
The application of spectral kurtosis on Acoustic Emission and

Vibrations from a defective bearing

B Eftekharnejad, M R Carrasco, B Charnley and D Mba

School of Engineering, Cranfield University, Bedford, United Kingdom MK43 0AL

Tel: +44 (0) 1234 750111 ext 4786

Fax: +44 (0) 1234 751566

Email: d.mba@cranfield.ac.uk

Abstract

The application of Acoustic Emission (AE) technology for machine health monitoring

is gaining ground as power tool for health diagnostic of rolling element bearing. This

paper provides an investigation which compares the applicability of AE and vibration

technologies in monitoring a naturally degraded roller bearing. This research is first

known attempt investigating the comparative effectiveness of applying the Kurtogram

to both vibration and AE data from a defective bearing.

Keywords: Acoustic Emission, Condition monitoring, Spectral Kurtosis, Vibration,

Kurtogram

1. Introduction

The rolling element bearing is the most common part of any rotating machine and

monitoring its integrity is of vital importance. Vibration monitoring is the most

widely used method for bearing diagnosis where signals are normally processed in

time or frequency domains. In the time domain, typical statistical features of the

measured vibration signal such as r.m.s, peak value and Kurtosis, etc, are trended over

the duration of the test and changes in patterns are attributed to presence of defects.

Among these statistical features, the value of Kurtosis was found to be most effective

in detecting the onset of bearing failure [1] .For an undamaged bearing the Kurtosis is

typically 3 while greater values are normally associated with loss of integrity.

However, the main drawback of using this method is that the Kurtosis begins to revert

e101466
Text Box
Mechanical Systems and Signal Processing, Volume 25, Issue 1, January 2011, Pages 266–284




back to the undamaged value as the defect further develops [1, 2]. Other statistical

features such as the Kolmogorov – Smirnov statistic has been applied by several

investigators [3, 4] in which they reported success in diagnosing a damaged bearing.

Frequency domain analysis for machine fault diagnosis is well established and the

authors refer the readers to a review by Patil et al[2].

The application of Acoustic Emission (AE) in monitoring the rolling element bearings

has grown in popularity over the past few decades [5]. To date most of the published

works have studied the applicability of AE technology in detecting seeded faults

artificially introduced on the bearing. Yoshioka[6] was among the first who studied

the applicability of AE in detecting naturally degraded roller bearing. However, the

number of rollers employed in Yoshioka’s research was limited to three which is not

representative of operational bearings. Additionally, Yoshioaka terminated the test

once the AE level reached to a certain predefined threshold therefore propagation of

the surface defect was not monitored. Later, Elforjani et al [7, 8] conducted an

experiment which built on Yoshioka’s work. Their results showed the effectiveness of

AE in detecting the onset of bearing failure, identifying the circumferential location of

the defect on the race at very early stages of degradation, and the diagnostic potential

of the measured AE signal by enveloping and using the KS statistic. Although

conclusive, this research was not representative of broad operation condition as the

test was at a slow rotational speed (72 r.p.m). The results presented in this paper aim

to compliment the work of Elforjani [7, 8] by experimentally investigating the use of

AE for detecting natural degradation of a bearing at a rotational speed of 1500 r.p.m.

In addition, the use of the Kurtogram for improving signal-to-noise ratios on AE

waveforms from a bearing is explored.

The Spectral Kurtosis (SK) as an effective signal processing method is gaining ground

in vibration analysis. To determine the SK the signal is firstly decomposed into the

time-frequency domain after which the Kurtosis values are determined for each

frequency band [9]. The concept of SK analysis was first developed by Dwyer [10] as

a tool which was able to trace non-Gaussian features in different frequency bands

using the fourth order moment of the real part of the Short Time Fourier Transform

(STFT). Dwyer only investigated the application of SK on stationary processes but

did not account for non-stationary vibration signatures typical of rotating machines.



To date the most comprehensive calculations of the SK has been developed by Antoni

[11] as the fourth order cumulant of the spectral moment (K) :
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Where Y(n) is sampled version of the signal, Y(t), and W(n) is the window function

having zero value outside a chosen interval. For the above calculations to be valid the

size of window (Nw) should smaller than the length between two repetitive impulses

and longer than length of each impulses. In other word, the analyzed signal should be

locally stationary. Using the definition offered by Antoni [11], Antoni and Randall

[12] developed the concept of the Kurtogram to detect non-guassinatiy in a signal. A

Kurtogram simply maps the STFT-based SK values as function of frequency and

window size. Antoni [11, 12] suggested the use of the Kurtogram for designing a

band-pass filter which can be applied to increase the signal–to-noise ratio thereby

preserving the impulse-like nature of signal. For this particular investigation the

frequency and window size (bandwidth) at which the Kurtogram is maximum was

employed to build a band-pass filter which was applied to measured AE and vibration

data. This research is first known attempt investigating the comparative effectiveness

of applying the Kurtogram to both vibration and AE data from a defective bearing.

