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Abstract

Assuming known vehicle parameters, this paper proposes an innovative Integrated Kalman Filter (IKF) scheme to
estimate vehicle dynamics, in particular the sideslip, the heading and the longitudinal velocity. The IKF is compared
with the 2DoF linear bicycle model, the Triple Kalman Filter (KF) and a Model-based KF (MKF) in a simulation
environment. Simulation results show that the proposed IKF is superior to other KF designs (both Kinematic KF and
MKF) on state estimation when tyre characteristics are within the linear region (i.e. manoeuvres below 55kph).
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1. Introduction

In recent years, modern automobiles have included ever more sophisticated electronics and control systems, such
as the Anti-lock Braking System (ABS) and the Electronic Stability Program (ESP). With the implementation of these
intelligent systems, vehicles have become safer to drive (Van Zanten, 2002) with less involvement in fatal accidents
(Farmer et al., 1997; Farmer, 2001). Evidence of this can be seen in the increased demand for ABS since 1990
(Farmer et al., 1997). It is envisaged that future development of more advanced and sophisticated control systems
requires accurate and ‘up-to-date’ vehicle dynamic information. In particular, as highlighted by Manning and Crolla
(2007), sideslip estimation is essential for a commercial viable sideslip stability control system.

Vehicle dynamic states measurement and estimation can be categorised into three main approaches. The indi-
rect approach, which involves the use of existing in-car sensors such as the Inertial Navigation System (INS) and
wheel speed sensor. This is the cheapest solution, yet suffers from accumulative integration errors due to sensor
bias (Lawrence, 1998). The direct approach, includes sensors such as the speed-over-ground and Global Navigation
Satellite System (GNSS), in particular the Global Positioning System (GPS). These sensors can provide accurate in-
formation but are expensive in price and to maintain. The third is the Vehicle Model (VM) approach. Although this
is able to produce good estimations, VM is normally non-linear and parameter dependent. For a detailed review, see
Leung et al. (2009a)

In order to obtain more accurate vehicle dynamic information, it is natural to combine the main methods in order
to utilise their respective strengths. With INS and GPS in mind, Leung et al. (2009a) have identified four integrated
approaches: GPS/INS, GPS/VM, INS/VM, and GPS/INS/VM. A large amount of the reported research is based on the
GPS/INS Kinematic Kalman Filter (KKF) design (Bevly et al., 2000, 2001, 2002). This approach is easy to implement
and is able to predict biases in the sensors. Although vehicle states can be accurately estimated with these proposed
KKFs, they demand additional vehicle sensors and a high sampling-rate GPS unit. Based on a vehicle model, the
GPS/VM (Bayliss et al., 2006) and the INS/VM (Best et al., 2000; Cherouat et al., 2005) are fused in a Model-
based KF (MKF). Although fewer sensors are required in these designs, accurate model parameters are required.
Considering the advantages of the KKF and MKF, state estimations can be further improved with an Integrated KF
(IKF), which utilises GPS/INS/VM. In Anderson and Bevly (2005), Rock et al. (2005), and Best et al. (2007), the
authors have used either multiple GPS antennae or expensive GPS/INS units (such as the RT3000 (OXTS, 2008)) to
predict the vehicle states and model parameters. Although their designs give accurate estimations, they are generally
too expensive to deploy in most production vehicles.

Although the above integrated approaches are able to estimate the vehicle dynamics, components used in the
design are normally expensive specialised equipment. One of the challenges that automotive industries constantly
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face is the cost-effectiveness ratio. Hence this paper proposes an IKF design that uses low-cost GPS/INS/Wheel Speed
Sensors (WSS)/VM. A single antenna GPS operating at 1Hz with an accuracy of ±3m (Appendix A), is combined with
existing in-car sensors (Appendix B) and WSS. The estimated states are then used in the 2 Degree of Freedom (2DoF)
vehicle model to estimate the steer bias and the sideslip angles. Apart from the vehicle dynamic state estimations, this
proposed IKF is also able to predict the biases in the steering wheel and the tyre radius, thereby, giving an accurate
estimation of the vehicle longitudinal velocity (speed over ground).

The proposed design is tested by simulation using IPG CarMaker (aka CM) and Matlab/Simulink. Two tracks
are defined in CarMaker and a virtual car based on the parameters of a Jaguar Saloon is constructed. Virtual sensors
are also attached onto the virtual car and results are simulated with different driving speeds. The virtual sensor
measurements are inputted in Matlab/Simulink, where noise and bias are added. Various KF designs are then tested
in Matlab/Simulink to analyse their performance.

This paper is organised as follows. In the next section, a typical planar linear bicycle model is given and its relation
with the GPS and INS measurements are explained. Section 3 outlines the basic formulation for a Kalman Filter (KF),
the key components of the proposed IKF design are also discussed. Using the professional vehicle simulation program,
IPG CarMaker, the simulation set-up is explained in Section 4. Section 5 presents the findings from the simulation.
This paper finishes with conclusions and suggestions for future work.

2. Vehicle Modelling and Sensors

In a modern vehicle, the most common INS sensors used for measurements are the accelerometers and gyroscopes.
To reduce cost, manufacturers often place these sensors in the longitudinal, lateral and upward direction only, thus
measuring longitudinal and lateral acceleration, and yaw rate. In addition, the longitudinal velocities at the wheels
can also be measured by the WSS. With the increase popularity in satellite navigation, GPS receiver has become one
of the most wanted add-on device for drivers.
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Figure 1: Typical planar bicycle model

2.1. Vehicle Sensors

Before describing the sensors that are used in this study, it is important to define each of their operating framework.
Figure 1 shows a typical planar bicycle model of a four-wheeled-vehicle equipped with INS and GPS sensors. There
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are normally a total of three sets of coordinate frameworks: the East North Up frame (ENU/eframe) for the GPS, the
body frame (b-frame) for the INS and the ISO vehicle frame (v-frame) for the vehicle. The b-frame is rigidly attached
to the vehicle body while the v-frame is fixed on the wheel/road plane. Note that although GPS often uses the North
East Down (NED) frame which is standard in aerospace applications, the ENU is the ISO standard (ISO 8855) for the
automotive sector.

