
Distributed data fusion algorithms for inertial
network systems

D.J. Allerton and H. Jia

Abstract: New approaches to the development of data fusion algorithms for inertial network
systems are described. The aim of this development is to increase the accuracy of estimates of iner-
tial state vectors in all the network nodes, including the navigation states, and also to improve the
fault tolerance of inertial network systems. An analysis of distributed inertial sensing models is pre-
sented and new distributed data fusion algorithms are developed for inertial network systems. The
distributed data fusion algorithm comprises two steps: inertial measurement fusion and state fusion.
The inertial measurement fusion allows each node to assimilate all the inertial measurements from
an inertial network system, which can improve the performance of inertial sensor failure detection
and isolation algorithms by providing more information. The state fusion further increases the
accuracy and enhances the integrity of the local inertial states and navigation state estimates.
The simulation results show that the two-step fusion procedure overcomes the disadvantages of tra-
ditional inertial sensor alignment procedures. The slave inertial nodes can be accurately aligned to
the master node.
1 Introduction

The concept of an inertial network system in aircraft avionics
was initially proposed by Kelley et al. [1] and subsequently
developed by Berning et al. [2] and Kaiser et al. [3]. In this
architecture, inertial sensor systems are located at several
places in an aircraft in order to meet the fault tolerance
requirements of aircraft navigation and to provide accurate
local inertial state vectors for several airborne avionics
systems. For example, fire/weapon control systems and
radar search/tracking systems require accurate local and
centre of gravity (cg)-referenced inertial state information
to stabilise these systems and to compensate for localmotion.
The development of inertial network systems arise from

reliability requirements and increased reliance on inertial
information, particularly in advanced military aircraft
where airframe flexibility must be taken into account in
the installation and alignment of airborne avionics
systems. Inertial sensor systems provide flight-critical infor-
mation for all safety or mission-critical avionic systems,
such as flight control and navigation systems, as well as
other airborne systems. Redundant inertial systems are
used to provide the level of fault tolerance necessary in air-
craft navigation systems, in order to meet safety and
reliability requirements for civil or military aircraft.
Typically, a combat platform may have 12 inertial measure-
ment units (IMUs) of various quality providing the inertial
state vector information needed in mission-critical avionics
systems and weapon systems [2]. These IMUs are installed
at different locations in a flexible airframe and both
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structural and in-flight misalignments between these
sensors/weapon locations need to be estimated in order to
align the dynamic sensors and weapon systems. For
example, the performance of sensors/systems such as
SAR and terrain following radar, pointing systems,
forward-looking infrared receivers, laser spot trackers and
missile pylons all depend on the precise alignment of the
system sensitive axes in inertial networks. Fusion of
measurements from distributed IMUs can provide highly
reliable inertial vector information and can also be used to
detect sensor failures and to reconfigure inertial measure-
ments in inertial networks.
During the last few years, distributed and integrated

modular avionics architectures have been introduced into
modern aircraft systems [4, 5] as a result of advances in
high-speed airborne data communication networks and
embedded computer systems. These enabling technologies
provide airborne avionics systems with powerful data pro-
cessing and communication capability. Furthermore, the
reducing cost, size and mass of sensors, including fibre
optic gyros and microelectromechanical systems (MEMS)
inertial sensor systems [6, 7], have enabled redundant iner-
tial sensors to be integrated into a single IMU box. In these
systems, non-orthogonal configurations can be used to
improve system reliability and to reduce the cost, size and
mass of aircraft navigation systems. In a non-orthogonal
configured IMU, redundant inertial sensors are skewed
with respect to the orthogonal frame; this configuration is
known as a skewed redundant IMU (SRIMU).
Few researchers to date have focused on a systematic

approach to the design of inertial network algorithms.
This paper proposes innovative data fusion methods for
inertial network systems to provide dynamic alignment
and calibration of distributed inertial systems.

2 Inertial network system architectures

An inertial network architecture is illustrated in Fig. 1 in
which each node represents an individual sensing location
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Fig. 1 Relationships between IMU nodes
consisting of an IMU and an embedded microprocessor.
Each node is assumed to be able to communicate with
other nodes, so that information from one node can be
shared by other nodes. The IMU at each node can be inte-
grated with other navigation-aiding systems, including
global navigation satellite systems (GNSS), Doppler radar
and other radio navigation systems. Avionics data buses
are used to interconnect the IMU nodes to implement an
inertial network system. The node located at the aircraft
cg is usually a master node, also referred to as the cg
node; the other nodes are the local nodes, known as slave
nodes. The data fusion filter located at the cg node provides
the navigation states and the cg-referenced inertial state
vector; the data fusion filters located at the slave nodes
provide the local states and the local inertial vector
information.
This form of distributed inertial network system [1] is

extended in this paper and affords the following advantages.

