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Abstract 
Crop rotations are allocations by growers of crop types to specific fields through time.  
This paper aims at presenting i) a systematic and rigorous mathematical representation 
of crops rotations; and ii) a concise mathematical framework to model crop rotations, 
which is useable on landscape scale modelling of agronomical practices. Rotations 
can be defined as temporal arrangements of crops and can be classified systematically 
according to their internal variability and cyclical pattern.  Crop sequences in a 
rotation can be quantified as a transition matrix, with the Markovian property that the 
allocation in a given year depends on the crop allocated in the previous year.  Such 
transition matrices can represent stochastic processes and thus facilitate modelling 
uncertainty in rotations, and forecasting of the long-term proportions of each crop in a 
rotation, such as changes in climate or economics.  The matrices also permit 
modelling transitions between rotations due to external variables.  Computer software 
was developed that incorporates these techniques and was used to simulate landscape-
scale agronomic processes over decadal periods. 
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1. Introduction 
 Crop rotation is one of the oldest and most fundamental agronomical practices 
(Lawes et al., 1895), and is thought to have been critical in sustaining the industrial 
revolution in Britain by increasing crop production (Brunt, 1999).  
 A rotation is “the sequence of crops grown in succession on a particular field” 
(Wibberley, 1996).  The final choice of sequence is primarily a management decision 
based on a desire to optimise, for example, financial, agricultural or environmental 
objectives.  A key financial objective might be profit maximisation, an agricultural 
objective might be yield maximisation from a particular mix of crops, and an 
environmental objective might be minimised pesticide use.  Optimisation of all 
objectives simultaneously might not be possible, and usually the solution found is 
subject to various constraints, e.g. pareto optimality (Matthews et al., 2006), and 
constraint programming (Tarim et al., 2006).  In practice, the possible sequences in a 
particular location may also be constrained by government regulation, agro-ecological 
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conditions (e.g. the climate, topography and soil type), the presence of disease, weeds 
and pests, and the crop varieties and technology available.  

An critical step in allocating crops in most rotations is identifying the crop 
most favoured by the grower.  This may be the most profitable crop in a commercial 
system or a staple food crop in a subsistence system.  In parts of the UK, this primary 
crop has changed from spring barley in the 1960s, through winter barley in the 1970s, 
to winter wheat since the 1980s (Wibberley, 1996).  Growers will typically aim to 
grow as much of the preferred crop as possible, on a cyclical basis.  

From the literature, it can be argued that there are four major types of 
constraint or “rules” determining crop rotations. 

The first rule is a minimum return period between the same crop, or in some 
cases, the maximum period of growing the same crop.  Such constraints typically arise 
because of the need to break the cycle of the build-up of nematodes or other soil pests 
(Jones and Perry, 1978).  For example, between the 1930s and 1980s, British sugar 
factories required a minimum return of four years for sugar beet to minimise the effect 
of beet cyst nematode (Globodera schachtii; Wibberley, 1996).  In 2006, Assured 
Produce (scheme of standards for safe food of good quality) recommended a 
minimum return period of at least four years, and ideally, six years between onion 
crops in the UK (Assured Produce, 2007).  Whereas some farmers will grow a second 
wheat crop directly after a first wheat crop in the UK, it is less common to grow a 
third wheat because of the build-up of soil fungi such as take-all (Gaeumannomyces 
graminis). 

The second rule relates to the benefits or risks of succession associated with 
one crop being grown immediately after another.  The benefits could arise from 
increased nitrogen supply, soil organic matter or water availability, improvements in 
soil structure, and decreased pests, diseases or weed competition (Berzsenyi et al., 
2000).  For example, in the Netherlands, a leguminous crop was more likely to 
precede organic winter wheat than in conventional arable systems (Tamis and van den 
Brink, 1999).  Conversely, risks might arise from increased weed problems.  For 
example, in the UK barley is more contaminated by volunteer cereal weeds than 
wheat (Wray, 1993) and such volunteers can be a particular problem if cereals are 
followed by autumn-sown vegetable crops (Bond et al., 2006). 