2.1.1. Accelerometers and Gyroscopes

In Figure 1, the e-frame, b-frame and the v-frame are shown two-dimensionally with their corresponding sub-
scripts. The majority of the INS used in ground vehicles nowadays are strap-down sensors, consisting of only two
accelerometers (longitudinal and lateral) and a yaw rate gyroscope. This type of sensor moves and orientates with the
vehicle, so the accelerometers and the gyro measure the accelerations (Ax, Ay) and yaw rate (rm), respectively, in the
b-frame.

The accelerometer measurements, Ax and Ay are sensitive to both translational and rotational movement of the
vehicle. It is assumed here that the INS is mounted rigidly to the vehicle, and aligned perfectly along the longitudinal
and lateral direction at the centre of gravity (cg). The accelerations in the b-frame on a level road without rolling or
pitching motions are, hence, related to the accelerations at cg (ẍv, ÿv) in the v-frame by:

Ax = ẍv − ẏvrm (1)
Ay = ÿv + ẋvrm (2)

Note that Eqs (1) and (2) assume zero rolling and pitching in the Euler angles (i.e. φ, θ = 0) and for the rate
gyroscopes (pm, qm = 0), thus making the Euler yaw rate equal to the yaw rate gyroscopic measurements, ψ̇ = rm,
(see Leung et al. (2009a) for details). With this, the vehicle sideslip at the cg can be estimated in terms of the ratio
between the lateral and longitudinal velocities,

β =
ẏv

ẋv

=

∫
(Ay − ẋvrm)dt∫
(Ax + ẏvrm)dt

(3)

Referring to Figure 1, an alternative way to obtain the sideslip and vehicle velocities in the v-frame is by trans-
forming the accelerations measured from the sensor (b-frame) to the e-frame using the Euler angle:

ẍe = Ax cos(ψ) − Ay sin(ψ) (4)
ÿe = Ax sin(ψ) + Ay cos(ψ) (5)

To obtain the velocities and positions in the e-frame, the above equation is integrated. Using the velocities in the
e-frame, the track angle (or path angle) of the vehicle, ν, can be determined as

ν = tan−1
(

ẏe

ẋe

)
(6)

The sideslip angle, β, is simply the difference between the track angle and the yaw angle:

β = ν − ψ (7)

With the sideslip calculated from Eq. (7), the vehicle velocity (v-frame) can also be derived as

ẋv = V cos(β) (8)
ẏv = V sin(β) (9)

where V is the resultant vehicle velocity with a relation of,

V =

√
ẋ2

e + ẏ2
e =

√
ẋ2

v + ẏ2
v (10)

When a vehicle is travelling on a straight road horizontally without any side force, the sideslip angle is zero. Thus,
the track angle, ν, described by the GPS coincides with the yaw angle, ψ.
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2.1.2. Wheel Speed Sensors

Other than the INS and GPS, WSS can also be used for predicting the longitudinal velocity in the v-frame and the
yaw rate. With a given wheel radius, Ri, and rotational speed, ωi, the velocity of the wheel about its centre axis can
be derived,

Vi = ωiRi (11)

where i is the position of the wheel, i.e FR, FL, RR, RL. Eq. (11) represents the longitudinal velocity under the no-slip
condition. When slip occurs, the determined longitudinal velocity will be inaccurate; this error is accounted for in the
KF design by the the Gaussian noise term of the WSS (see Appendix A.1).

For a vehicle, the four kinematic equations at the wheels are given as,

VFR cos(δFR) = ẋv + TFψ̇ (12)
VFL cos(δFL) = ẋv − TFψ̇ (13)

VRR = ẋv + TRψ̇ (14)
VRL = ẋv − TRψ̇ (15)

Using the above equations, the longitudinal velocity and the yaw rate at the cg can be determined. However, in order
to reduce the number of dependent variables and uncertainties, only Eqs (14) and (15) are used for calculation:

ẋv =
VRR + VRL

2
=

(ωRR + ωRL)Rw

2
(16)

ψ̇ =
VRR − VRL

2TR

=
(ωRR − ωRL)Rw

2TR

(17)

From Eqs (16) and (17), while the rotational speeds are measured by the WSS, the radius, Rw, and the vehicle
track distance, 2TR, are predetermined.

2.1.3. GPS

To date, there exists four potential GNSS providers worldwide: the American GPS, the Russian GLObal’naya
NAvigatsionnaya Sputnikovaya Sistema (GLONASS), the European Galileo, and the Chinese Compass. Currently,
GPS is the only fully established satellite navigation system. With a minimum of four satellites, a good position for
the GPS receiver is achieved. Its velocities are then derived from the Doppler measurements (Grewal et al., 2007). As
GPS is the most popular and mature GNSS provider, this paper assumes a GPS sensing system.

Using the position and velocity measurements from GPS, vehicle dynamic information can be estimated. In order
to understand this, first consider the planar vehicle model in Figure 1. Assuming that a GPS receiver is located at
the cg of a vehicle, its positions (xe, ye) and velocities (ẋe, ẏe) are measured referenced to the e-frame. Using this
information, the tracking angle and the resultant velocity of the vehicle can be determined by using Eqs (6) and (10)
respectively.

