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Abstract Coherent systems, i.e., multicomponent systems where every component
monotonically affects the working state or failure of the whole system, are among the
main objects of study in reliability analysis. Consider a coherent system with possibly
dependent components having lifetime T , and assume we know that it failed before a
given time t > 0. Its inactivity time t −T can be evaluated under different conditional
events. In fact, one might just know that the system has failed and then consider the
inactivity time (t − T |T ≤ t), or one may also know which ones of the components
have failed before time t , and then consider the corresponding system’s inactivity time
under this condition. For all these cases, we obtain a representation of the reliability
function of system inactivity time based on the recently defined notion of distortion
functions. Making use of these representations, new stochastic comparison results for
inactivity times of systems under the different conditional events are provided. These
results can also be applied to order statistics which can be seen as particular cases
of coherent systems (k-out-of-n systems, i.e., systems which work when at least k of
their n components work).
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1 Introduction

Let T be the lifetime of the system, and let Xi , i = 1, . . . , n, be the lifetimes of its
components. In this context, when a system has failed before a time t , it is important to
study the system inactivity time t−T . For example, if the system is a server (computer),
it represents the time without service. Dealing with inactivity times, different condi-
tions can be assumed observing that the system has failed at a time t > 0. In fact, one
can just know that the system lifetime is smaller than t , i.e., T < t , or one can know, for
example, that all its components have failed before t , i.e., Xi < t, ∀i = 1, . . . , n. In
this particular case, one can believe that the inactivity time in the first case is smaller, in
some stochastic sense, than the inactivity time in the second case. That is, for example,
one can affirm that the stochastic inequality

(t − T |T ≤ t) ≤ST (t − T |X1 ≤ t, . . . , Xn ≤ t) ∀t ≥ 0, (1.1)

holds true for every coherent system where the (usual) stochastic order X ≤ST Y is
defined by Pr(X > t) ≤ Pr(Y > t) for all t . However, as shown in Example 4 (see
Sect. 5), this assertion is not always satisfied.

Motivated by this example, this paper provides a study on the inactivity times
of coherent systems formed by a number n of components with possibly dependent
lifetimes, considering different conditioning events on the failed components in the
system. For all of them, we give new representations for the reliability functions of
the corresponding inactivity times, and we apply them proving simple conditions for
comparisons of inactivity times according to the most important stochastic orders
considered in reliability theory.

For a detailed introduction to the subject of reliability theory, related properties and
examples of applications, we refer the readers to, for example, Barlow and Proschan
(1975) and Kuo and Zhu (2012). Series systems, parallel systems, k-out-of-n systems
(order statistics) are well-known examples of coherent systems. In this field, it is
important to study the performance of a system composed by different kinds of units,
maybe having dependent lifetimes, in order to evaluate their reliability or to provide
bounds for related quantities such as their failure rates or expected lifetimes. For results
on this topic, see, for example,Navarro (2016a, b),Navarro et al. (2011, 2015),Navarro
and Rychlik (2010), Samaniego and Navarro (2016) and the references therein. In
particular, special attention has been paid in the study of the system residual lifetime
(i.e., the random time T − t given that the system is still working at time t) under
different assumptions concerning the knowledge of the components functioning at that
time (see, for example, Li and Lu 2003; Li et al. 2013; Navarro and Durante 2017;
Pellerey and Petakos 2002). However, in some situations, the interest may be on the
past lifetime of a system and not only on the future, i.e., on its inactivity time, having
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824 J. Navarro et al.

observed that the system is failed at a given time t (see Goli and Asadi 2017; Li and Lu
2003; Zhang 2010; Zhang and Balakrishnan 2016). Additional properties are obtained
in the present paper.

The paper is organized as follows. In Sect. 2, we introduce the basic definitions
and properties of coherent systems and we recall the notion of distortion functions,
which have been recently introduced in the literature and is used to formally describe
how the dependence structure between components affects the lifetime of a system
(see Navarro et al. 2011, 2016; Navarro and Spizzichino 2010). Then, the represen-
tations of the reliability function of inactivity times of coherent systems based on
distortion functions, under different conditioning, are provided, and some immediate
consequences of these representations are described. Section 3 contains conditions to
compare inactivity times under the different conditional events, as well as comparison
results for inactivity times of systems having different structure functions. Section 4
is devoted to some illustrative examples and counterexamples. Some conclusions are
given in Sect. 5.

Throughout the paper, whenever we consider a ratio a/b, we assume b �= 0 unless
otherwise indicated. We recall that g′ represents the derivative of the function g,
and whenever we write g′, we assume that this derivative exists. Also, the terms
“increasing” and “decreasing” are used in nonstrict sense.

2 Representation of inactivity times through distortion functions

Some basic notions of coherent systems are provided now. Given a multicomponent
system, its structure function φ : {0, 1}n → {0, 1} is a function that maps the state
vector (̂x1, . . . , x̂n) of its n components (where x̂i = 1 if component i is working
and x̂i = 0 if it is failed) to the state ŷ ∈ {0, 1} of the system itself. The system is
said to be coherent whenever every component is relevant (i.e., it affects the working
or failure of the system) and the structure function is monotone in every component.
Also, given a coherent systemwith n possibly dependent components having lifetimes
X1, . . . , Xn ≥ 0, the relationship between the vector (X1, . . . , Xn) of component’s
lifetimes and system’s lifetime T is described by the relation T = τ(X1, . . . , Xn),
where the coherent life function τ : Rn → R is defined as

τ(x1, . . . , xn) = sup{t ≥ 0 : φ(̂x1,t , . . . , x̂n,t ) = 1},

where x̂i,t = 1 if xi > t , or x̂i,t = 0 if xi ≤ t , for i ∈ {1, . . . , n}.
For the sequel, it will be useful to recall that a subset C ⊆ {1, . . . , n} of the

components indices is said to be a cut set if the system does not work whenever
the components indexed in C do not work. The set is a minimal cut set if it is a
minimal set of elements whose failure causes the system to fail. Similarly, a subset
P ⊆ {1, . . . , n} is a path set if the system works whenever the components indexed in
P work, and it is calledminimal path set if it does not contain other path sets. We refer
the reader to Barlow and Proschan (1975) for further details on coherent systems.