The third rule relates to within-year cycles.  The timing of sowing and harvest 
are dependent on interactions between the crop and the climate, and one crop usually 
must be harvested before the next crop can be sown.  For example, in the UK, there is 
a constraint against planting an autumn-sown cereal crop in the same year after a 
spring-sown sugar beet crop, because sugar beet harvesting usually occurs between 
October and January.   Obviously, inter-annual variations in climate can modify the 
constraints operating in a given season, and therefore growers require flexibility 
within crop rotations to overcome such problems.  Late harvesting due to low 
temperature or high autumn rainfall can restrict autumn cultivations to such an extent 
that the following crops will perforce be spring- rather than autumn-sown.  Indeed, 
spring-sown oilseed rape is four times more prevalent in arable rotations in Scotland 
than in England for this reason (Champion et al., 2003). 
 The fourth rule concerns the overall proportions of the crops grown on a field 
or group of fields (Castellazzi et al., 2007).  Growers typically have only a limited 
amount of dedicated machinery and labour.  They will therefore often seek to balance 
the distribution of work through the cropping season by growing a range of crops.  In 
this way, the grower can also spread the risk of total crop failure and economic loss 
(Lockie et al., 1995).  Alternatively, within the UK there is a recent trend to grow the 
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same crop on the majority of fields in a single season, to attempt to benefit from 
economies of scale (DEFRA, 2007).  Since 1992, another feature of crop rotations in 
the European Union has been the obligation on growers to “set-aside” a particular 
proportion (5-10%) of the total area on which they had previously grown arable crops, 
in order to limit crop overproduction. 
 Several authors have modelled mechanistically the development of rotations 
(Bachinger and Zander, 2006; Dogliotti et al., 2003; Maxime et al., 1996; Rounsevell 
et al., 2003; Stöckle et al., 2003). Others have predicted actual rotations from large-
scale spatial or temporal data concerning the proportions of crops grown in regions, as 
in the studies by Klöcking et al. (2003) and Mignolet et al (2004).  Klein Haneveld 
and Stegeman (2005) referred explicitly to some of the agronomic rules discussed 
above, through which crop rotations may be developed.  They used the mathematical 
optimisation technique of linear programming to derive rotations to assist in 
modelling agricultural production planning.  Detlefsen (2004) presented a model 
which integrated elements of the optimisation and prediction approaches, by using 
network modelling. The above mentioned modelling approaches seek to explain, 
optimise or even predict rotations. However none was found to provide a relevant and 
simple mathematical framework to represent crop rotations in a stochastic and 
empirical way. Such a mathematical representation would facilitate the explicit 
integration of crop rotations within models considering crops within agricultural 
landscapes through time (Brown, 2000). Such models might aim at simulating soil 
erosion, diffuse pollutions, plants or animal interactions (i.e. within landscape 
ecology, Ben Wu and Smeins, 2000), or even coexistence scenarios of GM crops (i.e. 
models of gene contamination from GM to conventional varieties of a crop, 
Castellazzi et al., 2007) for which the temporal and spatial allocation of the crops in 
fields influences the simulation outputs.  
 Our objective is to present a systematic representation of crop rotations, in 
terms of well-known mathematical and rigorous statistical concepts.  We describe 
empirically determined crop rotations in a concise mathematical framework, which is 
amenable to large, landscape scale modelling of agronomic practices. We show how a 
rotation may be represented mathematically as a transition matrix and how this allows 
the estimation of the long term overall proportion of each crop grown.  We also show 
how hierarchies of transition matrices may be used to represent the temporal evolution 
of one rotation to another, as might happen in response to crop markets or climate 
change. 

2. Classification of crop rotations 
 The classification of crop rotations is exemplified (Figure 1(b)) by a typical 
arable five-year rotation for medium to heavy soils in the East Anglian region of the 
south-east of England (Clarke et al., 2000), described by Jim Orson (pers. comm.).  
Simpler (Figure 1(a)) and more complex (Figure 1(c,d)) variations on this rotation are 
given to illustrate further examples of terminology. 

