantaneously moves be-
tween O and O′ the coefficient of restitution is a 
measure of the energy lost during the impact. Rocking 
motion is present when the static friction with the 
base plane is so great as to prevent sliding. Adopting 
the notation by Shenton (1996), let fx and fz be the 
horizontal and vertical reactions at the tip O′ of the 
block, and at all times the rocking motion holds true 
if: 
 

 s .x yf f                            (4) 

 
In other words, starting from an equilibrium 

configuration of the system and given the condition 
(4), the angular momentum of inertial forces is greater 
than that due to gravity. The rocking motion, ac-
cording to the D’Alembert principle, is governed by 
the following set of differential equations (DEs): 
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   (5) 

 
where ( )g tx  is the horizontal base acceleration, 

IO=IO′ is the polar inertia moment with respect to the 
two points O and O′ and the rocking motion starts 

when ( ) ,gx t g b h  being g the acceleration due to 

gravity. The first two ordinary nonlinear differential 
equations are relative to the rotation motion around O 
and O′ and the third algebraic equation relates the two 
angular velocities in O and O′ and holds true at the 
impact instant only. The angle α=arctanb/h takes into 
account the slenderness of the block. By the signum 
function: 

 

 
1, ( ) 0,

sgn ( )
1, ( ) 0,

t
t

t
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the system (5) can assume the following form: 
 

    
  
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 (6) 

 
The numerical solution of the DEs (6) may be 

put more conveniently in terms of a key point dis-
placement, considering two reference systems with 
origin in the two rotation points O and O′, namely 

1={O, x, y} for θ(t)>0 and 2={O′, x′, y′} for θ(t)<0. 

Let θ(t) be the rotation function. The position of 
the point P at time t in the two frame systems de-
scribed above is related to the position vector at the 
starting time: 
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                (7) 

 
so that the actual position of the point P is given by 

the rotation matrix ( )R t  applied on (1)rP  and (2)rP : 
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(2)
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Fig. 2  Reference systems for the single rocking block in 
rocking for (a) θ(t)<0 and (b) θ(t)>0  
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where the rotation matrix R, being SO(2) the or-
thogonal group of matrices with det(R)=1, is: 
 

 
cos( ) sin( )

( )
sin( ) cos( )

R
.

  
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from (8) the acceleration is derived as: 
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After some manipulation (10) can be rewritten as 
follows: 
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where the first derivative of the rotation matrix be-
longs to the orthogonal group of matrices with unit 
determinant: 
 

 
sin( ) cos( )
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The horizontal component of relative accelera-

tion can be deduced by (11):  
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with i the unit vector of the x axis. The horizontal 
acceleration ( )x t  can be put in the explicit form:  
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(12) 
 
The absolute acceleration: 
 

 ( ) ( ) ( )a gx t x t x t                        (13) 

 
is the sum of the base and block accelerations. 

2.2  Sliding 

The configuration of the block in the case of 
sliding motion can be characterized by the translation 
of a generic point of the block with respect to the base 
(Newmark 1965, Conte and Dente 1989). The friction 
force is a function of the vertical forces applied to the 
block and is opposite to the motion.  

Starting from an equilibrium configuration, 
sliding motion begins when the maximum horizontal 
force due to the static friction coefficient is attained 
(Voyagaki et al., 2012). 

 
 

 

 

 

 

 

 

 

 

With reference to the scheme of Fig. 3, the governing 
equations are: 
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Starting from the instant in which the friction 

contact force is exceeded by the inertial forces related 
to (13), the differential equation of sliding (142) is 
integrated in the numerical procedure until the rela-
tive velocity ( )x t  is nonzero. When the velocity be-
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Fig. 3  The single sliding block un
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comes null the block is in relative equilibrium with 
the base (rest) until the external force attains a value 
able to reactivate the sliding motion. 

 
 

3  Dynamic analysis of double stacked 
blocks 

 
The analysis of rocking behaviour is a key aspect 

of safety assessment and the maintenance of artifacts, 
like statues and vases, since the rocking itself can be 
the cause of damage at the base of the object, due to 
impact with the support. By seismic excitation, a 
freestanding object may in fact enter a rocking state 
which would cause overturning, so that often the 
sliding is desirable, given the possibility of evaluating 
relative displacements to avoid collisions. 