1. Fault tolerance and robustness to sensor/system failures.
Data fusion algorithms are designed so that the failure of
any node or element of the node will not lead to degradation
of the performance of the aircraft navigation system.
Moreover, degradation of the performance of local
systems at a failed node will be gradual.
2. Flexibility. It is straightforward to add or remove one or
more sensor systems in a distributed system network.
3. Highly reliable cg state estimation. The cg data fusion
filter combines all local estimates with its own estimate to
obtain the aircraft cg motion states, which are used to
support aircraft navigation, flight control and guidance
and other functions that require cg-referenced data.
4. Accurate local state estimation. The slave data fusion
filter located at each node fuses all measurements from
healthy inertial sensor systems to derive globally optimal
estimates of the local states; these are used to support the
stabilisation of various avionics system platforms and to
provide local motion compensation.
5. Automatic alignment of low-quality sensors. Because
information is shared by all nodes, distributed data fusion
filters can use the local estimates obtained at a node with
a high-quality IMU, to dynamically correct and align low-
quality IMUs situated at other nodes. Consequently, tra-
ditional inertial system alignment algorithms, which may
necessitate specific manoeuvers to be flown, are no longer
necessary in distributed inertial network systems.
52
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3 Distributed inertial sensing models

3.1 Distributed node frames

Although IMUs in an inertial network independently
measure individual local qualities, the measured or esti-
mated states are not completely independent; they are dyna-
mically related to each other owing to the rigid structure of
the aircraft. The development of this dynamic relationship
between the local measured states enables the inertial infor-
mation provided by an inertial network to be used to detect
and isolate sensor/system failures and to implement the
dynamic alignments between different inertial systems.
Fig. 1 illustrates three local IMU frames and the corre-

sponding local reference frames. Let I be an inertial refer-
ence frame, let cg be the local body frame of the IMU
node located at the aircraft centre of gravity i and j represent
the slave IMU nodes and their individual local body frames.
In this paper, the IMU frames are assumed to be aligned with
the local body frames when the IMUs are installed at local
locations in the aircraft. ? represents a translational trans-
formation, for example, the translation vector from nodes i
to j is denoted by ?

j
i. T represents a rotational transform-

ation, for example, the transformation matrix from nodes i
to j is denoted by T

j
i. Exchanging the superscript and the

subscript of a transformation matrix represents an inverse
of this transformation, for example, (T

j
i)
�1 ¼ T i

j. Let the
local reference frames at the nodes i, j and cg be denoted
by Li, Lj and Lcg, respectively, then the corresponding trans-
formations from the local reference frames to the local body
frames are given by T i

Li , T
j

Lj
and T

cg
Lcg . If the local level

frames, such as the north-east-down, are used as the local
reference frames, these rotation matrices represent the orien-
tations of the local body axes relative to the local level
frames. Because the origins of the local level frames are
defined with respect to the geodetic coordinates of the
IMU nodes and the magnitudes of the translation vectors
between these IMU nodes are very small, the misalignments
between the local level frames, caused by the translation
vectors, can be ignored. In order to simplify the develop-
ment of an inertial network sensing model, it is assumed
that the local-level frames located at all the inertial
network nodes are identical, that is Li = Lj = Lcg.
Let the relative rotation of the IMU frame i with respect

to the frame j be vj=i and its inverse rotation be
vi=j ¼ �vj=i. From multi-body rotation mechanics, the
IET Radar Sonar Navig., Vol. 2, No. 1, February 2008
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absolute angular velocity of an IMU frame in an inertial
network system is the sum of the absolute angular velocity
of another IMU frame and the relative angular velocity
between these two frames. Therefore, the absolute angular
rate vectors measured by the local IMUs can be represented
as follows

vI=i ¼ vI=cg þvcg=i (1)

vI=j ¼ vI=cg þvcg=j (2)

vI=cg ¼ vI=j þvj=cg (3)

The rotational transformations between the local IMU
frames depend on the relative angular velocities between
these frames. In the stationary (rigid airframe) case, there
is no relative angular motion between the IMU nodes; in
the dynamic case, the relative angular rates between differ-
ent IMU frames can be treated as a random variable.

3.2 Stationary inertial sensing model

In this model, the aircraft structure is assumed to be rigid.
The dynamic relationships between different IMU frames
can be described by fixed rotational and translational trans-
formations, which can be precisely determined from the
geometry of IMU locations at the time of installation or sub-
sequently estimated using a distributed alignment Kalman
filter.
If the local state x is a rate vector (such as acceleration,

velocity or angular velocity), a rotation matrix is used to
complete the rotation transformation between node
frames, for example, from nodes j to i, as follows

xi ¼ T
i
jxj (4)

If the local state x is a displacement vector, a rotation matrix
is combined with a translation vector to represent the trans-
formation between frames as follows

xi ¼ T
i
jxj þ?

i
j (5)

where the states xi and xj are expressed in their individual
local frames, T i

j a known rotation matrix and ?
i
j a known

translation vector expressed relative to node i.
For the case where the local states are the Euler angles,

the attitude matrix transformation from one node to the
other has the following form

T
i
Li ¼ T

i
jT

j

Lj
(6)

It should be noted that the new Euler angles in (6) are
computed from the matrix T i