The first type of rotation (Figure 1a) is classified as ‘fixed’.  Each crop follows 
a pre-defined order with no possibility of deviation (see, for example, Colbach et al., 
2005).  Note that the two occurrences of wheat are identified differently; thus Wheat 1 
occurs after fallow, while Wheat 2 occurs after oilseed rape (OSR).  The rotation in 
Figure 1a can also be classified as ‘cyclical’ in that it repeats itself.  The “return 
period’ or ‘rotation length’ of the rotation is also “fixed”, in this case at five years.   

The second rotation (Figure 1b) is classified as ‘flexible’ and may be 
represented by a “multi-pathway” network.  Here, for at least one crop within the 
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rotation, the grower makes a choice of which one of several crops will follow it.  For 
example, while sugar beet would be followed optimally by late-drilled winter wheat, 
on clay soils, late autumn rainfall may delay sowing to the extent that the grower is 
forced to substitute spring-sown barley.  In extreme cases of excessive winter and 
spring rainfall, the land may need to be left fallow for a year.  Hence the choice of 
crops for this second year of the rotation is flexible.  As in the example in Figure 1a, 
the rotation in Figure 1b is cyclical with a fixed rotation length; each of the six 
potential paths is of five years duration.   

 

 
a). Fixed rotation, cyclical, fixed rotation length  

 
b). Flexible rotation, cyclical, fixed rotation length 

 
c). Flexible rotation, cyclical, variable rotation length rotation length 

 
d). Flexible rotation, non-cyclical, variable 
Figure 1.  Examples of classified rotations  a). The rotation is ‘fixed’.  The two occurrences of 
wheat are defined differently according to when they occur, as ‘wheat 1’ or ‘wheat 2’. The 
rotation is ‘cyclical’ with a ‘fixed rotation length’ of five years.  OSR represents oilseed rape. 
b. This more typical rotation (Orson, pers. comm.) is ‘flexible’ (i.e. multi-pathways). The two 
occurrences of spring barley are labelled accordingly. It is ‘cyclical’, again with a length of 
five years.  Ld indicates late-drilled.  c. This rotation is again flexible (i.e. multi-pathway), 
and cyclical but the rotation length is not fixed.  d. This rotation is less-structured with great 
flexibility (multi-pathway), and cyclical but with a highly variable rotation length. 
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In the long-term for multiple pathways rotations, the pattern of succeeding 
crops may be viewed as a series of chance outcomes, driven by unpredictable events 
such as climate or agricultural market forces that can be modelled by a stochastic 
process.  Although a grower makes deliberate decisions based on current knowledge, 
simulation models usefully can represent future patterns stochastically, with 
probabilities derived from previous data if available.  
 The rotation shown in Figure 1c is again flexible (i.e. multi-pathway), and 
cyclical, but in this example the rotation length is “variable”.  For example, the return 
period to the wheat 2 crop may be either four or five years. 
 The rotation in Figure 1d is less structured.  There is a great flexibility and the 
only constraint on succession is that a crop type cannot follow itself.  The rotation 
remains cyclical but is of a highly variable rotation length.  The number of possible 
pathways increases exponentially with years. 
 
3. A mathematical representation of crop rotations 
 It is possible to represent most crop rotations as a set of rules in which the 
allocation of a crop in a current year is determined solely by the previous year’s crop.  
As long as there is no need to consider any crop that was grown more than one year 
prior to the current crop, a rotation may be regarded as a Markov chain, represented 
by a stochastic matrix (Cox and Miller, 1965).  It is therefore possible to represent the 
rotation as a square transition matrix, here denoted as T.  The matrix T has as many 
rows and columns as there are distinct crops, say c.  Where a specific crop occurs 
more than once in a rotation these occurrences must be represented by distinct rows 
and columns. The element in row i and column j, tij, represents the probability under 
the rotation that, given that crop i was grown in the previous year, there will be a 
transition to crop j in the current year.  Note that the sum of each row must be unity, 
so Σj tij = 1, j = 1, …, c. 
 As an example, the rotation in Figure 1a is represented uniquely by the 
transition matrix in Table 1a.  Note how, the two wheats are distinguished as ‘wheat 
1’ and ‘wheat 2’ (Figure 1).  Since the rotation is fixed, the only entries possible are 
‘1’, which denotes a transition must take place, or ‘0’ denoting it cannot.  In Table 
1(b), the flexible rotation given in Figure 1(b) has non-zero and non-unity values in 
the rows that represent a transition from a crop in the previous year that has more than 
one possibility of a succeeding crop in the current year (i.e. has more than one branch 
in Figure 1(b)), such as sugar beet.  The values ascribed to tij for the succeeding crops 
(here, as examples, 0.3, 0.35 and 0.35 for fallow, first spring barley and late-drilled 
wheat, respectively) must sum to unity.  Of course, to represent the rotation in Figure 
1c this matrix would only require slight amendment, to replace the probability of a 
transition from wheat 2 to sugar beet (currently t9,1 = 1) by some value, t9,1 = a, say, 
where 0 < a < 1, and the probability of a transition from wheat 2 to fallow beet 
(currently t9,2 = 0) by the value t9,2 = 1 – a.  Table 1c provides one example of the less-
structured rotation shown in Figure 1(d).  Further common temporal restrictions may 
be represented by the transition matrix model.   