The prevention of seismic damage can be af-
fected by base isolation devices as in the cases of the 
Bronzes of Riace (Fig. 4a), but this type of protection 
is expensive and can only really be used for particu-
larly valuable objects. In the majority of cases, mu-
seum exhibitions are not equipped with isolation 
devices for every single contained object. For the 
Bronzes the protection system is composed of two 
marble blocks connected by  

spheres and dissipative devices made by stain-
less steel cables for horizontal displacement limita-
tion and recentering, while a vertical isolation ele-
ment is located in the upper block (De Canio, 2012), 
(Fig. 4b). 

This paper presents the theoretical and numerical 
bases of a simple and low cost isolation system to 
protect small art objects. This is key since smaller 
artifacts are also the more prone to overturning since 
 

 
 
 
 
 
 
 
 
 
 
 
 

the rocking response is highly influenced by the size 
of the object. The insertion of a further rigid body 
between the moving base and the statue can reduce 
the effect of base motion due to earthquakes. 

It is possible to develop surfaces with an a priori 
fixed friction coefficient so that the oscillation at the 
base of the art object can be reduced and in some 
cases avoided thus controlling the value of the friction 
coefficient between the contact surfaces. In the fol-
lowing, the results of an analysis made by means of a 
purpose-built numerical procedure are presented. 

This study is the first step toward the choice of 
the optimal friction coefficient to be created in these 
inserted surfaces. The problem studied in this section 
concerns the motion of two superimposed blocks of 
different aspect ratio: a top slender block placed on a 
flat one, both on a moving base. 

The hypotheses are made in order to represent 
the real situation of a marble statue placed on a flat 
rigid pedestal freestanding on a moving floor 
(Fig. 4c). The problem is mixed: the possible motion 
for the lower flat block is the only sliding one, while 
rocking is the only possible motion for the stacked 
slender block. The differential equations governing 
the problem have been derived and included in the 
numerical procedure developed with Mathematica© 
(Wolfram 2003). 

3.1  Formulation of the problem 

The geometrical characteristics of the two 
stacked blocks are shown in Fig. 5. The lower flat 
block is tagged with index 1 and the top slender ele-
ment with index 2. 

The dimensions of the lower block can only al-
low sliding motion and a rocking one is possible for  
 

 
 
 
 
 
 
 
 
 
 
 
 

               

Fig. 4  (a) Freestanding statue; (b) isolation system and (c) single flat block  

(a) (b) (c) 
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the superimposed block 2 due both to the high friction 
coefficient between block 1 and 2 and to the slen-
derness of block 2. As a consequence, the system has 
two degrees of freedom, namely the rotation θ 
(clockwise positive) of block 2 and the centroid po-
sition 

1Gx  of block 1. Assuming m1 and m2 as the 

masses of the two blocks whose center of masses are 
G1 and G2, M=m1+m2 is the total mass of the system 
and (xg(t), yg(t)) the base motion components.  

Let 
2'O Gr  and 

2OGr  be the position vectors of G2 

relative to O′ and O in the initial configuration 
(Fig. 5). Their components in the two Cartesian ref-

erence systems 1 and 2 are given by: 

 

2 2'

sin sin
, .

cos cos
r rO G OG

R R

R R

 
 

   
       

     (15) 

 
The hypothesis of sliding motion for block 1 

leads to a null vertical component of its relative mo-
tion with respect to the base. The position of the 
center of mass G1 is: 
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and that of G2 is: 
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  




 

 
so that the actual position P(t) of the keypoint P is: 
 

(1)( ) ( ) , ( ) 0,R rPO P t t t      
(2)( ) ( ) , ( ) 0,R rPOP t t t    

 
where ( )tR  is the rotation matrix (9) that takes 

into account the rocking motion of block 2 and the 

position vectors (1)rP  and (2)rP  are represented in 

Fig. 6. The total kinetic energy of the system is: 
 

1 2( ) ( )) ,( tT t T T t  

 
with T1(t) and T2(t) the kinetic energies of blocks 1 
and 2 respectively: 
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where 
2

GJ is the centroid moment of inertia of block 

2. The potential energy of the two blocks is given by: 
 

1 2( ) ( )) ,( tV t V V t  

 

with V1(t) and V2(t) the potential energies of blocks 1 
and 2: 

 

21

21

1 1 2 2

1 1 2 2

( ) , ( ) , ( ) 0,

( ) , ( ) , ( ) 0,

x j x j

x j x j

G G

G G

V t m g V t m g t

V t m g V t m g t





    

    
(17) 

 
where j is the unit vector of the y axis. The friction 
force at the base of block 1 during the sliding 
movement is given by:  
 

