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______________________________________________________________________ 
 
Abstract 
 
The Tristar aircraft, operated by the Royal Air Force, fly many thousands of hours per 
year in the transport and air-to-air refuelling roles.  A large amount of engine data is 
recorded for each of the Rolls-Royce RB211-524B4 engines: it is used to aid the 
maintenance process.  Data are also generated during test-bed engine ground-runs after 
repair and overhaul.  In order to use recorded engine data more effectively, this paper 
assesses the feasibility of a pro-active engine diagnostic-tool using artificial neural 
networks (ANNs). Engine-health monitoring is described and the theory behind an 
ANN is described.  An engine diagnostic structure is proposed using several ANNs.  
The top level distinguishes between single-component faults (SCFs) and double-
component faults (DCFs).  The middle-level class includes components, or component 
pairs, which are faulty.  The bottom level estimates the values of the engine-
independent parameters, for each engine component, based on a set of engine data using 
dependent parameters. The DCF results presented in this paper illustrate the potential 
for ANNs as diagnostic tools. However, there are also a number of features of ANN 
applications that are user-defined: ANN designs, the number of training epochs used; 
the training function employed, the method of performance assessment; and the degree 
of deterioration for each engine-component’s performance parameter. 
______________________________________________________________________ 
Abbreviations and Nomenclature 
 

ANN Artificial Neural network 

BPR Bypass ratio 

DCF Double-component Fault 

EDMS Exhaust-debris monitoring system  

EFH Engine Flying Hour 

EGT Exhaust-Gas’ Temperature 
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EHM Engine-Health Monitoring 

EHUMS Engine health and usage management system 

GA Genetic Algorithm 

GPA Gas-path Analysis 

HCF High Cycle-Fatigue 

HP High pressure 

HPC High-pressure compressor 

HPT High-pressure turbine 

ICM Influence Coefficient Matrix 

IDMS Inlet-debris monitoring system 

IP Intermediate pressure 

IPC Intermediate-pressure compressor 

IPT Intermediate-pressure turbine 

ISA International standard-atmosphere 

LP Low pressure 

LPC Low-pressure compressor 

LPT Low-pressure turbine 

MSE Mean Square Error 

N Relative spool speed 

OEM Original Equipment-Manufacturer 

OLS Off-line sensor 

OPR Overall Pressure-Ratio 

P Pressure (bar) 

ROI Return on Investment 
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SCF Single-component Fault 

SCG Scaled Conjugate Gradient 

SFC Specific Fuel Consumption 

SLS Sea-level static 

T Temperature (K) 

TET Turbine’ s Entry-Temperature 

Wf Rate of  fuel flow (Kg/s) 

 Flow capacity  

 Efficiency 

Glossary 
Axon Long nerve fibre that conducts impulses away from the cell body of 

the neuron 
Dendrites Extension of a nerve cell that conducts impulses from adjacent cells 

inward toward the cell body 
Design Point The optimal point determined by a number of engine parameters 

where an engine is intended to operate most of the time 
Neuron A specialised cell for conduction nerve impulses 
Synapse The junction across which a nerve impulse passes from an axon 

terminal to a neuron 
 
1.  Introduction 
 
The art of engine-health monitoring (EHM) is becoming more complex as the array of 
technologies available increases.  However, core-engine performance monitoring 
techniques continue to be the prime diagnosis tool, whereby the analysis of the gas-
turbine’ s gas-path parameters provides information about the degradation severity of 
each gas-path component [1].  In addition, other technologies such as wear-debris 
analysis and vibration monitoring also remain key techniques of EHM.  As computing 
power continues to increase and more-mathematical tools become available for the 
EHM of gas-turbines, the available artificial intelligence grows in complexity.   
 
The cost of an aircraft’ s diversion in flight for a technical reason is potentially high. The 
resulting loss of passenger confidence leading to a longer-term reduced revenue, short-
term costs associated with the diversion (e.g. hotels, transport) and operational 
inconvenience (e.g. the aircraft being unavailable at the required airport for the next 
planned trip, as well as the disruptions to crew rosters and aircrew duty times) can be 
very expensive.  The consequences incurred in the ditching of a plane or a catastrophic 
failure are even higher. In addition, for military aircraft, the results of direct mission 
failure and adverse effects on other aircraft can be very grave 
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In order to achieve excellent in-service use of modern gas-turbine aero-engines, they 
should incorporate capable performance-monitoring systems.  However, the ability of 
such a diagnostic system is reliant upon complying with the following criteria: 
 

• Well-defined reliability goals: for instance, Rolls-Royce have sought 
to improve despatch reliability of the Boeing 767 from 99.91% to 
99.95% by incorporating EHM on the RB211-535E4 [2]. 