The restriction that successive growing of the same crop type must be 
represented as distinct crops (e.g. wheat 1 and 2 in the examples above) facilitates the 
forbidding of too many repetitions of the same crop.  It may be the case, for example, 
that wheat may not be grown on the same field for more than three successive years, 
in which case the transition probability from third wheat to fourth wheat would be set 
to zero.  However, note that the modelling of a minimum return period between 
successive crops of the same type, as when potatoes might be grown on the same field 
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only after a gap of 8 years since the previous crop, cannot be represented through the 
simple transition matrix model.  This is due to the limitation of the Markovian 
property, which considers only the previous year. Only by the imposition of further 
conditions expressed through additional transition matrices lagged by more than one 
year could the minimum return period be represented. While this is certainly possible, 
it is beyond the scope of the discussion presented here. 

At this stage, simulations indicate that the transition matrix method outlined 
here are sufficiently robust not to be overly sensitive to errors in estimates, so 
approximate values should suffice. 
 The transition matrix approach can be used to determine and also model the 
overall proportion of each of a grower’s chosen crops, aggregated in space over fields, 
or aggregated in time over a rotation (Castellazzi et al., 2007).  If the rotation is fixed, 
the long-term proportion of each distinct crop grown on the field is exactly equal to 
1/c.  If the rotation is flexible then the proportion must be estimated.  Fortunately, 
expression of a flexible rotation as a transition matrix allows the long-term average 
proportion of each crop to be estimated over the rotation, which is addressed in the 
next section. 

