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Abstract

The detection of explosives and explosive-related compounds has become a heightened

priority in recent years for homeland security and counter-terrorism applications. There has

been a huge increase in research within this area – through both the development of new,

innovative detection approaches and the improvement of existing techniques. Developments

for miniaturisation, portability, field-ruggedisation and improvements in stand-off distances,

selectivity and sensitivity have been necessary to develop and improve techniques. This

review provides a consolidation of information relating to recent advances in explosive

detection techniques without being limited to one specific research area or explosive type.

The focus of this review will be towards advances in the last 5 years, with the reader being

referred to earlier reviews where appropriate.

Keywords: Explosives detection; Explosive-related compound; Counter-terrorism; Review

Contents

Current Trends in Explosive Detection Techniques........................................................................1

Abstract..................................................................................................................................................1

1. Introduction................................................................................................................................3

2. Spectroscopic approaches for the detection of explosives................................................3

2.1. Ion mobility spectroscopy................................................................................................4

2.2. Mass spectroscopy ..........................................................................................................5

2.3. Terahertz spectroscopy ...................................................................................................7

2.4. Infra-red spectroscopy .....................................................................................................8

2.5. Laser-induced breakdown spectroscopy ......................................................................9

2.6. Raman spectroscopy .....................................................................................................10

2.7. Cavity ring down spectroscopy ....................................................................................13

li2106
TextBox
Talanta, Volume 88, 15 January 2012, Pages 14-29  



3. Olfactory type sensors...........................................................................................................14

3.1. Animals ............................................................................................................................14

3.2. Electronic noses .............................................................................................................15

4. Sensor techniques .................................................................................................................15

4.1. Chemical sensors...........................................................................................................16

4.2. Electrochemical sensors ...............................................................................................17

4.3. Immunochemical ............................................................................................................19

4.4. Luminescence sensors..................................................................................................20

5. Nanotechnology......................................................................................................................23

5.1. Molecularly imprinted polymers....................................................................................23

5.2. Nanotubes .......................................................................................................................24

5.3. Nanoparticles ..................................................................................................................26

6. Quartz crystal Microbalance .................................................................................................27

7. Thin Films Sensors ................................................................................................................29

8. Conclusions and future outlook................................................................................................30

9. Acknowledgements ....................................................................................................................31

10. References ................................................................................... Error! Bookmark not defined.



1. Introduction

Concerns relating to homeland security have given rise to increased research into explosive

detection as well as further developments for existing analytical techniques to enable faster,

more sensitive, less expensive and simpler determinations to facilitate the trace identification

of explosives.

Traditional security measures at airports have included the use of metal detectors to identify

weapons that may be concealed in conjunction with X-ray machines for viewing the contents

of baggage. One major problem is that explosive substances are often not easily detectable

using conventional approaches and in this context many terrorist groups have adapted to

avoid the use of metallic objects. Approaches to detect volatile substances, such as ion

mobility spectrometry in conjunction with swabbing, while in routine use - are largely only

suitable for the screening of items of hand baggage.

For the detection of traces of explosive substances in the air, issues related to the low

vapour pressures of many explosives are only exacerbated further when these explosives

are wrapped or packaged to avoid detection. The increasing use of peroxide based

explosives has led to much research into detection of this group of explosive substances, the

issue being that many current chemical identification techniques are based on the nitrogen

and carbon content of a substance for identification and this practice is not suitable for

peroxide explosives.

This review primarily focuses on the detection of concealed explosives and their precursors /

degradation products. Areas that are covered include trace, bulk and vapour detection

techniques and those described for the stand-off detection of explosive substances. Peer

reviewed papers from the last 5 years are presented as well as referring to other review

papers of particular interest.

2. Spectroscopic approaches for the detection of explosives

The principle of mass spectroscopic methods is that samples are drawn from the air into a

mass spectrometer where they are ionised, the resultant ions separated by electrical and

magnetic fields according to mass charge ratio and detected and quantified. These methods

display very high sensitivities and selectivities but are often expensive and require laboratory

based equipment. Much current work is addressed to reducing size and cost of such

equipment.



2.1. Ion mobility spectroscopy

2.1.1. Principle

Ion mobility spectrometry (IMS) is one of the most widely used detection techniques in

routine use due to its ability to characterise the sample both qualitatively and quantitatively -

as well as the very low detection limits that are often attainable. The reader is referred to a

2001 critical review of ion mobility spectrometry for the detection of explosives and explosive

related compounds [1].

IMS characterises a sample through the mobility of ions within the gas-phase of the

instrument whilst an electric field is applied (see figure 1). The sample vapours are ionised at

atmospheric pressure before introduction into the drift tube. The drift times are related to the

mass of the ions and by determining the mass/charge ratio, it is possible to identify

components within the sample through comparison with known standards.

Most commercially available apparatus use 63Ni or 241Am [2] as the ionisation source. The

radioactive nature of these ionisation sources, however, can cause concerns relating to

safety and environmental impact. As such, there has been investigation into alternative

sources for ionisation with a focus towards negative corona discharge approaches [2, 3].

Corona discharge as an ionisation source does have some associated complications,

namely the variation of reactant ions produced, as compared to those gained with a 63Ni

source – as well as susceptibility to degradation of reactant ions and failure at the discharge

point. Waltman et al., 2008, described a distributed plasma atmospheric pressure ionisation

source that involved the application of a high-voltage alternating current across a dielectric to

produce plasma within which the sample was ionised [4]. This technique was reported to be

unaffected by tip erosion (of which corona discharge approaches can be prone) – and

moreover requires less power than corona discharge sources.

Investigation into enabling the miniaturisation and portability of IMS apparatus for field

deployment has increased over recent years. Tabrizchi and Ilbeigi, 2010, investigated a

positive corona discharge technique using a curtain plate preventing the diffusion of NOx into

the ionisation region so allowing analysis in air as opposed to nitrogen [5]. A shortening of

the length of the drift tube and minimising the ionisation source would usually be associated

with a corresponding decline in sensitivity, however, the use of a capacitive-trans impedance

amplifier has been shown to offer resolution comparable with, and sensitivity exceeding,

commercial bench top instruments [6]. An ion focussing aspiration condenser has been

described where two parallel gas flows travel through a transverse electric field; the upper

flow contains the ion stream which is then geometrically focussed until the ions are forced

into the lower gas stream and onto the base electrode. The different ion species are



separated by their mobility into separate beams and then detected. This apparatus typically

uses less power, is less costly to manufacture, as well as being smaller than many

commercial instruments – and for these reasons may be incorporated into a hand-held

system [7].

Martin et al., 2007, described a micro-fabricated hotplate coated with a sorbent polymer as a

technique to trap analytes of interest prior to analysis with IMS; this technique reportedly

enhanced sensitivity by at least one order of magnitude [8]. A technique to decrease false

positive results without any significant increase in analysis time has been described, using a

short column packed with adsorbent packing material; this method enables pre-separation

after ionisation of the sample furthermore offering the capacity to retain interference for

longer, thus minimising their influence on the resulting spectra [9].

2.2. Mass spectroscopy

2.2.1. Principle

Mass spectrometry (MS) in various forms has been used successfully to detect explosives

due to its specificity in identifying substances and the speed at which analyses are

completed. Due to the size and expense of previous MS devices, this technique has not

been widely used within some security oriented settings. Mass spectrometry separates and

analyses the chemical composition of a substance according to its’ mass-to-charge (m/e)

ratio. Two methods by which this may be achieved include time separation and geometric

separation based approaches. There are many forms of mass spectrometry including, for

example: quadrupole, ion trap, time-of-flight (TOF) and tandem based techniques (MS/MS)

[10].

The use of a mass spectrometer for security or forensic analyses would often involve the

substance of interest either being within a complex sample matrix or absorbed upon a

surface. Work has been undertaken towards improving the techniques for the introduction of

samples into the mass spectrometer. The aim is not only the improvement of selectivity

towards the material of interest, but also to remove the necessity for pre-concentration of

samples before analysis. In addition to these factors, miniaturisation and lowering of unit

cost have also been key research areas.

2.2.2. Recent advances

Ambient ionisation techniques have been investigated to address some of the issues

mentioned above. Atmospheric pressure chemical ionisation (APCI) involves the ionisation

of a sample and carrier gas within the gas phase using corona discharge. Song and Cooks,



2006, further developed this technique by using the carrier gases acetonitrile and air to

enable selective detection of nitroaromatic explosives through the formation of adducts that

subsequently fragment in a predictable manner [11]. APCI has also been investigated using

a reversed gas flow introduction into the source which improves the ionisation of

nitro-compounds before introduction into the tandem mass spectrometer [12]. Samples were

collected both using a swab and directly from the skin of a hand that had handled explosive

material. Using this approach 2,4,6-trinitrotoluene (TNT) was detected at a concentration of

3 pg L-1. A single proton laser ionisation technique has been described as a rapid

laser-based technique and enables explosive detection with little fragmentation, thus

allowing easier identification of the parent ion [13]. Limits of detection for nitrobenzene and

2,4-dinitrotoluene (DNT) were reported to be 90-130 ng L-1 and 320 ng L-1 respectively. This

technique was, however, only suitable for molecules with an ionisation energy above 10.49

eV.