We now recall the concept of copula of a random vector, which is needed for
the representation of the distribution of inactivity times of systems through distor-
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tion functions. First, recall that for every dimension n ≥ 2 a copula is a function
C : [0, 1]n → [0, 1], that is, an n-dimensional distribution function concentrated on
[0, 1]n whose univariate marginals are uniformly distributed on [0, 1] ⊆ R, see the
monographs Durante and Sempi (2015) or Nelsen (2006) for details. Let (X1, . . . , Xn)

be a random vector with joint distribution function F and marginal distribution func-
tions Fi , i ∈ {1, . . . , n}. Then, the joint distribution F can be represented as

F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

for a copula C . Notice that, as affirmed by the well-known Sklar’s theorem, if the
marginal distribution functions Fi are continuous, then the copula C of the vector
(X1, . . . , Xn) is unique and it is given by

C(u1, . . . , un) = F
(

F−1
1 (u1), . . . , F

−1
n (un)

)

,

for all ui ∈ [0, 1], i ∈ {1, . . . , n}, where the F−1
i are the pseudo-inverses of the Fi . We

will assume here, and everywhere throughout the paper, such a continuity property.
In a similar way, the joint reliability function F can be represented as

F(x1, . . . , xn) = C
(

F1(x1), . . . , Fn(xn)
)

,

where Fi , i ∈ {1, . . . , n} are the marginal reliability functions andC is a copula called
survival copula of (X1, . . . , Xn). Similarly as above,

C(u1, . . . , un) = F
(

F
−1
1 (u1), . . . , F

−1
n (un)

)

,

for all ui ∈ [0, 1], i ∈ {1, . . . , n}.
Let now T be the lifetime of a coherent system with structure function φ and with n

possibly dependent components having lifetimes X1, . . . , Xn ≥ 0. Denote with F the
joint distribution function of the vector of components’ lifetimes, with C its copula,
and with Fi the distribution function of Xi , i = 1, . . . , n. Analogously, let F denote
the joint reliability function of (X1, . . . , Xn), with C its survival copula, and with Fi

the reliability functions of the component’s lifetimes. Then, a representation of the
distribution of T similar to the above copula representations was obtained in Navarro
and Spizzichino (2010) (see also Navarro et al. 2011, 2014). According to such a
representation, the system reliability FT (t) = Pr(T > t) can be written as

FT (t) = Q(F1(t), . . . , Fn(t)), (2.1)

where Q : [0, 1]n → [0, 1] is a continuous increasing function satisfying
Q(0, . . . , 0) = 0 and Q(1, . . . , 1) = 1, which only depends on the system struc-
ture φ and on the survival copula C of the vector (X1, . . . , Xn). In other words, Q is
simply a continuous aggregation function (for definition and examples of aggregation
functions see, for example, Durante et al. 2008; Grabisch et al. 2009). It should be
pointed out that the function Q is not necessarily a copula. In fact, Q can be expressed
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826 J. Navarro et al.

in terms of the survival copula C as follows. Assume that the system admits a number
r of minimal path sets P1, . . . ,Pr , and denote Ir = {1, . . . , r}. Then,

Q(u1, . . . , un) =
∑

∅�=I⊆Ir

(−1)|I |+1C I (u1, . . . , un), (2.2)

where |I | is the cardinality of the set I ,C I (u1, . . . , un) = C (̃uI
1, . . . , ũ

I
n) and ũ

I
k = uk

whenever k ∈ ∪m∈IPm , or ũ I
k = 1 whenever k /∈ ∪m∈IPm . A similar representation

holds for the respective distribution function:

FT (t) = Q(F1(t), . . . , Fn(t)), (2.3)

where, similarly as above, assuming that the systemadmitsminimal cut setsC1, . . . , Cs ,
it holds

Q(u1, . . . , un) =
∑

∅�=I⊆Is

(−1)|I |+1CI (u1, . . . , un), (2.4)

where Is = {1, . . . , s}, CI (u1, . . . , un) = C (̃uI
1, . . . , ũ

I
n) and ũ I

k = uk whenever
k ∈ ∪i∈ICi , or ũ I

k = 1 whenever k /∈ ∪i∈ICi . In the particular case that the Xi are
independent, then the previous expression for Q reduces to

Q⊥(u1, . . . , un) =
∑

∅�=I⊆Is

(−1)|I |+1
∏

k∈∪i∈ICi
uk . (2.5)

It should be observed that

Q(u1, . . . , un) = 1 − Q(1 − u1, . . . , 1 − un)

for all (u1, . . . , un) ∈ [0, 1]n . Representations (2.1) and (2.3) are equivalent, but
sometimes it is better to work with (2.1) instead of (2.3) (and vice versa). When the
components are identically distributed, that is, F1 = · · · = Fn , these representations
can be reduced to

FT (t) = q(F1(t)) (2.6)

and

FT (t) = q(F1(t)), (2.7)

where q(u) = Q(u, . . . , u) and q(u) = Q(u, . . . , u) = 1−q(1−u). The distributions
that canbewritten as in (2.6) and (2.7) are calleddistorteddistribution and the functions
q and q are called, respectively, distortion and dual distortion functions (see, for
example, Navarro et al. 2013 and the references therein). The distributions that can be
written as in (2.1) and (2.3) are called generalized distorted distributions (see Navarro
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et al. 2014, 2015, 2016). The functions Q and Q are called generalized distortion
functions.

In particular, for the series system with n components, we have T = X1:n =
min(X1, . . . , Xn) and

F1:n(t) = C(F1(t), . . . , Fn(t)),

that is, Q1:n = C (and it is obviously a copula). If the components are identically
distributed, then q1:n is the diagonal section of C (i.e., the function δ defined as
δ(u) = C(u, . . . , u)). Analogously, for the parallel system with n components, we
have T = Xn:n = max(X1, . . . , Xn) and

Fn:n(t) = C(F1(t), . . . , Fn(t))

that is, Qn:n = C . If the components are identically distributed, then qn:n is the
diagonal section of C .

Now, we provide similar representations for the distributions of inactivity times of
the system, that is, the time without service (t − T |At ) under different assumptions
At which imply T ≤ t . In fact, assuming that a coherent system starts to work at time
0 and it is failed at time t > 0, we might have different information about the states
of the components. We can thus consider the following reasonable cases.

Case 1. The less informative case is to consider that we only know that the system has
failed at time t . Then, it is easy to observe that the system inactivity time is

Tt = (t − T |T ≤ t).

Its reliability function is obtained in the following proposition. Before we need to note
that if Fi (t) > 0, then the reliability function Fi,t of the i-th component inactivity
time (t − Xi |Xi ≤ t) is given by

Fi,t (x) = Pr(t − Xi > x |Xi ≤ t) = Fi (t − x)

Fi (t)
(2.8)

for x ∈ [0, t] and i = 1, . . . , n. These reliability functions will be used to represent
the reliability function of the system inactivity time.

Proposition 1 If Fi (t) > 0 for i = 1, . . . , n, then the reliability function of Tt can be
written as

Ft (x) = Qt (F1,t (x), . . . , Fn,t (x)) (2.9)

for x ∈ [0, t], where

Qt (u1, . . . , un) = Q(u1F1(t), . . . , unFn(t))

Q(F1(t), . . . , Fn(t))
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is a generalized distortion function which depends on the distortion function Q defined
in (2.4) and on the values Fi (t), i = 1, . . . , n.