 
4. Estimation of long-term proportions of crops 
The long-term proportion of each of the crops represented in a transition matrix may 
be estimated using well-known properties of matrices specified, for example, in 
sections 3.2 – 3.4 of Cox and Miller (1965).  Suppose the distribution of crops in year 
n is denoted by the vector C(n), so that in year n the proportion of crop type j, pj, is 
represented by the jth element of C(n).  Following the definition of the transition 
matrix T, we have C(2) = T * C(1), where the asterisk represents a matrix 
multiplication operator.  More generally C(n) = T * C(n-1) = T * T * C(n-2) = Tn-1 * C(1).  
Cox & Miller (1965) discuss the conditions under which powers of the transition 
matrix converge, and then when m is sufficiently large we have, approximately Tm = 
Tm+1 = Q, say, where Q represents the converged transition matrix after self-
multiplication.  From this it follows that the vector C(m) also converges for large 
enough values of m since C(m) = Q * C(1).  Specifically, we find that the transition 
matrix T(n) converges to Q as n increases, so that the c row elements in any particular 
column become ever more similar.  The average of the jth column, pj = Σi tij(n)/c, then 
represents the long-term average proportion, pj, of the crop type represented by 
column j.  In practice, care must be taken to ensure that algorithms implementing this 
technique do not suffer from round-off error.  For general transition matrices Cox & 
Miller (1965) explain how it may be possible to use the eigenvalues and eigenvectors 
of the matrix T to aid computation, but caution is required if the rotation has a fixed 
return period.  Then the matrix T(n) will converge to a stable set of c matrices rather 
than a single matrix, where c is equal to the number of distinct crops and, therefore, to 
the return period of the rotation.  If this is the case, then the method is identical but the 
proportions are computed by averaging the columns over c successive matrices: T(n) 
to T(n+c). 
 As an example, consider the method applied to rotation (b) in Figure 1b and 
represented by the stochastic transition matrix in Table 1b.  The stable set of nine 
converged matrices gave the following long-term average proportions, pj.  For sugar 
beet (j=1): p1 = 0.2, fallow: p2 = 0.06, spring barley 1: p3 = 0.07, late-drilled wheat: 
p4 = 0.07, wheat 1: p5 = 0.13, spring barley 2: p6 = 0.07, beans: p7 = 0.1, oilseed rape: 
p8 = 0.1, wheat 2: p9 = 0.2.  Note that in this fairly simple example sugar beet always 
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occurs in the first year of the rotation and, since the rotation length is five years, it 
occurs once every five years, i.e. with a proportion of 0.2.  Furthermore, the 
proportion of the crops featuring in the following years are in direct proportion to 
their probability of succeeding sugar beet, i.e. to the probability of travelling down 
their particular branch in the network of Figure 1b.  In this way the results obtained 
may be seen to be intuitive.  However, note also that it may be desirable to know the 
proportions of crops per se, with no distinction of their order in the rotation.  In this 
case, wheat has an overall proportion of  p4 +  p5 + p9  = 0.07 + 0.13 + 0.20 = 0.40, 
and spring barley an overall proportion of  p3 + p6 =  0.07 + 0.07 = 0.14.  A further 
example is given by the unstructured rotation (d) shown in Figure 1d and represented 
by the stochastic transition matrix in Table 1c.  The result is a rapid convergence to a 
single matrix with, in this example, the long-term average proportions for wheat 
as p1 = 0.243; fallow, p2 = 0.210; oilseed rape, p3 = 0.257; and beans, p4 = 0.290. 

Table 1. Examples of transition matrices 
a) A transition matrix, T, can uniquely represent the rotation in Figure 1a; for any fixed 
rotation such as this the matrix is populated with entries that are either zero or unity.  

  Current year 
  Sugar beet Fallow Wheat 1 OSR Wheat 2 

Sugar beet 0 1 0 0 0 
Fallow 0 0 1 0 0 
Wheat 1 0 0 0 1 0 
Oilseed rape (OSR) 0 0 0 0 1 

Previous  
year 

Wheat 2 1 0 0 0 0 

b). One example of a stochastic matrix that represents the flexible rotation in Figure 1b; rows 
with entries that are not identically zero or unity represent crops in the previous year that may 
be followed by more than one crop in the current year.   

  Current year 
  S. 

beet Fallow S. 
barley 1 

l.d. 
wheat 

wheat 
1 

S. 
barley 2 Beans OSR wheat 

2 
S. beet 0 0.3 0.35 0.35 0 0 0 0 0 
Fallow 0 0 0 0 1 0 0 0 0 
S. barley 1 0 0 0 0 1 0 0 0 0 
l.d. wheat 0 0 0 0 0 1 0 0 0 
wheat 1 0 0 0 0 0 0 0.5 0.5 0 
S. barley 2 0 0 0 0 0 0 0.5 0.5 0 
Beans 0 0 0 0 0 0 0 0 1 
OSR 0 0 0 0 0 0 0 0 1 

Previous 
year 

wheat 2 1 0 0 0 0 0 0 0 0 

c). An example of the unstructured rotation in Figure 1d; all transitions are stochastic and no 
rows have entries that are all identically zero or unity.  Each row of a transition matrix sums 
to unity.   