• Physical-space limitations for system hardware. 
• A well-defined system specification: for example, definition of the end 

user as either maintenance personnel, aircrew or original equipment 
manufacturer. 

• Format of information output:- cockpit indication, ground maintenance 
trending by operator or third-party telemetric monitoring. 

• Cost. 
• Data-processing procedure. 
• Changes to the above criteria depending on whether or not the EHM 

system is designed-in or retrofitted. 
 
2.  Engine-Health Monitoring  
 
2.1  Overview 
 
The specialist EHM discipline, of is a desirable aspect of modern aero-engine gas-
turbine management, provides engine-fleet managers with a tool for the pro-active 
management of assets.   
 
The definition of the word health is ‘a state of being well and free from illness; a 
condition of the body’ .  This immediately sets EHM apart from the concept of usage, 
which is ‘the manner of using or treating something; customary practice’ .  Nevertheless, 
there is often a misunderstanding of the difference between an EHM system and Engine 
Health and Usage Management System (EHUMS): EHM provides an assessment of the 
current state of an engine and EHUMS is both an assessment of the current state and the 
common use of the engine.   
 
According to Green [3], a form of ‘sensing, learning and reasoning EHM system is the 
cornerstone or more importantly the missing link between our current diagnostic 
confused state, and a status of a true diagnostic with prognostic, or knowledge with 
wisdom capability’ .   The message was that ‘smart’  EHM was required and led to the 
evolution of EHM/diagnostics towards EHM/diagnostics/ prognostics. 
 
2.2 Traditional Forms of EHM 
 
These have been described extensively by Li [1], Alcock [4], Theriault [5], Escher [6],  
and Powrie and Fisher [7].  EHM itself has long been recognised as only a part of an 
engine-monitoring system (EMS); an EMS includes considerations of the associated 
people, equipment and procedures involved in gas-turbine engine monitoring [8]. 
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Figure 1 – Bolthole crack in the F-100 stage 10 disc 

 
The EHM process, must be able to assess the performance of the engine and also its 
mechanical integrity. Figure 1 illustrates the type of damage that needs to be detected.  
The challenge is usually complicated by the requirement to conduct the EHM with the 
engine ‘on wing’ , or installed.  EHM can be divided into a number of technologies: 
wear-debris analysis, gas-path performance, visual inspection, vibration analysis and 
life usage.  Table 1 summarises, the technologies available and the types of health-
assessment techniques utilised.   
 

Table 1 – Summary of traditional EHM methods 

EHM Method Assessment based on: Monitoring Technique Features 

Wear Debris 
Analysis 

Measurement of mechanical 
debris arising due to wear of 

components such as 
bearings and shafts 

Visual via magnetic 
chip plug 

 
Rapid assessment 

 
Trending 

 

Gas-path 
Performance 

 
Monitoring of engine-

dependent parameters such 
as pressures, temperatures 

and spool speeds – 
comparison with baseline 
values and inference of 
independent parameter 

changes 
 

Sensor based 

 
Trending 

 
Unless linked to 

diagnostic system, 
requires manual 

assessment of data 
 

Visual Inspection 

Non-destructive external 
and internal visual 

inspection techniques (for 
gas-path components) using 

liquid penetrants, eddy 
current, ultrasound, 

radiography and/or lasers  

Human eye using 
rigid/flexible 
borescopes 

Rapid assessment 
 

Engine may require 
partial strip 

 
Quality of 

assessment is 
highly dependent 

upon the  
experience of the 

technician 

Crack 
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Vibration Analysis 

Monitoring of vibration 
characteristics and 

comparison of actual values 
with baseline figures 

Sensor based 

Rapid assessment 
 

Quality of 
assessment is 

highly dependent 
upon the 

experience of the 
technician 

Life Usage 

Life monitoring of gas-
turbine systems; life 

dependent upon creep and 
low cycle fatigue 

Sensor based 

Prediction and 
prevention of early 

failure 
 

Life calculation 
based on mission 

profile; can be 
subjective 

 
Most EHM processes combine the technologies available; for instance a gas-path 
performance assessment might be confirmed or supported by a vibration analysis.  Gas-
path performance monitoring techniques include both linear and non-linear gas-path 
analyses (GPAs). 
 