2. Experimental Setup

The test rig used in this experiment was of the same arrangement as employed by

Elforjani et al [8], see figure 1. It consisted of a hydraulic loading device, a geared

electrical motor (MOTOVARIO-TypeHA52 B3-B6-B7 j20, 46-Lubricated: AGIP), a

coupling and a supporting structure. The bearing test rig has been designed to

simulate varying operating conditions for a bearing and fail this bearing in fatigue.



The chosen bearing for this study is an SKF single thrust ball bearing, model number

SKF51210. This bearing was chosen as it was easily available and cost effective to

use. To ensure fatigue cracking initiation in the ball race being monitored the standard

grooved race was replaced with a flat race, model number SKF 81210TN. This

increased the point contact force between the ball bearings and the race resulting in

faster degradation of the bearing race and early initiation of sub surface fatigue

cracks. For the purpose of this experiment the following procedure was undertaken to

determine the subsurface stresses on the test bearing and thereby estimate the time, or

number of cycles, prior to a surface defect on the race track. Theories employed for

this procedure, particularly for the flat race, included the Hertzian theory for

determining surface stresses and deformations, the Thomas and Hoersh theory for

subsurface stress, and the Lundberg and Palmgren theory for fatigue evaluation. For

the grooved race the standard procedure, as described by BS 5512,1991, was

employed for determining dynamic load rating .Theoretically determined life was

calculated to be 16 t hours.The test bearing was placed between the fixed thrust

loading shaft and the rotating disk which housed the grooved race. The flat race was

fitted onto the loading shaft in a specifically designed housing. This housing was

constructed to allow for placement of AE sensors directly onto the race. The thrust

shaft was driven by a hydraulic cylinder (Hi-Force Hydraulics-Model No: HP110-

Hand Pump-Single Speed-Working Pressure: 700 bar), which moved forward to load

the bearing and backwards for periodic inspections of the test bearing face. The

rotating disk was driven by a shaft attached to a motor with an output speed of 1500

rpm. The number of rolling elements used in this research was 14 and the ball pass

frequency (BPF) was calculated as 175Hz using equation 4 [1] .
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Where,

d=Ball diameter

D=Pitch diameter

α=Contact angle

n=Shaft rotation velocity (RPM) N=Number of balls



Figure 1 The test rig assembly

The AE acquisition system employed commercially available piezoelectric sensors

(Physical Acoustic Corporation) with an operating range of 100–750 kHz. All four

AE sensors were mounted at the back of the flat race test bearing and connected to a

data acquisition system through a preamplifier (40 dB gain) AE waveforms were

taken every three minutes throughout the test duration at the sampling rate of 2 MHz.

An accelerometer was mounted on the flat race housing (see figure 1) and vibration

measurements were acquired at a sampling rate of 10 kHz at three-minute intervals

using a NI-6009 USB analog to digital data acquisition card.

3. Test procedure

The test rig was allowed to operate until vibration levels far exceeded typical

operating levels at which point the test was terminated. An axial load of

approximately 50000N was applied on the bearing throughout the test and a total of

three tests were performed.

Accelerometer
Test Bearing

Coupling

Loading part



Two tests are presented in this paper with quite distinct signal-to-noise ratios; Test 2

was significantly nosier for both vibration and AE measurements. This was attributed

to the variation in test rig assembly, such as adjustments and sensor attachments

therefore it offered a good opportunity to asses methods for diagnosis.Such challenges

with AE sensor attachment and noise interference have been discussed recently [13].

The overall trends of Acoustic Emission and vibration levels for both tests are

presented in figure 2. Also presented in figure 3 is the defect observed on termination

of Test-1 clearly displaying a spall on the flat race.