 Current year 
  Wheat Fallow OSR Beans 

Wheat 0 0.3 0.2 0.5 
Fallow 0.2 0 0.3 0.5 
Oilseed rape (OSR) 0.5 0.25 0 0.25 

Previous year 

Beans 0.25 0.25 0.5 0 
 
 
 Knowledge of the long-term average for each rotation can help a grower to 
achieve a desired balance of crop proportions.  For example, suppose a grower has 10 
equally-sized fields under rotation (b), in some of which it is proposed to switch to 
rotation (d).  Furthermore, assume that the grower should achieve an average 
proportion of oilseed rape of at least 0.2.  Clearly, since p8 = 0.1 for rotation (b), the 
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expected proportion of oilseed rape if f fields are put under rotation (d) varies from the 
current value (with f=0) of 0.1 to a value of 0.257 (with f = 10, from the value of 
p3 for rotation (d)).  So, in general, the expected proportion of oilseed rape is: 
[0.1(10-f) + 0.257f]/10.  Then it can be seen that the grower must put at least f = 7 
fields into rotation (d) to achieve the desired minimum proportion.  Note, however, 
that an increase in one crop proportion always will come at the cost of a decrease in 
another, as is the case here for wheat, which for f = 7 would decline in proportion 
from 0.40 to about 0.29.  To optimise over several crop proportions at once requires 
further information concerning costs and benefits and is a complex linear 
programming problem which may be solvable, but is outside the scope of this paper. 
 
5. Transitions between rotations 
 In this section a further extension to the representation of rotations as 
transition matrices is introduced.  This facilitates the modelling of a process where a 
grower might wish to change between several rotations, for example to maximise 
profit or to minimise pest and disease pressure.  The ideas are best illustrated with a 
simple example concerning two fixed rotations (Figure 2).  The first rotation, R1, is of 
length three years, with wheat followed by oilseed rape followed by beans.  The 
second, R2, is of length two years, with wheat followed by oilseed rape.  Clearly, the 
proportion of each crop in R1 is one third and of each crop in R2 is 0.5, and we have 
seen above how the rotations may be represented by a 3 × 3 and a 2 × 2 transition 
matrix, respectively.  Currently in the UK, beans represent a much less profitable crop 
than either wheat or oilseed rape.  However, the three-crop rotation with beans might 
have the advantage of a lower incidence of pests and diseases.  A grower might then 
have reasons to switch between these rotations, especially given the need to respond 
quickly to market forces.  This switching may itself be represented by a 2 × 2 
transition matrix, an example of which is shown in Table 2a. Here, the probabilities of 
staying within the current rotations are r and s for rotations R1 and R2, respectively.  
All rows of such transition matrices sum to unity, so the probabilities of a change 
from R1 to R2 is 1 – r, and from R2 to R1 is 1 – s.   
 The system now consists of three transition matrices, which is mathematically 
cumbersome.  Fortunately however, this may be simplified by representing the three 
matrices as a single transition matrix, which we denote here by U (Table 2b).  The 
overall transition matrix U is 5 × 5, composed of four blocks that represent the 
transitions between individual crops of rotation R1 (3 × 3 top left block), R2 (2 × 2 
bottom right block), R1 to R2 (3 × 2 top right block) and R2 to R1 (2 × 3 bottom left 
block).  The entries in the first two square blocks of U are a copy of the individual 
transition matrices R1 and R2, multiplied by the probability of remaining within their 
respective rotations.   Each entry in the third and fourth rectangular blocks of U 
represents the probability of a change from a crop in one rotation to a crop in a 
different rotation and for simplicity it is assumed that when such an event occurs the 
crop in the new rotation is chosen at random, although this is not a strictly necessary 
condition.  In this case, each entry in the third and fourth blocks of U is constructed by 
dividing the probability of changing from one rotation to the other by the number of 
crops in the new rotation.  This process may easily be generalised to transitions 
between more than two rotations; the single overall matrix U that results will always 
be square with the number of rows and columns equal to the sum of the number of 
crops over all the individual rotations. 
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a). Rotation 1 (R1) 

  
b). Rotation 2 (R2) 

  
c). Transitions between rotations R1 & R2 
 
Figure 2. Schematic diagrams of transitions between example rotations a). Rotation 1 is a 
three year rotation. b). Rotation 2 is a two year rotation. c). Schema of all possible transitions 
between rotation 1 and 2. 
 

Table 2. Transitions between rotations  

a) Example of a simple transition matrix representing the probabilities of transitions between 
two rotations, R1 and R2.  The probabilities of staying within the current rotations are r and s 
for rotations R1 and R2, respectively.  All rows of such transition matrices sum to unity. 
 

