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Adaptive diagnosis of the bilinear mechanical systems 

 

L. Gelman, S. Gorpinich, C. Thompson 

Cranfield University, UK 

Abstract. 

 
A generic adaptive approach is proposed for diagnosis of the bilinear mechanical systems. The approach adapts the 

free oscillation method for bilinearity diagnosis of mechanical systems. The expediency of the adaptation is proved 

for a recognition feature, the decrement of the free oscillations. The developed adaptation consists of variation of the 

adaptive likelihood ratio of the decrement with variation of the resonance frequency of the bilinear system. It is 

shown that in the cases of the frequency-independent and the frequency-dependent internal damping the adaptation 

is expedient. To investigate effectiveness of the adaptation in these cases, a numerical simulation was carried out. 

The simulation results show that use of the adaptation increases the total probability of the correct diagnosis of 

system bi-linearity.  

 

1. Introduction 
 

Bilinear mechanical systems abound in many settings and applications. Some examples of bilinear mechanical 

systems discussed in literature include: 

 

• oscillating mechanical systems with clearances and motion limiting stops [1] 

• offshore structures: free-hanging risers, tension leg platforms and suspended loads [2-4], 

articulated loading towers, constrained by a connection to a massive tanker or vessels moored 

against fenders [5] 

• damaged (e.g. cracked, pitted, etc.) mechanical systems [6-10] 

• un-damaged gearboxes [11] 

 

Among the most widely used approaches for vibro-acoustical diagnosis of bilinearity of mechanical systems is the 

free oscillation method [7-8, 12]. The method consists of the impact excitation of the free mechanical oscillations of 

the bilinear system and evaluation of a diagnosis feature from the vibro-acoustical signals radiated by these 

oscillations. As a diagnosis feature, the decrement of the free oscillations has widely been used [8-9].  

Normally, diagnosis of the bilinear mechanical systems is carried out under presence of variable nuisance 

parameters [13-14] of the systems. Changes of nuisance parameters lead to the deterioration of recognition 

effectiveness [13-14]. Typical examples of the variable nuisance parameters for mechanical systems are 

the performance parameters: e. g., the shaft speed, a load, etc. 
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The problem is to preserve diagnosis effectiveness of the bilinear mechanical systems in presence of the variable 

nuisance parameters. It is important to solve this problem for various bilinear mechanical systems: systems with 

clearances and motion limiting stops, offshore structures, damaged and un-damaged machinery. This problem has 

not been investigated in literature. 

To preserve the recognition effectiveness, a new generic adaptive approach for system diagnosis is proposed here 

based on an adaptive likelihood ratio. In general, the proposed adaptive likelihood ratio depends on diagnosis feature 

vector and also on vector of measurable variable nuisance parameters. This is an improvement over most published 

applications concerning recognition and diagnostics of various systems; normally the classical likelihood ratio [15] 

averaged over ranges of variable nuisance parameters is used for system recognition and diagnostics. 

The purposes of this paper are to:  

 

• propose a generic adaptive approach for system diagnosis 

• apply an adaptive approach for the free oscillation method of diagnosis of system bilinearity with the 

decrement as a recognition feature 

• compare the proposed and traditional approaches for diagnosis of the bilinear mechanical systems 

 

2. The Bilinear System and Decrement of the Free Oscillations 
 

Let’s consider a generic bilinear mechanical system, a single degree of freedom oscillator, in which the stiffness is 

bilinear: 

 

 
⎪
⎪
⎩

⎪⎪
⎨

⎧

<=++

≥=++

,0X ,02

,0  ,02

2

2

XXhX

XXXhX

CC

SS

ω

ω
  (1) 

 

where X  is the displacement, m is the mass, CCCSSS hh ωζωζ == , , Sζ and Cζ  are the damping ratios at the 

positive and negative displacements, 
m
k

m
k

mk
c

mk
c C

C
S

S
C

C
S

S ==== ωωζζ   ,,
2

,
2

, c is the damping, Sk  

and Ck  are the stiffness at the positive and negative displacements.  