Figure 2 Overall AE and vibration r.m.s levels



Figure 3 Defect on the outer race (naturally developed over 4hrs of

operation)

4. Vibration Monitoring

The vibration waveforms for both tests at defined time intervals are detailed in table 1

and figure 4.Under ideal conditions it would be expected that for the particular type of

defect generated during the test (see figure 3) large transient vibration impulses

spaced at defect frequency would be evident. This defect frequency is characteristic of

the bearing elements. However, due to the high level of operational noise, resulting in

a low signal to noise ratio, the presence of these spikes was not always visually

evident in the captured waveforms. The frequency spectrums of the waveforms are

also presented in figure 5. The Ball Pass Frequency (BPF) was evident at stages ‘E’

and ‘F’ of Test-1 whilst this defect frequency was barely present at stages ‘E’ and ‘F’

on Test- 2. In addition several harmonics of the running speed (25 Hz) was noted with

the third harmonic (75 Hz) dominant for both tests. In an attempt to achieve a better

resolution in detecting the fault frequency envelope analysis was undertaken. The

signals were band pass filtered about a centre frequency of 1570 Hz using the least-

square FIR filter of order 50 with a bandwidth of 40Hz . Selection of this centre

frequency was based on observation of the spectrum of the last recorded vibration

stage where a large peak was evident at 1570 Hz for both tests, see figure 6. It is

believed that this frequency (1570 Hz) is associated with one of the resonance

frequencies of the bearing test-rig and this frequency was excited due to the impulsive

impacts of the rollers over the defective race. The filtered signals were enveloped



using the Hilbert transform. Figure 7 presents the envelope spectrum of the filtered

signals with the defect frequency now clearly evident at interval ‘F’ particularly for

test 2. This was to be expected given the selected frequency for filtering was chosen

from the spectrum at interval ‘F’. This also shows that the selection of the filtering

frequency is dependent on the dynamic characteristic of the bearing/machine at the

time of vibration measurement as seen in figure 6 where the filtering frequency of

1570 Hz was not dominate at the earlier test intervals.

Table 1 Timing interval
Test 1 Test 2

A 40 min 40 min
B 80 min 80 min
C 120 min 120 min
D 180 min 160 min
E 220 min 200 min
F 264 min 240 min

Figure 4 The vibration waveform associated with different test intervals.



Figure 5 FFT of the signals at different interval [10Hz-300Hz]

Figure 6 Vibration frequency spectrum



Figure 7 The envelop spectrum of the Vibration signals filtered at 1570 Hz

Although performing envelop analysis in conjunction with band-pass filtering was

successful in discriminating the BPF, prior knowledge of entire frequency spectrum

and location of dominant amplitude across the spectrum is essential for selection of

the most effective filter frequency. Furthermore, since the presence of random

Gaussian noise can affect the resolution of frequency spectrum, and this can vary at

the different stages of mechanical integrity, the estimation of the optimum filter

frequency can be challenging. This is very important when dealing with the intelligent

monitoring systems, in which automatic selection of filter frequencies can be

significantly influenced by the level of signal-to-noise ratio. Indeed, the key to

performing an effective envelop analysis is to choose an effective band-pass filter and

since the rolling bearings in practice are operated under different working conditions

(speed and load), a generic band-pass filter with fixed parameters (Centre frequency

and Band width) will not be sensitive enough to perform a compelling diagnosis [14].

One such method for optimal filter selection is the spectral Kurtogram.

In order to improve the denoising of vibration signals the concept of Spectral

Kurtosis (SK) was employed. This involves calculating the Kurtogram for each signal

from which the bandwidth and centre frequency required to design a band-pass filter

are determined. The criterion was set such that the frequency and bandwidth (Window

size) at which the spectral kurtosis of the signal is maximum was employed to build a

new band pass filter. The determination of SK was based on the algorithm developed



by Antoni [15, 16]. A sample Kurtogram of signals at an early stage (A) and upon the

termination (F) of tests are presented in figure 8. The centre frequency (Fc) at ‘F’ was

significantly higher than at interval ‘A’ suggesting a change in the impulsive vibration

nature as the defect matured.

Figure 8 The Kurtogram for Test-1; time intervals ‘A’ and ‘F’

From the SK analysis the centre frequency together with bandwidth for the time

intervals A-F were calculated and listed in table 2. In addition, the Kurtosis values

associated with the centre frequencies are also presented. The Window size is the



length of data points within that particular window within which the STFT of the

signal and corresponding SK values were estimated (equations 1-3). Whilst the centre

frequency is the frequency at which the calculated SK value, at that particular

windows size, is maximized. It is believed that the higher SNR is achieved at this

centre as it matches one of the system natural frequency [12].