Li .
If a node IMU is an SRIMU, the measured inertial states,

accelerations and angular rates, are expressed in terms of
the local body frame but the IMU outputs are represented
in the inertial instrument frame, which defines the sensing
directions of inertial sensors and differs from the IMU
frame. The transformation between the inertial instrument
frame and the local IMU frame, for example, at the cg
node, is given by H

cg

imucg
where the subscript imucg rep-

resents the inertial instrument frame. H
cg

imucg
(referred to as

the design matrix) depends on the SRIMU configuration
and can be dynamically reconfigured [8, 9]. The SRIMU
measurement vector at the cg node, mimucg , can be rewritten
as follows

mimucg ¼ H
imucg

cg xcg (7)
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By applying rotation transformations, the measurement
vectors of SRIMUs located at nodes i and j, mimui and
mimuj , can be represented in terms of the local body frame
at the cg node as follows

mimui ¼ H imui

i xi ¼ H imui

i T i
cgxcg (8)

mimuj ¼ H
imuj

j xj ¼ H
imuj

j T
j
cgxcg (9)

where H imui

i and H imuj

j are the SRIMU design matrices at
nodes i and j, respectively.
From (8) and (9), the cg node assimilates the inertial

measurement information from the slave nodes i and j.
Therefore the total inertial measurement at the cg node is
represented as

mcg ;
mimucg

mimui

mimuj

2
4

3
5 ¼

H imucg

cg

H imui

i T i
cg

H
imuj

j T
j
cg

2
664

3
775xcg ¼ Hcgxcg (10)

Similarly, the inertial measurement vectors at nodes i and j
are as follows

mi ;
mimucg

mimui

mimuj

2
64

3
75 ¼

H imucg

cg T
cg
i

H
imui

i

H imuj

j T
j
i

2
664

3
775xi ¼ H ixi (11)

mj ;
mimucg

mimui

mimuj

2
64

3
75 ¼

H imucg

cg T
cg
j

H
imui

i T
i
j

H imuj

j

2
664

3
775xj ¼ H jxj (12)

Equations (10)–(12) indicate that each node shares the
same redundant inertial measurements even though all the
IMUs are traditional orthogonal systems. Various weighted
least-squares estimators can be applied to the redundant
measurement equations to estimate the local inertial
states. This data assimilation and weighted least-squares
estimation is referred to as inertial measurement (data)
fusion in this paper. Furthermore, many failure detection
and isolation algorithms, such as the parity space-based
methods and generalised likelihood ratio test algorithms
described in [8, 10, 11], can be applied to these equations
to detect and isolate inertial sensor failures in the inertial
network system. As a result, the use of inertial measurement
fusion procedures increases the accuracy of the local inertial
state estimates at each IMU node and improves the perform-
ance of the navigation system.
From (6), one IMU node can also assimilate attitude

information from other IMU nodes using the following
transformations. At node j, the local attitude matrix is

T i
Li (13)

The assimilated attitude matrices are

T i
Lj ¼ T i

jT
j

Lj
(14)

T i
Lcg ¼ T i

cgT
cg
Lcg (15)

As a result, the redundant attitude information at node i con-
sists of (13)–(15). At node j, the local attitude matrix is

T
j

Lj
(16)
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The assimilated attitude matrices are

T
j

Li
¼ T

j
iT

i
Li (17)

T
j
Lcg ¼ T

j
cgT

cg
Lcg (18)

Similarly, the redundant attitude information at node j con-
sists of (16)–(18).
At node cg, the local attitude matrix is

T
cg
Lcg (19)

The assimilated attitude matrices are

T
cg

Li
¼ T

cg
i T i

Li (20)

T
cg

Lj
¼ T

cg
j T

j

Lj
(21)

where the redundant attitude information at node cg consists
of (19)–(21).
The redundant attitude matrix information at each node

can be fused by a weighted least-squares estimator to
increase the accuracy of the local attitude estimates and to
improve the fault tolerance of the navigation states.

3.3 Dynamic inertial sensing model

Although the assumption of a rigid body aircraft applies to a
wide range of applications in aircraft navigation and control
systems, this assumption may be invalid in many military
applications where precise local inertial states are needed
including targeting systems, pointing systems and other
weapon systems. During high-speed flight and high-
dynamic manoeuvres, the airframe should be considered
as a flexible structure. The rotational matrices given in the
previous section are no longer stationary but are time-
varying dynamic rotation matrices. If the flexible structure
of an aircraft is ignored, these matrices introduce errors in
the rotation transformation, leading to large errors in the
estimates of the local states. Accordingly, it is necessary
to develop the dynamic relationships between the network
nodes and to estimate these dynamic transformation
matrices in flight. Carison et al. [12] suggest a differential
inertial filter (DIF) to estimate the angular flexing of the
slave IMU frames with respect to a reference IMU frame,
usually the cg IMU node frame. The DIF method processes
a differential or delta inertial state vector, which is the
difference between the cg and slave IMU measurements.
However, this method depends on two vital conditions.
First, compensation is needed for the lever-arm accelera-
tions and flexing angular rates before initiating the DIF.
For significant flexing motion of an airframe, this compen-
sation is difficult to compute, particularly during
manoeuvres because the flexing of the slave IMU node
frames (with respect to the cg frame) changes with flight
conditions. Secondly, the DIF dynamic model is particu-
larly sensitive to aircraft manoeuvres and the resultant
flexing motion. Two methods are presented in this paper
to determine these dynamic rotational transformations,
which avoid compensation for lever-arm accelerations and
flexing angular rates between the cg and the slave IMU
nodes. The first approach is an iterative estimation method
and the second method establishes analytical models of
the rotation matrices. In both methods, it is assumed that
the initial transformation matrices are known. In practice,
these matrices can be determined from the stationary trans-
formation matrices described in the previous section, when
the aircraft is on the ground or in level non-accelerating
flight.
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3.3.1 Iterative estimating method: The iterative esti-
mation method is based on (6) where the local attitude
matrices are computed at all the IMU nodes by invoking
the inertial attitude determination algorithm. The dynamic
transformation matrices are then estimated from the com-
puted local attitude matrices.
Because the dynamic change of the rotation matrix rela-

tive to its initial matrix is generally within a small dynamic
range, the current estimate of the rotation transformation
T i

j
k can be approximated by the combination of the previous

estimate and a small angle displacement vector ci
j
k . The

estimated rotation matrix at the current time can be rewrit-
ten as

T̂ i

j

k � T̂ i

j

k�1(I þ c j
ik
�) ¼ T̂

j

Lj T̂ i

Li

where the subscript k represents the iteration step.
Therefore the iterative computation equation can be

given as follows

(I þ ci
j
k �) ¼ [T̂ i

j

k�1]
�1
T̂

j

L j T̂ i

Li

(22)