2.3  Emerging Forms of EHM 
 
Two examples are shown in Table 2.  The state of an engine can be inferred by 
monitoring the electrostatic charge of particles entering, travelling through or departing 
from an open-flow system.  Electrostatic technology has the ability to classify fault 
severity in real-time with an early-warning capability.   

Table 2 – Summary of emerging EHM methods 
 

EHM Method Assessment based on: Monitoring technique Features 

Electrostatics 

Monitoring the electrostatic 
characteristics of debris in 

different parts of the engine: 
 

Inlet-Debris Monitoring 
System (IDMS) 

  
Exhaust-Debris Monitoring 

System (EDMS) 
 

Oil-Line Sensor (OLS) 
 

Sensor based 

Real-time: 
 

Early warning of 
faults 

 
Severity of fault 

predicted so 
benefiting the 
maintenance 

operation 
 

OLS can detect 
non-metallic debris 
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Radar 

 
Monitoring of radar 

signature at pre-defined 
locations in the gas-turbine 

 

Sensor based 

Real-time: 
 

Debris ingestion 
/damage severity 

information 
 

Potential for 
vibration 

monitoring 
 

Data processed into 
‘go/no-go’  format 

 
Radar technology offers similar benefits to electrostatics, but has the added advantage 
that vibration monitoring could be applied simultaneously.  As EHM costs require 
careful control, the use of multi-function of a single-sensor is an appealing attribute. 
 
3.  Artificial Neural networks 
 
3.1  Background 
 
A neural network is a system composed of many simple processing-elements, operating 
in parallel and whose function is determined by the network structure, connection 
strengths: the processing is performed at computing elements or nodes.  Neural network 
designs are inspired by the architectures of biological nervous systems, which use many 
simple processing elements, operating in parallel, to obtain high computation-rates.  
These mathematical neuron models are commonly referred to as artificial neural 
networks (ANNs).  Unlike the classical digital-processing techniques used by most 
computers, ANNs possess the ability to [9][10]: 
 

• Perform parallel processing of data 
• Cope with noisy data 
• Cope with system faults 
• Adapt to different circumstances  

 
Digital computers process data serially in real-time, but the downside is that they have 
to prioritise tasks.  However, ANNs process data asynchronously in real-time, which 
means they can cope with multiple simultaneous inputs without detriment to the quality 
of the output. 
 
The human nervous-system was partially understood by the Greeks in 200 BC. By the 
late 1800s, sensory processing was already being described as a switching network.  In 
1957, Rosenblatt conceived the ‘perceptron’  neural network [11], i.e. a relatively simple 
network ‘whose weights and biases could be trained to produce a correct target vector 
when presented with the corresponding input vector’  [12].  The limitations of the 
perceptron model were highlighted in 1968 and the evolution of neural networks slowed 
until the 1980s.  Understanding of neural networks improved rapidly thereafter [11]. 
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ANNs can mean different things to different people.  Mathematicians and physicists 
consider neural networks to be dynamic systems via which problems are solved through 
relaxation processes.  In each such network, the energy state moves towards an energy 
minimum that corresponds to a solution.  The Hopfield network is a classic example 
[11].  Biologists and psychologists, however, see ANNs as a means of implementing a 
variety of cognitive and sub-cognitive functions, as interpreted by Grossberg [11].  
Finally, there is the understanding of ANNs by an engineer, who will identify the most 
appropriate optimal network design, and apply it to the task to be solved.  The common 
theme throughout the different interpretations, however, is that ANNs are dynamic, i.e. 
possess the ability to change with time. 
 
3.2  The Human Brain 
 
ANNs are modelled on the structure and behaviour of neurons and synapses in the 
human brain.  Therefore it is desirable to understand the operation of a human neuron 
prior to investigating the structure of an ANN.  A neuron consists of a cell body with a 
number of dendrites and a single axon.  The dendrites supply a means of inputting the 
signals from other neurons into the cell body and the axon provides a means of 
outputting the signal from the cell body to other neurons.  The architecture is shown in 
Figure 2. 
 