At the positive displacement the stiffness decreases with the quantity SC kkk −=Δ  [1-11]. 

Using Equation (1), the resonance frequencies at the positive and negative displacements can be written as follows 

respectively:  

 

21 SSSd ζωω −= , 
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``       (2) 

21 CCCd ζωω −=  

Using Equations (1-2), the resonance frequency of the bilinear system after transformations can be written as 

follows: 
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Equation (3) is generic. In the important case of the low damped system (i.e., the damping ratios are less than 0.1) 

substituting Equations (2) into Equation (3) yields: 
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Finally, Equation for resonance frequency can be written as follows (see Appendix) [16]:  

 

 ,
11

12
Cd 0 ∗

∗

−+

−⋅=
k

kωω   (5) 

 

where ∗k  is the stiffness ratio, 
Ck
kk Δ=∗ .  

The logarithmic decrement of the free oscillations of the bilinear system under impact initial conditions 

[ 0)0(,0)0( vxx == ] is obtained from Equations (1) after transformations as: 
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where •h  is the normalized damping ratio [7 ], 
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3. Adaptation of System Diagnosis 
 

Procedures of proposed generic adaptive approach are to 

 

• find a vector of measurable variable nuisance parameters for the selected recognition feature vector 

• measure these parameters  

• use an adaptation of the likelihood ratio (i.e., the adaptive likelihood ratio): to vary the likelihood ratio of 

diagnosis feature vector with variation of a vector of measurable variable nuisance parameters in order to 

decrease influence of these parameters and thus, preserve the diagnosis effectiveness 

 

The adaptation of the free oscillation method using the logarithmic decrement as a recognition feature could be 

achieved with use of measurable variable nuisance parameters on which the decrement depends. As shown by 

Equation (6), the decrement depends on the damping ratio Cζ , the resonance frequency Cdω  at the negative 

displacement of the bilinear system, the resonance frequency 0ω  of the bilinear system, the stiffness ratio ∗k  and 

the normalized damping ratio ∗h .  

The stiffness ratio ∗k  is a basic diagnosis parameter [1-11]; the considered diagnosis is based on the difference in 

the stiffness ratios between the linear and the bilinear systems. According to Equation (7), the normalized damping 

ratio ∗h  depends on the basic recognition parameter ∗k . The damping ratio Cζ  at the negative displacements (i. e., 

the linear system), is a nuisance parameter.  

One can see from Equation (5) that the resonance frequency 0ω  of the bilinear system depends on a basic diagnosis 

parameter, the stiffness ratio ∗k , and the resonance frequency at the negative displacement Cdω (i.e., the resonance 

frequency of the linear system). Therefore, the resonance frequency 0ω  can be used as a recognition feature [6] 

when the resonance frequency at the negative displacement Cdω  is known. Otherwise, the resonance frequencies 0ω  

and Cdω  also become nuisance parameters.  

An important case is considered here: the resonance frequency at the negative displacement Cdω  is the unknown 

measurable nuisance parameter. Thus, the resonance frequency of the bilinear system 0ω  is also the unknown 

measurable nuisance parameter. Normally, the basic parameters of the bilinear system: mass m , damping c  and 

stiffness k are variable random parameters due to manufacturing tolerances of bilinear systems. Therefore, the 

resonance frequencies of the linear and bilinear systems are also variable random parameters. 

For these cases, the adaptation depending on the measurable variable random resonance frequency of the bilinear 

system is proposed and investigated.  

The adaptive method consists of estimating the decrement d , the resonance frequency 0ω  and the adaptive 

likelihood ratio aL  which depends on the decrement estimate d  and the estimate 0ω̂  of the resonance frequency: 
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where ),ˆ( 0 jSdW ω  is the one-dimensional conditional probability density function (pdf) of the decrement estimate 

d  which depends on status (class) jS  of the system and the estimate 0ω̂  of the resonance frequency, 1,0=j ; class 

0S  corresponds to the linear system with resonance frequency Cdω , damping ratio Cζ  and the zero stiffness ratio; 

class 1S  corresponds to the bilinear system with the bilinear stiffness and non-zero stiffness ratio. 