2.2. Vehicle Modelling

Apart from using sensors to measure the vehicle dynamics, one can also use a vehicle model. Amongst the many
different models, the two degrees of freedom (2DoF) model is the simplest vehicle model used for evaluating vehicle
dynamics. It is based on the bicycle model as shown in Figure 1 and assumes constant longitudinal velocity, ẋv = V ,
(i.e. zero longitudinal force and zero wheel angular acceleration). Therefore, the 2DoF are the lateral motion and the
rotation motion, Eqs (18) and (19) respectively. Additionally, applying the small steer angle, resulting in,

Lateral motion:

ÿv =
1
m

(
−mẋvψ̇ + FyFδF + FyR

)
(18)
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Rotation about the vertical axis - yaw motion:

ψ̈ =
1
Jzz

(
aFyF − bFyR

)
(19)

The lateral forces on the axle (i.e. FyF and FyR) are calculated with a tyre model. In the literature, three most common
types are the linear tyre model, the Fiala tyre model (Blundell and Harty, 2004), and the ‘Magic’ tyre model (Bakker
et al., 1989; Pacejka and Bakker, 1993; Pacejka and Besselink, 1997). For this study, the linear tyre model is used as
it requires the least number of parameters with no training, thus,

FyF = CyFαF (20)
FyR = CyRαR (21)

The cornering coefficient for a single tyre is normally pre-determined from a tyre rig. The determined value is then
doubled to give the axle cornering stiffness (i.e. CyF and CyR) as described in Eqs (20) and (21). This is because the
test on the tyre rig only accounts for a single tyre.

The slip angles (i.e. αF and αR) as shown in Figure 1 are defined as the difference between the sideslip angle and
the steering angle at the tyres. Note that the sideslip at the tyres is not the same as that at the cg, β, due to the difference
in velocities at the tyres. Therefore, applying the small sideslip assumption, slip at the tyres can be approximated as,

αF = βF − δF

≈ ẏv + aψ̇

ẋv

− δF = β +
aψ̇

ẋv

− δF (22)

αR = βR

≈ ẏv − bψ̇

ẋv

= β − bψ̇

ẋv

(23)

Combining Eqs (20) to (23), substituting them into the two equations of motion, Eqs (18) and (19), and finally
approximating ÿv ≈ β̇ẋv, the state space representation for the 2DoF linear bicycle model becomes:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
β̇

ψ̈

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CyF+CyR

mV

aCyF−bCyR

mV2 − 1

aCyF−bCyR

Jzz

a2CyF−b2CyR

JzzV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
β

ψ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−CyF

mV

−aCyF

Jzz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ δF

(24)

From the state-space model in Eq. (24), the input is the tyre steering angle, δF and the states are the sideslip and
the yaw rate,

[
β ψ̇

]T
. This model is very popular with automotive manufacturers as it is simple, easy to implement

and requires relatively few parameters. In practice, the velocity, V , in the equation is normally measured from the
WSS.

3. The Kalman Filter Design

Prior to presenting the proposed design of the IKF, the KF and Extended KF (EKF) are summarised. Details can
be found in, for example, Welch and Bishop (2001). The Triple KF, comprising of three KKFs (two linear and one
non-linear), is then described. The section finishes with an overview of the MKF and a description of the IKF.

3.0.1. The Kalman Filter

Given the discrete plant model, xk+1 = Φkxk + Δkuk, with measurements, zk = Hkxk, and assuming Gaussian
process and measurement noise, Γkwk and vk respectively, a Linear KF (LKF) can be applied. In general, the KF is a
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two-stage process consisting of the correction and the prediction stages:
Correction stage:

ẑk = Hkx̂k|k−1 (25)

Kk = Pk|k−1Hk(HkPk|k−1HT
k + Rk)−1 (26)

Pk|k = (I − KkHk)Pk|k−1 (27)
x̂k|k = x̂k|k−1 +Kk(zk − ẑk) (28)

Prediction stage:

x̂k+1|k = Φkx̂k|k + Δkuk (29)

Pk+1|k = ΦkPk|kΦT
k + ΓkQkΓ

T
k (30)

At time step k, the inputs to a LKF are the state variables estimated from the previous time step, x̂k|k−1, and, the
primary and referenced sensor measurements, uk and zk. Firstly, the referenced measurements, ẑk, are predicted using
the current estimated state variables, Eq. (25). These predicted reference measurements are then compared with the
actual measured reference value, zk − ẑk. Their error is then multiplied by a weighing matrix called the Kalman gain,
Kk, and the old estimated states are updated using Eq. (28). Using the updated state estimations, x̂k|k, and the system
equations, the states for the next time step, k + 1, are predicted using Eq. (29). At time step k + 1, the estimated states
from Eq. (29) are inserted into Eq. (25) and the process repeats.

Although the LKF is simple to implement, in reality, most systems are non-linear and in such cases, an EKF can
be applied. Consider the non-linear discretized system :

x̂k+1 = x̂k + Tsf(x̂k, uk,wk) (31)

= f̂(x̂k, uk,wk)
ẑk = g(x̂k, vk) (32)

The EKF is implemented similarly to the LKF, with the following two stages:
Correction stage:

ẑk = g(x̂k|k−1, 0) (33)

Kk = Pk|k−1Gk(GkPk|k−1GT
k + Rk)−1 (34)

Pk|k = (I − KkGk)Pk|k−1 (35)
x̂k|k = x̂k|k−1 +Kk(zk − ẑk) (36)

Prediction stage:

x̂k+1|k = f̂(x̂k|k, uk, 0) (37)

Pk+1|k = FkPk|kFT
k + ΓkQkΓ

T
k (38)

where matrices, F and G, are the partial derivatives (Jacobian matrices) of the process and measurement functions, f̂
and g respectively:

F[i][ j] =
δf̂[i]

δx[ j]
(x̂k, uk, 0) (39)

G[i][ j] =
δg[i]

δx[ j]
(x̂k, 0) (40)

3.1. The Triple Kalman Filter

From the literature, the most simple and straight forward GPS/INS KF design is the dual KF (comprising two
KKF which estimates the heading angle and the vehicle velocities) set up given by Bevly et al. (2000, 2001), and Ryu
et al. (2002). With an additional KF utilising the WSS, the dual KF is modified to form the Triple KF design.
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3.1.1. The Yaw Kalman Filter, yawKKF

The dual KF approach is suitable for car manufacturers as it is not dependent on vehicle parameters, such as mass,
inertia and tyre coefficients. The yawKKF consists of a state vector of two states: heading angle, ψ, and yaw rate gyro
bias, br. The measurement for the yawKKF is taken from the GPS tracking angle only, ν, and is related to the heading
only when the vehicle is travelling on a straight road: ν = ψ. This is because vehicles generate a sideslip angle only
during cornering, making the tracking angle equal to the sum of the heading and sideslip angles: ν = ψ+β. Therefore,
the measurement for this KKF switches on and off depending on two circumstances:

1. the presence of GPS signals, and
2. whether the vehicle is traveling straight or not.