Desorption electrospray ionisation (DESI) enables analysis of the substance of interest in its

ambient environment by bombarding it with a mist of electrically charged droplets so creating

ions which are drawn into the mass spectrometer with a vacuum [14]. This technique has

been employed in the swift and specific detection of explosives on skin [15] and within

complex matrices such as diesel fuel and lubricants [16]. Direct analysis in real time (DART)

is a technique similar to DESI in that a sample may be analysed in its ambient location

without preparation; however, in DART an electrical potential is applied to a carrier gas and

the resulting excited-state species desorb molecules from the sample which are introduced

into the mass spectrometer [14, 17]. This technique has been comprehensively tested on

various surfaces including clothing, currency and concrete – as well as a wide variety of

chemicals of interest [18, 19]. A desorption corona beam ionisation source (DCBI) is also

able to work under ambient conditions without preparation of the sample. This technique is

similar to DART, however in this case a visible thin corona beam is generated which may be

used to analyse a specific area of the sample surface or even to visualise the surface of the

sample on a molecular level [20]. The reader is referred to several recent reviews that

consider the advancements in ambient mass spectrometry in greater depth [21, 22].

The size of mass spectrometers have previously presented a drawback to their use,

however, much work has been undertaken into the miniaturisation of components and

addressing safety considerations to enable the development of field deployable instruments.

A simulation was undertaken in 2004 to establish the worth of a miniaturised system

involving an array of micrometer sized cylindrical ion traps that decreased the voltage

necessary for operation and the resulting size of the device in its entirety [23]. The use of

DESI with a portable mass spectrometer has demonstrated rapid detection of explosive



compounds in situ from a variety of surfaces and, for example, with RDX (1,3,5-

Trinitro-1,3,5-triazacyclohexane) on paper, a LOD of less than 1 ng was observed [24].

Sanders et al, 2010, demonstrated the detection of explosives on surfaces with a

miniaturised system capable of detecting negatively charges ions. Samples of explosives

were randomly applied to a large surface in 1µg cm-2 quantities and a DESI mass spectrum

corresponding to each of the explosive signals was observed [25]. Further investigation into

the use of atmospheric pressure ionisation techniques with a cylindrical ion trap

field-deployable mass spectrometer setup has demonstrated LODs of 1 ng and 250 pg for

RDX and PETN (pentaerythritol tetranitrate) respectively [26]. A system integrating three

methods has recently been described, employing thermal desorption, single photon

ionisation and ion trap mass approaches. This system was tested using pure samples and

those within a matrix. While significant fragmentation with those complex samples was

found, the system was found to be free from false readings [27].

Coupled techniques such as gas chromatography- mass spectrometry (GCMS) have also

been utilised. These systems combine the separation ability of gas chromatography with the

sensitivity and specificity of a mass spectrometer. Since September 11th attacks, explosive

detection devices have become incorporated into all US airports and many of these utilise

GCMS A typical example is Thermo Scientific’s EGIS Defender, licensed by the FAA for use

at US airports (www.thermoscientific.com). This system couples high speed gas

chromatography with ion-mobility mass spectrometry to give a system capable of detection

of a range of explosives (C4, Semtex, peroxides, TNT and nitrates) at nanogram levels in

seconds. Other systems include the IONSCAN 500DT from Smiths Detection Technologies

(www.smithsdetection.com) or General Electrics “puffer” system.

2.3. Terahertz spectroscopy

2.3.1. Principle

The field of terahertz (THz) spectroscopy has been investigated many times over previous

years as a technique for the detection of explosive vapour signatures [28-30]. There have

been, however, drawbacks associated with this technology that have prevented

development into a feasible system, and these include: the frame rate speed, a loss of

attenuation as distance from sample increases, and, power requirements for the system [31].

Recently some of these issues have been addressed and the technology is further being

considered as not only an explosive detection method, but also a way to detect weapons

and other concealed objects within luggage and beneath clothing. Terahertz radiation lies in

the far infra-red region – from 0.1 to 10 THz. In this range waves can penetrate through

many non-polar dielectric materials, such as wood or leather, and the low photon energies



are at a level one million times less than that of X-ray photons. Most explosives and

explosive related compounds have spectral fingerprints within this range and, as many

apparatus operate within the range 0.1-2.0 THz, this highlights THz radiation as a

prospective sensor and imaging agent for the detection of concealed explosive substances.

2.3.2. Recent advances

Liu et al., 2006, described the detection and identification of both exposed and covered

samples of RDX using diffusely reflected THz waves [32]. When the THz waves strike a

smooth sample surface, the reflected beam has the same angle as the incident angle, this

phenomena being known as specular Fresnal reflection. In reality, the sample surface is not

usually smooth or aligned precisely within the THz beam and consequently the angle

necessary for detection can be difficult to determine. As such, studying the diffuse Fresnel

reflection (the reflection angle gained when a THz wave hits an uneven section of the

surface) is more applicable to field-based analyses. Using this technique, Liu et al

demonstrated the detection of RDX, exposed and covered by various materials, with a

consistent fingerprint present at 0.82 THz.

Chen et al., 2007, investigated the absorption spectra of seventeen explosives and explosive

related compounds (ERC) using THz spectroscopy [33]. Most of the substances examined

exhibited characteristic absorption features in the 0.1-2.8 THz range. These results may be

used to form a fingerprint database of explosives and ERCs. Through improvements in

emitters and sensors, new spectral features have also been established for explosives within

the frequency region of 3 – 6 THz [29, 30, 34].

Work has been undertaken into the influence of so called ‘confusion’ materials such as, for

example, food or toiletries, on the resulting spectra of any explosive compound also present

[35]. It was established that while most of the confusion materials do not exhibit sharp

spectral features in the terahertz region, substances containing sugar did have a spectral

signature – although this does differ from the explosive substances within the test and so did

not cause interference.

2.4. Infra-red spectroscopy

2.4.1. Principle

The principle of infra-red spectroscopic methods is that samples passed through an infra-red

beam, certain groups adsorb at specific wavelengths allowing detection of many materials.

Sensitivity and specificity can be issues and current work is attempting to address these

challenges.



Fourier transform infra-red (FTIR) spectroscopy is a technique largely used in to replace the

more traditional dispersive instruments; this enables a considerable decrease in the time

taken for sample analysis since it is capable of scanning all IR frequencies simultaneously

rather than individually. An FTIR spectrum obtained was shown to allow identification of

substances through its absorption at different wavelengths of light.

2.4.2. Recent advances

Primera-Pedrozo et al, 2009, reported a technique for the detection and quantification of

high explosive residues on metallic surfaces using fibre optic coupled reflection/absorption

infrared spectroscopy (RAIRS). When an infrared beam is directed at a smooth surface it

passes through the sample and is reflected back through this coating again; this is known as

specular reflectance and is the basis for the RAIRS technique. Coupling this technique with

a Fourier transform probe, containing fibre optic cables that transmit in the mid-infrared

range, enables analysis of samples in-situ rather than within the spectrometer sample

chamber. Micro-RAIRS may also be used for topographical analysis of the substrate surface

before sample examination. Low detection limits were reported of 160 ng cm-2 for TNT and

Tetryl; 220 ng cm-2 for PETN and DNT; and 400 ng cm-2 for HMX (Octahydro-1,3,5,7-

tetranitro-1,3,5,7-tetrazocine) adsorbed on the metal surface [36].

The detection and identification of explosive particles in fingerprints has been described by

Mou and Rabalais, 2009, using attenuated total reflection-Fourier transform infrared

(ATR-FTIR) spectromicroscopy. Particles are first located within the ridges of the fingerprint

using the ATR probe and then analysed with infrared radiation. The ATR-FTIR technique is

classed as non destructive as the ridge patterns of the fingerprints remain the same and are

therefore suitable for subsequent identification. The explosives particles present are able to

be identified using a spectral library; however, in this work the library was not specific and

did not contain the spectra of TNT and DNT - the analogue dinitrobenzene (DNB) was

identified as closely matching those explosive compounds [37].

2.5. Laser-induced breakdown spectroscopy

2.5.1. Priinciple

Laser-induced breakdown spectroscopy (LIBS) uses a high intensity laser to vaporise the

sample under investigation creating a plasma plume and the light subsequently emitted from

this plasma enables characterisation of the sample. LIBS, as a detection technique, holds

many advantages, especially in the field of explosives detection, some of which include: no

need for sample preparation, the ability for real time results, apparatus that may be

ruggedized and miniaturised for field work, a sensitive technique requiring only a small



sample and the capacity for stand-off detection approach. For a more in-depth look at LIBS

for explosive detection the reader is referred to Gottfried et al, 2009 [38].