Proof For x ∈ [0, t], from (2.3), we have

Ft (x) = Pr(t − T > x |T ≤ t)

= Pr(T < t − x)

Pr(T ≤ t)

= FT (t − x)

FT (t)

= Q(F1(t − x), . . . , Fn(t − x))

Q(F1(t), . . . , Fn(t))

= Q(F1(t)F1,t (x), . . . , Fn(t)Fn,t (x))

Q(F1(t), . . . , Fn(t))

= Qt (F1,t (x), . . . , Fn,t (x))

which finishes the proof. �
Case 2. Herewe assume thatwe know the setW ⊆ {1, . . . , n} of indices of components
that are working at time t (and so the set Wc = {1, . . . , n} − W of those that have
failed), that is, At = {XW > t, XWc ≤ t}, where XW = mini∈W Xi (lifetime of
the series system with components W ), XWc = maxi∈Wc Xi (lifetime of the parallel
systemwith componentsWc). Of course, this assumption implies that the components
may work even if the system has failed and that {XWc ≤ t} implies {T ≤ t} (i.e.,Wc is
a cut set). AlsoW �= {1, . . . , n}. Then, we can consider the following system inactivity
time

TW
t =

(

t − T |XW > t, XWc ≤ t
)

.

Note that here we include the particular case in which all the components have failed
at time t , that is, W = ∅ and Wc = {1, . . . , n}. We obtain a representation similar to
(2.9) for TW

t in the following proposition.

Proposition 2 If Fi (t) > 0 for i = 1, . . . , n, then the reliability function of T W
t can

be written as

F
W
t (x) = Q

W
t (F1,t (x), . . . , Fn,t (x)) (2.10)

for x ∈ [0, t], where the reliability functions Fi,t (x) are defined as in (2.8) and Q
W
t is

a generalized distortion function. If C1, . . . , Cs are the minimal path sets of the system,
then Q

W
t is given by

Q
W
t (u1, . . . , un) =

∑

∅�=I⊆Is

∑

A⊆W (−1)|I |+|A|+1CI,A,W (u1, . . . , un)
∑

A⊆W (−1)|A|CA,W (F1(t), . . . , Fn(t))
, (2.11)
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where CI,A,W (u1, . . . , un) = 0 when W ∩ ∪i∈ICi �= ∅ or

CI,A,W (u1, . . . , un) = C
(

ũ I,A,W
1 , . . . , ũ I,A,W

n

)

when ∪i∈ICi ⊆ Wc, where ũ I,A,W
k = Fk(t) whenever k ∈ A ∪ (Wc − ∪i∈ICi ), or

ũ I,A,W
k = 1 whenever k ∈ W − A, or ũ I,A,W

k = uk Fk(t) whenever k ∈ ∪i∈ICi , and
where

CA,W (u1, . . . , un) = C
(

ũ A,W
1 , . . . , ũ A,W

n

)

and ũ A,W
k = uk whenever k ∈ A ∪ Wc, or ũ A,W

k = 1 whenever k ∈ W − A.

Proof From the definition, we have

F
W
t (x) = Pr(t − T > x |XW > t, XWc ≤ t)

= Pr(T < t − x, XW > t, XWc ≤ t)

Pr(XW > t, XWc ≤ t)
.

If C1, . . . , Cr are the minimal cut sets and denoting again XC = maxi∈C Xi , one has

F
W
t (x) = Pr

(

T < t − x, XW > t, XWc ≤ t
)

Pr
(

XW > t, XWc ≤ t
)

= Pr(min j=1,...,s XC j < t − x, XW > t, XWc ≤ t)

Pr
(

XW > t, XWc ≤ t
)

= Pr(∪ j=1,...,s{XC j < t − x}, XW > t, XWc ≤ t)

Pr
(

XW > t, XWc ≤ t
) .

The denominator in the preceding expression can be written in terms of C and
F1, . . . , Fn , as

D = Pr(XW > t, XWc ≤ t) =
∑

A⊆W

(−1)|A|CA,W (F1(t), . . . , Fn(t)),

where CA,W is defined in the statement.
A similar representation holds for the numerator

N = Pr(∪i=1,...,s{XCi < t − x}, XW > t, XWc ≤ t)

=
∑

∅�=I⊆Is

(−1)|I |+1 Pr(X∪i∈ICi < t − x, XW > t, XWc ≤ t)

=
∑

∅�=I⊆Is

∑

A⊆W

(−1)|I |+|A|+1CI,A,W (F1,t (x), . . . , F1,t (x)),

where CI,A,W is defined in the statement.
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Therefore, the final expression for Q
W
t is obtained by using such expressions for

N and D. �
Note that the value of the function Q

W
t only depends on ui for i ∈ Wc (i.e., it is

constant in ui for i ∈ W ). As a particular case, whenever W = ∅, then (2.11) reduces
to

Q
∅
t (u1, . . . , un) =

∑

∅�=I⊆Is (−1)|I |+1CI,∅,∅(u1, . . . , un)
C(F1(t), . . . , Fn(t))

, (2.12)

where CI,∅,∅(u1, . . . , un) = C (̃uI,∅,∅
1 , . . . , ũ I,∅,∅

n ) and where ũ I,∅,∅
k = Fk(t) when-

ever k /∈ ∪i∈ICi , or ũ I,∅,∅
k = uk Fk(t) whenever k ∈ ∪i∈ICi . Thus, we can state the

following result.

Proposition 3 If T is the lifetime of a coherent system with independent components,

then Q
∅
t = Q⊥, where Q⊥ is the generalized distortion function of T .

The proof is obtained from (2.12) by replacing C with the product copula.
An immediate consequence of the previous proposition is described in the following

statement. The proof is straightforward and therefore omitted.

Corollary 1 If the components are independent, then (t − T |XW > t, XWc ≤ t) has
the same distribution as (t − T ∗|XWc ≤ t), where T ∗ is the lifetime of the system
obtained from the original one by deleting the cut sets which have at least an element
in W (i.e., T ∗ = min{ j :C j∩W=∅} XC j ).

Let us see now two examples showing how these representations can be obtained.

Example 1 The simplest case of application of the above representations is in a series
systemwith two possibly dependent components, i.e., with lifetime T = min(X1, X2).
In this case, we know that FT (t) = C(F1(t), F2(t)) and its distribution function is

FT (t) = Pr(min(X1, X2) ≤ t) = F1(t) + F2(t) − C(F1(t), F2(t)) = Q(F1(t), F2(t)),

where F1, F2 are the components’ continuous distribution functions and

Q(u1, u2) = u1 + u2 − C(u1, u2).

In case of independence between lifetimes’ components, Q reduces to Q⊥(u1, u2) =
u1 + u2 − u1u2.