  , ( ( )) ( )sgn( ( )).x friction k g g gF M g y t x t x t        (18) 

 
so that the Lagrangian formulation of the problem 
states, as developed in the work by (Voyagaki et al., 
2013): 
 

 ( ) ( ) ( ),L t T t V t                      (19) 

 
with the two Lagrangian parameters: 
 

11 2( ) ( ) , ( ) ( ).Gq t x t q t t   

 
The motion is governed by two differential equations 
derived by the Euler-Lagrange relation: 

 

 
2 ( ) ( )

( ), 1,2,k
k k

L t L t
Q t k

t q q

 
  

  
 (20) 

 
where Qk(t) is the generalized non-conservative force 
dual to qk(t). The system assumes two different ex-
pressions according to the sign of. In view of equa-
tions (16)-(20), the DEs can be expressed as: 
 

1
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
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


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
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(21) 
 
The motion problem (21) is composed of two ordi-
nary nonlinear differential equations and a single 
algebraic one, that involve the pre-and-post-impact 
angular velocity of the top block during the rocking 
motion. It is worth noting that uncoupling the two 
differential equations is not possible. The DEs (21) 
govern the motions of the two blocks, while the 
rocking of the top block when the flat block is at rest 
with respect to the ground is governed by the fol-
lowing relation: 
 

 
2

2

( ) cos( ) ( )

sgn( ( ))sin( ) 0.

O gJ t m R x t

m Rg t

  

  

 

  

 
      (22) 

 
derived from (21) with the condition 

11( ) ( ) 0Gq t x t  . Eq. (22), analogous to (14) with the 

condition θ(t)=0, describes the sliding motion of the 
two blocks: 
 

 
1 1

( ) ( ) sgn( ( )) .g G G kx t x t x t g            (23) 

 
The numerical procedure implemented in 

Mathematica© takes into account the only sliding 
motion for the lower block (i.e. a rigid flat pedestal), 
so that its mass is the only necessary mechanical 
parameter. The top slender block (in this case an an-
thropomorphic statue) can undergo rocking motion 
and the procedure involves the aspect ratio B/H. 
Given the geometrical conditions, at the starting point 
the two blocks are at rest with respect to the moving 
base, until (21) or (22) is activated according to the 
mechanical parameters involved. 

The analysis of the dynamic system begins with 
the evaluation of the type of motion related to the base 
acceleration. Three possible patterns of motion have 
been examined (Fig. 7): 

a) rocking of the top block with base block at rest 
with respect to the ground 

b) sliding motion of the two blocks as one rigid 
body 

c) combined motion patterns: rocking of the top 
block and sliding of the lower one. 

The conditions for the activation of the motion a) 
are given by: 
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             (24) 

 
The time ta is the instant at which: 
 

 
2
( ) .G ax t h gb                          (25) 

 
It corresponds to the change of motion to range b), 
whose conditions for the activation are given by: 
 

 
2

( ) sgn( ( )) ,

( ) .

g g k

G

x t x t g

x t h gb


 

 


                (26) 

 
The balance of the friction force with inertial forces 
corresponds to the time tb in which: 

 
 ( ) sgn( ( )) .g b g b kx t x t g                  (27) 

 
The conditions for the activation of the motion c) are 
given by: 

 
2

( ) sgn( ( )) ,

( ) .

g g k

G

x t x t g

x t h gb


 

 


                 (28) 

 
In general, the motion a) lasts until the ground 

acceleration does not allow the overcoming of the 
static friction force at base interface. 

The transition of motion from a) to c) occurs 
when: 

 

2

2

( ) sgn( ( )){sin(
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       sgn( ( )) .
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


     (29) 

 
Eq. (26) corresponds to the (212) substituting the 
kinematic friction coefficient with the static one and 

1 1
( ) 0 ( ) 0.G Gx t x t    

The inertial forces due to the ground acceleration 

( )gx t  and those due to the rocking of block 2 are 

involved in (27) with a term containing 2 ( )t  and 

another containing ( )t  which are respectively pro-

jections on the x-axis of the centripetal and tangential 
interactions through the contact point O or O′. The 
sliding motion of block 1 stops when 

11( ) ( ) 0.Gq t x t    

The flow chart of the numerical routine is shown 
in Fig. 8, where the conditions for the integration of 
DEs governing the problem are shown schematically. 
A frequent circumstance involves the activation of the  
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rocking of block 2 (left flow lines in the diagram): the 
differential equation of rocking (22) is integrated until 
conditions for sliding (27) are attained, so that the 
system (21) is integrated until the velocity of block 1 
with respect to the ground is null. From this point on 
the program the loop can restart and the procedure is 
able to choose the right motion according the dynamic 
conditions involved. In the examined cases equation 
(22) is activated before the static friction force be-
tween the flat block and the ground is exceeded. Only 
in this last case does the flat block initiate sliding. 