 Current year 
  Rotation R1 Rotation R2 

Rotation R1 r 1 - r Previous year 
Rotation R2 1 - s s 

b). When the rotation R1 is a fixed three-year sequence of wheat, oilseed rape (OSR) and 
beans, and the rotation R2 is a fixed two-year sequence of wheat and oilseed rape, the three 
transition matrices representing R1, R2 and the transition between them described in a, may 
all be represented by the single 5 × 5 overall transition matrix, U.  The entries in the matrix U 
are formed by considering the four blocks shown, that represent the transitions between 
individual crops of rotation R1 (3 × 3 top left block), R2 (2 × 2 bottom right block), R1 to R2 
(3 × 2 top right block) and R2 to R1 (2 × 3 bottom left block).  See text for further details. 

 
 Current year

   (R1)  (R2) 

   Wheat OSR Beans  Wheat OSR 

Wheat 0 r 0  (1 - r) / 2 (1 - r) / 2 

OSR 0 0 r  (1 - r) / 2 (1 - r) / 2 

(R1) 

Beans r 0 0 (1 - r) / 2 (1 - r) / 2

Wheat (1 - s) / 3 (1 - s) / 3 (1 - s) / 3 0 s 

Previous year 

(R2) 
OSR (1 - s) / 3 (1 - s) / 3 (1 - s) / 3  s 0 

 
 As an example, consider the above system, with r = 0.7 and s = 0.9.  The 
greater chance of transition from R1 to R2 than vice-versa is reflected in the long-
term probability of being in each rotation in a given future year, which are calculable 
using the methods in section 4 (i.e. matrix multiplications), and which are 0.25 for R1 
and 0.75 for R2.  The long-term average crop proportions for the three crops are 0.458 
for both wheat and oilseed rape (composed of 0.75/2 + 0.25/3) and 0.083 for beans 
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(composed of 0.25/3).  This strategy provides proportions of wheat and oilseed rape 
considerably closer to those of R2 (0.5 each) than to R1 (0.333 each).   
 Another example of interest is where one of r or s is unity, which models the 
situation where, once a transition to another rotation has been made, this becomes 
fixed, with no possibility of return.  For example, consider the case of r = 0.7, as 
before, but now with s = 1, so that a transition may occur from R1 to R2 but not vice-
versa.  Hence, in the long term, the probability of still being in rotation R1 approaches 
ever closer to zero (indeed, by the end of the tenth year it is less than 0.03).  
Furthermore, since all the column elements that relate to the three crops of R1 of the 
matrix Un (see section 4, above) have the form 0.7n, these elements tend to zero as n 
increases.  Hence, in the long term, the proportion of crops in rotation R1 declines to 
zero and the only proportions relevant are those for crops in rotation R2, which are 0.5 
for both wheat and oilseed rape. 
 A final example is presented to model the situation where a change of rotation 
from R1 to R2 becomes ever more likely due to some external driving trend, such as 
climatic change.  Here, for simplicity, we again disallow a reversion to rotation R1 
once a change has been made from R1 to R2, so s = 1.  But now, r is a function of 
time.  For example, consider the situation where a transition from R1 to R2 would 
have been unthinkable at the beginning of the present century, but the probability of 
which increases steadily year by year until, by 2050, it becomes inevitable.  This may 
be modelled by the equation: r = (2050 - Y)/50, where Y represents the current year.  It 
is easy to substitute this variable value for r into software that implements an 
algorithm to model such change. 
 
6. Discussion 

Crop rotations support sustainable crop production and soil quality over time 
by structuring the temporal succession of crops in fields. Rotations control the 
temporal patterns of crops, they are a major component of agricultural landscapes. 
Four groups of rotations based on the flexibility of their structure were proposed in 
this paper. These ranged from crop successions fixed in advance to unformed rotation 
which can be responsive to fluctuating environmental or market conditions. Models of 
agricultural landscapes incorporating spatially realistic variation in allocation of crops 
through time require the integration of the above mentioned rotation groups. The 
transition matrix technique presented in this paper provides such models with a robust 
and flexible tool to manage crop rotations in a mathematical framework.  