The presence of GPS signals is often detected by a GPS tag sent from the receiver and the determination of vehicle
cornering can be determined from the yaw rate gyro or the steering wheel sensor. We propose using the former as rate
gyro bias can be estimated using a simple yawKKF.

After the states are estimated from the yawKKF, the yaw rate measurements are corrected (rm − b̂r) and the
estimated heading angle is combined with the GPS tracking angle and velocity to produce the longitudinal and lateral
velocities in the v-frame as reference measurements for the velKKF:

ẋ
re f
v = Vgps cos(νgps − ψ̂) (41)

ẏ
re f
v = Vgps sin(νgps − ψ̂). (42)

Using these reference measurements, the velKKF predicts the longitudinal and lateral velocities in b-frame as well as
the biases in the corresponding accelerometers. A summary for the yawKKF is presented below:[

ψ
br

]
k+1
=

[
1 −Ts

0 1

] [
ψ̂

b̂r

]
k

+

[
Ts

0

] [
rm

]
k

(43)

[
ν
]
k
= Hyaw

[
ψ̂

b̂r

]
k

(44)

where Hyaw is
[
1 0

]
when the GPS is available travelling on a straight road, or

[
0 0

]
when either GPS is off or the

vehicle is turning.
In order to ‘correctly’ determine the sideslip angle, the GPS tracking angle must be properly synchronised with

the heading estimate from the yawKKF in the same numerical range. To do this, the two angles are converted to
the trigonometric numerical range before making comparison. Hence the measurement expression in Eq. (44) is no
longer a direct comparison with the GPS tracking angle, i.e. νk = ψ̂k, but a non-linear trigonometric relationship,[

cos ν
sin ν

]
k

=

[
cos ψ̂
sin ψ̂

]
k

.

This change causes the simple measurement matrix, Hyaw, to be replaced by a non-linear Jacobian matrix, Gyaw, in
the KF formulation:

Gyaw
i, j =

[
∂zi

∂x j

]i, j=1,2

=

[− sin ψ̂k 0
cos ψ̂k 0

]
. (45)

In the absence of GPS signals, the measurement matrix, Gyaw, becomes zero.

3.1.2. The WSS Kalman Filter, wssEKF

In Section 2.1, it shows that WSS measurements can be used for estimating the longitudinal velocity, ẋv, and the
yaw rate, ψ̇ (see Eqs (16) and (17)). However, due to errors in the wheel rotational speed and tyre radius, the WSS
measurements are not accurate enough to be used, hence a KF is utilised, i.e. wssEKF.

The purpose of the wssEKF in the Triple KF design is to predict the tyre radius bias and therefore the longitudinal
velocity. This is because the predicted longitudinal velocity is more accurate with less noise from wssEKF when com-
pared with the dual KF design in Leung et al. (2008), see Figure 2. To construct the wssEKF, the WSS formulations

7



20 40 60 80 100 120 140 160 180
9.6

9.65

9.7

9.75

9.8

9.85

time, s.

lo
n

g
it

u
d

in
al

 v
el

o
ci

ty
, m

/s

 

 

20 40 60 80 100 120 140 160 180

�0.1

�0.05

0

0.05

0.1

0.15

time, s.

er
ro

r,
 m

/s

wssEKF
CM true data
velKKFdual KF

Figure 2: Comparison of longitudinal state estimation from wssEKF and dual KF, with actual longitudinal velocity
from CarMaker (labelled CM true data) in DoubleOval 25kph

in Eqs (16) and (17) are first discretised to,

xk+1
v = xk

v + Ts

(
1
2

(ωRR + ωRL)(Rw + bw)
)

(46)

ψk+1 = ψk + Ts

(
1

2TR

(ωRR − ωRL)(Rw + bw)
)

(47)

Using Eq. (47) only, the wssEKF is constructed with a process matrix of,[
ψ
bw

]
k+1
=

[
1 Ts

2TR
(ωRR − ωRL)

0 1

] [
ψ
bw

]
k

+

[
Ts

2TR
(ωRR − ωRL)

0

]
Rw.

With the measurements from the GPS (ν) and yawKKF (ψ̂yawKKF), the measurement matrix of wssEKF is varied
according to three conditions, ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(νgps)
sin(νgps)

bw|gps

cos(ψ̂yawKKF)
sin(ψ̂yawKKF)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k

= gwss (ψ, bw)k (48)

1. Corners (when corrected ψ̇ > 2◦ /s):

Gwss =
∂gwss

∂xk

=

[
0 0 0 0 0
0 0 0 − sin(ψ) cos(ψ)

]T

k

(49)
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2. Straight road and GPS is ‘ON’:

Gwss =
∂gwss

∂xk

=

[
0 0 1 0 0

− sin(ψ) cos(ψ) 0 0 0

]T

k

(50)

3. Straight road and GPS is ‘OFF’:

Gwss =
∂gwss

∂xk

=

[
0 0 1 0 0
0 0 0 0 0

]T

k

(51)

Notice that the wheel bias is also measured by the GPS, by assuming the wheel velocity is the same as the GPS speed
on a straight road, therefore,

ẋv|straight ≈ Vgps =
(ωRR + ωRL)(Rw + bw)

2

bw =
2Vgps

ωRR + ωRL

− Rw = bw|gps. (52)