3.2  Case studies 

Several results considering the two block system 
with harmonic ground motion are described below.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Where possible the vertical scale is homogeneous to 
allow comparisons. The numerical parameters of 
motion common to all the examined cases are given in 
Table 1, while Table 2 contains the variable motion 
parameters and the correspondence to the figure dia-
grams. The first set of analyses (see Figs. 9–10) is 
developed in the case of increasing slenderness. 

Fig. 9a shows the behaviour of the two super-
imposed blocks with aspect ratio 0.5. Graph (a.1) 
represents the displacement of the flat block and  
graph (a.2) gives the rotation of the superimposed 
slender block. In graph (a.3) the behaviour of the 
slender block without the interposition of the flat one 
is depicted. Fig. 9b shows time histories related to a 
different slenderness (aspect ratio 0.33), in the same 
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Fig. 9  Behaviour of (a.1, b.1) the flat block, of (a.2, b.2) the stacked slender block and (a.3, b.3) slender block alone  for 
varying B/H 
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succession. In these two analyzed cases, related to 
low slenderness, the interposition of the flat pedestal 
does not change significantly the response of the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

upper block. A different behaviour can be observed in 
the case of very slender blocks (Fig. 10), where the 
overturning of the upper block is avoided with the 

Table 1  Motion parameters common to all analyses 

Data μs μk 
B m1 

r 
f A ω

( )x t  
(m) (kg) (Hz) (ms-2) (s-1) 

 0.40 0.30 1 1 0.8 1.2 6.75 7.53 cosA t  

Table 2  Variable motion parameters for the analyses

Data 
m2 H n. of cycles Data 

m2 H n. of cycles (kg) (m) (kg) (m) 

Fig. 9a 1 2 30 Fig. 11a 2 4 24 

Fig. 9b 1 3 30 Fig. 11b 3 4 24 

Fig. 10a 1 4 30 Fig. 12a 4 4 24 

Fig. 10b 1 5 30 Fig. 11b 6 4 24 
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Fig. 10  Behaviour of (a.1, b.1) the flat block, of (a.2, b.2) the stacked slender block and (a.3, b.3) slender block alone for 
varying B/H 
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squat rigid block at the base. 
As can be seen, in both cases the oscillations of 

the upper block begin before the sliding of the flat one 
and last for all the time of observation. The sliding 
motion of the flat block presents a time delay at the 
beginning and several rest intervals during the ob-
servation time. In the graphs the same indications as 
Fig. 9 are shown: the first picture represents the dis-
placements of the flat block, the second and the third 
indicate the rotation of the slender one in the case of 
combination with the pedestal (a.2 and b.2) and in the 
case of a single rocking block (a.3 and b.3). 

In Figs. 11–12 the influence of the variation of 
the upper block mass has been analyzed for a fixed 
aspect ratio of the block, as can be deduced from the 
pictures (a.3) and (b.3) in both figures. The rocking of 
the single block without pedestal is in fact the same in 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

these four cases and is compared with the behaviour 
of the same block in the presence of the pedestal. In 
Fig. 11 (lower values of m2) the flat pedestal only has 
the effect of retarding the overturning of the upper 
block, while in the cases of increasing mass (see 
Fig. 12) the overturning is avoided by interposing the 
pedestal. 
 
 
4  Conclusions 

 
The real situation of a marble statue placed on a 

squat rigid base freestanding on a moving floor is 
presented. A freestanding object may in fact enter a 
rocking state which would cause overturning due to 
seismic excitation. Rocking itself can be a cause of 
damage so that a sliding motion is more desirable. 
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The motion patterns examined in this paper involve 
only the sliding motion for the lower flat block and 
rocking as the only possible motion for the stacked 
slender block. The sliding of the whole complex of 
rigid bodies is also considered. The system of dif-
ferential equations governing the problem has been 
derived and included in a purpose-built numerical 
procedure. It has been shown that the presence of a 
rigid surface delays and in some cases avoids the 
overturning of a slender rigid artifact. This is true 
especially for slender rocking blocks, and for in-
creasing mass of the upper block. The numerical 
analysis can be a tool in the choice of the optimal 
design of the simple isolation system analyzed. 
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