The method is outlined in Fig. 2. When the norm of ci
j
k is

less than a specified threshold value, the iterative process
terminates and the current transformation matrix can be
determined.
Although an iterative technique can be a time-consuming

procedure, because the inertial attitude determination algor-
ithms may be repeated for several times at all the IMU

Fig. 2 Iterative computation of rotation matrices
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nodes at each iteration, the advantage of this method is that
the errors of the estimates of the rotation matrices
are independent of the dynamic models of the rotation
matrices. Uncertainties in the local attitude matrix estimates
can contribute to errors in the estimation of the rotation
matrix. However, the inertial attitude determination algor-
ithms provide an effective filter, which can reduce the
effect of IMU measurement noise on the rotation matrix
estimates.

3.3.2 Analytical method: This method is based on the
development of analytical dynamic models of the trans-
formation matrices. If the cg body frame is used as a refer-
ence frame to represent the relative rotation motion of the
other frames and the measured angular velocities, (1)–(3)
can be rewritten in terms of angular rates as follows

Vcg
I=i ¼ Vcg

I=cg þVcg
cg=i (23)

Vcg
I=j ¼ Vcg

I=cg þVcg
cg=j (24)

Vcg
I=i ¼ Vcg

I=j þVcg
j=i (25)

where V is a skew-symmetric matrix of the corresponding
angular rate vector v. The superscript cg denotes that the
angular rate vectors are expressed in terms of the cg body
coordinates.
In terms of attitude matrix differential equations, (23) can

be written as

Vcg
I=i ¼ Vcg

I=cg � T̂
i

cgT
cg
i (26)

Therefore

T̂
i

cg ¼ (Vcg
I=cg �Vcg

I=i)T
i
cg (27)

Vcg
I=i ¼ T

cg
i Vi

I=iT
i
cg (28)

Similarly, the differential equation of the rotation matrix
T j
cg is given by

T̂
j

cg ¼ (Vcg
I=cg �Vcg

I=j)T
j
cg (29)

Vcg
I=j ¼ T

cg
j Vj

I=jT
j
cg (30)

where Vcg
I=cg, V

i
I=i and Vj

I=j consist of the local absolute
angular rate vectors, estimated from the local IMUmeasure-
ments at nodes cg, i and j.
The rotational transformation matrix between j and i is

then computed from the following equation

T i
j ¼ T i

cgT
cg
j (31)

Clearly, the dynamic models of the rotation matrices are
non-linear matrix differential equations, where the initial
matrices can be derived from the stationary transformations
and these differential equations are solved at each measure-
ment time.
In comparison with the iterative method, the analytical

method avoids the iterative computation of the inertial atti-
tude determination algorithms at all the IMU nodes.
However, the IMU measurement noise may affect the accu-
racy of the solutions of the rotation matrices because the
IMU outputs are directly used in the rotation matrix differ-
ential equations. Consequently, pre-processing filters may
be required to reduce the measurement noise. If the node
IMUs have a good quality (say better than 0.058/h), the
iterative method is especially effective in determination of
IET Radar Sonar Navig., Vol. 2, No. 1, February 2008

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 19, 2009 a
the rotation matrices between nodes. The analytical
method is more applicable to dynamic IMU alignment in
an inertial network system.

4 Distributed data fusion algorithms

4.1 Kalman filter algorithm

The distributed inertial network fusion algorithms devel-
oped in this paper are based on Kalman filtering techniques.
Consider the discrete-time stochastic process where the
system and measurement models are given by

x(tk) ¼ F (tk , tk�1)x(tk�1)þ G(tk�1)w(tk�1) (32)

z(tk) ¼ D(tk)x(tk)þ y(tk) (33)

where F is an n� n state transition matrix, D an m� n
measurement matrix, x(tk) an n-system state, w(tk) a
q-additive process noise, which takes into account the per-
turbations to the system, G(tk) an n� q matrix, z(tk) an
m-measurement vector and y(t) is an m-additive measure-
ment noise vector. It is assumed that the noise vectors
w(tk) and y(t) are independent, zero-mean, white
Gaussian sequences of covariance Q(tk) and R(tk), respect-
ively. The initial system state x(t0) is a Gaussian distributed
random variable and is independent of the noise, with an
initial value x0 and covariance P0.
The Kalman filter algorithm is as follows [13].