The rotations are represented as probabilities of any crop grown succeeding 
other crops in the rotation. A major assumption of this method is that the choice of the 
crop to grow (year n + 1) is based only upon the crop grown previously (year n). Two 
techniques are available to mitigate this assumption. At first, dependencies of crops 
over several years can be imposed with fixed crop rotations (binary probabilities, i.e. 
only one fixed crop rotation available), or by separating the instances of a crops (e.g. 
wheat crop present twice in a transition matrix to separate the contexts of its 
occurrences). Secondly, in a model, the use of transition matrices can be 
complemented with stand-alone rules restricting crop successions over any required 
time length. Such rules can be (i) restrictions on return period of crops, to prevent 
untimely growing of crops; (ii) forbidden crop sequences, to avoid unacceptable 
successions of crops in a field; or (iii) maximum acceptable repetitions of a crop, to 
prevent continuous growing of that crop.  

By using the properties of the transition matrices, the long-term crop 
proportions of any rotation can be determined. This possibility is of particular 
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importance for crop rotation modelling at the landscape scale. By knowing the long-
term crop proportions of each potential rotation and the areas of each field, rotation 
allocation to fields can be optimised towards specific user-defined crop proportions 
over the whole landscape. This provides a means to control crop proportions at the 
landscape scale, and is essential to generate coherent crop allocation at the landscape 
level.  

The creation of transition matrices adapted to the agricultural landscape under 
study requires expert knowledge on the type of crop rotation to model, and an 
understanding of the internal dynamics of crop successions. Such knowledge may be 
derived from research on farmers’ decision-making of crop succession, agronomical 
advisers or even from statistical analyses of agricultural censuses from modelling past 
or present agronomical practices. For modelling crop rotations in evolving landscapes, 
(e.g. due to climate change or market fluctuations) the transition matrix method can be 
adapted to incorporate a dependency upon an external variable, as in the example 
relating probabilities of growing a crop to long-term temperature variation, or to allow 
the transition between different crop rotations. Therefore, the matrices provide the 
opportunity to investigate potential changes in land use due to variation in favoured 
crops because of changing environmental or economic conditions.  

Simulation models incorporating these ideas can compute and suggest 
strategies relating to crop rotations and temporal patterns of crops at the landscape 
scale. The techniques outlined here have already been incorporated in the open-source 
software package, LandSFACTS 
(http://www.rothamsted.bbsrc.ac.uk/pie/LandSFACTS), created to model realistic 
crop allocation to fields to meet user-defined constraints on crop spatio-temporal 
patterns at the landscape scale over multiple years. The use of the transition matrices 
to represent crop rotations allows the software to be useable on any agricultural 
landscapes, regardless of the type of crops or crop rotations in place. LandSFACTS is 
specifically designed to support the creation of scenarios of realistic crop arrangement 
at the landscape scale. Such scenarios might require a specific crop proportion over 
the landscape, or temporal occurrence of a crop. It is currently being used by 
researchers to investigate the environmental and economic impacts of coexistence 
measures for growing GM crops on European agricultural landscapes by the EU-
funded project SIGMEA (http://sigmea.dyndns.org).  More specifically ongoing work 
is to evaluate the effect of crop patterns derived from crop rotations on the efficacy of 
coexistence measures. Scenarios of crop arrangement developed for this purpose are 
for example focusing on (i) the relative proportions of GM and conventional crops 
over the years, e.g. 10%, 50% or 75% of oilseed rape crops as GM varieties, (ii) the 
spatial repartition of the rotations with GM crops within the landscape, i.e. spatially 
limited to an area or homogeneously widespread through the landscape, (iii) temporal 
and spatial separation distances between crops, such as 500m imposed between GM 
and conventional varieties of a crop or 3 years gap required between a growing a GM 
and a conventional varieties of a crop. LandSFACTS will also be useful in 
applications such as modelling erosion or diffuse pollution, where the realistic 
generated crop allocations can be used as an input to more mechanistic models. 
 Further work is now required, in addition to the analytical methods described 
by Castellazzi et al. (2007), to develop methods to estimate the probabilities of 
transitions from crop to crop in crop rotations.  
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