In contrast, the classical non-adaptive method consists of estimating the decrement d  and the classical likelihood 

ratio cL  which depends only on the decrement estimate d : 
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where )(ˆ
jSdW  is the one-dimensional conditional pdf of the decrement estimate d  which depends on class jS  of 

the system. 

The pdf )(ˆ
jSdW  of the classical likelihood ratio is averaged over a range of the variable resonance frequency for 

class jS . In contrast, the pdf ),ˆ( 0 jSdW ω  of the adaptive likelihood ratio is not averaged over a range of the 

variable resonance frequency. 

Then the standard decision-making procedure [15] should be used: the likelihood ratio aL  or cL  is compared with 

one or several thresholds depending on the selected effectiveness criterion. For example, if the maximum likelihood 

criterion [15] is used, then a threshold for the likelihood ratios is unity. 

It should be highlighted that the proposed adaptation is expedient only if the resonance frequency of the bilinear 

system is variable.  

To prove expediency of the adaptation, dependencies between the decrement d  and the stiffness ratio ∗k  were 

studied for various values of the resonance frequency 0ω  and two different proportional internal dampings [7]. 

 

4. The Decrement of the Free Oscillations for Different Internal Damping  

 
4. 1. The frequency-independent internal damping 
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6

For the frequency-independent internal damping, the normalized damping ratio h* can be obtained from Equation (7) 

after transformations as: 

 

 ∗−−= kh 11*   (10) 

 

Substituting Equation (10) into Equation (6) yields, after transformations: 
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The dependencies of the decrement (11) on the stiffness ratio are shown in Fig. 1 for various values of the resonance 

frequency. As follows from Equation (11) and Fig. 1, the decrement depends on the stiffness ratio ∗k  and the 

resonance frequency 0ω . The adaptation is expedient since, for constant values of the nuisance parameter 0ω , the 

decrement depends on the stiffness ratio ∗k .  

 

4. 2. The frequency-dependent internal damping 

 

For the frequency-dependent internal damping, the normalized damping ratio, h* can be obtained from Equation (7) 

after transformations as: 

 

 ∗= kh*   (12) 

 

Substituting Equation (12) into Equation (6) yields, after transformations: 
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The dependencies of the decrement (13) on the stiffness ratio ∗k  are shown in Fig. 2 for various values of the 

resonance frequency 0ω . As follows from Equation (13) and Fig. 2, the decrement depends on the stiffness ratio ∗k  

and the resonance frequency 0ω . As in the previous case, the adaptation is expedient since, for constant values of 

the nuisance parameter 0ω , the decrement depends on the stiffness ratio ∗k . 
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5. Numerical Simulation 
 

To estimate the effectiveness of the adaptation a numerical simulation was carried out for cases 4.1-4.2 and classes 

0S  and 1S . The variable random resonance frequency of the linear system Cdω  is assumed to be uniformly 

distributed in the range (1000-1200) Hz, i.e., 20% variation. The random stiffness ratio of the bilinear system is 

uniformly distributed in the range (0-0.4]. The considered variation values correspond to real cases occurring in 

the bilinear systems listed in the chapter 1.  

It is assumed without loss of generality that the decrement and the resonance frequency were measured without 

errors for both classes. The damping parameter is 05.0=Ch  rad/s. 

 

5. 1. Non-adaptive approach 

 

Estimates of the conditional pdfs of the decrement averaged over the resonance frequency ranges for classes 0S  

and 1S  for different damping models were obtained using the Monte-Carlo procedure and Equations (5, 11, 13). To 

estimate these pdfs, 950 runs were simulated for each combination of the class and the damping model. Then the 

classical likelihood ratios (9) were estimated on the basis of the averaged pdfs of the decrement.  

Estimates P  of the total probabilities of the correct diagnosis for the non-adaptive and the adaptive approaches are 

calculated as follows: bbll PPP μμ += , where lP  and bP  are estimates of the probability of the correct diagnosis of 

the linear and the bi-linear systems respectively; lμ , and bμ  are a priori probabilities of the linear and the bi-linear 

systems respectively. Taking into account the equal number of the simulated runs for the linear and the bi-linear 

systems, a priori probabilities are 5.0== bl μμ . 