Step 1: Initialization

P(t0) ¼ P0; x̂(t0) ¼ x0

Step 2: Time update (effect of dynamics, predictor)

x̂(t�k ) ¼ F (tk , tk�1)x̂ (t
þ
k�1)

P(t�k ) ¼ F (tk , tk�1)P(t
þ
k�1)F

T(tk , tk�1)

þ G(tk�1)Q(tk�1)G
T(tk�1)

r(tk) ¼ z(tk)� D(tk)x̂(t
�
k )

S(tk) ¼ D(tk)P(t
�
k )D

T(tk)þ R(tk)

Step 3: Measurement update (effect of measurement,
estimator)

K(tk) ¼ P(t�k )D
T(tk)S

�1(tk)

x̂(tþk ) ¼ x̂(t�k )þ K(tk)r(tk)

P(tþk ) ¼ P(t�k )� K(tk)D(tk)P(t
�
k )

From the predictor and the estimator equations given
above, the Kalman filter outputs valuable statistical infor-
mation that can be used to monitor both the convergence
and the consistency of the filter estimation procedure. The
outputs of the predictor include the filter innovation r(tk)
and its covariance S(tk), whereas the estimator outputs the
filter residual r(tþk ) and the residual covariance S(tþk ),
defined as follows

r(tþk ) ¼ z(tk)� D(tk)x(t
þ
k )

S(tþk ) ¼ H(tk)P(t
þ
k )D

T(tk)þ R(tk)

It has been shown that the filter innovation and residual
processes are a zero-mean white Gaussian random sequence
55
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in normal operation if the Kalman filter model matches the
true system model [13, 14]. This feature can be exploited in
the analysis of the Kalman filter integrity to check the con-
sistency of measurement data for sensor failure detection
and to monitor the filter divergence.

4.2 Distributed inertial data fusion algorithm

Assume that all the local IMUs are independent of each
other and their measurements have a Gaussian probability
distribution. Then, the errors of the local inertial state esti-
mates are also a Gaussian distributed random vector and the
probability density function of the local inertial state is
given by

p(x) ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2p)3 detPx

q exp �
1

2
(x� x̂)TP�1

x (x� x̂)

� �
(34)

where x is a three-dimensional local inertial state vector, for
example, an acceleration or angular rate vector, and Px is
the covariance matrix of the error of the local inertial
state estimate. From least-squares estimation

Px ¼ (HT
H)�1

H
T
RH(HT

H)�1
¼ H

�
R[H�]T (35)

where H�
¼ (HTH)�1HT is the pseudo-inverse matrix of

the IMU design matrix H (the superscripts and subscripts
of the design matrix H have been omitted to simplify the
expression).
The objective of inertial measurement fusion is to gener-

ate optimal estimates of all the local inertial states. If the
optimisation criterion is defined as the maximum of the con-
ditional probability

P(xjx̂i, x̂j, x̂cg)

then, because all the IMU measurements are independent,
the conditional probability density function of the true
local inertial state at each IMU node can be represented
as follows

p(xjx̂i, x̂j, x̂cg) ¼ p(x) ¼ p(xjx̂i)p(xjx̂j)p(xjx̂cg) (36)

Applying the maximum likelihood estimator to (36) and
incorporating (10)–(12), the inertial data fusion algorithms
at each IMU node can be derived as follows

xJ ¼
X

l¼i,j,cg

T l
JP�1

x,l T
l
J

" #�1 X
l¼i,j,cg

T l
JP�1

x,l H
�
l ml,

J ¼ i, j, cg (37)

or

xJ ¼
X

l¼i,j,cg

T l
JP�1

x,l T
l
J

" #�1 X
l¼i,j,cg

T l
JHT

l R
�1
l ml (38)

P�1
x, J ¼

X
l¼i,j,cg

T l
JP�1

x,l T
l
J , J ¼ i, j, cg (39)

Equations (37)–(39) comprise the inertial measurement
fusion algorithm at each IMU node. Although inertial
measurement fusion is mainly used to provide reliable and
accurate local inertial state estimates, one additional
benefit of this approach is that the outputs can be used to
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detect and isolate inertial sensor failures if deviations of
the estimator residuals are used as a test statistic. In
effect, the inertial measurement fusion is a pre-processing
procedure for the second-stage fusion.

4.3 State fusion filtering algorithm

From (32) and (33), the local dynamic models embedded in
each node of the inertial network system can be described as
follows

xJ (tk) ¼ FJ (tk , tk�1)xJ (tk�1)þ GJ (tk�1)wJ (tk�1) (40)

zJ (tk) ¼ DJ (tk)xJ (tk)þ yJ (tk) (41)

where J ¼ i, j, cg denotes the IMU nodes.
The normalised measurement models of navigation

aiding systems, the normalised SRIMU error dynamic
models and the normalised error dynamic models of inertial
systems are given in [15–17]. These models can be applied
to all the IMU nodes if the corresponding coordinate frames
are specified. As different frames are used in the individual
nodes, each local dynamic model describes its local states,
which will be different from the local states represented
by the other dynamic models. The local state vector xJ
can be partitioned into the local system state x1J and the
local sensor error state x2J , that is

xJ ¼ [ xT1J xT2J ]
T (42)

The local system states at the nodes are referred to as similar
states and the transformations between these similar states
are given by the dynamic transformation matrices.
The measurement vector zJ can be decomposed into three

sub-vectors as follows

zJ ¼ [ zTJL z
T
JS z

T
JA
]T (43)

where zJL is the measurement vector provided by the local
sensor systems, zJS is the measurement vector provided by
the navigation-aiding systems and zJA is the combination
of the inertial measurements assimilated from other IMU
nodes. Because these three measurement vectors are inde-
pendent of each other, the following decompositions can
be obtained