2.5.2. Challenges and advances

Despite the obvious advantages of LIBS as a detection method, there are drawbacks

associated with this technique. To enable use as a stand-off detection method, detection will

usually need to be performed in the open air. The main constituents of many explosives are

carbon, hydrogen, nitrogen and oxygen and it is the ratios of oxygen and nitrogen relative to

carbon and hydrogen that form a distinguishing characteristic of many high explosive

compounds. Inferences from oxygen and nitrogen in the atmosphere affect these ratios and,

therefore, the characterisation of explosive compounds. This was illustrated by Lucena et al,

2010, in a comparison detection study of explosives in air and in helium [39]. De Lucia et al,

2007, proposed the use of a double pulse LIBS technique to diminish the effects of

atmospheric interference. The double pulse increased the amount of excited atoms in the

sample due to an increased plasma plume and it is believed that this also decreased the

atmospheric gas density around the sample. This technique removed most of the

atmospheric interference and aided discrimination between the explosive RDX and an

organic material, diesel fuel [40].

To enable the detection of explosive materials at stand-off distances and in difficult to access

areas Bohling et al, 2007, reported a LIBS system coupled to a probe like device which

consisted of optical fibres, a focussing lens and a mechanical shutter system to protect the

optics from any debris during use. The active fibre acts as an amplifier for the microchip

laser and the passive optical fibre directs the laser pulses to the tip of the sensor. This

system offers the possibility for combination with an automated device. Principle component

analysis (PCA) and neural networking approaches were also reported in this paper to allow

the identification of hidden objects with an accuracy above 80% and false identifications

below 5% [41].

Dikmelik et al, 2008, proposed the use of femtosecond laser pulses to decrease the amount

of fragmentation during the LIBS process. Nanosecond laser pulses are generally utilised

although this tends to fragment a sample into its elemental constituents. When ultrafast

excitation is employed, the fragmentation is less severe and emission is observed from CN

and C2 molecules which may be used as a marker for, in this case, TNT [42].

2.6. Raman spectroscopy

2.6.1. Principle



Raman spectroscopy measures the vibrational transitions in a sample through the collection

and analysis of scattered photons once the sample has undergone laser excitation.

Resulting spectra can offer a fingerprint of the item under analysis that can identify individual

components of the sample. Due to the near instantaneous results and possible stand-off

capacity, allowing samples to be analysed at some distance from the instrumentation [43],

the potential of this technique for use as an explosives detection method has led to

considerable work within this area. A review that described advances in the capacity of

portable Raman instrumentation has also highlighted some of the issues relating to

producing instrumentation for field deployable apparatus [44]. Sensitivity is an issue, much of

this has been addressed by using techniques such as surface enhanced Raman

spectroscopy which displays much higher sensitivity. Since much of the equipment used is

still laboratory based, future trends indicate that much more portable instruments are

required and are being developed. Use of fibre optic technology to allow remote sampling is

also being investigated.

2.6.2. Recent advances

Pacheco-Londoño et al, 2009, reported the use of a continuous wave laser technique to

increase the resulting signal to noise ratio and thus improve stand-off distances for explosive

detection. Detection at distances of up to 7m was described for the explosives TNT, DNT,

RDX, TATP (triacetone triperoxide) and C4. The general-purpose plastic explosive Semtex

containing RDX and PETN could not, however, be distinguished from the background

interference due to the fluorescent nature of the explosive mixture. Limits of detection were

achieved at 2 mg for DNT and TNT; 3 mg for RDX and C4 and 10 mg for TATP at a distance

of 7 m [45]. This study was not, however, conducted in a manner that transfers readily into a

field-operable device since determinations were undertaken indoors and in the dark to

minimise interferences.

A study into stand-off explosive detection in realistic field environments was undertaken by

the Swedish Defence Research Agency. Measurements of various improvised explosive

devices (IEDs) at stand-off distances of 20, 30 and 55 m were performed in varying weather

conditions – from snow to sun and temperatures ranging from +22 ºC to -8 ºC. The

instrumentation, including a 532 nm pulsed laser source, was kept inside a laboratory

throughout the study and the beam directed outside onto an explosives approved test field.

adjacent to the laboratory, thereby allowing the samples to be placed outdoors in an open

environment. Bulk quantities of samples were satisfactorily identified through both regular

glass bottles (green and brown) and PET (polyethylene terephthalate) containers and

weather variations were found to have a minimal effect on measurements [46]. Issues that



may arise include possible interfering fluorescence in the visible spectral region due to the

container as well as how this system may cope with detection of trace amounts of the

explosive substance.

The issue of interfering fluorescence may be addressed using a narrow gate width to

exclude the majority of the interfering agents whilst still collecting the Raman signal relating

to the sample. Fleger et al, 2009, propose such a technique – the interaction time for Raman

scattering is less than 1 ps, however, luminescence scattering takes much longer between

excitation and decay. As such, when a sample is interrogated with a short laser pulse, all

Raman photons are generated almost instantaneously but the luminescence photons are

generated over a longer time period. When the detection system has a narrow gate, all

Raman photons will be collected with the minimum amount of luminescence. This allows a

greater signal to noise ratio and enables detection of explosive substances with strong

luminescent properties, such as Semtex [47].

The detection of explosive particles with backward coherent anti-Stokes Raman scattering

(B-CARS) was studied by Portnov et al, 2010. Coherent anti-Stokes Raman scattering

(CARS) involves three laser beams which interact with the sample and generate a new

coherent optical signal at the anti-Stokes frequency. A spectrum with the same information

as a spontaneous Raman spectrum is obtained though, with much higher sensitivity.

B-CARS utilises the signal obtained from the diffuse reflections gained when a sample is

interrogated using CARS. Using this technique the spectral fingerprint remains

fundamentally the same as when processed with Raman, but the intensity is much greater

with a more favourable signal to noise ratio. Stand-off distances were extrapolated to be as

great as 180, 21 and 13 m for potassium nitrate, PETN and RDX respectively [48].

Confocal Raman microscopy enables the detection and identification of explosive

substances and this approach can also provide information on physical properties such as

the crystal structure, molecular orientation and possible interactions. Raman microscopy

uses a focused laser beam within a microscope and operates in a confocal mode through

the use of an aperture within the microscope - this enables depth recognition alongside the

spectral profile usually gained with Raman spectroscopy.

Confocal Raman microscopy has been utilised for the detection and identification of

explosive substances on the surface of human nail and from beneath a coating of nail

varnish. It was discovered that although the nail itself produced spectral bands these did not

inhibit identification of the explosives under examination, in this case PETN, TNT, AN

(ammonium nitrate) and hexamethylenetetramine (HMTA), since interference could be

excluded with careful focussing of the confocal beam. Coating the explosive and nail with



nail varnish presented no additional problems for detection, with a two-dimensional Raman

map gained for PETN and with no significant interference in the Raman spectra [49]. The

same technique has been investigated for the detection of single particles of the explosives:

PETN, AN and TNT [50]; as well as HMTA and pentaerythritol [51], on clothing. These

studies looked at both natural and synthetic fibres, dyed and undyed, to imitate the in-situ

detection of a person who may have handled explosive substances. Confocal Raman

microscopy produced identifiable Raman fingerprints for each of the explosive compounds

where each explosive particle was within the maximum dimensions of 5-10 µm. Interference

from the fibres, although present, did not fall within the Raman spectral profile of explosives

tested. The main issue with this technique would appear to be visual identification of the

explosive particles prior to testing.

2.7. Cavity ring down spectroscopy

2.7.1. Principle

In cavity ringdown spectroscopy (CRDS) a short pulse of light is injected into a resonant

cavity which is surrounded by highly reflective mirrors. When sufficient radiation has built up

within the cavity, the laser is turned off and the exponential decay of the intensity of the light

is measured over time. The decay time for an empty cavity is then compared with one

containing a substance of interest and a spectrum is obtained. The molecular absorbance,

and therefore the concentration, may also be derived from the rate of decay. For a more

in-depth overview of CRDS as a technique see Paldus and Kachanov, 2005, and Berden et

al, 2000 [52, 53].

2.7.2. Recent advances

Ramos and Dagdigian, 2007, described a study into the use of ultra-violet CRDS as a

means to improve on the low sensitivities related to infra-red CDRS. It was the case that

UV-CRDS was able to detect the explosive related compounds 2,4-DNT and 2,6-DNT at

concentrations 100 times less than their room temperature vapour pressures. The issue,

however, was that this technique was unable to decisively identify specific samples due to its

poor selectivity in the 240-260 nm spectral range [54]. This seems to be in opposition to

IR-CRDS which has distinct spectral features but much lower sensitivity. There was also an

issue with atmospheric interferences, especially ozone. It was suggested, however, that

coupling this device with a less sensitive but more selective technique could overcome these

problems. An increase in laser pulse energies may also lower the noise related to the photon

decay; however, applying this technique to improve sensitivity also has the capacity to distort

the decay profile through pre-dissociation of the compound leading to issues of identification

[55].



Snels et al, 2010, reported a feasibility study involving the use of flash heater in a CRD cell

to evaporate solid explosive samples prior to detection in the near infrared (see figure 2).