 

 
 

Figure 2 – The human neuron 
 
A neuron does nothing unless the collective influence of all its inputs reaches a 
threshold level, above which the neuron produces a full-strength output in the form of a 
narrow pulse that proceeds from the cell body, down the axon, and enters the axon 
branches.  The neuron is said to “fire” in such an event [13].  The dendrites can provide 
many inputs but the axons supply far fewer outputs.  Between an axon and the dendrite 

Dendrites 
Nucleus 

Axon 

Terminal 
Buttons 

Axon 
hillock 

Soma 

Synapse 

 Signal Flow 

Input 

Output 
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of an adjacent neuron, there exists a synapse, i.e. a link consisting of a pre-synaptic 
membrane and a post-synaptic membrane.  Between these membranes, there is a 
synaptic gap.  As a signal leaves a neuron via the axon, a voltage is induced across the 
synaptic gap and acts as a neuro-transmitter providing an adjacent dendrite with a 
neuro-signal.   
 
The stimulation at a synapse can either encourage or discourage the neuron to fire.  The 
description so far has been for one or two neurons. Before discussing ANNs, one should 
realise that there are ~1011 neurons in a human brain and a single neuron can receive 
inputs from as many as 105 synapses [13]. 
 
4.  Diagnostics for a High BPR Turbofan 
 
4.1  Data Generation 
 
In the absence of real engine-data, it was necessary to use a gas-turbine performance 
model to generate the required data for application to a neural network. For this 
purpose, a simulation program called “Turbomatch”, developed at Cranfield University, 
was used.  However, the first step in setting up the diagnostic process was to decide on 
the design-point at which the work was to be conducted.  Given that the performance 
data were available for take-off under ISA SLS conditions, it was chosen as the design 
point.  The second step was then to establish the performance parameters required to 
simulate the behaviour of the appropriate version of the engine: i.e. 
 

• TET 
• EGT 
• Compressor’ s Pressure-Ratio 
• Thrust 
• Mass Flow-Rate 
• OPR 

 
It was then intended to modify the Turbomatch simulation so as to achieve the desired 
take-off thrust along with the appropriate values of the TET, EGT, compressor pressure-
ratios and OPR.  However, it soon became apparent that, to achieve the desired result, 
modifying the model had to be an iterative process.  Hence, many of the parameters 
ended up with significant percentage differences between the provided and actual 
values.  Thrust and TET are arguably the most important to keep as close to reality as 
possible: thrust so as to maintain the specified value and TET at a level that does not 
exceed the cooling ability and ‘lifing’  criteria.  The percentage difference values were 
an undesirable feature of the model, since the errors could be of the same magnitude as 
those of the faults that were ultimately being simulated.   
 
In order to assess the health of a gas-turbine engine and ultimately provide a diagnosis 
concerning any detected faults, it is desirable to have data that relate dependent (engine 
measurements) to independent (performance) parameters under a number of conditions.   
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The Turbomatch program has the ability to simulate the behaviour of an engine as well 
as the effects of implanted faults in its engine components, for instance a reduction in 
component efficiency or mass flow capacity.  Turbomatch was therefore used to 
generate data for the effects of various engine-component deteriorations. 
 

Table 3 – Planned double-component independent parameter deviations 
 

Component 1 Deviations Component 2 Deviations Component Pair 

Components 1+2 
%K %* %K %* 

IPC + HPC -5 -15 -3 -9 

IPC + HPT -5 -15 -5 +10 

IPC + IPT -5 -15 -2.5 +5 

 

The relationship between physical degradation and simulated degradation is realised by 
choosing certain ratios between component efficiency and mass-flow capacity 
degradations.  The exact ratios chosen can be open to some individual subjectivity and 
so it was worthwhile establishing the values of their ratios commonly concluded from 
previous research [6][14].  The ratio of efficiency to mass flow capacity chosen for 
component 1 in all the pairs and component 2 in the IPC+HPC pair was 1:3.  This 
represented the effect of compressor fouling [6].  The ratio of efficiency to mass flow 
capacity for component 2 in the IPC+HPT and IPC+IPT pairs was chosen to be 1:2, 
which is typical of the effect of erosion of the turbine [6]. See Table 3. 
 