DJ ¼ [DT
JL DT

JS DT
JA
]T (44)

yJ ¼ [yT
JL yT

JS yT
JA
]T (45)

RJ ¼ blockdiag[RJL RJS RJA ] (46)

The architecture of the state fusion filter algorithm at
each node is illustrated in Fig. 3 where the local Kalman

Fig. 3 State fusion algorithm architecture
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filter uses the assimilated sensor measurements to estimate
the local state. The local state fusion filter combines the
local estimate and the assimilated estimates from the other
nodes to update the local estimate.
All the local Kalman filters process the three forms of the

measurements to obtain the local estimates. Applying the
Kalman filtering algorithm to (40) and (41), and considering
(43), (44) and (46) yields

x̂J (t
�
k ) ¼ FJ (tk , tk�1)�xJ (tk�1) (47)

PJ (t
�
k ) ¼ FJ (tk , tk�1)

�PJ (t
þ
k�1)F

T
J (tk , tk�1)

þ GJ (tk�1)QJ (tk�1)G
T
J (tk�1) (48)

P�1
J (tþk ) ¼ P�1

J (t�k )þ DT
J (tk)R

�1
J (tk)DJ (tk)

¼ P�1
J (t�k )þ

X
k¼JL,JS,JA

DT
l (tk)R

�1
l (tk)Dl(tk)

(49)

P�1
J (tþk )x̂J (t

þ
k ) ¼ P�1

J (t�k )x̂J (t
�
k )þ DT

J (tk)R
�1
J (tk)zJ (tk)

¼ P
�1
J (t�k )x̂J (t

�
k )þ

X
l¼JL,JS,JA

D
T
l (tk)R

�1
l (tk)zl(tk) (50)

where x̂ is the state estimated by the local Kalman filter and
�x is the state updated by the local state fusion filter.
To update the locally estimated similar states at each

node using the similar state estimates assimilated from the
other nodes, a state fusion filter is needed in each node.
Defining a quadratic cost function at node i as follows

Fi ¼
X

J¼i,j,cg

(T i
JxJ � xi)

T
T
i
JP

�1
J T

J
i (T

i
JxJ � xi) (51)

where xi is the true local similar state at i and Fi is a cost
function used to measure the displacement of the local
state estimate from its true value.
The state fusion filter is designed to minimise Fi and is

referred to as the minimum weighted mean square error
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criterion. Differentiating Fi and setting the result to zero
yields

�xi ¼ �P
�1

i (P�1
i x̂i þ T i

jP
�1
j x̂j þ T i

cgP
�1
cg x̂cg) (52)

P̄
�1
i ¼ (P�1

i þ T i
jP

�1
j T

j
i þ T i

cgP
�1
cg T

cg
i )�1 (53)

Similarly, the update equations of the similar states at the
nodes j and cg are given as follows

�xj ¼ �P
�1

j (P�1
j x̂j þ T

j
iP

�1
i x̂i þ T j

cgP
�1
cg x̂cg) (54)

�P
�1

j ¼ (P�1
j þ T

j
iP

�1
i T i

j þ T j
cgP

�1
cg T

cg
j )�1 (55)

�xcg ¼ �P
�1

cg (P
�1
cg x̂cg þ T

cg
j P

�1
j x̂j þ T

cg
i P

�1
i x̂i) (56)

�P
�1

cg ¼ (P�1
cg þ T

cg
j P�1

j T j
cg þ T

cg
i P�1

i T i
cg)

�1 (57)

Equations (47)–(50) and (52)–(57) constitute the distrib-
uted state fusion filter algorithms for the inertial network
system. The state fusion exploits the redundancies of the
similar system states and consequently, this fusion method
can greatly improve the fault tolerance of an inertial
network system.
From (47) and (48), the outputs of each state fusion filter

are fed back to the corresponding local Kalman filter. This
feedback operation allows the local Kalman filter to accu-
rately estimate and calibrate its sensor errors. This pro-
cedure is known as the dynamic transfer alignment of the
inertial network system. Both the inertial data fusion and
state fusion procedures improve the estimation accuracy
of the inertial states and similar states. The local Kalman
filters allow all slave node IMUs to be aligned in-flight to
the master inertial navigation system.
Compared with the federated filter and other distributed

filter architectures [18, 19], the distributed data fusion algor-
ithms presented in this paper afford the following
advantages

1. The filter architecture is relatively simple.
2. Each local Kalman filter estimates its own inertial sensor
errors rather than pseudo-sensor errors. Therefore the
Table 1: Simulation parameters of inertial sensors