Table 2 Estimated features from Kurtogram

Test 1 Test 2

Fc(Hz) Nw Kurt Fc(Hz) Nw Kurt

A 1875 32 1.8 1875 32 3.4

B 1875 32 1.7 1875 32 1.7

C 1875 32 3.4 1875 32 1.6

D 625 32 2.4 1875 32 1.9

E 2812 32 3.3 2187 32 3.7

F 3125 11 0.8 2187 32 1.9

Nw: Window size Kurt: Kurtosis Fc: Centre Frequency

The signals were band- pass filtered at the determined centre frequencies, which were

based on the extracted features from the Kurtogram, and resulting time waveforms are

presented in figures 9-101. From the figures it was evident that filtered signals offered

a higher level of signal to noise ratio showing the capability of SK based filtering for

denoising. To quantify the improvements in signal-to-noise Crest factor (CF) values

were compared before and after filtering. The CF defined as the ratio of the peak

value divided by the signal r.m.s which gives an indication of signal peak-to-average

ratio. CF is a traditional method of measuring the smoothness of a signal and

therefore a faulty bearing will generate a spiky signal profile resulting an increase in

CF .

1
The Window-based finite impulse response filter was employed for filtering. The size of window used

to design the filter was equal to that calculated from the Kurtogram of each signal.



Figure 11, shows the values of CF for filtered and unfiltered signals in which an

average increase in CF levels of approximately of 264% and 250 % were noted for

Test-1 and Test-2 respectively after bandpass filtering.

Figure 9 Vibration waveform for test 1 (Filtered designed based on Kurtogram)

Figure 10 Vibration waveform for test 2 (Filter designed based on Kurtogram)



Figure 11 CF values associated with filtered and unfiltered signals

Figure 12 The relative increase in level Kurtosis values after Band-pass filtering

The Kurtosis values of the signals at intervals ‘A’ to ‘F’ prior to and after filtering are

also presented in figure 12 showing a 70% and 95% average rise in Kurotsis values

as a result of band pass filtering for Test-1 and Test-2. This agrees with observation

from figures 9 and 10 where the presences of spikes were more evident on the filtered

waveforms. The squared envelop of the signals, for both test, were calculated and the

corresponding frequency spectrum of the enveloped signals are also presented in

figure 13 in which the defect frequency is clearly marked upon the termination of both

test. The capability of discriminating the BPF in the corresponding envelop spectrum

clearly indicates the effectiveness of SK in diagnosing the fault frequency. In



comparison to the envelop spectrum presented earlier in figure 7 it is evident that the

level filtering offered by the Kurtogram had improved earlier detection of the defect

frequency, at interval ‘D’ which is much earlier than noted in figure 7. For Test-2 the

SK-based filter did not offer any improvement in earlier detection of the defect

frequency suggesting a limitation in its denoising effectiveness.

Figure 13 Envelope spectrum of the SK filtered signals

5. Acoustic emission

From figure 2 it was noted an initial increase in AE r.m.s levels between 0-12min for

Test-1 and 0-30 min for Test-2. The initial raise in r.m.s values is associated with the

run-in stage of the bearings after which the AE activity remained constant for period

of 18mins and 2-hrs for first and second tests respectively. For the first test, the level

of AE r.m.s started to increase after approximately 1hr into operation suggesting the

onset of failure. A similar observation was noted for second test after 3hrs of

continuous running. Comparing the overall trend of vibration and AE r.m.s, it is

evident that the AE is more sensitive in monitoring the progression of the defect. In

addition, AE levels increased approximately one hour before the vibration levels

began to change.This was noted in both tests, for instance in test-1 AE levels started

to increase at 3hrs of operation whilst vibration levels increased after 4hrs at

operation. It must be noted that these are accelerated failure tests and the difference



in period between these techniques (AE and vibration) in identification of the defect

will most certainly be much longer for non-accelerated test conditions.

The AE signals for different intervals, as set in table 3, were chosen for further

analysis, see figure 14. Interestingly, for Test-1 at time period ‘F’, the AE waveform

showed large transient bursts spaced at one of the bearing defect frequencies. This is a

classical AE bearing defect phenomenon as noted by several investigators [6, 8, 17].

However, for the second test, the underlying noise level obscures any apparent high

transient events in the waveform.

Table 3
Test 1 Test 2

A 35 min 42 min
B 70 min 87 min
C 105 min 132 min
D 140 min 174 min
E 175 min 219 min
F 210 min 267 min

Figure 14 The AE waveform at different time intervals



The frequency spectrum of recorded AE signals show the AE activity is concentrated

between 50- 450 kHz, see figure 15. In order to identify any modulating features, the

envelop spectrum of the signals were generated using the Hilbert transform. The plots

of envelop spectrums for both tests are presented in figure 16. Results from the first

test show the presence of the BPF and its harmonics. Surprisingly the presence of the

defect frequency 175 Hz, was noted for all the timing intervals (A-F) although the

magnitude of the peak increased with time reaching a maximum at the termination of

the test . For the second test, the presence of the harmonics noted in the first test were

not evident though the second and forth harmonics were noted at the end of the test,

time interval ‘F’. The reason for inadequate clarity in discriminating of the harmonics

and fault frequency is attributed to the presence of noise and therefore a lower signal-

to-noise ratio than Test-1.It is worth to mention that, although the two test were quite

distinct in the level of SNR; but the observation of the increase on two AE trends in

figure 2 and also the harmonics of BPF across the envelop spectrum, upon the

termination of the both tests clarifies the effective measurement of AE signals.