If at time t > 0, we just know that the system has failed, that is, T ≤ t , then,
from Proposition 1, the reliability function of Tt = (t − T |T ≤ t) can be written as
Ft (x) = Qt (F1,t (x), F2,t (x)) for x ∈ [0, t], where

Qt (u1, u2) = Q(u1F1(t), u2F2(t))

Q(F1(t), F2(t))
= u1F1(t) + u2F2(t) − C(u1F1(t), u2F2(t))

F1(t) + F2(t) − C(F1(t), F2(t))
.
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In particular, if the components are independent, then

Qt (u1, u2) = u1F1(t) + u2F2(t) − u1u2F1(t)F2(t)

F1(t) + F2(t) − F1(t)F2(t)
.

Another option is to assume that, at time t > 0, we know that the first component is
working and the second has failed, that is,W = {1}. Then, the series system has failed
(i.e., T ≤ t), and from Proposition 2, the reliability function of T {1}

t = (t − T |X1 >

t, X2 ≤ t) can be written as

F
{1}
t (x) = Q

{1}
t (F1,t (x), F2,t (x)), (2.13)

where

Q
{1}
t (u1, u2) = u2F2(t) − C(F1(t), u2F2(t))

F2(t) − C(F1(t), F2(t))

is a generalized distortion function. Note that Q
{1}
t only depends on u2. In particular,

if the components are independent, then

Q
{1}
t (u1, u2) = u2 − u2F1(t)

1 − F1(t)
= u2,

that is, (t − T |XW > t, XWc ≤ t) has the same law as (t − T ∗|XWc ≤ t), where
T ∗ is the lifetime of the system obtained from the original one by deleting the cut
sets which have at least an element in W (i.e., T ∗ = min{ j :C j∩W=∅} XC j , T ∗ = X2
in this example), as one can expect. The representation for the case in which the first
component has failed and the second is working can be obtained in a similar way.

In this example, we can also consider the caseW = ∅ (note that we cannot consider
W = {1, 2} since XW > t implies T > t). From Proposition 2, the reliability function
of T ∅

t = (t − T |X1 < t, X2 < t) can be written as

F
∅
t (x) = Q

∅
t ((F1,t (x), F2,t (x))

for x ∈ [0, t], where

Q
∅
t (u1, u2) = C(u1F1(t), F2(t)) + C(F1(t), u2F2(t)) − C(u1F1(t), u2F2(t))

C(F1(t), F2(t))

is a generalized distortion function. In particular, if the components are independent,
then

Q
∅
t (u1, u2) = u1 + u2 − u1u2 = Q⊥(u1, u2)

as stated in Proposition 3. �
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Example 2 Let us consider the system with lifetime T = min(X1,max(X2, X3)). It
may represent, for example, a server and two computers supporting the Web page
of a shop. The system works if the server works and, at least, a computer works. Its
minimal cut sets are C1 = {1}, and C2 = {2, 3} and its distribution function is

FT (t) = Pr(min(X1,max(X2, X3)) ≤ t)

= F1(t) + C(1, F2(t), F3(t)) − C(F1(t), F2(t), F3(t))

= Q(F1(t), F2(t), F3(t)),

where Q(u1, u2, u3) = u1 + C(1, u2, u3) − C(u1, u2, u3) and F1, F2, F3 are the
continuous component distribution functions. Whenever the component’s lifetimes
are independent, then

Q(u1, u2, u3) = Q⊥(u1, u2, u3) = u1 + u2u3 − u1u2u3.

If at time t > 0, we just know that the system has failed, that is, T ≤ t , then the
reliability function of (t − T |T ≤ t) is

Ft (x) = FT (t − x)

FT (t)
= Qt (F1,t (x), F2,t (x))

for x ∈ [0, t], where the reliability functions Fi,t (x) are defined as in (2.8) and

Qt (u1, u2, u3) = u1F1(t) + C(1, u2F2(t), u3F3(t)) − C(u1F1(t), u2F2(t), u3F3(t))

F1(t) + C(1, F2(t), F3(t)) − C(F1(t), F2(t), F3(t))

is a generalized distortion function.
Another option is to assume that, at time t > 0, we know that all the components

have failed, that is, W = ∅. Then, the system has failed, T ≤ t , and the reliability
function of T ∅

t = (t − T |X1 ≤ t, X2 ≤ t, X3 ≤ t) can be written as

F
∅
t (x) = Q

∅
t (F1,t (x), F2,t (x), F3,t (x)), (2.14)

where

Q
∅
t (u1, u2, u3) = C(u1F1(t), F2(t), F3(t)) + C(F1(t), u2F2(t), u3F3(t))

C(F1(t), F2(t), F3(t))

− C(u1F1(t), u2F2(t), u3F3(t))

C(F1(t), F2(t), F3(t))

is a generalized distortion function. In particular, if the components are independent,
then

Q
∅
t (u1, u2, u3) = Q⊥(u1, u2, u3) = u1 + u2u3 − u1u2u3

as stated in Proposition 3.
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Another option is to assume that at time t > 0, the only working component is
the third component, that is, W = {3}. Then, the system has failed (T ≤ t) and the
reliability function of T {3}

t = (t − T |X1 ≤ t, X2 ≤ t, X3 > t) can be written as

F
{3}
t (x) = Q

{3}
t (F1,t (x), F2,t (x), F3,t (x)), (2.15)

where

Q
{3}
t (u1, u2, u3) = C(u1F1(t), F2(t), 1) − C(u1F1(t), F2(t), F3(t))

C(F1(t), F2(t), 1) − C(F1(t), F2(t), F3(t))

is a generalized distortion function. Note that it only depends on u1. In particular, if
the components are independent, then

Q
{3}
t (u1, u2, u3) = u1 − u1F3(t)

1 − F3(t)
= u1

that is, (t − T |X1 ≤ t, X2 ≤ t, X3 > t) has the same distribution of (t − X1|X1 ≤ t).
The representations for the other cases can be obtained in a similar way. �

3 Stochastic comparisons

First, we briefly recall the definitions of the stochastic orders that will be used through-
out this paper to compare random lifetimes or inactivity times. Let X and Y be
two absolutely continuous random variables having a common support (0, β), for a
β ∈ R∪{∞}, distribution functions F andG, reliability (survival) functions F = 1−F
and G = 1 − G and density functions f and g, respectively. Then, we say that X is
smaller than Y :

• In the stochastic order (denoted by X ≤ST Y ) if F ≤ G in (0, β);
• In the hazard rate order (denoted by X ≤HR Y ) if the ratio G/F is increasing in

(0, β);
• In the reversed hazard rate order (denoted by X ≤RHR Y ) if the ratio G/F is
increasing in (0, β);

• In the likelihood ratio order (denoted by X ≤LR Y ) if the ratio g/ f is increasing
in (0, β);

• In the mean residual life order (denoted by X ≤MRL Y ) if E[Xt ] ≤ E[Y t ] for all
t ∈ (0, β).