Some of the key factors that should be considered before attempting practical network 
training are included in Table 4: whilst there are other factors, many of the 
considerations will be common. 
 

Table 4 – Factors to consider prior to ANN use 
 

Factor Reason for consideration 

Key objective: fault approximation or classification  Must not lose sight of the main goal of the study 

Engine component to be investigated 
Can realistic data be generated or obtained for the 

chosen engine component(s)? 

Number of data points to be generated or obtained 
Network training period is a function of the number 

of points to be processed 

Type of ANN design to be used throughout the 

study 

Credible comparison of results with previous 

conclusions 

Recommendations from previous studies Avoidance of (i) duplication and (ii) wasted effort 

Backstop date for completion of practical 

investigation 

Allow enough time for analysis and discussion of 

the derived data 
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4.2  Strategy and Plan 

 
Previous studies demonstrate that ANNs, trained with simulated data representing 
engine degradation, can be used for diagnostic purposes [4].  Two respected sources for 
research have included a requirement to assess ANN performance when the engine 
suffers multiple-component faults [4][5].  Hence this study considered multiple-
component faults, which occur commonly in  gas-turbine aero engines.  A plan was 
devised as shown in Figure 3. 
 

Deterioration 
Data

Trial Use of Matlab

Data Pre-Processing

Network Selection

Network Training

Analysis

C only

Linear

Deterioration 
Data

Neural Network

C    T    C T

Linear and 
Non-Linear 

Data Pre-Processing

Network Selection

Network Training

Analysis

Stage 1 Stage 2 Stage 3 Stage 4

Data FormatData Format

Figure 3 – The plan of the present research project 

 
4.3  Practical Implementation 
 
In order to train an ANN, 3 sets are required: 
 

• Training data. 
• Target outputs. 
• Test data. 

 
An ANN requires only raw data. The ANN does not need to know the intended use of 
the output and this is therefore an attractive feature, since the potential uses are 
limitless.  For the reasons mentioned, the data sets are presented in “numbers-only” 
format and do not require any data labels.  The engine data were initially mixed with a 
signal that was meant to represent sensor noise.  The actual noise was generated 
randomly for each set of 11 engine parameters; the magnitudes employed were the same 
as those used for a sensor suite studied by Ogaji, et al [10] - see Table 5. 
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Table 5 – Sensor’s Noise Levels 

 
Engine 

Parameter 
Description 

Noise +/- (% of 

range) 

N1 LP relative spool speed 0.03 

N2 IP relative spool speed 0.03 

N3 HP relative spool speed 0.02 

P3 Fan’ s exit total-pressure (bar) 0.10 

P5 LPC’ s exit total-pressure (bar) 0.10 

T3 Fan’ s exit total temperature (K) 0.40 

T5 LPC’ s exit total temperature(K) 0.40 

T10 LPT’ s inlet temperature(K) 0.40 

T12 IPT’ s inlet temperature (K) 0.40 

T13 HPT’ s inlet temperature (K) 0.40 

Wf Fuel flow (Kg/s) 0.40 

 

Once the noise was superimposed, the data were normalised.  The diagnostic structure is 
shown in Figure 4. 

Engine Measurements

Classification

Fan IPC HPC HPT IPT LPT

���

Approx

Single Component Fault Network

Classification

Approx ApproxApprox Approx

������ ��� ���

Approx

���

Double Component Fault Network

IPC + HPC IPC + HPT IPC + IPT

Classification

Approx

� �

Approx

���

Approx

� �

 
Figure 4 – The diagnostic structure 
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5.  DCF Results 
 
Only DCF results are presented in this paper.  Furthermore, only three pairs, out of a 
possible 15 fault combinations, are investigated.  