This technique aimed to address issues previously described in the literature such as poor

selectivity in the UV region and the inability to record a full CRD spectrum in short time

periods when recorded in the mid-infrared range. The discrimination between three similar

compounds, 2,4-DNT, 2,6-DNT and TNT, was possible with the use of PCA and detection

limits were reported at around 75 ng. Suggestions to improve this technique include the use

of higher reflectivity mirrors and alternative heating geometry [56]. This technique was

performed in ambient atmosphere with little interference, however, measurements at room

temperatures were not possible and neither were investigations into explosive vapours in air.

3. Olfactory type sensors

Two types of olfactory sensor can be thought to exist, natural and artificial. Dogs have long

been used to detect explosives and other species are being investigated, however the

issues facing these methods are time and cost of training animals and lack of quantitative

information. Electronic noses are being developed but as yet do not have the specificity and

reliability for field use. Improving the performance of these artificial noses is necessary

before they will be suitable for field work.

3.1. Animals

Dogs have long been known to have a highly developed sense of smell and this has been

exploited for the detection of explosives since World War II [57]. The use of sniffer dogs for

the detection of volatile explosive vapours is still widespread due to their fast, directional and

real-time capabilities. Some studies have been undertaken into the reliability of canines for

detection of explosives as there can be inconsistency between different dogs and the same

dogs at different times [58]. Other animals have also been studied to establish any suitability

for vapour detection. Rats have a sensitive and discriminating olfactory system and have

been shown to correctly discriminate between odours and alert when explosives are present

using a remote monitoring technique [59]. Insects, such as Drosophila melanogaster, have

also been investigated due to the capability they have to detect a large range of odours and

the simple olfactory system they possess. Incorporation of insect olfactory receptor neurons

into a biosensor array has been reported by Marshall et al, 2010, with some success

towards detecting illicit substances [60]. A comprehensive discussion into neural processing

and olfactory research has been produced by Glatz and Bailey-Hill, 2010 [61].

There has been work attempting to establish the method by which an animal is able to detect

an explosive target, whether it is through establishing an olfactory search image [62] or if the



olfactory ability is predetermined by the polymorphisms in olfactory receptor genes - in this

case, of the canine [63]. Detection of TNT and RDX has been demonstrated with olfactory

sensory neurons obtained from rats and pigs [64], suggesting that explosive compounds do

indeed interact with and activate olfactory receptors.

3.2. Electronic noses

A comprehensive review describing fluid dynamic sampling and its potential relationship to

artificial olfactory devices has been published [44] which includes a broad discussion of

contemporary artificial sampling techniques as well as suggestions for future research areas.

Artificial olfactory type sensors “electronic noses” have also been applied towards the

detection of explosives [65]. Electronic noses usually consist of an array of chemical sensors

which interact with a vapour in different ways and to different extents, combined with a

pattern recognition system such as an artificial neural network. The basic principle is that

each sensor will give a different response depending on the nature and concentration of

vapour present and the pattern recognition process will allow determination of the analyte. A

detailed description of electronic noses and their application to explosive detection is beyond

the scope of this chapter but has been reviewed elsewhere [45].

The chemical sensing elements can be electronic, piezoelectric or optical in nature and be

organic or inorganic. Typical examples could include arrays of fluorescent polymers which

can be quenched by interaction with a vapour. Only those polymers that interact are

quenched. Fluorimetric arrays can also be used which consists of layers of multiple silica or

polymer beads incorporating fluorescent dyes which are quenched by explosive vapours

[66]. These can be photographed by a CCD camera and used determine a variety of organic

vapours including nitroaromatic comounds. Polymer/carbon black composite films which

change their conductivity upon exposure to vapours can also be used, although each film is

not specific in itself, the overall changes in the array can be used to determine the presence

of analytes [67]. Other workers have utilised gold nanoparticle arrays and measured the

change in their conductivity upon exposure to vapours [68]. Piezoelectric type devices have

been used such as surface acoustic wave devices or microcantilever sensors [65].

4. Sensor techniques

One technique that can potentially address many of the issues required for reproducible

detection of explosives is that of sensors which could be low cost, portable and specific. The

principle of sensors is that they contain an immobilised active species, such as an enzyme,

which can selectively recognise the explosive required. A transduction step which can be

optical, electrochemicalo or some other technique is then required to convert the recognition



event into a measurable change, such as the production of electrons which can be

measured at an electrode. However sensitivity is an issue, many sensors cannot simply

detect the low levels of explosive vapours required. The future trends for this field are

attempts to improve sensitivity, reliability and reproducibility

4.1. Chemical sensors

The principle of chemical sensors is a simple one, to have a chemical which undergoes a

selective chemical reaction with an explosive vapour, leading to an observable product such

as a change in colour or conductivity. TNT is a system containing an aromatic ring

substituted with electron withdrawing nitro groups. This means it will form charge transfer

complexes with systems that can donate electrons. For example reacting TNT with bases

leads to strong visible colour changes [69]. These types of systems have been commercially

exploited, for instance in the EXPRAY and DROPEX systems, where suspected surfaces

(clothing, packages etc) are wiped with a special test paper and then the paper sprayed with

proprietary aerosols. Colour changes are indicative of the presence of trace amounts of

explosive. There are several aerosols and from the colour developed in response to each

aerosol it is possible to determine the presence and identity of explosive. Targets include

TNT, DNT, plastic explosive and nitrates.

A suitable base for reaction with TNT is the organic amino group and this has been used to

modify silicon nanowires to give electrochemical sensors which can detect TNT in water

down to sub-femto molar concentrations [70]. Other workers modified silica nanoparticles

with amine groups and fluorescent dyes, the amine groups bound TNT which then quenched

the fluorescence of the dyes, allowing detection of the explosive at levels of 1 nmol l-1 TNT in

solution and several ppb of TNT vapour in air [71].

Other chemical sensors include ones based on conductive polymers. Recent examples

include an electrochemical sensor based on polyaniline deposited on an electrode as a

nanofibrous composite with a polypeptide. Amino groups within the polypeptide form

complexes with electron-deficient species such as TNT, this immobilises the TNT in close

proximity to the conducting polymer, allowing its determination in solution by adsorptive

stripping voltammetry [72]. Other workers used a composite of polyaniline and carbon

nanotubes for the detection of nitroaromatic vapours including TNT. The amine group of

polyaniline forms a charge transfer complex with TNT, leading to an increase in the electrical

resistance of the polymer [73]. Another conducting polymer used within a vapour sensor is

poly(3,4-dioxyethylene thiophene) (PEDOT) which could be deposited to form a conductive

nanowire between two gold electrodes. Coating this electrical junction with an ionic liquid

allowed the system to adsorb TNT vapour from the air and then the electrochemical



reductions of TNT as well as the conductance change of the polymer nanojunction caused

from the reduction product could be simultaneously measured. This sensor is capable of

detecting within a few minutes parts-per-trillion level TNT in the presence of various

interferents [74].

4.2. Electrochemical sensors

4.2.1. Principle

Electrochemical sensors can be categorised into potentiometric (measurement of potential

difference/voltage); amperometric (measurement of current) and conductimetric

(measurement of conductivity) based devices according to the transduction approach

adopted [75]. These types of sensor are fast, inexpensive with high sensitivity and a viable

option for miniaturisation [76]. Electrochemical detection techniques can respond to redox

substances; the electrical output results from a flow in electrons or ions caused by the

chemical reaction that takes place at the surface of the electrode. Due to this, the redox

properties of nitroaromatic explosive substances ideally lend themselves to electrochemical

detection. The detection of peroxide based explosives is more complex due to the fact they

do not fluoresce, have minimal UV absorption and a lack of nitro groups – all necessary

parameters upon which traditional detection techniques are based [77]. Electrochemical

sensors in this context offer an opportunity to detect peroxide based explosives that would

otherwise prove problematic.

4.2.2. Recent advances

Square-wave voltammetry (SWV) is an often described technique for field-based operations

due to the speed of scan rates, the sensitivity and the compact, low power instrumentation

available [78]. Agüí et al, 2005, described a technique that coupled carbon-fibre

microelectrodes with SWV to increase the surface area of the working electrode also

provides fissures within its surface into which nitroaromatic compounds adsorb. Resulting

detection limits obtained in phosphate buffer (PBS) were reported to be as low as 30 µg L-1

[79]. Cizek et al, 2010, reported a preliminary study into the integration of a preconcentration

device to thermally desorb the TNT from the gaseous phase before electrochemical

reduction with a screen-printed hydrogel-coated electrode using SWV. This preconcentration

step allowed detection of TNT vapours from a solid sample upstream of the apparatus [80].

A technique involving a layer by layer assembly of alternate layers of mesoporous SiO2

(MSU) and polydiallyldimethylammonium chloride (PDDA) upon the surface of a glassy

carbon electrode was found to increase pore volume, diameter and, therefore, surface area



of the working electrode; this increased sensitivity to nitroaromatic compounds especially

when at lower detection limits. This approach suffers, however, from an intrinsic issue with

silica of poor conductivity which can have an effect on the performance of the sensor

platform. The limit of detection for TNT was found to be 340 ng L-1 in aqueous solution [81].