We address the reader to Shaked and Shanthikumar (2007) for a detailed description
of these stochastic orders and to Barlow and Proschan (1975) for a list of examples of
applications in the reliability theory. Here, in particular, we just point out that:

• X ≤HR Y if and only if (X − t |X > t) ≤ST (Y − t |Y > t) for all t ∈ (0, β),
• X ≤RHR Y if and only if (t − X |X ≤ t) ≥ST (t − Y |Y ≤ t) for all t ∈ (0, β),
• X ≤LR Y if and only if (X | a ≤ X ≤ b) ≤ST (Y | a ≤ X ≤ b) for all
0 ≤ a ≤ b ≤ β.
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Hence, the hazard rate order and the reversed hazard rate order are equivalent to
compare residual lifetimes and inactivity times, respectively, at any age t ≥ 0. Anal-
ogously, the likelihood ratio order can be used to compare both residual lifetimes and
inactivity times, while this is not the case for the weaker stochastic order. Moreover,
the following relationships are well known:

X ≤LR Y ⇒ X ≤HR Y ⇒ X ≤MRL Y
⇓ ⇓ ⇓

X ≤RHR Y ⇒ X ≤ST Y ⇒ E(X) ≤ E(Y ).

In the previous section, we have obtained representations for Tt and TW
t as general-

ized distorted distributions based on the same baseline distributions. Now we can use
these representations, and the results for generalized distorted distributions described
in Navarro et al. (2013, 2016), Navarro and Gomis (2016), to compare the inactivity
times Tt and TW

t for any W . We can also compare TW
t for different setsW or inactiv-

ity times for different system structures. For it, we first recall some useful properties
proved in the recent literature.

In the case of distorted distributions [i.e., n = 1 in (2.3)], we have the following
ordering properties, extracted from Theorems 2.4 and 2.5 in Navarro et al. (2013) and
Theorem 2.3 in Navarro and Gomis (2016).

Proposition 4 Let Fq1 = q1(F) and Fq2 = q2(F) be two distorted distributions (of
two random variables X1 and X2) based on the same distribution function F and on
the distortion functions q1 and q2, respectively. Let q1 and q2 be the respective dual
distortion functions. Then:

(i) X1 ≤ST X2 for all F if and only if q1 ≤ q2 in (0, 1).
(ii) X1 ≤HR X2 for all F if and only if q2/q1 is decreasing in (0, 1).
(iii) X1 ≤RHR X2 for all F if and only if q2/q1 is increasing in (0, 1).
(iv) X1 ≤LR X2 for all F if and only if q ′

2/q
′
1 is decreasing in (0, 1).

(v) If there exists u0 ∈ (0, 1] such that q2/q1 is decreasing in (0, u0) and increasing
in (u0, 1), then X1 ≤MRL X2 for all F such that the means of the respective
distorted distributions are ordered (in the same sense).

In the general case (i.e., for generalized distorted distributions), we have the fol-
lowing results, extracted from Proposition 2.2 in Navarro et al. (2016).

Proposition 5 Let FQ1 = Q1(F1, . . . , Fn) and FQ2 = Q2(F1, . . . , Fn) be two gen-
eralized distorted distributions (of two random variables X1 and X2) based on the
same distribution functions F1, . . . , Fn and on the generalized distortion functions
Q1 and Q2, respectively. Let Q1 and Q2 be the respective generalized dual distortion
functions. Then:

(i) X1 ≤ST X2 for all F1, . . . , Fn if and only if Q1 ≤ Q2 in (0, 1)n.
(ii) X1 ≤HR X2 for all F1, . . . , Fn if and only if Q2/Q1 is decreasing in (0, 1)n.
(iii) X1 ≤RHR X2 for all F1, . . . , Fn if and only if Q2/Q1 is increasing in (0, 1)n.

Note that both propositions provide necessary and sufficient conditions to obtain
distribution-free orderings (except in the case of the mrl order). Now it is immediate
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to obtain the corresponding results to get distribution-free comparisons between Tt
and TW

t . Note that we can also compare TW
t and TW ∗

t for different W and W ∗. For
example, the results to compare Tt and TW

t can be stated as follows. The proofs are
immediate from representations (2.9) and (2.10) and Propositions 4 and 5.

Proposition 6 Let T be the lifetime of a coherent system with components having a
common continuous distribution function F. Then:

(i) Tt ≤ST T W
t (≥ST ) for all F if and only if qt ≤ qWt (≥) in [0, 1].

(ii) Tt ≤HR TW
t (≥HR) for all F if and only if qWt /qt is decreasing (increasing) in

(0, 1).
(iii) Tt ≤RHR TW

t (≥RHR) for all F if and only if qWt /qt is increasing (decreasing)
in (0, 1).

(iv) Tt ≤LR T W
t (≥LR) for all F if and only if (qWt )′/q ′

t is decreasing (increasing)
in (0, 1).

(v) If there exists u0 ∈ (0, 1] such that qWt /qt is decreasing (increasing) in (0, u0)
and increasing (decreasing) in (u0, 1), then Tt ≤MRL TW

t (≥MRL) for all F
such that E(Tt ) ≤ E(TW

t ) (≥).

Proposition 7 Let T be the lifetime of a coherent system with components having
distribution functions F1, . . . , Fn. Then:

(i) Tt ≤ST T W
t (≥ST ) for all F1, . . . , Fn if and only if Qt ≤ Q

W
t (≥) in (0, 1)n.

(ii) Tt ≤HR TW
t (≥HR) for all F1, . . . , Fn if and only if Q

W
t /Qt is decreasing

(increasing) in (0, 1)n.
(iii) Tt ≤RHR TW

t (≥RHR) for all F1, . . . , Fn if and only if QW
t /Qt is increasing

(decreasing) in (0, 1)n.

A simple example of application of the previous results, dealing with the compar-
ison of inactivity times Tt = (t − T |T ≤ t) for series and parallel systems of two
components, is given now.

Example 3 Consider two components having possibly dependent lifetimes X1 and
X2, with the same distribution F , and consider Tmax = max(X1, X2) and Tmin =
min(X1, X2), lifetimes of the corresponding parallel and series system. It is rather intu-
itive, and actually easy to analytically verify, that if the components have independent
lifetimes, then the inactivity times Tmax

t and Tmin
t are comparable in the likelihood

order, i.e., it holds Tmax
t ≤LR Tmin

t for any t > 0. However, using Proposition 4
(iv) one can verify that this inequality does not necessarily hold for any dependence
structure (copula) of the vector (X1, X2).

In fact, denoting with C the copula of the vector (X1, X2), one has

P
(

t − Tmin > x |Tmin ≤ t
)

= qmin
t (Ft (x)),

where Ft (x) = F(t − x)/F(t) and

qmin
t (u) = 2uF(t) − C(uF(t), uF(t))

2F(t) − C(F(t), F(t))
= 2uF(t) − δ(uF(t))

2F(t) − δ(F(t))
,
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being δ the diagonal section of the copula C . Similarly,

P(t − Tmax > x |Tmax ≤ t) = qmax
t (Ft (x)),

where

qmax
t (u) = C(uF(t), uF(t)

C(F(t), F(t))
= δ(uF(t))

δ(F(t))
.