 
The three ANNs, one for each DCF combination, were trained and tested: and Figure 5 
shows the arising performance summaries for the investigated fault-quantification 
networks.  The last line in the figure’ s title indicates the number of epochs considered, 
the number of neurons in the hidden and output layers of the defined network structure, 
the fault category and finally the type of training algorithm applied. 
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Figure 5 – Double-component network performance summary 

- Standard deviation (absolute error) 

- 1000 epochs/20_20_4/DCF approximation/SCG 

The first observation is that the standard deviation is relatively low, especially when 
compared with the magnitude of the standard deviations for the single-component fault 
ANNs.  However, the magnitude of the standard deviation for the double-component 
networks would be expected to be higher than for the single-component ones.  
Secondly, the IPC has a consistently poor comparative performance regardless of the 
pairing; although this is within the context of relatively low overall standard deviations.    
 

Furthermore, the mean error for the IPC is relatively high.  For instance, the lowest 
deviation for the IPC efficiency is 0.5% and therefore a mean error of 0.135 (see   
Figure 6) means that the spread of actual values for a nominal 0.5% could be 0.365 to 
0.635.  If the standard deviation of 0.105 (see Figure 5), is then taken into account, the 
spread of possible values for a nominal 0.5% degradation in IPC efficiency could be 
0.26 to 0.74%.  This degree of accuracy represents a 50% possible variation on the 
nominal value.  The accuracies for each component vary depending on the particular 
pairing, but an inspection of the standard deviation and mean error plots shows only a 
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small variation in the value of the respective parameters.  This basic assessment could 
be conducted for all the components: it illustrates 2 key findings:-   
 

• The accuracy established may be unacceptable if the gas-turbine under 
investigation has very small degradations in efficiency. 

 
• Considering either the standard deviation or the mean error in isolation is 

inadequate for assessing network performance. 
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Figure 6 – Double-component network performance summary 

- Mean error 

- 1000 epochs/20_20_4/DCF approximation/SCG 

The proposed magnitudes of the engine deteriorations have already been mentioned.  
However, during the process of assembling the 8668 combinations of efficiency and 
mass flow capacity for both chosen components, the planned combined magnitudes of 
the deviations were not included.  Table 6 gives the planned magnitudes and the 
corresponding maximum values.  It would have been desirable to include the planned 
values, however, the actual values used are equally as valid.  For instance, it is just as 
likely that one component will suffer more degradations than its partner, in the chosen 
pairs, as it would be that both should suffer the same degree of damage.  
 
Table 6 – Planned and actual double-component independent parameter 
deviations 
 

Component 1 Deviations Component 2 Deviations Component Pair 

Comp1 + Comp2 

Deviation 

Combination 

Description %('K) %('*) %('K) %('*) 
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Planned -5 -15 -3 -9 

Actual 1 -5 -15 -0.5 -1 IPC + HPC 

Actual 2 -0.5 -15 -3 -9 

Planned -5 -15 -5 +10 

Actual 1 -5 -15 -0.5 +1 IPC + HPT 

Actual 2 -0.5 -15 -5 +10 

Planned -5 -15 -2.5 +5 

Actual 1 -5 -15 -0.5 +1 IPC + IPT 

Actual 2 -4.5 -1 -2.5 +5 

  

It is worth noting again that the ratio of deterioration for each of the component‘s 
independent parameters is equally important to the relative magnitudes.  The ratio of 
efficiency to mass flow capacity for component 1 of all the pairs in the ‘Actual 1’  case 
remains as 1:3, which represents compressor fouling [6].  The same ratio for component 
2 of the IPC+HPT and IPC+IPT pairs in the ‘Actual 1’  case is 1:2, which is the same 
ratio as the planned value.  A ratio of 1:2 for a turbine represents erosion [6].  Finally, 
the only discrepancy is that for component 2 of the IPC+HPC pair, the ratio is 1:2 rather 
than the planned 1:3. 
 
For the ‘Actual 2’  case that refers to the correct maximum deviations for component 2 
for all pairs, unfortunately, all the deviations for component 1 for all pairs were not as 
planned.  Although, as has already been discussed, there are many combinations of 
efficiency and mass flow capacity, the ratios for the component 1, ‘Actual 2’  case for all 
pairs do not represent any particular engine degradation regime such as fouling or 
erosion. 