Fu et al, 2010, reported the synthesis of a SiO2 microsphere comprised of a mesoporous

silica shell modified with 3-aminopropyltriethoxysilane (APTS) to attach amino functional

groups. This system was applied to glassy carbon electrodes as a sensing layer for

nitroaromatics, especially TNT. Using square wave voltammetry, a detection limit of 114 ng

L-1 in 0.5 mol L-1 NaCl was achieved and 81% of original response was obtained after 30

days [82]. Ordered mesoporous carbon (OMC) has, more recently, been investigated to

improve sensitivity towards nitro-explosives and the performance of the electrochemical

sensor. The OMC provided a much improved surface area, as with the silica based system,

and an enhanced conductivity which produced a sensor with lower limits of detection [83].

The detection of peroxide-based explosives has become increasingly important due to the

ease at which some may be synthesised from commercially available substances and hence

their link to terrorist activities. Lu et al, 2006, described a technique for rapidly monitoring

liquid peroxide-based explosives using an electrode modified with Prussian-blue as an

artificial peroxidase and amperometric detection of the resulting hydrogen peroxide

generated [84]. Detection limits were reported as 7.4 μg L-1 for TATP in PBS after a 15 s

irradiation time. Parajuli and Miao, 2009, reported an electrogenerated chemiluminescence

(ECL) technique that was enhanced (by up to 20 times) by the inclusion of silver nitrate at

the platinum electrode. This system involved the oxidation of HMTD by the electrogenerated

species allowing a detection limit of 1 mg L-1 in acetonitrile to be achieved [85].

Wang and Pumera, 2006, produced a microchip flow-injection analysis for trace amounts of

TNT. The authors described the need for ‘lab-on-a-chip’ technology to achieve a fast, simple

and cheap alternative to laboratory-based techniques [86]. This approach used

electro-osmotic flow to move samples through the microchip manifolds and measures

response to TNT amperometrically. Amalgam mercury/gold disc electrodes were used due

to their favourable signal-to-noise ratio and detection limits of 7 µg L-1 in sodium borate

buffer were described, with the added advantages of a high-throughput system and minimal

sample consumption.

A textile based electrochemical sensing system was described as a means to provide a

wearable chemical sensor. Here, various textiles were analysed to assess performance as a

screen-printed electrode with a breathable and waterproof fabric Gore-Tex (TM) being found

to exhibit promising properties for use in this field. Properties such as, for example:



hydrophobicity and printing quality on the fabric were found to afford the subsequent

electrochemical activity of the sensors. Detection of nitroaromatic compounds was

demonstrated and an initial assessment into the resilience of the fabric as a sensor platform

was conducted successfully [87].

The development of single use processes to enable disposable electrochemical sensing has

become more desirable to facilitate a portable explosive sensor. Chen et al, 2006, described

the use of a Nafion (TM) coated, pre-anodised screen-printed carbon electrode that

increased the sharpness of peaks and, therefore, the ease of identification of substituent

groups upon the nitroaromatic compound. Recovery of TNT from spiked lake water was

95.7%, with this complex matrix only affecting the sample slightly [88].

Bhalla et al, 2011, described a biosensor that detects picric acid effectively based on the

inhibition of the Photosystem II (PSII) in the presence of explosives. Photosystem II is a

protein complex involved in the electron chain reaction in photosynthesis. Gold screen-

printed electrodes were functionalised with the PSII and the sensing system was based on

the inhibition of the natural photosynthetic reaction by the presence of explosive compounds.

Picric acid was found to compete with QB plastoquinone for its binding site on the protein

complex of PSII. This disrupts the electron transfer process and decreases the resulting

photocurrent, which was observed through steady-state electrochemical interrogation. The

detection limit in MES buffer for picric acid in this system was found to be 5.7 μg L-1 [89].

Yu et al, 2009, reported the combination of electrochemical and piezoelectric transduction

mechanisms as a detection technique, using the ionic liquid BMIBF4

(1-methyl-3-butylimidazolium tetrafluoroborate) as both the electrolyte and the sorption

solvent to enable this multi-faceted system. The accuracy of a system such as this was

increased due to the validation that one system may have over the other [90].

4.3. Immunochemical

Immunochemical sensors exploit characteristics of the antibody-antigen reaction in such a

manner that produces a device that can be highly specific to its target molecule. This feature

and the fact that it is possible to produce antibodies for a specific purpose make this an

expanding field of research into explosives detection.

A recent review by Smith et al, 2008, provides a more comprehensive report on not only

immunochemical sensors, but also biosensors and biologically-inspired systems for

explosive detection in general [91].



Anderson et al, 2006, reported a multiplexed immunoassay approach using a flow

cytometer, the Luminex100, which contains 100 different sets of fluorescent latex

microspheres, each of which is encoded by two fluorescent dyes. The ratio of the emission

recorded at two different wavelengths enables identification of each set. The limit of

detection for TNT in PBS was found to be 1.0 µg L-1 [92]. Detection of peroxide based

explosives using immunoassays have been less reported. Anderson et al, 2010, described

the comparison of two monoclonal and one polyclonal commercial antibodies as well as the

development of llama polyclonal antibodies for use in the detection of PETN. As before,

evaluation was performed with the Luminex100 flow cytometer. Binding was found to occur

between bioconjugates of PETN and the antibodies but binding with the free PETN was

limited [93]. This can often be the case when the target molecule is small and so further

development within this area is necessary before detection of PETN in this manner becomes

a possibility.

Surface Plasmon resonance (SPR) immunosensors act by detecting a change in the

refractive index at the surface of the sensor due to an alteration in the binding of molecules

immobilised on this surface. Where a large molecule binds with the immobilised antibody, a

large signal is gained. Explosive molecules tend to only give rise to a small signal due to

their relatively small size and this causes an issue with sensitivity, this is especially apparent

in miniaturised systems. As such, amplification techniques have been investigated to

improve detection of small analytes and competitive inhibition is often employed. Nagatomo

et al, 2009, reported a novel oligo(ethylene glycol) (OEG)-based self-assembled monolayer

upon a bare gold chip using an anti-DNT antibody for an indirect competitive binding effect.

In the presence of DNT, there was an inhibition of surface binding, decreasing the SPR

angle. This system exhibited high sensitivity for DNT, with a limit of detection of 20 ng L-1 in

PBS [94]. A nano-scale biosensor chip surface modified with a polyamidoamine dendrimer

was reported to enhance the antibody surface loading capacity while increasing the

selectivity towards TNT molecules in a stable, easily regenerated system [95]. A schematic

of these types of system is shown in figure 3 where an antigen of interest has been

covalently immobilised on the SPR chip surface. If a solution of antibody mixed with a

sample containing no antigen flows over the sensor surface, it binds to the immobilised

antigen causing a large shift in resonance angle. However should the sample contain the

antigen, there will be competition for the antibody between free and bound antigen, less

antibody will therefore bind to the surface and a lower shift in resonance angle will be seen.

4.4. Luminescence sensors

4.4.1. Principle



Luminescence based sensors for detecting explosive compounds may be described as

utilising either direct or indirect detection methods. Direct detection techniques utilises any

fluorescence which the sample may emit itself or through inducement with a chemical

reaction. Indirect detection involves the implication of explosives being present through their

effect on a fluorescent material such as, for example, via quenching. While recent

developments within this area are examined here, the reader is referred to a more

comprehensive review of luminescence-based explosive detection methods [96].

4.4.2. Recent advances

Toal et al, 2006, reported a technique to visually detect the quenching of photoluminescence

in the presence of nitroaromatic explosives using a metallole-containing polymer adsorbed

on filter paper onto which a sample of the explosive compound was spray coated from

acetone or fingerprinted from a solid sample. Under illumination with UV light, quenching

was observed and detection limits were as low as 5 ng for TNT. One issue with a technique

such as this is that observation of a colour change can be a subjective activity and so

combining this with another, more qualitative system or an automated approach may be

necessary [97]. This group’s work was continued to make the sensor more selective by

incorporating a tandem process that first quenches the metallole in the presence of

nitroaromatics as described above. A thin film of 2,3-diaminonaphthalene (DAN) is then

applied which cancels the polymetallole luminescence and, in the presence of nitroamine

and/or nitrate-ester explosives, a reaction with the DAN forms a blue luminescent complex

[98]. An investigation into synthesising polymers and copolymers and their relevance to

explosive detection was also undertaken by this group which reported some polymers were

able to detect nitroaromatic, nitro-amine and nitro-ester explosive compounds [99]. Further

work was reported that coupled the tandem process mentioned previously with an efficient

blue-emitting silafluorene-fluorene copolymer system that was able to detect trace

particulates of samples of all of the nitro-based explosives, allowing detection limits as low

as 1 pg cm-1 [100].