Observe that, by Proposition 4, (iv), the inequality Tmax
t ≤LR Tmin

t holds if and
only if

d qmin
t (u)/du

d qmax
t (u)/du

= δ(F(t))

2F(t) − δ(F(t))

2F(t) − F(t)δ′(uF(t))

F(t)δ′(uF(t))

is decreasing in u, thus if

2 − δ′(uF(t))

δ′(uF(t))

is decreasing in u. The latter is satisfied if and only if δ(u) is convex in (0, 1). A list of
copulas which have convex diagonal sections (such as: Marshall–Olkin for any value
of the parameters, FGM with negative value of the parameter θ , i.e., θ ∈ (−1, 0],
Gumbel copulas, Clayton and other Archimedean copula, etc.). However, there are
no copulas having a concave diagonal section. A copula whose diagonal section is
neither convex nor concave is the FGM with θ ∈ (0, 1]. Thus, for this copula the
stated property does not hold. Note that for the product copula we have δ(u) = u2

which is a convex function. So the stated property holds in the case of independent
components. Proceeding in a similar and by using Proposition 4, (ii), one can prove
that Tmax

t ≤HR Tmin
t holds for any t > 0 if and only if δ(u)/u is increasing in [0, 1].

�
Under the assumption of independence between components’ lifetimes, a simple

proof of the inequality (1.1) mentioned in Introduction follows by a direct application
of Proposition 7. Using this result, in fact, it is possible to prove the stochastic com-
parisons between the inactivity time of a system conditioning on the fact that it failed
before a time t or that all its components have failed before time t .

Proposition 8 If T is the lifetime of a coherent system formed by n components having
independent lifetimes X1, . . . , Xn, then

(t − T |T < t) ≤ST (t − T |X1 < t, . . . , Xn < t) ∀t ≥ 0. (3.1)

Proof Let F1, . . . , Fn denote the distribution functions of X1, . . . , Xn . From (2.9),
the reliability function of Tt = (t − T |T ≤ t) can be written as

Ft (x) = Qt (F1,t (x), . . . , Fn,t (x))
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for x ∈ [0, t], where Fi,t (x) = Fi (t − x)/Fi (t) is the reliability function of the
inactivity time Xi,t = (t − Xi |Xi ≤ t) of the i th component for i = 1, . . . , n, and
where

Qt (u1, . . . , un) = Q⊥(u1F1(t), . . . , unFn(t))

Q⊥(F1(t), . . . , Fn(t))

is a generalized distortion function.
On the other hand, from Proposition 3, the reliability function T ∅

t = (t − T |X1 <

t, . . . , Xn < t) can be written as

Ft (x) = Q⊥(F1,t (x), . . . , Fn,t (x))

for x ∈ [0, t], where Q⊥ is the generalized distortion function of T in the case of
independent components.

Therefore, from Proposition 7(i), Tt ≤ST T ∅
t holds for all F1, . . . , Fn , if and only

if

Q⊥(u1F1(t), . . . , unFn(t))

Q⊥(F1(t), . . . , Fn(t))
≤ Q⊥(u1, . . . , un)

holds for all u1, . . . , un ∈ [0, 1]. Hence, Tt ≤ST T ∅
t holds for all F1, . . . , Fn , and for

all t , if and only if

Q⊥(u1v1, . . . , unvn) ≤ Q⊥(u1, . . . , un)Q⊥(v1, . . . , vn) (3.2)

for all u1, . . . , un, v1, . . . , vn ∈ [0, 1]. Now we use the fact that Q⊥ is the reliability
structure (dual generalized distortion) function of the dual system (since the minimal
path sets of the dual systems are the minimal cut sets of T and C = C in the case of
independent components). Moreover, it is well known that (3.2) holds for reliability
structure functions in the case of independent components (see (5.2) in Barlow and
Proschan 1975, p. 183). This completes the proof. �

Actually, even if the stochastic inequality (3.1) is in general false, Proposition 8 can
be generalized to systems with dependent components under additional assumptions
on the structure of dependence among them.

Proposition 9 If T is the lifetime of a coherent system formed by n components having
lifetimes (X1, . . . , Xn) with a continuous joint distribution such that

(

t − XA|XA < t, X Ac ≥ t
)

≤ST (t − XA|X1 < t, . . . , Xn < t) (3.3)

for all nonempty set A ⊆ {1, . . . , n}, then

(t − T |T < t) ≤ST (t − T |X1 < t, . . . , Xn < t) for all t > 0.
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Proof Denote with C1, . . . ,Cs , all the cut sets of the system where Cs = {1, . . . , n}
(note that here we consider all the cut sets, and not only the minimal ones). Then, it
holds that

{T < t} =
s

⋃

i=1

{XCi < t, XCc
i ≥ t}

for any x ≥ 0. Note that it is a union of disjoint events.
For any x, t ≥ 0, let

ai = Pr(XCi < t, XCc
i ≥ t) and bi = Pr(T < t − x, XCi < t, XCc

i ≥ t).

Then, we have

Pr(Tt > x) = Pr(t − T > x |T < t) = Pr(T < t − x, T < t)

Pr(T < t)

=
∑s

i=1 Pr
(

T < t − x, XCi < t, XCc
i ≥ t

)

∑s
i=1 Pr

(

XCi < t, XCc
i ≥ t

) =
∑s

i=1 bi
∑s

i=1 ai
.

The lifetime T can be written as T = τ(X1, . . . , Xn). For any cut set Ci , let
Ti = τi (XCi ) be the lifetime of the system obtained from T by assuming that all the
components not included in Ci are always working. Of course, we have T ≤ Ti for all
i .

Then, for any i = 1, . . . , s

bi
ai

= Pr(T < t − x |XCi < t, XCc
i ≥ t) = Pr(τ (X) < t − x |XCi < t, XCc

i ≥ t)

= Pr(τi (XCi ) < t − x |XCi < t, XCc
i ≥ t) = Pr(τi (t − XCi ) > x |XCi < t, XCc

i ≥ t)

≤ Pr(τi (t − XCi ) > x |XCs < t) = Pr(t − Ti > x |XCs < t)

≤ Pr(t − T > x |XCs < t) = Pr(T < t − x |XCs < t) = bs
as

,

where the first inequality is obtained from assumption (3.3) and the second from
T ≤ Ti . Thus, asbi ≤ aibs and

asb1 + · · · + asbs ≤ a1bs + · · · + asbs .