 
As a footnote to these observations, it should be noted that the two ‘actual’  
combinations quoted are only 2 of the possible 8668 combinations.  However, they do 
represent the two combinations that include the maximum deteriorations of either 
component 1 or component 2. 
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Figure 7 – Double-component network performance summary 

– Mean square error 
 
The aim of an approximation ANN, or fault approximation ANN, is for it to be able to 
approximate an output based on a set of received data.  Furthermore, the output 
produced by the ANN occurs after it has been trained with a set of pertinent data; 
typical errors introduced during training are shown in Figure 7.  It was therefore useful 
to assess how well the test target and the actual output were correlated.  Initially, the 
challenge of assessing the correlation of 8668 data sets was considered.  It was decided 
to choose 200 data sets at each of the beginning, middle and end of the 8668 range: the 
200 data set choice and that of the 3 samples were both arbitrary decisions. For 
example, the correlations for the IPC+HPC combinations for the data sets 1 200 and 
8468 8668 are shown in Figures 8 to 11. It should be noted that a network, described 
as 11-20-20-4, implies a structure with 11 input measurements, 20 neurons in each 
hidden layer, and four output possibilities. Because the number of input measurements 
is fixed, sometimes it may not be included in the network definition. 
 
Overall the results show a reasonably good correlation between ‘test target’  and ‘test 
actual’  data.  For the efficiency plots, there is a consistently good correlation with only 
some scatter for the IPC.  The mass-flow capacity correlates well with the target apart 
from some scatter for the IPC plots for the first 200 data sets. 
 
Having completed a correlation assessment using the above technique, another 
alternative method was identified.  This second method utilised a mathematical function 
called the coefficient of correlation and a summary for the component pairs is shown in 
Figure 12.  The second method allowed a single number to be quoted as a measure of 
performance.  For instance, the coefficient of correlation for the IPC+HPC pairing IPC 
efficiency was approximately 99.98%.  The worst performer was the IPT efficiency for 
the IPC+IPT component pair.  
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Figure 8  - Network test performance  

– IPC + HPC (data set 1-200) 

– 1276 epochs/20_20_4/IPC+HPC/SCG 
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Figure 9 - Network test performance  

– IPC + HPC (data set 1-200) 

- 1276 epochs/20_20_4/IPC+HPC/SCG 
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Figure 10 – Network test performance 
– IPC + HPC (data sets 8468-8668) 
- 1276 epochs/20_20_4/IPC+HPC/SCG 
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Figure 11 – Network test performance 
           – IPC + HPC (data sets 8468-8668) 

 - 1276 epochs/20_20_4/IPC+HPC/SCG 
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Figure 12 – Coefficient of correlation for DCF approximation 

              -1000 epochs/20_20_4/DCF/SCG 
 
The data used to train and test the 3 individual ANNs were used for an ANN with 3 
outputs.  The purpose of this was to have a DCF network that could identify the faulty-
component pair.  The training and testing was again straightforward and the results 
encouraging, since, as for the SCF diagnostic network, the mean errors were negligible.  
 
Figures 13 and 14 illustrate the frequencies of occurrence of the actual range of test 
errors.  The IPC efficiency plot showed that the mean percentage test error was just 
under 0.13. Deductions from the IPC mass-flow capacity plot were far less conclusive, 
with a large spread percentage test error of between just over zero up to 0.15. 
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Figure 13 – Test error range for IPC efficiency 

• 1276 epochs/20_20_4/IPC+HPC Approx/SCG 
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Figure 14 – Test error range for IPC flow capacity  

           - 1276 epochs/20_20_4/IPC+HPC Approx/SCG 

 
6.  Discussion 
 
The results obtained for the double-component faults highlighted some general 
observations concerning the feasibility of networks for diagnostics.  Regardless of 
which components were paired, each engine component had an individual network 
performance.  For instance, the IPC was in each of the pairs, but had an almost constant 
standard deviation, mean error and coefficient of correlation regardless of the chosen 
partner.  The absolute values for the previously mentioned parameters were valid only 
for the deteriorated data-set generated.  It was not, however, possible to verify that this 
constant performance held true for all the components, since not all the pair 
combinations were investigated. 
 
The actual deteriorated data generated, i.e. 8668 sets for the double-components, 
incorporated a large degree of randomness.  Close inspection of the efficiencies and 
mass flow capacities chosen revealed that, although there were logical trends, the actual 
values were random.  The assessment of the network performance, therefore, was 
conducted with the assumption of random deterioration.  Such an assumption would 
model realistically the effects of real-life engine deteriorations, but it was noted that a 
full network performance assessment should also include an entirely non-randomly 
generated data-set. 
 