A fluorescent film produced as a self-assembled monolayer has been described by Du et al,

2010. This group introduced a benzene ring as the spacer component to ensure favourable

packing of the pyrene moieties as they self assembled. The effect of the addition of the

aromatic structure was an increased quenching of the fluorescence emitted when in the

presence of nitroaromatic compounds, most especially with picric acid where the detection

limit was established at 2.3 µg L-1 in water. This is believed to be due to the extension

outside the film of the pyrene moieties and the restriction of motion caused by the inclusion

of benzene [101].



Shi et al, 2008, described the quenching effect that nitroaromatic compounds have on oleic

acid covered CdSe quantum dots. This work reported detection limits around 10-6 to 10-7 mol

L-1 for a range of compounds, for example 340 μg L-1 for TNT in chloroform, making this a

viable screening technique. Further technique optimisation is necessary before it may be

seen as a workable alternative to fluorescent polymers [102]. The combination of quantum

dots with a dendrimer, such as PAMAM (poly(amido amine)) generation 4 [103], has been

reported to increase biocompatibility and biostability as well as increasing reactivity. Such

improvements increased water solubility and as a consequence signal output.

Photo-fragmentation of nitro-based explosives at 193 nm has been demonstrated by

Monterola et al, 2008. At this wavelength the NO2 moieties are released from the compound

and may be detected through their chemiluminescent interaction with a solution of luminol.

Trace amounts of PETN vapour were detected at 3 ppb (40 ng L-1) and analysis of PETN in

a soil matrix yielded a LOD range of 0.5-4.3 μg g-1. This technique is fast and simple but

does not identify the specific molecule, giving only a general identification of a nitro-based

sample being present [104].

Ponnu and Anslyn, 2010, produced a cyclodextrin (CD) sensor by combining the CD with a

fluorophore, bis(phenylethynyl)anthracene (BPEA), to produce a cyclodextrin inclusion

complex. The cavities of this complex are less polar than water and so are able to extract

hydrophobic molecules from aqueous environments. When applied to aqueous solutions

containing explosives, quenching occurred in the presence of nitroaromatic compounds –

but not other nitro-based explosives. Quenching effects were found to be greater with the

complex as opposed to the fluorophore alone [105].

Caron et al, 2010, reported a portable fluorescent detector capable of ultra-trace detection of

the nitroaromatic compounds TNT and DNT, which was unaffected by environmental

humidity or interfering substances [106, 107]. This detector utilised a specific fluorescent

conjugated polymer which adsorbed nitroaromatic vapours present in airborne samples with

a concurrent decrease in fluorescence. Although at present this device only detects

nitroaromatics, a multi-faceted design may be possible using several fluorescent material

platforms. A sensor array of commercially available fluorescent polymers was evaluated by

Woodka et al, 2010, to attempt to limit the possibility of false positives due to a high

concentration of non-explosive electron withdrawing compounds (EWC). The responses

gained from a variety of explosives, explosive related compounds and non-explosive EWCs

in water were analysed using principal component and linear discriminant analyses. The

array was found to discriminate between the explosive, non-explosive and explosive related



electron withdrawing compounds and in this way was demonstrated as a platform approach

for minimising the likelihood of false positives [108].

5. Nanotechnology

Nanotechnology has become a rapidly expanding area of research over recent years as

techniques and knowledge have developed. Materials often possess unique characteristics

when in a nanoscale form as compared to bulk materials and as such, the incorporation into

existing techniques is an active area of research to enhance sensitivity and selectivity. For

example, the benefits of using such materials as carbon nanotubes are that they display

enhanced detection sensitivity compared to sensors incorporating other carbon platforms

(possibly due to increased surface area,) they have electrocatalytic effects, are mechanically

strong and flexible and have excellent electrical and thermal conductivity. Nanoparticle

systems have also been used such as metal nanoparticles, again they can lead to enhanced

sensitivities especially in electrochemical systems due to increased surface areas, catalytic

effects and improving electrical conductivity. Metal nanoparticles can also have beneficial

effects in optical sensors due to increased surface areas and a number of optical effects

such as surface enhanced Raman spectroscopy, described later in this section.

5.1. Molecularly imprinted polymers

5.1.1. Principle

Molecularly imprinted polymers (MIPs) are generated through both covalent and

non-covalent interactions of functional monomers with the molecule of interest or its

analogues, acting as a template. Figure 4 shows schematically the formation of a MIP by

crosslinking around a template. MIPs allow the formation of molecules with recognition sites

specific for a target analyte producing a substance specific coating which may then be

incorporated onto a sensing platform. MIPs are stable and robust which accounts for the

interest in researching possible uses for them as sensing materials. A more extensive review

into the use and synthesis of these polymers can be found in the literature [109].

The proposal of MIPs for the detection of explosive compounds was first described by

Chianella et al, 2004 [110], where MIPs were designed for PETN, RDX, Tetryl and TNT. A

patent filed by Schwartz et al, 2005, described an array of MIP coated fibre-optic cables

which, when coupled to a suitable algorithm program, is capable of identifying either single

or multiple explosive target molecules [111].

5.1.2. Recent advances



More recently, research has been undertaken into the optimisation of polymerisation

techniques and assessing the merit of various monomers for the synthesis and subsequent

specificity towards explosives compounds. Bunte et al, 2007, described the comparison of

various monomer/solvent complexes and the use of a spray gun, alongside conventional

techniques, to apply the thin film to a quartz crystal microbalance (QCM). Response times

for TNT vapour were found to be in the pg per µg MIP per minute range [112]. The same

group, based at the Fraunhofer Institute for Chemical Technology, described further work

into MIP application using both a nanoplotter and a spin coating device to assess the

resulting quality of the layers [113] as well as the use of a continuous segmented flow

microreaction process to allow uniform sized pre-polymer droplets to be generated. This

enabled the size required to be defined, so minimising the need to sieve before use in

columns [114].

Stringer et al, 2010, described the use of quantum dots as the fluorescent species in a

fluorescent-labelled MIP system. The quantum dots, rather than being incorporated into the

polymer matrix, were inserted post-processing to extend the shelf-life of the system. Lower

limits of detection were found to be 30.1 and 40.7 µmol L-1 for aqueous DNT and TNT,

respectively [115]. Whilst this system was unable to match detection limits of other MIP

based detection techniques [116], response times were found to be as low as 1 minute.

Nie et al, 2011, described a two dimensional approach to molecular imprinting for the

detection of TNT. This two-dimensional approach was expected to improve limitations such

as incomplete template removal and slow mass transfer associated with traditional MIP. The

molecularly imprinted monolayer, MIM, was prepared upon a Au nanoparticle modified

glassy carbon electrode (AuNP-GCE) to enable electrochemical detection of TNT. TNT

templates were preadsorbed on the surface of the AuNP-GCE the alkanethiols then

self-assemble before removal of templates. These MIMs were found to have good selectivity

towards TNT above other nitroaromatic compounds with a detection limit of 3 µg L-1 and this

enabled the system to be successfully applied to environmental water samples [117].

5.2. Nanotubes

The unique properties of nanotubes have generated great interest towards the study and

development of this field of research. These include, for example, their electrical properties

as either conductors, insulators or semiconductors, depending on the structure and their

high thermal conductivity in the axial direction while their thermal conductivity is low in the

lateral direction. There are many more examples of their unique kinetic, optical and

mechanical properties that ensure this area of study is continually expanding [118].



Wang et al, 2004, reported the surface modification of glassy carbon electrodes with

multi-walled carbon nanotubes (MWCNT) for the detection of TNT with adsorptive stripping

voltammetry (ASV). Modification of the electrode in this manner aided the accumulation of

TNT at the electrode surface due to the increased surface area. This resulted in

quantification of TNT down to the sub-µg L-1 level and a LOD of 0.6 µg L-1 [119]. It was also

discovered that this system performed better in a seawater matrix, with increased sensitivity

when compared to a synthetic NaCl solution. A number of issues with selectivity were

reported, however, since other nitroaromatic compounds were found capable of interference.

Chen et al, 2010, reported the use of semiconducting single walled carbon nanotubes

(SWCNT) as wearable chemical sensors, firstly positioning the SWCNT in an aligned array

on quartz using chemical vapour deposition and then transferring the array onto textile. This

coated textile section was then incorporated onto a chip carrier with an electrical and gas

feed, essentially becoming a wearable transistor. In air, the LOD for TNT was found to be 8

ppb (80 ng L-1). The same group also reported the production of metal oxide nanowires with

a LOD for TNT vapour of 600 ng L-1 [120].

A SWCNT based chemiresistive immunosensor was described by Park et al, 2010, which

provided a label-free, sensitive and selective technique for detection of nitroaromatic

explosives. The SWCNT was first modified with trinitrophenyl (TNP), an analogue of TNT,

which was then functionalised with an anti-TNP single chain antibody. This antibody has a

greater affinity for TNT and thus the introduction of TNT caused a large change in the

resistance of the system with the detection range of 5 ng L-1 to 50 μg L-1 TNT in PBS and

environmental water samples being reported [121].