These estimates are obtained by the simulation using the classical likelihood ratios and the maximum likelihood 

criterion [15] and presented in Table. 

 

5. 2. Adaptive approach 

 

According to the assumption that the decrement and the resonance frequency were measured without errors for both 

classes and due to the monotonous character of the dependencies presented in Fig. 1-2, the decrement values of the 

class 0S  do not overlap with the decrement values of the class 1S . Therefore, when using the adaptive likelihood 

ratio (8) and measuring the decrement and the resonance frequency without errors, the estimates of the total 

probability of the correct diagnosis are equal to unity. 

Taking into account these estimates, one can see from Table that when using the adaptive approach, the estimates of 

the total probability of the correct diagnosis increase by (19-20%). This increase highlights the efficiency of the 

proposed adaptive approach for bi-linearity diagnosis with the logarithmic decrement as a diagnosis feature.  
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6. Conclusions 

 
1. A generic adaptive approach was proposed for system diagnosis. The main idea of the approach is a 

variation of the adaptive likelihood ratio with variation of vector of measurable variable nuisance parameters. The 

approach decreases the influence of these parameters on diagnostic features and thus preserves diagnosis 

effectiveness in the presence of variable nuisance parameters. 

2. The proposed approach was applied for the free oscillation method for bilinearity diagnosis of the bilinear 

mechanical systems. Expediency of the adaptation was proved for the following diagnosis feature: the decrement of 

the free oscillations of the bilinear system. The resonance frequency of the bilinear system was selected as the 

measurable variable random nuisance parameter. The new generic analytical Equation for the resonance frequency 

of the bilinear system was obtained. 

3. The adaptation consists of a variation of the adaptive likelihood ratio of the decrement of the free 

oscillations with variation of the variable random resonance frequency of the bilinear system. It was shown that in 

the cases of the frequency-independent and the frequency-dependent internal dampings the proposed adaptation is 

expedient. 

Generally, the proposed adaptation is expedient if a diagnostic feature depends on a variable nuisance parameter. 

4. To investigate the adaptation effectiveness in the above mentioned cases, a numerical simulation was 

carried out. The simulation results have shown that, when the adaptive approach was used, the estimates of the total 

probability of the correct recognition increased by (19-20)%. This increase in probabilities is obtained for the 

considered numerical example.  

Generally, increase depends mainly on dependency between a diagnostic feature and a nuisance parameter and an 

error in estimation of a nuisance parameter. 

5. The paper results indicate that use of the proposed adaptation for the decrement of the free oscillations 

improves the effectiveness of bilinearity diagnosis for bilinear mechanical systems in presence of the variable 

nuisance parameter, the resonance frequency of the system. 
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Table Estimates of the total probabilities of bilinearity diagnosis 

Damping model Non-adaptive approach Adaptive approach 

The frequency-dependent internal damping 0.8 1.0 

The frequency-independent internal damping 0.81 1.0 
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Fig.1. Dependencies of the decrement of the free oscillation on the stiffness ratio ∗k  and the resonance frequency 

0ω  for the frequency-independent internal damping ( Ch =0.05 rad/s): a) 0ω  = 2π 100 rad/s; b) 0ω  = 2π 1000 

rad/s; c) 0ω  = 2π 10000 rad/s 

 

 

Fig. 2. Dependencies of the decrement of the free oscillation on the stiffness ratio ∗k  and the resonance frequency 

0ω  for the frequency-dependent internal damping ( Ch =0.05 rad/s): a) 0ω  = 2π 100 rad/s; b) 0ω  = 2π 1000rad/s; 

c) 0ω  = 2π 10000rad/s 
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Appendix 

 

Equation (4) after transformations can be written as follows: 
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Equation (A1) after additional transformation can be presented as follows: 
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Taking into account that CS kk ≤  [1-11], Equations (2) and expression for the stiffness ratio, Equation (A2) for low 

damped system finally can be presented as follows: 
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