Hence,

Pr(t − T > x |T < t) =
∑s

i=1 bi
∑s

i=1 ai
≤ bs

as
= Pr(t − T > x |XCs < t)

and the stated result holds. �
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The proof of this assertion is similar to the proof of Theorem 11.2.2 in Li et al.
(2013) and therefore omitted. An example where the assumptions of the previous
proposition are satisfied for any nonempty set A ⊆ I and t ≥ 0 is when the vector of
lifetimes (X1, . . . , Xn)has anMTP2 joint density f , i.e.,when f satisfies f (x) f ( y) ≤
f (x∨ y) f (x∧ y) for any x, y ∈ R

n . See, for example, Fang and Hu (1997) or Karlin
and Rinott (1980) for the formal definition and examples of random vectors satisfying
the MTP2 property. Further simple conditions may be stated for the case of series
systems with two dependent components, as described in the following statement.

Proposition 10 If T = min(X1, X2) and the copula C of (X1, X2) satisfies the con-
ditions

zC(x, y) ≥ yC(x, z), for all 0 ≤ x ≤ 1, 0 ≤ y ≤ z ≤ 1, (3.4)

and

zC(x, y) ≥ xC(z, y), for all 0 ≤ x ≤ z ≤ 1, 0 ≤ y ≤ 1, (3.5)

then (t − T |T ≤ t) ≤ST (t − T |X1 ≤ t, X2 ≤ t).

Proof From Example 1, the dual distortion functions of Tt = (t − T |T ≤ t) and
T ∅
t = (t − T |X1 ≤ t, X2 ≤ t) are, respectively,

Qt (u1, u2) = u1F1(t) + u2F2(t) − C(u1F1(t), u2F2(t))

F1(t) + F2(t) − C(F1(t)F2(t))

and

Q
∅
t (u1, u2) = C(u1F1(t), F2(t)) + C(F1(t), u2F2(t)) − C(u1F1(t), u2F2(t))

C(F1(t), F2(t))
.

Thus, the stated result holds if and only if these two distortion functions satisfy

Qt (u1, u2) ≤ Q
∅
t (u1, u2) (3.6)

By taking x = F1(t), y = u2F2(t) and z = F2(t) in (3.4), we get

F2(t)C(F1(t), u2F2(t)) ≥ u2F2(t)C(F1(t), F2(t)).

Analogously, by taking x = u1F1(t), y = F2(t) and z = F1(t) in (3.5), we get

F1(t)C(u1F1(t), F2(t)) ≥ u1F1(t)C(F1(t), F2(t)).

Hence, (3.6) holds if

C(F1(t), F2(t))C(u1F1(t), u2F2(t)) + F1(t)C(F1(t), u2F2(t))

− F1(t)C(u1F1(t), u2F2(t)) − C(F1(t), F2(t))C(F1(t), u2F2(t)) ≥ 0
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and

C(F1(t), F2(t))C(u1F1(t), u2F2(t)) + F2(t)C(u1F1(t), F2(t))

− F2(t)C(u1F1(t), u2F2(t)) − C(F1(t), F2(t))C(u1F1(t), F2(t)) ≥ 0

hold. The first term can be written as

(F1(t) − C(F1(t), F2(t)))(C(F1(t), u2F2(t)) − C(u1F1(t), u2F2(t)))

and the second one as

(F2(t) − C(F1(t), F2(t)))(C(u1F1(t), F2(t)) − C(u1F1(t), u2F2(t))).

Hence, both terms are nonnegative since C is increasing and C(u, 1) = C(1, u) = u.
�

Remark 1 Conditions (3.4) and (3.5) can be seen as positive dependence properties
(weaker than T P2 property). In fact, letting x = F1(t), z = F2(t) and y = F2(s),
with s ≤ t , one can immediately observe that (3.4) is equivalent to

Pr(X1 < t |X2 < s) ≥ Pr(X1 < t |X2 < t), for all s ≤ t, (3.7)

and, similarly, one can see that (3.5) is equivalent to

Pr(X2 < t |X1 < s) ≥ Pr(X2 < t |X1 < t), for all s ≤ t. (3.8)

Hence, (3.4) and (3.5) hold if Pr(X1 < t |X2 < s) and Pr(X2 < t |X1 < s) are
decreasing in s for s ≤ t , i.e., if X2 is left tail decreasing (LTD) in X1 and X1 is
LTD in X2. The LTD notion is a well-know property describing positive dependence
among random variables; see, for example, Nelsen (2006), Chapter 5, or Colangelo
et al. (2005) on its formal definition and applications in modeling dependence. �

4 Illustrative examples

A list of examples of applications of the theoretical results described in previous
sections are provided here. The first one proves that the ordering in (1.1) is not always
true.

Example 4 Consider the lifetime T = min(X1, X2) of a series system formed by two
components having nonindependent lifetimes X1 and X2. Observe that for this system,
we have

Pr(t − T ≤ x |T ≤ t) = Pr(t − x ≤ min(X1, X2) ≤ t)

Pr(min(X1, X2) ≤ t)

= F(t − x, t − x) − F(t, t)

1 − F(t, t)
= p1,t (x)
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Fig. 1 Plot of the difference Pr(t − T ≤ x |X1, X2 ≤ t) − Pr(t − T ≤ x |T ≤ t) for T = min(X1, X2)

when t = 1 and the vector (X1, X2) has Gumbel’s bivariate exponential distribution with α1 = 4, α2 = 1
and θ = 1/2

and

Pr(t − T ≤ x |X1, X2 ≤ t)

= F(t − x, t − x) − F(t − x, t) − F(t, t − x) + F(t, t)

1 − F(0, t) − F(t, 0) + F(t, t)
= p2,t (x),

where F denotes the joint reliability function of (X1, X2).
Assume now that the pair (X1, X2) has a Gumbel’s bivariate exponential distribu-

tion, i.e., let

F(x1, x2) = Pr(X1 > x1, X2 > x2)

= exp(−α1x1 − α2x2 − θα1α2x1x2), αi ≥ 0, θ ∈ (0, 1).

It can be numerically verified that in this case, the inequality p1,t (x) ≤ p2,t (x) does
not holds for all x ≤ t (see, for example, Fig. 1, in which α1 = 4, α2 = 1, θ = 1/2
and t = 1), i.e., inequality (1.1) does not hold for all t > 0. �

Two examples where Proposition 10 can be applied are described now.

Example 5 Recall that a copula C is called Archimedean if it can be written in the
form

C(u1, u2) = φ−1(φ(u1) + φ(u2)), (4.1)

for any continuous and strictly decreasing function φ : [0, 1] �→ [0,∞] such that
φ(1) = 0. In this case, the function φ is called generator of the Archimedean copula.
In Bassan and Spizzichino (2005), Proposition 6.1, it is proved that any Archimedean
copula is totally positive of order 2 (T P2), i.e., it satisfies
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C(x1, y1)C(x2, y2)≥C(x1, y2)C(x2, y1) ∀ 0≤ x1≤ x2≤1 and 0 ≤ y1 ≤ y2 ≤ 1,

(4.2)

if the inverse φ−1 of its generator function is log-convex. Examples of Archimedean
copulas for which (4.2) holds are, for example, the Clayton or the Gumbel–Hougaard
copulas, for any values of their parameters. Ali–Mikhail–Haq copulas, for positive
values of the parameter, also satisfy this property.