As previously mentioned, detection of peroxide based explosives can be complex due to

these compounds containing neither the nitro groups nor aromatic behaviours traditionally

used for analysis [122]. Banerjee et al, 2009, suggested the use of a one-dimensional titania

(TiO2) nanotube array where metal ions, in this case zinc (Zn2+), are coated upon the

surface. When present in argon the TATP vapour bonded to the metal ions and the signal

current output, as detected by a potentiostat, increased by between 3 to 5 orders of

magnitude although this was found to be prone to saturation for TATP in air under ambient

conditions [123].

The use of both carbon nanotubes and metallic nanoparticles were described by Hrapovic et

al, 2006, for the electrochemical detection of nitroaromatic compounds. The nanocomposite

was composed of a SWCNT with copper nanoparticles within a Nafion matrix, selected for

their stability, reproducibility, low background current and prominent peak display with cyclic



voltammetry and anodic stripping voltammetry, ASV. A detection limit of 1 μg L-1 was

reported in tap water, river water and washed contaminated soil samples [124].

Guo et al, 2011, reported the development of an ionic liquid graphene nanosheet used with

a glassy carbon electrode for the detection of TNT. The nanosheets were synthesised as

described by [125] and used to detect the presence of TNT as it was electrochemically

reduced. Comparison data illustrated a distinct improvement in signal when compared to

plain glassy carbon electrodes or those functionalised with ionic liquid carbon nanotubes;

and a detection limit of 4 μg L-1 in PBS was reported [126].

5.3. Nanoparticles

Jiang et al, 2008, described a simple colorimetric visualisation of TNT at picomolar levels

based on the donar-acceptor (D-A) interaction between TNT and primary amines – in this

case cysteamine. The cysteamine acts as both primary amine and stabilizer to the gold

nanoparticles (Au NP); introduction of TNT into the aqueous solution caused aggregation of

these amine covered Au NPs which resulted in a colour change from red to violet which can

be observed without further analysis. An addition of 114 pg L-1 of TNT changed the solution

colour such that it could be visualised by the naked eye [127].

Surface-enhanced Raman scattering (SERS) is a technique that enhances the intensity of

Raman scattering spectra through the proximity of a molecule to a roughened metal surface

or, in the case of nanomolecules, between gaps in nanostructures. Dasary et al, 2009,

described a SERS probe coated with gold nanoparticle-cysteine conjugates; this system was

able to form aggregating Meisenheimer complexes in water in the presence of TNT. A result

of this was hot spot formation and an enhancement of the Raman signal intensity, allowing

TNT to be detected at a concentration of 0.45 ng L-1 [128]…A similar technique was

described by Yang et al, 2010, using functionalised silver nanoparticles coated on silver

molybdate nanowires with crosslinking provided by p,p’-dimercaptoazobenzene (DMAB).

TNT was detected in this case at concentrations of 0.23 ng L-1 [129]. The detection of

peroxide based explosives has also been described using a similar approach. Chang et al,

2009, reported a SERS-active nanoporous substrate based on porous alumina membranes

combined with mixed nanoclusters comprising gold nanorods and gold nanoparticles. The

plasmon resonance from hot spots produced by the above system photo-decompose

molecules of HMTD enabling analysis of the fragments. The LOD has been interpolated as 2

pg HMTD in 10 μL of acetonitrile [130]. A self-assembled gold octahedral array has been 

described that used a droplet evaporation process. This process produced a nanoparticle

array with nanoscale interparticle gaps which provide an enhancement to the SERS

detection of TNT deposited from ethanol solution through improved sensitivity and



reproducibility [131]. There has been significant work within this area to establish optimal

working conditions of the system including, for example, the effect of exposure time and

temperature on the resulting signal [132, 133] as well as addressing false positives due to

musk based perfumes of similar structure to TNT [134], in this case it was found that the

compounds musk ketone and musk xylene can be distinguished from TNT using the SERS

technique.

An imprinted composite coating of bisaniline-gold nanoparticles was developed using

Kemp’s acid as an imprinting molecule upon a gold surface for the detection of RDX. This

technique used surface plasmon resonance (SPR) which reveals changes in the refractive

index occurring due to adsorption or desorption at the surface. Detection of RDX was

possible at 2.6 pg L-1 in HEPES buffer due to the formation of π-donor-acceptor complexes 

between RDX and the bisaniline bridging units [135]. Kawaguchi et al, 2008, describe the

use of gold nanoparticles on the immunosurface within a miniaturised SPR system that

amplified the signal for TNT by four times that which is seen when the gold nanoparticle was

absent [136].

Wang et al, 2008, reported electrochemical competitive displacement immunoassays for the

detection of TNT. Poly(guanine)-functionalised silica nanoparticles were complexed with

anti-TNT coated magnetic beads using an analogue of TNT, trinitrobenzene. When exposed

to TNT the analogue was displaced and there was an increase of guanine in the solution.

The magnetic beads were removed and the solution electrochemically interrogated upon a

screen printed electrode in a solution of PBS with mediator. The limit of detection for this

system was found to be ~100 ng L-1 [137].

Chen et al, 2010, described a chemosensor based on pyrene-functionalised Ru (ruthenium)

nanoparticles, using 1-vinylpyrene (Ru=VPy) and 1-allylpyrene (Ru=APy). Both of these

particles exhibited enhanced detection of nitroaromatic compounds in dimethylformamide as

compared to monomeric pyrene; and of the two particles under examination Ru=VPy

nanoparticles displayed higher sensitivity. Increased nitration on the aromatic ring increased

the response, and for this reason TNT exhibited the greatest fluorescence quenching of the

nitroaromatics under consideration [138].

6. Quartz crystal Microbalance

6.1.1. Principle

The quartz crystal microbalance utilises the resonance frequency change due to changes in

mass upon the crystal surface as a means to detect the presence of a substance of interest.

This technique is further enhanced through coating the surface with various compounds



which help provide specificity to this system. Although this paper will relate the use of a QCM

in relation to the field of nanotechnology, the reader is referred to a comprehensive review of

the many uses of QCM [139].

6.1.2. Recent advances

Larsson et al, 2006, reported a potential selective detector chip for TNT using thiol

self-assembly with a TNT analogue upon a gold biochip and a subsequent competitive label-

free immunoassay. Several combinations of TNT analogue/organosulphur compounds were

evaluated as a possible self-assembled monolayer (SAM) for this system and the analogue

dissociation was monitored with both a QCM and via surface plasmon resonance (SPR).

The detection limit for TNT was within the 1-10 µg L-1 range in PBS depending on the

TNT-analogue used [140], with one analogue, ANA1, presenting shorter recovery times after

exposure and a higher relative response to TNT.

Cerruti et al, 2009, further investigated the selective detection of TNT and DNT using QCM

with a polymer-oligopeptide coating upon a gold chip capable of providing a stable and high

density set of receptors with selective binding capabilities. This system was capable of

providing real-time detection, in water, of TNT whilst the presence of DNT exhibited no

resonance frequency change [141]. A different approach by Lubczyk et al, 2010, was to

combine several differently coated microbalances in an array to distinguish the peroxide

based explosive TATP from chemically related compounds. Analytical detection methods for

TATP often rely on the detection of hydrogen peroxide (H2O2) as an indicator of its presence;

however, as H2O2 can be found in other substances there is a risk of false positives from

merely detecting this substance. This work attempted to address this issue using a

combination of a modified phenylene dendrimer, a cyclodextrin and a cholic acid derivative

as the separate coatings on an array of QCMs. Response times were found to be in the

range of a few seconds and rapid system recovery was also possible. Combining this

approach with high frequency QCM a lower limit of detection for TATP vapour in nitrogen

was reported at 1 ppm (6.6 μg L-1) [142].

Yu et al, 2009, described a combination of electrochemical and piezoelectrical transduction

techniques for the sensitive and selective detection of nitroaromatic compounds. This

system used an ionic liquid, BMIBF4, as both the electrolyte for the amperometric sensing

and the sorption solvent to coat the QCM. The amperometric and QCM sensing systems

were integrated onto a single quartz chip permitting miniaturisation. Sensing was performed

in the 0-70 μg L-1 region for ethylnitrobenzene, validating the combination of these two

systems and the use of ionic liquids as both solvent and electrolyte in a miniaturised system

such as this [90].



7. Thin Films Sensors

The design of selective polymers for the detection of explosive compounds has been

described earlier. Tenhaeff et al, 2010, employed initiated chemical vapour deposition

(iCVD) to deposit a nitro-aromatic selective polymer, poly(4-vinylpyridine), inside

microfabricated trenches. This coating was subsequently coated with a gold/palladium

electrically conductive layer. When the polymer coating absorbed the analyte vapour of

interest it swelled producing an interaction between the conductive layers on either side of

the trough and this contact can subsequently be measured electrically. Although this system

demonstrated the transduction of a chemical interaction into an observable measurement,

there were several issues that would need to be addressed before translation into a viable

detection device, such as the switch presently being irreversible and the length of response

times – the shortest for nitrobenzene being 10.2 minutes. The authors do, however, claim

concentration and mass limits of detection for TNT as low as 9.5 ng L-1 and 3 fg respectively

through modelling based on optimal conditions [143].