Sensor

Parameters 1 2 3 4 5

gyro drift time const, s 110 115 120 100 100

gyro drift err, deg/h 0.1j0.34 0.1j0.3 0.1j0.38 0.1j0.3 0.1j0.45

gyro bias err, deg/h 0.05j10.1 0.05j10.2 0.05j10.1 0.05j10.1 0.05j10.2

gyro SF err time const, s 100j250 100j260 120j270 100j260 104j254

gyro SF error, ppm 50j100 50j100 50j100 50j100 50j100

gyro Az misalign err, arcsec 23 23 23 21 23

gyro El misalign err, arcsec 24 20 21 22 21

gyro noise, deg/sqrt(h) 0.01j0.1 0.01j0.1 0.02j0.08 0.02j0.1 0.01j0.1

accel drift time const, s 60 65 65 60.5 66

accel drift err, mg 50 50 54 50 55

accel bias err, mg 100j310 110j300 100j300 110j300 100j312

accel SF err time const, s 250 260 250 260 245

accel SF err, ppm 100j300 100j300 100j300 100j310 100j300

accel Az misalign err, arcsec 23 23 21 21 23

accel El misalign err, arcsec 22 21 20 22 21

accel noise, mg/sqrt(hz) 30j50 30j50 30j55 30j52 30j50
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estimates of the local filters can be used to correct the local
IMU errors and the similar states.
3. By assimilating the similar local states, each local
state fusion filter provides an inherent fault tolerance
capability.
4. The inner feedback from the state fusion filter to the
local Kalman filter at each node allows all IMUs in an iner-
tial network system to be automatically aligned to the cg
node IMU frame without additional alignment algorithms
or procedures. As a result, many traditional inertial align-
ment procedures, such as transfer alignment, are eliminated.

5 Simulation results

A multi-sensor simulation environment, consisting of a
GNSS simulator, an SRIMU simulator and a true trajectory
generator, was developed in Matlab to test and evaluate the
fusion algorithms described in this paper. The GNSS simu-
lator provides raw GNSS measurements, including pseu-
doranges and pseudo-range rates at the rate of 1 Hz. The
SRIMU simulator can simulate several SRIMU configur-
ations, including cube, cone and dodecahedron configur-
ations. The SRIMU simulator, working with a true
trajectory generator, generates realistic SRIMU measure-
ments at an update rate of 50 Hz. The true trajectory is
used as a reference to examine the accuracy of the esti-
mated aircraft motion states. The simulated gyro sensors
have gyro drift rates of 108/h (a typical tactical-grade

Fig. 4 True position trajectory

Fig. 5 Aircraft horizontal manoeuvres
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IMU) at the slave nodes and 0.058/h (a typical navigation-
grade IMU) at the cg node. All simulated accelerometers at
the slave nodes have a typical bias of 300 mg, whereas the
accelerometers at the cg node have a bias of 100 mg. The
SRIMU simulator also models other error sources, includ-
ing time-dependent sensor drifts (random drifts), zero
offset (biases), misalignments, scale factor errors, as well
as sensor noise. The parameters used in the simulation
are summarised in Table 1. The simulation results show
that the change of accelerometer bias has no significant
effects on the performance of the master and slave node
data fusion filters.
Because the main purpose of this simulation is to

evaluate the estimation accuracy of the distributed data
fusion algorithms, only two nodes (one master and one
slave) were used in the simulation. Additional nodes do
not change the architecture of the distributed data
fusion filter but significantly increase the complexity of
the computation. The dynamic relationship between the
master and the slave nodes was simulated by a sinusoidal
function.
In the dynamic models of the two-node inertial network

system, the similar system states at both the cg node and
the slave nodes contain the nine basic navigation state
errors (three linear position errors, three velocity errors
and three attitude angle errors), which are represented in
the different local frames. The local sensor error state
vector at the cg node contains accelerometer-related error

Fig. 6 Aircraft vertical pitch manoeuvres

a Vertical velocity manoeuvres
b Pitch manoeuvres
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terms (bias, time-related drift error, misalignments and
scale factor error), gyro-related error terms (random con-
stant bias, time-related drift error, misalignments and
scale factor error), GNSS receiver clock errors (phase and
frequency errors), magnetic heading error and air data
system error (air pressure altitude and air speed errors), as
specified in [16] and redefined in the following equations.

Fig. 7 Similar state errors at the master node with a gyro drift
rate of 0.058/h
a Attitude errors at cg node
b Horizontal velocity errors at cg node
c Horizontal position errors at cg node
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All navigation aiding sensors are related to the cg node.
The error state and measurement vectors at the cg node
are as follows

x ¼
xbasic state errors

xsensor errors

� �

z ¼

GPS pseudorange vector

GPS pseudorange rate vector

magnetic heading output

air pressure altitude and air speed

SRIMU residual vector

2
6666664

3
7777775

Fig. 8 Error standard deviations at the master node with a gyro
drift rate of 0.058/h
a Attitude error standard deviations at cg node
b Velocity error standard deviations at cg node
c Position error standard deviations at cg node
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xbasic state errors ¼

x1

x2

x3

x4

x5

x6

x7

x8

x9

2
66666666666666664

3
77777777777777775

¼

dwR

dlR

dh

dv1x

dv1y

dv1z

@fx

@fy

@fz

2
66666666666666664

3
77777777777777775

xsensor errors ¼

Rx Clk error states

SRIMU accel error states

SRIMU gyro error states

Magnetic heading error state

Barometer bias state

True air speed bias state

2
6666664

3
7777775

¼

xclk�pha

xclk�rate

xaccel�1

..

.

xaccel�n

xgyro�1

..