Once the bias of the WSS is determined, the longitudinal velocity is determined by,

xwssEKF
v =

(
1
2

(ωRR + ωRL)(Rw + bw)
)

(53)

3.1.3. The Velocity Kalman Filter, velKKF

With the yaw rate bias and longitudinal velocity estimated from the yawKKF and the wssEKF respectively, they
are used in the velKKF along with the GPS measurements to produce an improved estimation for the velocities, the
accelerometer biases, bx and by, and also the error caused by the pitching motion, bd. As a result, Eqs (1) and (2) are
modified to:

Ax = ẍv − ẏvrm + bx + bd (54)
Ay = ÿv + ẋvrm + by (55)

which correspond to a state space representation of:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋv

bx

ẏv

by

bd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 (rm − b̂r) 0 −1
0 0 0 0 0

−(rm − b̂r) 0 0 −1 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋv

bx

ẏv

by

bd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 0
0 1
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
Ax

Ay

]
k

(56)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ẋ

re f
v

ẏ
re f
v

zre f

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0
0 0 1 0 0

(hvel,3)1×5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋv

bx

ẏv

by

bd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k

(57)

where ẋ
re f
v and ẏ

re f
v are determined from Eqs (41) and (42) using the estimated heading angle from the yawKKF and

the GPS tracking angle.
When GPS is unavailable, it is recommended in Leung et al. (2009b) that the measurement matrix must remain

‘ON’ instead of turning the matrix into zeros. The measurement covariance for the velKKF, Rvel, is thus set to a large
value (as listed in Appendix A.2), reducing the effect of the measurements on the estimated states. In addition, during
GPS outages, longitudinal velocity estimation from wssEKF is used as a continual source of measurement for the
velKKF.

The pitching acceleration error, bd, can be estimated by assuming it to be zero on the straight road and equal to the
difference between the GPS velocity (Eq. (41)) and the WSS velocity (Eq. (53)) over one GPS sample period (T gps

s )
on the curve:
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1. Straight: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
bd = 0

zre f

3 = ẋwssEKF
v

hvel,3 =
[
1 0 0 0 0

] (58)

2. Curve and when GPS is available: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

bd =
1

T
gps
s

(
ẋ

re f
v − ẋwssEKF

v

)
zre f

3 = ẋ
re f
v − ẋwssEKF

v

hvel,3 =
[
0 0 0 0 T

gps
s

] (59)

3. Curve and when GPS is not available:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

bd =
1

T
gps
s

[
ẋv − ẋwssEKF

v

]
zre f

3 = ẋwssEKF
v

hvel,3 =
[
1 0 0 0 −T

gps
s

] (60)

3.2. The Integrated Kalman Filter, IKF

GPS track angle  

(straights)

yawKKF

dr

br
est

yawest

GPS

INS

drest

[dxest; bx
est; dyest; by

est; bd
est]

E2V

conversionGPS velocity

[dx; dy]

velKKF[A
x
; A

y
]

TripleKF

wssEKF

dxest

WSS
[WRR; WRL]

MEKF

steer 

angle

 br
est

beta

dyawest

yawest

bdelta
est

IKF

dxest

yawest

Figure 3: Schematic diagram for the Triple KF and the IKF design

The IKF design combines an MEKF with the Triple KF described in Section 3.1, see Figure 3. In the Triple
KF, while the yawKKF provides a good continual heading angle estimation, the wssEKF gives a good estimation for
the longitudinal velocity. Together, the two KFs allow a continuous estimation of vehicle velocities in the velKKF

regardless of the GPS outages. This longitudinal velocity estimation from the velKKF and the corrected yaw rate from
the yawKKF are then fed into the MEKF to estimate the vehicle dynamic states.
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3.2.1. The Model-based Kalman Filter

The MEKF design is based on the 2DoF linear bicycle model, Eq. (24). As state estimations using the vehicle
model are sensitive to the steering input, it is essential to ensure that the steering input is correct with the bias, bδ,
compensated. To achieve this, bδ is added onto the state vector. Furthermore, the MEKF is also accommodated with
the ability to estimate the bias from the yaw rate gyroscope. The state space representation for the MEKF is thus,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β̇
ψ̈
ψ̇
ḃr

ḃδ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CyF+CyR

mV

aCyF−bCyR

mV2 − 1 0 0 −CyF

mV

aCyF−bCyR

Jz

a2CyF+b2CyR

JzV
0 0 −aCyF

Jz

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β̂
ˆ̇ψ
ψ̂

b̂r

b̂δ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−CyF

mV

−aCyF

Jz

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
δF . (61)

In dependent on the availability of GPS signal, the MEKF is updated with the measurements from the yaw rate
gyroscope, rm, and the GPS tracking angle, ν, such that,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
rm =

ˆ̇ψ + b̂r

cos ν = cos(ψ̂ + β̂)

sin ν = sin(ψ̂ + β̂)

(62)

In addition, due to the inaccuracy of estimating the steer bias in the MEKF during vehicle cornering (rm > 2◦ /s), a
10 seconds equal weighted moving average window is applied on the steer bias to supply the MEKF with a smooth
bias prediction.

4. The Simulation

Proposed design is tested by simulations carried out in MATLAB/Simulink. GPS, INS and vehicle models are
built in Simulink and the KF designs are written in MATLAB code. The inputs of the simulations are gathered from
a commercial simulation programme called IPG CarMaker. Noise and disturbances are added onto the inputs before
processing through the sensor models and KF designs. The estimated results are then compared with the measurements
from CarMaker, and errors are calculated as Eqs (63) and (64).

4.1. Vehicle and Sensor parameters

The vehicle parameters are based on a Jaguar Saloon. Data for this vehicle can be found in Appendix B. Because
this study is concerned about the performance of using low-cost sensors, the INS and GPS is thus operated at a
sampling frequency of 100Hz and 1Hz respectively.