Long et al, 2009, reported an electrospun nanofibrous film doped with a fluorescent

conjugated polymer (CP) for the detection of DNT in chloroform. CPs have greater

fluorescent quantum yields and amplified sensory responses as compared to small

fluorescent molecules, although they experience self-aggregation and thus self fluorescent

quenching. The authors employed electrospinning to construct a nanofibrous film that

decreased opportunities for self-aggregation. The polymer was further doped with a

supporting matrix and a porogen to increase the surface area and porosity of the surface;

this enabled target analytes to diffuse close to the sensing elements so increasing the

quenching capabilities [144].

Lock et al, 2009, described the use of a self-assembled monolayer upon the surface of a

microcantilever, which undergoes chain polymerisation in the presence of peroxide radicals

which are produced when the sample vapours are passed through a heating filament. This

sensor was capable of detecting hydrogen peroxide and tertbutyl peroxide, leading to the

hope that it may be suitable for use within a peroxide explosive sensor. This system also

displayed reversibility, returning to baseline without need for thermal regeneration [145] and

was reported as being selective to peroxide vapours, although this may not be sufficiently

discriminating to prevent some false positives.



8. Conclusions and future outlook

It can be observed that almost all analytical techniques addressed in this review have

undergone significant changes to improve one or more aspects of their working practises

over the last five years; including, for example: sensitivity, specificity, cost, ease of use and

miniaturisation. Further advancement will be necessary to provide a system that

incorporates all aspects of an ideal explosive identification technique due to the inherent

issues that are associated with this – low volatility of explosive vapours, concealment,

interferences and the actual damage caused by a false response. Significant improvements

have been made in the portability of apparatus; spectroscopic techniques, such as IMS and

mass spectrometry, which were largely stationary are now become field deployable.

Terahertz spectroscopy, once beleaguered with issues, has been realised as a technique

that can identify explosives and other concealed objects beneath clothing and within

luggage. Nanotechnology over the last decade has become increasingly important, with

research to incorporate new nano-based aspects into existing technologies to improve

sensitivity, selectivity and portability.

We have within this review discussed many of the applications that require explosive

detection and the capabilities of some of the current commercial systems are shown in table

1. There appear to be many promising methods that are being developed as alternatives to

these systems and the utilisation of these various technologies will depend on the particular

application. For applications that require not only high sensitivity but also an immediate

response, such as airport security, the most promising systems appear to those based on

either mass spectroscopy which is the basis of many of the detection systems currently in

use. These offer a rapid response and can detect low levels of most explosive materials, as

well as many other hazardous chemicals. Other technologies that could compete with these

are optical systems, such as those using conjugated fluorescent polymers which could

match the sensitivity and speed of response, although it is unlikely that they would be able to

detect as wide a range of analytes. Some of the nanotechnology based methods, utilising for

example carbon nanotubes which may display rapid changes in conductivity on adsorption of

vapours of interest may also be suitable, although one challenge is the selectivity of such

systems.

For detection of explosive devices in other environments (landmines, roadside bombs etc)

the most important factor is probably the ability to detect at a safe distance, rather than

having to approach the device. Of great interest therefore are optical laser-based techniques

such as the Raman systems described earlier which allow detection of explosives at stand-



off distances as high as 180 metres. They are also of interest because of their ability to

detect explosives in sealed containers such as glass or plastic bottles.

For forensic investigations and environmental monitoring, rapid detection is usually not a

matter of such urgency so other techniques can compete. In the case of forensic

examination, most of this is still lab based but the techniques used such as mass

spectrometry are becoming much smaller and in some cases are portable. One challenge for

environmental monitoring is that usually large areas can be involved, such as river basins

and this means a large number of samples may be required. Laboratory based techniques

are often expensive and require trained personnel, leading to cost and time issues. It is in

this context that the use of such methods as biosensors or molecular imprinted polymers

become suitable. They display high selectivity and specificity and can often be made

cheaply, for example the use of cheap screen-printed electrodes has allowed the

construction of disposable one-shot biosensors, as typified by commercial home glucose

sensors. Utilisation of this technology will allow the measurement of large number of

samples at a much reduced cost, with the possibility that they could be used as a screening

process. Large areas could be investigated to determine location of areas of high

contamination which can then be sampled for in depth off-site analysis.

The field of explosives detection is certain to remain and active and wide-ranging area of

research due to increased demand for homeland security in the face of perceived terrorist

threats as well the remediation of environments that already pose a high risk – such as

clearing of minefields. One of the most important aspects of these technologies is that of

portability and much research is being undertaken into the miniaturisation of existing

technologies. Nanotechnology has an important role to play in this as well as also enabling

the development of new technologies. Improving the sensitivity and specificity of explosive

detection technology are principles that continue to be important; lower detection limits for

many materials have improved considerably and work in this area remains a competitive

field of research.
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Figure Legends

Figure 1 - A schematic of a simplified ion mobility spectrometer

Figure 2 - A schematic of the Cavity Ringdown arrangement as described by Snels et al,

2010 [65]. Reprinted from Chem. Phys. Lett (2010), with permission from Elsevier.

Figure 3 - A schematic of the principle of competitive inhibition assay on a surface plasmon

resonance immunosensor (a) represents the decrease in resonance shift angle upon binding

of pure antibody to the immobilised analyte (b) competitive reaction between immobilised

and free antigen for the antibody resulting in lower frequency shift.

Figure 4 - Schematic of the development of a molecularly imprinted polymer



Table 1. Comparison of commercial explosive detection devices.

Company
Cost
($K)

Detection
method

Advertised
Sensitivity

Weight

Barringer Instruments, Inc.
IONSCAN 350

0.25 IMS 50 pg to 200 pg 105 lb.

Barringer Instruments, Inc.
IONSCAN 400

50 IMS 50-200 pg 60 lb.

Electronic Sensor Tech., Inc.
EST Model 4100

60 GC/SAW 100 ppb 35 lb.

EXPRAY Field Test Kit Model
M1553

25 Colormetry 20 ng of most
nitrated high
explosives

3
aerosols,

1 lb
GE EntryScan3 “Puffer” 160 IMS 16 common

explosives
Custom

Intelligent Detection Systems
ORION

70 GC/IMS pg to ng 240 lb.

Intelligent Detection Systems
ORION Mail Scanner

75 GC/IMS pg to ng 240 lb.

Intelligent Detection Systems
ORION Plus

155 GC/IMS pg to ng 240 lb.

Intelligent Detection Systems
ORION Walk-Through

300 GC/IMS pg to ng Custom

Intelligent Detection Systems
SIRIUS

75 GC/IMS pg to ng 240 lb.

Intelligent Detection Systems V-
bEDS

custom GC/IMS pg to ng Custom

Ion Track Instruments Exfinder
152

5 GC/ECD 20 ng of most
nitrated high
explosives

1.5 lb.

Ion Track Instruments ITEMISER 44 IMS 100 pg to 300 pg 43 lb.
Ion Track Instruments ITMS

Vapor Tracer
38 IMS 100 pg to 300 pg 7 lb.

Ion Track Instruments Model 85
Dual scan

52 GC/ECD 1 part EGDN vapor
in 1011 parts air

600 lb.

Ion Track Instruments Model 85
Entry Scan

52 GC/ECD 1 part EGDN vapor
in 1011 parts air

600 lb.

Ion Track Instruments Model 97 20 GC/ECD most nitrated high
explosives

40 lb

JGW International, Ltd. Graseby
GVD4

5 GC/ECD explosive vapor
exceeding 1 in 109

1.6 lb

JGW International, Ltd. Graseby
GVD6

16 IMS explosive vapor
exceeding 1 in 109

21 lb.

JGW International, Ltd. Graseby
PLASTEC

35 IMS 1 nanogram of TNT,
NG, RDX, PETN

38 lb.

MSA Instrument Division FIS 29 FIS 10 to 1000 ppt 20 lb.
Scintrex/IDS EVD-3000 23 TR < 1 ppb or < 100 ng

for particulate
7 lb.

Scintrex/IDS EVD-8000 43 GC/ECD < 50 ppt or< 5 ng for
particulate

48 lb

Smiths, IONSCAN 500DT 49 IMS >40 substances 43 lb
Thermedics Detection, Inc. EGIS

Model 3000
150 GC/CL all nitrogen based

explosives
400 lb

Thermedics Detection, Inc. 300 GC/CL all nitrogen based Custom



SecurScan Portal explosives
VIKING Instruments Spectra Trak 70 GC/MS low ppb by volume 150 lb.
XID Corporation, XID Model T-54 13 GC/ECD 0.01 ppb 18 lb.
From: “Guide for the Selection of Commercial Explosives Detection Systems for Law

Enforcement Applications”, NIJ Guide 100-99. C. L. Rhykerd, D. W. Hannum, D. W. Murray,

J. E. Parmeter, National Institute of Justice.

CL = chemiluminescence, ECD = electron capture detector, SAW = surface acoustic wave,

TR = thermal redox.
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