Figure 15 Frequency spectrum of the AE signal



Figure 16 The AE envelop spectrum for the first and second tests

As with the vibration analysis, the SK analysis was undertaken for the AE waveforms.

Table 5 shows the optimum frequency bands for time intervals ‘A’ to ‘F’. According

to the table, the optimum centre frequencies associated with undamaged race (A-E)

were outside the sensor measurement range. This is because for the undamaged

bearing the higher frequencies within the sensor measurement range are

predominately gaussian so the maximum Kurtosis value occurs at the lower frequency

range, below 30 kHz to 40 kHz.

Table 3 Optimum Bandwidth and Centre frequency for AE signal

Test 1 Test 2

Fc (Hz) )(log
2

Nw Fc (Hz) )(log
2

Nw

A 39062 7.5 31250 7

B 31250 7 31250 7.5

C 31250 7 65185 12.5

D 31250 7.5 31250 7.5

E 31250 7.5 15625 8

F 714843 8.5 61523 10.5

The filtered waveforms are presented in figure 17 showing a significant improvement

in level of SNR compared with the unfiltered signals in figure 14. This is also

manifested in figure 18 in which an average of approximately 242% and 95%



increase in CF values were noted for the filtered signals on Test-1 and Test-2

respectively. Furthermore, figure 19 illustrates the envelope spectrum of the filtered

signals based on SK analysis. The BPF and its second harmonic were present across

the frequency spectrum for both tests while such observations were not noted for the

unfiltered envelope spectrum in figure 16.

Figure 17 AE waveforms associated with filtered signals

Figure 18 CF values associated with filtered and unfiltered signals
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Figure 19 Envelope spectrum of the SK-based filtered signals

Having noted the improvement in signal-to-noise ratio particularly for Test-2, the

authors compared the SK to wavelet-based filter analysis. The AE signals were

decomposed using Debauches wavelet of order 8 (db8). The reason for choosing db8

as a mother wavelet is firstly because of being orthogonal and secondly the shape of it

is close to the mechanical impulse [18]. The envelop spectrum at each level of

decomposition (D1-9) were carefully studied and level D1 (500 kHz - 1000 kHz) was

found to be the most sensitive for identifying the presence of the defect. The envelop

spectrums of the signals at D1 are presented in figure 20 in which BPF and its

harmonics are evident upon the termination of both test.



Figure 20 Envelop spectrum of the AE signals at D1

The CF values for the original filtered (SK) and decomposed (db8) signals are

presented in figure 21. In comparison to the original values of CF, the SK filtered

signals showed an increase in CF of approximately 242% and 95% for Test-1 and

Test-2 respectively. Crest factor values noted for decomposed signals (D1) were in

the order of 18% and 70% for Test-1 and Test-2 respectively; implying the SK offered

the optimum filtered characteristics for identifying impulsive effects, which are

typically associated with defective bearings. The waveforms together with CF values

at interval ‘F’ for D1, the original unfiltered waveform and the filtered waveform

(SK) are also presented in figure 22 in which the presence of impulsive AE events

associated with the defective bearing are most evident for the SK filtered signals.

There was only one instance where the wavelet based filter had a better CF than the

SK filtered data (Test-1, interval ‘F’). This observation reinforced the benefits of

applying the SK for defect diagnosis for varying signal-to-noise ratio.



Figure 21 CF value attribute to different diagnostic methods

Figure 22 Comparison between D1 and filtered signals at interval ‘F’

6. Conclusion

The applicability of both Acoustic Emission and Vibration methods were studied in

relation to defect identification of a naturally damaged bearing. From observation it

was evident that AE was more sensitive in detecting incipient damage than vibration



reinforcing other investigators [19]. Furthermore, the application of SK analysis and

Kurtogram was investigated and it showed the effectiveness in denoising the both AE

and vibration signals. The use of the Kurtogram for AE bearing analysis is

encouraging and its hoped future researchers explore its full potential.
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