In the simulation, it is assumed that sensors are located at the cg of the vehicle. Sensor noise is assumed as white
with a constant bias (as specified in Appendix A). These errors are added to the corresponding INS measurements
and passed through a CAN-bus simulator, before being used in the KF designs. As the GPS is an add-on device, its
measurements are fed into the KFs directly without going through the CAN-bus.

4.2. The Tracks

In this study, two different tracks are used for simulations. They are described as follows,

1. the DoubleOval – two oval shaped tracks, one turning left and the other one turning right;
2. the LaneChangeISO – a double lane change, which turns right and then left again.
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4.3. Error calculations

To compare the estimations of the different KF designs and their effectiveness on various roads and manoeuvres,
the error of the estimated states are determined with the reference measurement from CarMaker. This error is derived
using the Root Mean Squared Deviation (RMSD) or the Normalised RMSD (NRMSD), which describes the amount
of deviation of the estimated states (Xest

i ) from the true value (Xt
i ), given by the following relationship:

%RMS D =

√√√√√ N∑
i=1

(Xest
i − Xt

i )
2

N
× 100% (63)

%NRMS D =
%RMS D

(Xt
max − Xt

min)
(64)

where N is the total number of data points, Xt
max is the maximum of the true data set, and Xt

min is the minimum of the
true data set.

The NRMSD is a useful error measuring tool for any time-varying dynamic state, i.e. the yaw rate, the lateral
velocity and the sideslip, while the RMSD is suitable for any states which are assumed as near constant, such as the
vehicle speed and the bias of the sensors.

5. Results and Discussion

With the 2 simulated tracks (DoubleOval and LaneChangeISO), 10 manoeuvres are carried out with speed varying
from 15kph to 55kph. These speeds are chosen so the tyre dynamics remain in the linear region. For each manoeuvre,
10 simulations are performed and an average error is determined. The bias estimation ability of the IKF is first
discussed, and then the performance of vehicle dynamic state estimations.

5.1. Bias Estimation

Table 1: Bias estimation errors (%RMSD) for the IKF and DKF

yawKKF velKKF wssEKF MEKF

IKF DKF IKF DKF IKF DKF IKF IKF

Estimated bias states: b̂r b̂r b̂x b̂x b̂y b̂y b̂w b̂δ

m
an

oe
uv

re

DoubleOval 15kph 0.04 0.08 13.14 13.96 0.21 0.22 0.34 0.08
DoubleOval 25kph 0.06 0.08 13.15 15.18 0.38 0.16 0.37 0.06
DoubleOval 35kph 0.09 0.08 13.21 17.35 0.40 0.41 0.31 0.05
DoubleOval 45kph 0.05 0.09 13.85 20.03 0.79 0.57 0.08 0.05
DoubleOval 55kph 0.08 0.09 13.68 23.22 1.29 1.08 0.24 0.07

LaneChangeISO 15kph 0.09 0.09 2.31 0.49 0.14 0.44 0.25 0.13
LaneChangeISO 25kph 0.08 0.10 2.69 3.24 0.58 0.46 0.31 0.08
LaneChangeISO 35kph 0.16 0.23 12.81 23.55 0.91 1.07 0.20 0.08
LaneChangeISO 45kph 0.18 0.16 12.65 30.46 1.27 1.48 0.32 0.07
LaneChangeISO 55kph 0.25 0.21 12.74 39.09 2.19 2.06 0.38 0.07

Table 1 shows the bias estimation errors for the IKF and the DKF designs. Inspecting the bias estimations of the
IKF, it is clear that all bias are well estimated with a %RMSD below 1%, except the longitudinal accelerometer bias,
bx. The inability of predicting bx accurately is due to the constant velocity (i.e. negligible acceleration) manoeuvre in
the simulations.

For the DKF design, the bias estimations are very similar to those from the IKF with no significant difference
apart from the longitudinal accelerometer bias. This difference is due to the longitudinal measurements in the KF
designs. Recall that longitudinal estimation in the DKF uses measurements from the GPS, while that in the IKF
uses longitudinal estimations from the wssEKF. The precise wheel bias, bw, estimation from the wssEKF allows the
longitudinal velocity to be predicted more accurately in the IKF overall.
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Table 2: State estimation error of Triple KF, IKF and Solo MEKF, %NRMSD

sideslip, β̂ yaw rate, ˆ̇ψ

Manoeuvre Triple KF IKF Solo MEKF Triple KF IKF Solo MEKF

DoubleOval 15kph 6.8045 0.4174 0.6062 0.7560 0.4377 0.8362
DoubleOval 25kph 5.2610 0.3232 0.8253 0.4946 0.3555 0.5631
DoubleOval 35kph 6.9596 0.5600 1.2146 0.3849 0.3683 0.3609
DoubleOval 45kph 15.1912 4.0282 3.5376 0.3259 0.3511 0.2580
DoubleOval 55kph 12.7709 12.8077 10.1776 0.2911 0.7194 0.7895

LaneChangeISO 15kph 21.0481 1.8495 2.3481 2.6157 1.8660 2.1964
LaneChangeISO 25kph 17.8751 1.4995 2.3685 2.109 1.4815 2.0595
LaneChangeISO 35kph 17.2353 1.4223 1.9844 1.7858 1.2260 1.6298
LaneChangeISO 45kph 24.3931 2.2926 2.7409 1.5617 1.0856 1.4280
LaneChangeISO 55kph 69.7912 9.2321 9.8130 1.4422 0.99748 1.2488

5.2. Sideslip and Yaw Rate estimation

Figure 4 shows the longitudinal velocity inputs of the MEKF working alone (Solo MEKF) and the MEKF of
the IKF. The Solo MEKF uses the longitudinal velocity determined from the WSS as inputs, while the IKF MEKF
uses longitudinal velocity estimations from the velKKF. Comparing the two velocities, it is clear that the IKF MEKF
has a better longitudinal velocity input. The benefit of the accurate longitudinal velocity determination is shown in
Table 2, in which both sideslip and yaw rate estimations are more accurate when the linear cornering coefficients are
applicable to the 2DoF bicycle model (i.e. DoubleOval 15kph to DoubleOval 35kph and LaneChangeISO 15kph to
LaneChangeISO 55kph). For manoeuvres which do not have a linear lateral tyre force to slip behaviour, Table

MEKF in IKF

Solo MEKF

Actual value

Figure 4: Longitudinal velocity inputs to the Solo MEKF and the MEKF in IKF in the DoubleOval 35kph manoeuvre

2 shows that the state estimations are more accurate with the Solo MEKF. This result is due to the compensation
between parametric errors and state estimation errors.