.

xgyro�n

xMag

xBar
xADS

2
66666666666666666664

3
77777777777777777775

The local sensor error state vector at the slave node con-
tains only local inertial sensor errors; the measurement
vector at the slave node is defined as follows

z ¼

position residual vector

velocity residaul vector

attitude residal vector

SRIMU residual vector

2
664

3
775

The simulated aircraft can perform arbitrary manoeuvres
up to a maximum acceleration of 3.0 g. A typical flight
trajectory used in this study is shown in Fig. 4 in which
the aircraft flies from the start point to the north-east, then
completes three sets of 908 right turns, returning to the
start point. Figs. 5 and 6 show the trajectories of the hori-
zontal and vertical manoeuvres, respectively.
The simulation study focused on the assessment of the

performance of the distributed data fusion algorithms in
terms of estimation accuracy and convergence. Time
delay problems in an inertial network system were not con-
sidered although they may cause problems in inertial
network alignment procedures. In the following case
study, both the master and slave nodes use SRIMUs. The
simulated IMU at the master node is a 5-sensor cone
SRIMU with a gyro drift rate of 0.058/h. The simulated
IMU at the slave node is also a 5-sensor cone SRIMU but
with a gyro drift rate of 108/h.
The simulation results of the similar system states derived

by the master node fusion filter are shown in Figs. 7 and 8
where the gyros have a drift rate of 0.058/h and GPS pro-
vides continuous pseudorange and pseudo-range rate obser-
vables at the rate of 1 Hz. Fig. 7 shows the absolute errors
of the similar system states in comparison with the true tra-
jectory parameters and Fig. 8 shows the error standard
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deviations of the similar system states estimated by the
master node fusion filter. After the initial alignment
(5 min), the absolute attitude errors (the difference between
the true and estimated values) mostly remained within 0.18
during a simulated 2 h flight in Fig. 7a. The lateral velocity
errors were ,0.5 m/s with a probability of 98% in Fig. 7b
and the accuracy of the lateral velocity estimates is better
than 0.2 m/s (s) in Fig. 8b. As expected, the vertical velocity
has a larger error compared with the lateral velocity error
owing to the vertical dilution of precision of GPS. The cg
node data fusion filter quickly converges to the steady state
and achieves steady-state attitude estimates ,0.18 (1s) in
Fig. 8a. The accuracy of the yaw estimate is slightly less
than other attitude angles because of a larger initial yaw
angle. The positioning accuracy of the master node fusion
filter depends on the GPS positioning accuracy. The ‘jump’
changes of the standard deviation of the position and velocity
error states in Figs. 8b and c were caused by the changes of
the GPS satellite geometries.
For the slave node with a gyro drift rate of 108/h, Fig. 9

shows the absolute errors of the local similar states and
Fig. 10 shows the corresponding standard deviations of
the local similar states. After the initial alignment
(10 min), the accuracy of the attitude estimates at the
slave node shows no significant degradation although the
convergent rate of the slave node data fusion filter is
slower than the master node fusion filter in Fig. 9a. The
accuracy of the attitude estimate derived by the slave

Fig. 9 Similar state errors at the slave node with a gyro drift rate
of 108/h
a Attitude errors at slave node
b Horizontal velocity errors at slave node
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fusion filter is better than 0.28 (s) in Fig. 10a and the accu-
racy of the lateral velocity derived by the slave fusion filter
is better than 0.28 m/s (s) in Fig. 10b. From Figs. 9a and
10b, the estimates of the local similar states change slightly
during highly dynamic manoeuvres.
The measured rotation rate of the local pitch axis at the

slave node and the corresponding estimate given by the
slave fusion filter are shown in Fig. 11. After the initial

Fig. 10 Error standard deviations at the slave node with a gyro
drift rate of 108/h
a Attitude errors standard deviations at slave node
b Velocity errors standard deviations at slave node

Fig. 11 Rotation rates of local pitch axis at slave node with gyro
drift rate of 108/h
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alignment of the slave IMU (10 min), the accuracy of the
estimated pitch rate at the slave node is significantly
better than the direct measurements at the slave IMU.
These simulations show that the distributed inertial
network algorithms presented in this paper can be used to
achieve accurate navigation states where the local inertial
state vector is derived for low-cost IMUs. It can be seen
that the local Kalman filter and the state fusion filter
combine to reduce significantly the high-frequency pitch
rate noise.

6 Conclusions

The paper reviews recent developments in aircraft inertial
network systems, with particular emphasis on skew redun-
dant IMUs. The overall system architecture and navigation
reference frames are developed for distributed inertial
network nodes. Two methods are presented to compute
the rotation matrices for the dynamic inertial sensing
model for both rigid body aircraft and flexible airframe
configurations.
Distributed data fusion algorithms have been developed

for inertial network systems, including the development of
distributed state fusion filters and inertial measurement
fusion algorithms. These algorithms are applicable to mul-
tiple IMU network systems in aircraft with a flexible struc-
ture. Extensive simulation studies were undertaken
combining an SRIMU simulator with a GNSS simulator.
Specific manoeuvres were flown so that the sensor derived
measurements and aircraft motion states could be compared
directly with the actual aircraft trajectory.
Simulation studies have demonstrated the feasibility of

distributed data fusion algorithms for local inertial state
estimate and dynamic inertial network alignment. A wide
range of low-cost inertial sensors were evaluated, covering
the performance of the majority of currently available iner-
tial sensors. The simulation results presented in the paper
show that low-quality IMUs (gyro drift rate up to 308/h)
can be precisely aligned to a high-quality IMU (gyro drift
rate of 0.058/h) with an alignment accuracy better than
0.28/h by using the distributed data fusion filters and that
the local fusion filter can accurately estimate the local iner-
tial states. The algorithms presented in this paper provide
redundant inertial information in a form that is applicable
to current failure detection and isolation methods used to
detect sensor failures.
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