Let now T = min(X1, X2) be the lifetime of a series system with two dependent
components having anArchimedean copulaC . Since the property (4.2) clearly implies
(3.4) and (3.5), then (3.6) holds whenever C is Archimedean with log-convex inverse
generator φ−1. �

Example 6 Let T = min(X1, X2) be the lifetime of a series system with two
dependent components having dependent lifetimes X1 and X2 connected by a Farlie–
Gumbel–Morgenstern (FGM) copula, i.e., the copula defined as C(x, y) = xy[1 +
α(1 − x)(1 − y)] with −1 ≤ α ≤ 1. For 0 ≤ α < 1 it is easy to verify that

zxy[1 + α − αx − αy + αxy] ≥ xyz[1 + α − αx − αz + αxz], for y ≤ z

and

zxy[1 + α − αx − αy + αxy] ≥ xzy[1 + α − αy − αz + αyz], for x ≤ z.

Thus, both (3.4) and (3.5) hold, and so (3.6) holds too. �

The next example shows that (3.7) and (3.8) are not necessary conditions for the
stochastic comparison (3.1) where T = min(X1, X2).

Example 7 Let (X1, X2) have Gumbel’s bivariate exponential distribution as seen in
Example 4, with α1 = α2 = 1, θ = 0.5. The copula C of this vector does not
satisfy conditions (3.4) and (3.5), otherwise inequality (t − T |T < t) ≤ST (t −
T |X1 < t, X2 < t) would be satisfied in Example 4, by Proposition 10. However,
for this particular choice of the parameters αi and θ , and letting t = 1, the stochastic
inequality (t − T |T < t) ≤ST (t − T |X1 < t, X2 < t) is satisfied. This can be
verified numerically: Fig. 2 shows the plots of Pr(t − T ≤ s|T ≤ t) (black) and
Pr(t − T ≤ s|X1, X2 ≤ t) (red) for s ∈ (0, 1]. �

Example 8 Consider a k-out-of-n systemwhose lifetime T corresponds to the kth fail-
ure of a component, and let the Xi , i = 1, . . . , n be the lifetimes of the n components.
Assuming that the Xi are independent and identically distributed, with cumulative
distribution F , by Proposition 9 follows that the inactivity time Tt under the gen-
eral condition that the system is failed in t is always stochastically bounded by
(t − T |X1 < t, . . . Xn < t) that is, ∀s ∈ (0, t) it holds
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Fig. 2 Plots of Pr(t −T ≤ s|T ≤ t) (black) and Pr(t −T ≤ s|X1, X2 ≤ t) (red), for α1 = α2 = 1, θ =
0.5 and t = 1, with s ∈ (0, 1], when (X1, X2) is described as in Example 7 (color figure online)

Pr(t − T > s|T < t) ≤ Pr(t − T > s|Xn:n < t)

= Pr(Xk:n < t − s, Xn:n < t)

Pr(Xn:n < t)

=
∑n

j=k

(n
j

)

F j (t − s)Fn− j (t)

Fn(t)
.

�

We conclude the section observing that a statement somehow related to Propo-
sition 8 has been provided in Li and Lu (2003), where, in Theorem 4, it is proved
that

(max{X1, X2})t ≤HR max{X1,t , X2,t } and (min{X1, X2})t ≥HR min{X1,t , X2,t }
(4.3)

for independent components having lifetimes X1 and X2, and inactivity times X1,t and
X2,t . Actually, Proposition 8 is clearly different, since the inequalities in (4.3) compare
the inactivity time of systems with the maximum, or minimum, among inactivity times
of their components. Moreover, the following example proves that inequality (3.1)
does not holds in general for the ≤HR order. However, it also shows that (3.1) can
be satisfied for the ≤LR order whenever T is the lifetime of a series system having
independent and identically distributed lifetimes of the components.

Example 9 Let us consider a series system with two independent components and
lifetime T = min(X1, X2). From Example 1, the dual distortion functions of Tt and
T ∅
t are

Qt (u1, u2) = u1F1(t) + u2F2(t) − u1u2F1(t)F2(t)

F1(t) + F2(t) − F1(t)F2(t)
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and

Q
∅
t (u1, u2) = Q⊥(u1, u2) = u1 + u2 − u1u2.

From Proposition 8, we know that Tt ≤ST T ∅
t holds for all t and all continuous

distributions F1, F2. To study if Tt ≤HR T ∅
t holds, we consider the ratio

Rt (u1, u2) = Q
∅
t (u1, u2)

Qt (u1, u2)
= (u1 + u2 − u1u2)(F1(t) + F2(t) − F1(t)F2(t))

u1F1(t) + u2F2(t) − u1u2F1(t)F2(t)
.

It can be seen that if F1(t) = 0.5, F2(t) = 0.7, then this ratio is increasing in u1 when
u2 = 0.1 and it is decreasing when u2 = 0.9. Therefore Tt ≤HR T ∅

t does not hold.
However, if we assume that the components are IID (i.e., F1 = F2 = F), then we

should study the ratio

rt (u) = q∅
t (u)

qt (u)
= (2u − u2)(2F(t) − F2(t))

2uF(t) − u2F2(t)
= (2 − u)(2 − F(t))

2 − uF(t)

whose derivative satisfies

r ′
t (u) =sign −2 + 2F(t) ≤ 0.

Therefore, rt is decreasing and Tt ≤HR T ∅
t holds for all t and for all IID components.

Even more, to study if Tt ≤LR T ∅
t holds, we consider the ratio

gt (u) = (q∅
t )′(u)

q ′
t (u)

= (1 − u)(2 − F(t))

1 − uF(t)

whose derivative satisfies

g′
t (u) =sign −1 + F(t) ≤ 0.

Therefore, gt is decreasing and Tt ≤LR T ∅
t holds for all t and for all IID

components. �

5 Conclusions

The study of residual lifetimes and inactivity times of coherent systems is an impor-
tant topic in the field of reliability theory. In the present paper, we provide a general
procedure to get representations for the reliability (distribution) functions of inactiv-
ity times of coherent systems with possibly dependent components under different
assumptions. They are based on the recent concept of generalized distorted distribu-
tions and can be used to compare inactivity times both of different systems or of the
same system under different assumptions concerning the failure of components. These
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comparisons are distribution-free, that is, they do not depend on the component dis-
tributions. We include here some simple illustrative examples, but our procedures can
be applied to more complex systems. In practice, the unknown copula can be replaced
by an estimation of it.
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