Referring to the yaw rate estimation in the Triple KF and the Solo MEKF, Table 2, we can see that the Triple
KF is able to provide an accurate heading and longitudinal velocity while the Solo MEKF is good at estimating fast
dynamic change of the vehicle (i.e. relatively low %NRMSD for the LaneChangeISO manoeuvres). By utilising these
advantages from the two approaches, the IKF gives the most accurate state estimations when the linear 2DoF bicycle
model is valid.

Figures 5 to 6 shows the errors of the sideslip and heading estimations of different estimation approaches, namely
the IKF, the Solo MEKF, the Triple KF and the original linear 2DoF bicycle model. Results for the two manoeuvres
with valid linear 2DoF vehicle model, i.e. DoubleOval 35kph and LaneChangeISO 35kph are presented here.
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Solo MEKF

Triple KF

IKF

2DoF

(a) Error in sideslip angle estimations

Solo MEKF

Triple KF

IKF

2DoF

(b) Error in heading angle estimations

Figure 5: State estimation errors of DoubleOval 35kph manoeuvre with different estimation approaches

Figure 5 shows the state estimation errors from when the vehicle is travelling on the DoubleOval 35kph manoeu-
vre. For the sideslip estimation, Figure 5a reveals that the Triple KF provides a noisy estimation, which is due to the
inaccuracy of lateral velocity estimation in the velKKF. On the other hand, approaches based on the vehicle model are
able to give more stable estimations. However, without any error feedback and bias estimation algorithm, the 2DoF
vehicle model estimates the sideslip with an offset. When KF is introduced into the 2DoF model, i.e. the Solo MEKF,
the offset is compensated but during corners, sideslip errors increase. Notice that the sideslip estimation of the Solo
MEKF and the 2DoF model are almost the same but with an offset. For the third and fourth corners, where the vehicle
is turning right, the offset error of the 2DoF model has become beneficial to the sideslip estimation. This 2DoF result
is only good for this particular simulation and cannot be used as a general explanation for all vehicle systems. The
most accurate sideslip estimation is produced by combining the Triple KF with the Solo MEKF, i.e. IKF. Whether
the vehicle is travelling straight or cornering, the sideslip is predicted accurately with small overshoots just before the
vehicle exits the corner.

For the heading estimations, Figure 5b shows that the 2DoF vehicle model has increasing errors due to the biases
from the yaw rate gyroscope and steering wheel. Even with the bias predicted, Figure 5b shows that the Solo MEKF is
not able to track the heading of the vehicle accurately, but bounds the errors. As the Triple KF manages to predict the
yaw rate and heading accurately, when utilising these estimations in the IKF, the heading estimations are as accurate as
those predicted from the Triple KF. In fact, from the zoom-in region of the graph, it can be seen that the IKF provides
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(a) Error in sideslip angle estimations
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Triple KF

IKF
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Figure 6: State estimation errors of LaneChangeISO 35kph manoeuvre with different estimation approaches

smoother heading estimations than the Triple KF.
For fast dynamic manoeuvres such as the LaneChangeISO 35kph, Figure 6a shows that the sideslip estimation

is not accurately predicted when solely using the Triple KF. Similar to the DoubleOval 35kph, the model-based
approaches are more accurate, especially for the Solo MEKF and IKF, in which the biases are estimated. Unlike the
DoubleOval 35kph, the fast cornering dynamic of the vehicle in the LaneChangeISO manoeuvres does not generate a
large sideslip angle. Hence, the differences between the sideslip estimations in the Solo MEKF and the IKF are small,
see Figure 6a.

Examining the heading estimations of the four estimation approaches, Figure 6b presents similar findings to those
in the DoubleOval 35kph. While the 2DoF vehicle model fails to track the heading of the vehicle, the Solo MEKF
corrects slowly. Moreover, the results show that approaches utilising the Triple KF, i.e. the Triple KF itself and
the IKF, give better heading estimations. This is because of the corrected yaw rate from the yawKKF and the more
accurate longitudinal velocity determination from wssEKF.

6. Conclusion

In this paper, an IKF is proposed to estimate the vehicle dynamics using low-cost GPS and INS. The IKF is
composed of 4 KFs: yawKKF, velKKF, wssEKF, and MEKF. The yawKKF estimates the heading angle and yaw rate
gyroscopic bias with the aid of GPS. These are then fed into the wssEKF with GPS velocities to estimate the tyre radius
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bias and longitudinal velocity. With the corrected yaw rate measurement and a continuous source of longitudinal
velocity, the velKKF improves the longitudinal velocity, and estimates the lateral velocity and accelerometer biases.
These are then utilised in the MEKF (based on a 2DoF linear bicycle model) to estimate the steer bias as well as the
sideslip and heading angle.

The performance of the IKF design is compared with the linear 2DoF bicycle model, the Triple KF and the
Solo MEKF under 10 different simulated manoeuvres. From the results, it is found that, in general, MEKF is better
for sideslip estimations and KKF is better for heading estimations. For fast dynamics, however, KKF suffers from
continuous update and correction. Unless the update rate of reference sensors are increased, KKF is not superior to
the MEKF in state estimations. By combining the MEKF and KKF (i.e IKF), the benefits of the two approaches are
utilised. Results show that as long as the linear cornering coefficients are applicable to the vehicle model, the IKF is
good at both sideslip and heading estimations.