The optimal network structure used was 2 hidden layers of 20 neurons and an output 
layer of 4 neurons, i.e. the 20_20_4 structure.  The network structure was only one of 
several criteria that needed to be considered.  It would have been less objective to assess 
the operation of the networks by quoting only one of the criteria, namely: the structure 
details; MSE; mean error, standard deviation for the test or coefficient of correlation. 
 
From a practical point-of-view, the above statements clarified the notion that the use of 
ANNs has an arbitrary aspect to them.  It was clear that much more investigation would 
be needed before a realistic view of the feasibility of ANNs for the present 
applicationcould be offered.   
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The data in Table 7 summarise the errors produced for a selection of engine 
deterioration combinations.  For all of the approximation cases, the absolute errors were 
identified.  Those highlighted represent the worst two for each case, i.e. single- and 
double-component faults.  In particular, the peak errors for the SCF networks were 
about double the peak errors for the DCF networks.  The results showed that for the 
network design chosen and the constraints applied, the errors were high.  For instance 
an absolute error of 1.56 for the IPC represents a 12.5% variation on the target value.   

 
Table 7 – Results for single and double-component fault/approximation networks 

 

Implanted Fault (%) Predicted Fault (%) 
Absolute 

Estimation Error 

Component 1 Component 2 Component 1 Component 2 Component 1 Component 2 Components 

�  �  �  �  �  �  �  �  �  �  �  �  

Fan -5 -12.5 _ _ -4.98 -12.37 _ _ 0.02 0.13 _ _ 

IPC -5 -12.5 _ _ -4.99 -14.06 _ _ 0.1 1.56 _ _ 

HPC -5 -12.5 _ _ -4.11 -12.16 _ _ 0.89 0.34 _ _ 

HPT -5 +12.5 _ _ -4.99 +11.42 _ _ 0.01 1.08 _ _ 

IPT -5 +12.5 _ _ -4.94 +12.16 _ _ 0.06 0.34 _ _ 

LPT -5 +12.5 _ _ -4.99 +12.06 _ _ 0.01 0.44 _ _ 

IPC+HPC -5 -15 -0.5 -1 -4.65 -14.48 -0.5 -0.88 0.35 0.52 0 0.12 

IPC+HPT -5 -15 -0.5 +1 -4.81 -14.61 -0.5 +0.74 0.19 0.39 0 0.26 

IPC+IPT -5 -15 -0.5 +1 -4.83 -14.59 
-

0.49 
+0.86 0.17 0.41 0.01 0.14 

 

It would, however, be prudent to conduct an investigation into the relationship between 
target data selection and resultant errors.  For instance, altering the training data by a 
small arbitrary amount generated the target data, but it might be possible to influence 
the test performance by changing the test-data generation procedure. 
 
Reference to Table 7 would suggest that the performance of the DCF approximation 
networks was far better than for the SCF approximation networks.  However, on 
balance, the results for the SCFs are better, which as discussed already was not 
expected. 
 
The coefficient of correlation was used as one of the methods for assessing ANN 
performance.  This means of assessment was just as useful for the component pairs as it 
was for the single-components.  In addition, just as for the single-components, it was 
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used most effectively in conjunction with other means of assessment like mean error 
and standard deviation.  
 
The performance of an approximation ANN can be reduced by as much as 3% due to 
the loss, or degradation, of a sensor [4].  All the results obtained were not subject to any 
kind of sensor fault or degradation.  Given that the data sets used included 11 dependent 
parameters, the probability of either sensor failure or degradation would in reality be 
fairly high.  It would be reasonable to suggest that the probability of sensor problems 
would be a direct function of the number of sensors.  The results lacked a degree of 
credibility that could have been provided by considering sensor faults.  Future studies 
should therefore include this aspect of ANN assessment. 
 
7.  Conclusions 

 
From the double-component fault approximation investigation, it can be concluded that: 
 

1. The average standard deviation was similar, if not slightly better, than for 
the single-component faults; in reality the ANN error would rise with an 
increase in the number of engine components considered. 

 
2. Generally the ANN performance for the double engine-component faults 
was good and the ANN for the IPC+HPC pair performed marginally better than  
for the other 2 pairs. 
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