Although the IKF is able to estimate the dynamic states of the vehicle for both types of manoeuvres, it is restricted
to manoeuvres below 55kph. This speed limitation is because of the parameters in the MKF of the IKF design
(particularly the cornering stiffnesses, Cy[i j]) are determined a priori using the linear tyre slip-force ratio. At a higher
speed, the tyre forces do not vary linearly with slip, hence the vehicle dynamic estimations become inaccurate. For
work in the future, it is recommended to combine the MEKF design of Wenzel (2005) with the proposed Triple KF, so
the tyre force-slip ratio can be monitored continuously in real time. New or existing techniques for cornering stiffness
estimation should also be investigated to enhance new designs of the IKF.
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Nomenclature

�b variable in the b-frame (vehicle body frame)
�e variable in the e-frame (ENU frame)
�̂, �est estimated variable
�gps,�gps GPS measurements
�[i j] variable at Front Right (FR), Front Left (FL), Rear Right (RR), Rear Left (RL)

or variable at Front axle (F), Rear axle (R)
�k, �k variable at time k

�k+1, �k+1 variable at time k + 1
�k+1|k variable at time k + 1, given information at time k

�max maximum value in data set
�min minimum value in data set
�re f reference measurement
�t true value
�v, �v variable in the v-frame (vehicle dynamics frame)
�vel, �velKKF variable of velKKF

�wss, �wssEKF variable of wssEKF

�yaw, �yawKKF variable of yawKKF

a distance from centre of gravity to front axle
b distance from centre of gravity to rear axle
bd bias due to the pitching motion
br bias in the yaw rate gyroscope
bw bias of the tyre radius
bw|gps estimated bias of the tyre radius given GPS measurements
bx bias in the longitudinal accelerometer
by bias in the lateral accelerometer
bδ bias in the steer wheel angle
cg centre of gravity
f non-linear function for process matrix
g non-linear function for measurement matrix
h component of discrete measurement matrix, H
m vehicle mass at centre of gravity
rm yaw rate gyro measurement
u input vector
v measurement noise vector
w input disturbance vector
x state vector
x longitudinal displacement
ẋ longitudinal velocity
ẍ longitudinal acceleration
y lateral displacement
ẏ lateral velocity
ÿ lateral acceleration
z measurement vector

A process matrix
Ax longitudinal accelerometer measurement
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Ay lateral accelerometer measurement
B input matrix
C measurement matrix
Cy,[i j] lateral tyre cornering stiffness
Fx,[i j] Longitudinal force on tyre
Fy,[i j] Lateral force on tyre
F Jacobian matrix for f
G Jacobian matrix for g
H discrete form of measurement matrix, C
I identity matrix
K kalman filter gain matrix
J[i j] Second order moment of inertia about lateral axis of wheel
Jzz Second order moment of inertia about vertical axis, Zb

N number of data points in set, X

P error covariance matrix
Q process covariance matrix
R[i j] wheel radius
R measurement covariance matrix
TF half of front track of vehicle
TR half of rear track of vehicle
Ts sampling time
V speed of vehicle at centre of gravity
V[i j] speed at the tyre
X longitudinal axis
X Data set
Y lateral axis

α[i j] slip angle at tyre
β sideslip angle at the centre of gravity
β[i j] sideslip angle at the tyre
δ[i j] steer angle on the tyres
ν course angle about centre of gravity
ω[i j] wheel rotational velocity at each wheel
ψ Euler yaw angle

Γk discrete form of disturbance matrix
Δk discrete form of input matrix, B
Φk discrete form of process matrix, A
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Appendix A. Sensor parameters

Appendix A.1. Inertial Navigation System

Table A.3: Simulated INS errors

Standard deviation, σ Bias

Sensor (100Hz) Value Unit Value Unit

Yaw rate gyroscope rm 1.0 × 10−1 deg/s. 1.0 deg/s

Longitudinal accelerometer ẍb 5.0 × 10−1 m/s2 1.0 m/s2

Lateral accelerometer ÿb 5.0 × 10−1 m/s2 1.0 m/s2

Steering wheel sensor δw 1.0 deg 5.0 deg

Wheel speed sensot ω 4.0 × 10−2 m/s — —

Appendix A.2. Global Positioning System

Table A.4: GPS errors based on DG-100 without an antenna

Standard deviation, σ

GPS (1Hz) Value

Eastings position σxe 3.0
Northings position σye 3.0
Longitudinal velocity σẋe 2.5 × 10−2

Lateral velocity σẏe 2.5 × 10−2

Resultant velocity σV

√(
ẋe
V σẋe

)2
+

(
ẏe
V σẏe

)2
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ẏe

ẋ2
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1
ẋe
σẏe

)2
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ẋ2
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σẋe

)2
+

(
sin

(
ẏe
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(
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Appendix B. Vehicle Parameters

Table B.5: Vehicle parameters used for this project

Value Unit

Dimension
distance from front axle to cg (a) 1.360 m
distance from rear axle to cg (b) 1.546 m
cg height 0.554 m
front track (TF ) 0.768 m
rear track (TR) 0.768 m

Masses and inertia
sprung mass (ms) 1665.900 kg
unsprung mass per wheel (mu) 48.080 kg
total mass of vehicle (m) 1858.000 kg
roll inertia about cg (Jxx) 655.200 kgm2

pitch inertia about cg (Jyy) 3319.000 kgm2

yaw inertia about cg (Jzz) 3515.000 kgm2

wheel inertia (Jw) 1.000 kgm2

Steering
On centre rack ratio 17.58

Tyre
wheel radius 0.329 m

Aerodynamics
aerodynamic coefficient (Cdx) 0.305
frontal cross-sectional area (Ax) 2.200 m2

air density (ρ) 1.205 kgm−3
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